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Abstract

This paper describes the submission by
the University of Sheffield to the SemEval
2017 Abstract Meaning Representation
Parsing and Generation task (SemEval
2017 Task 9, Subtask 2). We cast language
generation from AMR as a sequence of
actions (e.g., insert/remove/rename edges
and nodes) that progressively transform
the AMR graph into a dependency parse
tree. This transition-based approach re-
lies on the fact that an AMR graph can be
considered structurally similar to a depen-
dency tree, with a focus on content rather
than function words. An added benefit to
this approach is the greater amount of data
we can take advantage of to train the parse-
to-text linearizer. Our submitted run on the
test data achieved a BLEU score of 3.32
and a Trueskill score of -2.204 on auto-
matic and human evaluation respectively.

1 Introduction

Abstract meaning representation (AMR) is a for-
malism representing the meaning of a sentence (or
multiple sentences) as a directed, acyclic graph,
where each node represents a concept, and each
edge represents a relation between concepts (Ba-
narescu et al., 2013). Natural language generation
(NLG) from AMRs introduces challenges, as AMR

abstracts away from syntactic structure, function
words, or inflections. Flanigan et al. (2016) were
the first work to perform NLG from AMR; they
used a weighted combination of a tree-to-string
transducer and a language model to transform the
AMR graph into English. Later work by Song et al.
(2016) proposed segmenting the AMR graph into
fragments and generating subphrases from them,
using a set of subgraph-to-string rules. They then

cast the problem of ordering these subphrases as a
travelling salesman problem. Pourdamghani et al.
(2016) suggested linearizing the AMR graph using
a maximum entropy classifier. The linearization
is then used as input to a phrase-based machine
translation system, to produce the final sentence.

Our submission to SemEval task 9 on AMR-to-
English Generation is based on inverting previous
work on transition-based parsers (Goodman et al.,
2016a,b), which was in turn based on the previous
work of Wang et al. (2015). Beyond inverting the
transition from AMR graph to dependency tree, our
system also separates the transition in three passes.
Briefly, during the first pass we convert the AMR

concepts into content words, during the second
pass the structure of the tree is modified (e.g. by
inserting, deleting, and moving nodes and edges),
while in the third pass missing function words are
inserted, and existing words realized in their final
form. To form a natural language sentence, the de-
pendency tree needs only to be linearized; we note
that this is not part of the transition, but should
be considered a separate post-processing step. We
train a separate classifier for each pass, to learn
which action should be taken at each time-step.

2 System description

2.1 Pre-processing

During pre-processing the graph structure of the
AMR is converted to a tree by identifying each
node n with multiple incoming edges in the graph.
Each additional incoming edge is redirected to a
duplicate node n′ (as shown in the transition be-
tween stage a and b in Figure 1). These duplicate
nodes are inserted as leaves in the structure, and
maintain no edges to the n’s children. The system
randomly determines which of the incoming edges
will remain connected with n, and lets the transi-
tion system remove duplicate nodes, or move any

586



of n’s descendants as required.
During training, we employ the SpaCy depen-

dency parser (Honnibal and Johnson, 2015) to
construct the dependency tree of the training sen-
tence and obtain part-of-speech tags; the dataset’s
sentences are already split into tokens. Heuristics
are used to normalize all date occurrences and nu-
meric expressions in both the sentence and depen-
dency tree, to help our system handle temporal and
numerical AMR concepts and structures. Addition-
ally, we construct a simplified version of the de-
pendency tree where articles, auxiliary words, and
punctuation, are removed. This simplified tree is
useful for the first and second phases of the transi-
tion where the focus is on content words.

2.2 Phase 1

Phase 1 is initialized with a stack σ containing all
nodes in the AMR tree, with the leaf nodes first; in
subsequent phases, σ is initialized with the nodes
of the modified tree of the previous phase. A sec-
ond stack β is initialized with the children of the
top node in σ. At each time-step the transition
system considers the current state, which consists
of the aforementioned stacks, and the tree (which
may be in any intermediate stage between an AMR

tree and a dependency tree). Each phase concludes
once σ is exhausted, with both σ and β stacks be-
ing reinitiated for the next phase as needed.

