
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 444–448,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

BuzzSaw at SemEval-2017 Task 7: Global vs. Local Context for
Interpreting and Locating Homographic English Puns with Sense

Embeddings

Dieke Oele
CLCG

University of Groningen
The Netherlands
d.oele@rug.nl

Kilian Evang
CLCG

University of Groningen
The Netherlands

k.evang@rug.nl

Abstract

This paper describes our system partici-
pating in the SemEval-2017 Task 7, for
the subtasks of homographic pun location
and homographic pun interpretation. For
pun interpretation, we use a knowledge-
based Word Sense Disambiguation (WSD)
method based on sense embeddings. Pun-
based jokes can be divided into two parts,
each containing information about the two
distinct senses of the pun. To exploit this
structure we split the context that is input
to the WSD system into two local con-
texts and find the best sense for each of
them. We use the output of pun interpre-
tation for pun location. As we expect the
two meanings of a pun to be very dissim-
ilar, we compute sense embedding cosine
distances for each sense-pair and select the
word that has the highest distance. We
describe experiments on different methods
of splitting the context and compare our
method to several baselines. We find ev-
idence supporting our hypotheses and ob-
tain competitive results for pun interpreta-
tion.

1 Introduction

A pun is a word used in a context to evoke two
or more distinct senses for humorous effect. For
example, in the 1987 movie “The Running Man”,
Arnold Schwarzenegger’s character cuts his en-
emy Buzzsaw in half with a chainsaw, then an-
nounces: “He had to split.” The verb split is
the pun here, evoking two senses in the context:
that of leaving, and that of disintegrating into two
parts.

Recognizing and appreciating puns requires so-
phisticated feats of intelligence currently unique to

humans. A recently proposed set of artificial intel-
ligence tasks (Miller et al., 2017) challenges com-
puters to try their hand at it: pun detection (tell
whether or not a text contains a pun), pun location
(given a text with a pun, tell which word is the pun)
and pun interpretation (given a pun in context, tell
which senses it evokes).

Pun interpretation is closely related to the task
of Word Sense Disambiguation. A typical WSD
system chooses that sense of a word which fits
best in the context the word appears in. A pun
interpretation system, however, should return not
one but two different senses of a word. Miller
and Turković (2016) suggest a straightforward ex-
tension of the WSD approach to pun interpreta-
tion: choose the best scoring sense and second-
best scoring sense for the word in its context.
However, this approach does not take into account
the specific structure of pun-based jokes. In most
cases, such jokes can be divided into two parts,
where in the first part cues for one sense are con-
centrated, and in the second part, cues for another
sense. Figure 1 shows examples of such cases.

A pun interpretation system could exploit this
two-part structure by splitting the global context
of the entire joke into two local contexts and per-
forming WSD separately for each local context,
choosing the best sense for each of the two. As this
process makes each context more informative for
the respective sense, we hypothesize that it leads
to more accurate pun interpretation than the simple
approach which uses the top-scoring two senses
according to the global context.

Additionally, we believe that we can use the out-
put of our pun interpretation system for pun loca-
tion. We hypothesize that the two senses of a pun
are typically very dissimilar, as this is important
for the joke to be recognizable. We therefore at-
tempt to locate puns by selecting the polysemous
word with the most dissimilar two senses.

444

The first time he put the horses on the carriage, itwentwithout. .a hitch.
If a priest is called a white collar worker, a nun would be acreature . . .of habit.
Television sets inBritain have tocross theEnglish Channel.
Oldmath teachers never die, they just become irrational.
In the winter my dogwears hiscoat, but in the summer he wears hiscoat and pants.

Figure 1: Examples of pun-based jokes. The pun is typeset in boldface. Words that we judge to be cues
for one sense are marked with a dashed underline, words and n-grams that we judge to be cues for the
other sense are marked with a dotted underline. Note that the cues for the two senses tend to divide the
jokes into two non-overlapping parts.