All transition actions are detailed in Table 1,
separated according to which phase they may be
applied. Some actions may appear in multiple
phases (e.g. the NextNode and NextEdge actions,
which are primarily used to traverse the σ and β
stacks) but note that their outcome may slightly
differ from phase to phase. Particularly, during
phase 1 the action NextNode is also used to mod-
ify the labels of the graph, in effect transform-
ing AMR concepts to content words. If a content
word is determined to be a verb, noun, adjective
or adverb, a parameter ln is used which consists of
the word’s stem and the appropriate part-of-speech
tag. The stem is obtained by applying Porter’s
stemmer to the AMR concept identifier.1 The in-
tuition here is that, while the stem and part-of-
speech tag may be useful in structuring the depen-
dency tree in phase 2, the inflected form of each
word can more accurately be determined after the
dependency tree is finalized (i.e. after phase 2).

The NextEdge action is used to traverse the β

1https://tartarus.org/martin/PorterStemmer/

stack, alternating with MergeNode actions. The
latter are applied when two AMR concepts should
be combined to form a single content word, e.g.
the negation concept “-” and concept “security”
combining to form the word “insecurity”. Addi-
tionally, during phase 1, certain AMR fragments
with typified structure (e.g., name, date-entity,
time) are collapsed into single nodes, and occur-
rences of wiki relations are removed. Consult
stage c of Figure 1 for an example.

2.3 Phase 2
In phase 2, the transition actions aim to transform
the structure of the tree. They are based on the ac-
tions used by Goodman et al. (2016a,b), with some
alterations due to σ being initialized by travers-
ing the tree from leaves to root, namely the In-
sert action is allowed to add a parent node above
the current one, but limited to adding only leaf
nodes as children. Similarly to Wang et al. (2015),
but unlike Goodman et al. (2016a,b), the Reat-
tach, SwapEdge, InsertParent, and InsertLeaf ac-
tions are parameterized with an edge label le. The
NextNode action in phase 2 simply traverses σ.

To improve runtime, the Reattach, InsertPar-
ent, and InsertLeaf actions are allowed only to σ0

nodes they were applied to in the training data, and
will not be considered otherwise. Similarly, labels
ln, le are limited to those observed during training.

Finally, all actions preserve full connectivity of
the tree, and any Reattach actions that would in-
troduce a cycle are not considered. To avoid con-
flicts between actions, the following restrictions
are enforced: a DeleteLeaf or ReplaceHead ac-
tion cannot delete a previously inserted node, and
vice-versa; a SwapEdge action cannot swap a pre-
viously swapped edge; a Reattach action cannot
move a previously reattached or inserted node.

Stages d, e, f , and g of Figure 1 show the in-
termediate trees produced in phase 2. The double-
bordered nodes denote nodes already visited via
NextNode actions and thus no longer in σ.

2.4 Phase 3
During phase 3, InsertParent and InsertLeaf ac-
tions are used to add any closed-set function words
(e.g. auxiliary verbs and articles) and punctuation
that are missing from the dependency tree. The
ModifyNode action is a variant of the NextNode
action, which modifies (rather than replaces) any
temporary labels with a suffix operation (i.e. “-
s”, “-ing”) that, when combined with the stem of
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Action name β status Parameters Action outcome
Phase 1: Convert AMR concepts to content words.
NextNode empty ln Set label of node σ0 to ln. Pop σ0, and initialize β.
MergeNode non-empty ln Set label of node σ0 to ln. Pop β0, and remove it from the

tree. The children of β0 are attached as children to σ0.
NextEdge non-empty - Pop β0.
Phase 2: Modify the structure of the tree.
InsertParent - ln, le Insert new node δ with label ln as the parent of σ0, via

dependency label le. Insert δ into σ.
InsertLeaf empty ln, le Insert new node δ with label ln as a child of leaf node σ0,

via dependency label le. Insert δ into σ.
NextEdge non-empty le Set label of edge (σ0, β0) to le. Pop β0.
SwapEdge non-empty le Reverse edge (σ0, β0) to (β0, σ0), and set its label to le.

β0 becomes the parent of σ0 and its subgraph, while the
previous parent of σ0 becomes the parent of β0. Pop β0.

ReplaceHead non-empty - Pop σ0, delete it from the graph. Attach β0 as a child to
the previous parent of σ0. All other children of σ0 become
children of β0. Insert β0 at the head of σ, initialize β.

DeleteLeaf empty - Pop leaf node σ0, delete it from the graph. Initialize β.
Reattach non-empty p, le Change edge (σ0, β0) to (p, β0), where p is an existing

node in the graph. p becomes the parent of β0 and its
subgraph. Pop β0, and insert p to σ.

NextNode empty - Pop σ0, and initialize β.
Phase 3: Insert function words, punctuation, and determine the proper inflection of content words.
InsertParent - ln, le Insert new node δ with label ln as the parent of σ0, via

dependency label le. Insert δ into σ.
InsertLeaf - ln, le Insert new node δ with label ln as a child of leaf node σ0,

via dependency label le. Insert δ into σ.
ModifyNode - mn Modify label of node σ0 by mn. Pop σ0, and initialize β.

Table 1: Available actions per phase, for transition-based transformation of AMR graphs to parse trees.

the label, can properly inflect the word (e.g. mod-
ify “make VB” with “-s” to construct “makes”).
Stage h of Figure 1 shows the outcome of phase 3.

2.5 Expert policy

During training, an expert policy (also known as
oracle) is constructed to determine which action
should be performed given a particular state. By
consulting the alignments between the concepts of
each AMR graph and the words of the correspond-
ing sentence in the training data, the expert policy
detects any unaligned AMR concepts to be deleted
by appropriate actions, as well as any unaligned
words in the dependency tree to be inserted; other
actions can be similarly inferred. During phases 1
and 2 we consider the simplified dependency tree,
where function words have been removed, and in
phase 3 we consider the full tree. The alignments
were provided in the dataset using the system of
Pourdamghani et al. (2014).

2.6 Post-processing

In post-processing, the dependency tree con-
structed by the transition needs to be linearized
into a sentence. Tree linearization has most com-
monly been addressed by overgenerating word se-
quences and ranking (e.g. according to a trigram
language model); however there has been a lot of
recent research studying this topic (Filippova and
Strube, 2009; He et al., 2009; Belz et al., 2011;
Bohnet et al., 2011; Zhang, 2013; Futrell and Gib-
son, 2015). Our approach in this paper is to simply
order the nodes in each subtree using a classifier,
in effect creating ordered subphrases of the tree.
The subtrees are thus incrementally ordered, in
a bottom-up approach, and subsequently formed
into a natural language sentence. Any date occur-
rences or numerical expressions that were normal-
ized during pre-processing, are restored to their
original form. It is also important to note again,
that the structure of this approach allows it to take
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Figure 1: Example transition from AMR graph to
dependency tree of the sentence “It makes one
tremble even without fear.”

advantage of additional parse-tree datasets to aug-
ment the training of the post-precessing step.

3 Results

We use the adaptive regularization of weight vec-
tors (AROW) algorithm (Crammer et al., 2013)
for all aforementioned classifiers. All the fea-
tures we use are boolean indicators and similar to
those proposed by Goodman et al. (2016a,b) and
Wang et al. (2015). All classifiers were trained
on the same corpus of AMRs released by LDC,
and created as part of tehe DARPA DEFT pro-
gram (LDC2016E25); we hope to augment the lin-
earization’s training with other dependency parse
datasets in future work. To provide further speed
improvement in testing time, we filter actions
(conditioned on specific parameters) that appear
infrequently in the training set.

Table 2 shows the ablation results of our system
on the test set of the task. For Phase 1 we calculate
the precision of the labels in the output tree com-
pared to the labels of the dependency parse, while
on phases 2 and 3 we calculate the unlabeled and
labeled attachment scores. We also include the
BLEU (Papineni et al., 2002) and Trueskill (Sak-
aguchi et al., 2014) scores achieved by our sub-
mitted run on the task’s test data. In future work,
we would like to examine the effect of error prop-
agation from phase to phase.

Precision
Phase 1 0.45

UAS LAS
Phase 2 0.16 0.11
Phase 3 0.08 0.06

BLEU Trueskill
Realization 3.32 −2.204

Table 2: Ablation results on the testing set.

4 Conclusion

We proposed a three-phase transition-based sys-
tem for transforming an AMR graph into a depen-
dency tree; the final sentence can then be acquired
via a tree linearizer. Our results suggest there is
much room for improvement; we hope to contin-
uously refine the proposed action space and ex-
pert policy, and develop and apply a more com-
plex linearizer to the constructed parse trees. Fi-
nally, we believe that by using imitation learning
algorithms, the transition sequences could be im-
proved to generalize better to unseen data.
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