2 Method

Similar to Miller and Gurevych (2015) we use a
knowledge-based WSD system and apply it to pun
annotation. Our method is loosely based on the
Lesk algorithm exploiting both the context of the
words and the definitions (hereafter referred to as
glosses) of the senses (Oele and van Noord, 2017).
Given a word, Lesk selects the sense whose defi-
nition has the highest number of words in com-
mon with the context. In our method, which we
call Lesk++, instead of counting the number of
words that overlap between the gloss of a sense
and its context, word and sense embeddings are
used to compute the similarity between the gloss
of a sense and the context.

2.1 Word Sense Disambiguation
Our WSD method takes sentences as input and
outputs a preferred sense for each polysemous
word. Given a sentence w1 . . . wi of i words, we
retrieve a set of word senses from the sense inven-
tory for each word w and sort them in ascending
order. Then, for each sense s of each word w, we
consider the similarity of its lexeme (the combi-
nation of a word and one of its senses (Rothe and
Schütze, 2015)) with the context and the similarity
of the gloss with the context.

For each potential sense s of word w, the cosine
similarity is computed between its gloss vector Gs

and its context vector Cw and between the context
vector Cw and the lexeme vector Ls,w. The score
of a given word w and sense s is thus defined as
follows:

Score(s, w) = cos(Gs, Cw)+cos(Ls,w, Cw) (1)

The sense with the highest score is chosen. When
no gloss is found for a given sense, only the second
part of the equation is used.

Prior to disambiguation itself, we sort the words
by the number of senses, so that the word with the

fewest senses will be considered first. The idea
behind this is that words that have fewer senses
are easier to disambiguate (Chen et al., 2014). As
the algorithm relies on the words in the context
which may themselves be ambiguous, if words in
the context have been disambiguated already, this
information can be used for the ambiguous words
that follow. We therefore use the resulting sense of
each word for the disambiguation of the following
words, starting with the “easiest” words.

Our method requires lexeme embeddings Ls,w

for each sense s. For this we use AutoEx-
tend (Rothe and Schütze, 2015) to create addi-
tional embeddings for senses from WordNet on
the basis of word embeddings. AutoExtend is an
auto-encoder that relies on the relations present
in WordNet to learn embeddings for senses and
lexemes. To create these embeddings, a neural
network containing lexemes and sense layers is
built, while the WordNet relations are used to cre-
ate links between each layer. The advantage of
their method is that it is flexible: it can take any
set of word embeddings and any lexical database
as input and produces embeddings of senses and
lexemes, without requiring any extra training data.

Ultimately, for each word W we need a vector
for the context Cw, and for each sense s of word
w we need a gloss vector Gs. The context vector
Cw is defined as the mean of all the content word
representations in the sentence: if a word in the
context has already been disambiguated, we use
the corresponding sense embedding; otherwise we
use the word embedding. For each sense s, we
take its gloss as provided in WordNet. In line
with Banerjee and Pedersen (2002), we expand
this gloss with the glosses of related meanings, ex-
cluding antonyms. Similar to the creation of the
context vectors, the gloss vector Gs is created by
averaging the word embeddings of all the content
words in the gloss.

445

2.2 Pun Interpretation: the Context Had to
Split

The WSD method that we described above returns
the sense with the highest score taking into ac-
count the whole context. For pun interpretation,
we could simply adapt it to return the best and
second-best sense. However, to exploit the two-
part structure of pun-based jokes, we instead split
the context into two local contexts, run WSD for
each local context and then return the best sense
according to each of the two.

Ideally, we want to split the context so that all
cues for one sense are in one local context, and all
cues for the other sense are in the other. We there-
fore split the context so as to maximize the seman-
tic dissimilarity between both parts. For each pos-
sible split of the text into two contiguous parts, we
create a vector for each part by taking the means
of all content words, as described earlier, and com-
pute the cosine distance between both vectors. The
pair of parts with the highest distance are used as
local contexts for the WSD system.

For each polysemous word in the sentence, the
WSD system is applied twice, using a different
part of the context. The highest scoring sense for
each run is chosen. As both runs could assign the
same sense to the word, the second best sense of
the first run is chosen in this case.

2.3 Pun Location: Attracting Opposites

We attempt to locate the pun in a sentence by se-
lecting the polysemous word with the two most
dissimilar senses. In order to do this, we use the
two senses as determined by the pun interpretation
system for each ambiguous word in the sentence.
We therefore retrieve the two best senses for each
polysemous word in the sentence and compute the
cosine distance between their embeddings. The
word that has the maximum distance between its
senses is chosen as the answer.

3 Experiments

We use the sense and lexeme embeddings from
Rothe and Schütze (2015)1. They lie within the
same vector space as the pre-trained word embed-
dings by Mikolov et al. (2013)2. This model con-
tains 300-dimensional vectors for 3 million words
and phrases from the Google News dataset. Our

1http://www.cis.lmu.de/ sascha/AutoExtend/
2see https://code.google.com/p/word2vec/

sense inventory is Princeton WordNet 3.1 (Fell-
baum, 1998).

Although a pun can have two or more differ-
ent part-of-speech tags, our method does not ac-
count for this. Instead, we use the POS that was
assigned by the Stanford POS tagger (Toutanova
et al., 2003).

3.1 Development Data

For the development of our system, we gathered
and annotated a small dataset of 91 puns from the
website “Pun of the Day”3. We used instances that
have the same characteristics as in the data for the
subtasks we consider (one pun per text, one con-
tent word per pun, target exists in WordNet 3.1,
pun is homographic). From a small set of down-
loaded texts, both authors first independently se-
lected the texts that meet all of these criteria. This
was followed by a round of adjudication by dis-
cussion to determine the texts to use. We then used
a similar process to annotate each pun for its two
senses.

3.2 Pun Interpretation

We compare our pun interpretation method to
three baselines: a random baseline, a most fre-
quent sense baseline and a WSD system that does
not use context splitting. The latter was modified
to return the two senses with the highest score in-
stead of one.

In addition, we compared different ways of
splitting the context of the pun. Next to splitting
on the basis of the maximal cosine distance be-
tween two possible parts of the context we also
ran the WSD system with contexts that were split
in half and with contexts that were split at the first
punctuation symbol.

3.3 Pun Location

For pun location, we compared our system’s per-
formance to two baselines. One baseline randomly
selects one content word from the text as the pun,
and the other baseline always selects the last con-
tent word in the text as the pun. In addition, we
used the output of all experimental setups of pun
interpretation to assess the influence of the quality
of assigned senses on pun location.

3http://www.punoftheday.com/

446

4 Results

Results of the experiments for pun interpretation
can be found in Table 14.

Table 1: Results for pun interpretation on the
shared task test data.

System Coverage Precision

Random baseline 98.92 7.24
MFS baseline 98.92 11.21

Lesk++, no splitting 98.23 15.45

Lesk++, split in half 98.23 16.39
Lesk++, split by punctuation 98.23 15.53
Lesk++, optimal split 98.23 15.53

Our system easily outperforms both the ran-
dom baseline and the most frequent sense base-
line. Also, if we split the context before disam-
biguating the target word, we gain higher scores
as compared to a system that selects the two best
scoring senses. We do not, however, gain higher
scores when we split the contexts on the basis of
maximum semantic dissimilarity. Instead we ob-
serve that a system that splits the context in half
performs better.

Table 2 shows results for pun location using the
output of our system for pun interpretation. Our
system scores well above our random baseline.
However, the baseline selecting the last content
word is much stronger, as the pun often appears
at the end of the joke in the data.

Table 2: Results for pun location on the shared
task test data.

Coverage Precision

Random content word 100.00 13.20
Last content word 100.00 52.96
Lesk++, optimal split 100.00 27.69

Results of the experiments for pun location us-
ing the output of our system compared to all base-
lines for pun interpretation and different splitting
setups are shown in Table 3. Using the output of
our system, with or without context splitting, per-
forms better compared to systems that use random
or most frequent output. The output of systems
that use splitting modules and the ones that do not
seem to not make a big difference for pun location.

4Lesk++, optimal split, was the submitted system. Num-
bers differ slightly due to a fixed inconsistency in how words
are handled for which only one sense could be found.

Table 3: Results for pun location on the shared
task test data.

Pun interpretation system Coverage Precision

Random baseline 100.00 17.24
MFS baseline 100.00 18.48

Lesk++, no splitting 100.00 27.75

Lesk++, split in half 100.00 27.75
Lesk++, split by punctuation 100.00 28.44
Lesk++, optimal split 100.00 27.69

5 Discussion

Our method for pun interpretation does not yet
deal with puns where each sense has a different
part of speech. A solution to this would be the use
of the senses of the word’s second best option of
a part-of-speech tagger as well. Also, our method
does not deal with phrasal verbs and multi-word
expressions.

Our method for pun location works much better
than chance, but much worse than a simple heuris-
tic exploiting the fact puns typically appear at the
end in the data. It would be interesting to see if
both methods can be combined, e.g. using con-
fidence scores and the heuristic as a fallback. It
would also be interesting to see if the heuristic can
be applied to other types of data, such as movie
scripts.

6 Conclusions

We hypothesized that the idea that pun-based
jokes can be divided into two parts, each contain-
ing information about the two distinct senses of
the pun, can be exploited for pun interpretation.
Experiments were done splitting the context that
is input to a WSD system into two parts, run WSD
for each context and return the best sense for pun
interpretation. Results of our experiments show
that, on the pun interpretation task, systems that
use such a module outperform a WSD system that
returns the two best senses. Also, our system per-
forms better compared to both the random and the
most frequent baseline.

As we expected the two meanings of a pun to be
very dissimilar, we used the output of pun inter-
pretation for pun location. Computing cosine dis-
tances between each sense-pair and select the one
that has the highest distance gains higher scores
as compared to a system that randomly selects a
content word to be the pun.

447

References

Satanjeev Banerjee and Ted Pedersen. 2002. An
adapted Lesk algorithm for word sense dis-
ambiguation using WordNet. In Proceed-
ings of the Third International Conference
on Computational Linguistics and Intelli-
gent Text Processing. Springer-Verlag, Lon-
don, UK, UK, CICLing ’02, pages 136–145.
http://dl.acm.org/citation.cfm?id=647344.724142.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A Unified Model for Word Sense Representation
and Disambiguation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL. pages 1025–1035.
http://aclweb.org/anthology/D/D14/D14-1110.pdf.

Christiane Fellbaum, editor. 1998. WordNet An Elec-
tronic Lexical Database. The MIT Press, Cam-
bridge, MA ; London.

Tomas Mikolov, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Efficient esti-
mation of word representations in vector
space. CoRR abs/1301.3781. http://dblp.uni-
trier.de/db/journals/corr/corr1301.html.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of English puns. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 719–729.
http://www.aclweb.org/anthology/P15-1070.

Tristan Miller, Christian F. Hempelmann, and Irina
Gurevych. 2017. Semeval-2017 task 7: Detection
and interpretation of English puns. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017).

Tristan Miller and Mladen Turković. 2016. Towards
the automatic detection and identification of English
puns. European Journal of Humour Research 4.

Dieke Oele and Gertjan van Noord. 2017. Distribu-
tional Lesk: Effective multilingual knowledge-based
word sense disambiguation. Submitted for publica-
tion.

Sascha Rothe and Hinrich Schütze. 2015. Au-
toextend: Extending word embeddings to embed-
dings for synsets and lexemes. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1793–1803.
https://doi.org/10.3115/v1/P15-1173.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics.
http://aclweb.org/anthology/N03-1033.

448

