
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 436–439,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

N-Hance at SemEval-2017 Task 7: A Computational Approach using
Word Association for Puns

Özge Sevgili
İzmir Institute of Technology,
Computer Engineering, Urla,

İzmir, Turkey
ozgesevgili@iyte.edu.tr

Nima Ghotbi
İzmir Institute of Technology,
Computer Engineering, Urla,

İzmir, Turkey
nimaghotbi
@iyte.edu.tr

Selma Tekir
İzmir Institute of Technology,
Computer Engineering, Urla,

İzmir, Turkey
selmatekir@iyte.edu.tr

Abstract

This paper presents a system developed for
SemEval-2017 Task 7, Detection and In-
terpretation of English Puns consisting of
three subtasks; pun detection, pun loca-
tion, and pun interpretation, respectively.
The system stands on recognizing a dis-
tinctive word which has a high association
with the pun in the given sentence. The in-
tended humorous meaning of pun is iden-
tified through the use of this word. Our
official results confirm the potential of this
approach.

1 Introduction

Word Sense Disambiguation (WSD) (Navigli,
2009) is the task of determining the sense of a
word in a specific context computationally. In
the general case, a polysemous word’s a single,
specific sense is meant in a given context. How-
ever, a type of wordplay called pun suggests two
or more meanings, by exploiting multiple mean-
ings of words, or of similar-sounding words. Un-
derstanding the linguistic realization of puns and
automatically detecting and disambiguating them
are important for computational linguistics. Ma-
chine learning-based approaches are too expen-
sive and impractical for this area as these humour
constructs employ lexical-semantic anomalies and
they are hard to be found in regular training sets.
Thus, knowledge-based and unsupervised meth-
ods are prevalent. There are three tasks in the
detection and interpretation of English puns: pun
detection-the given context contains a pun or not,
pun identification-location of the pun word, and
pun disambiguation-identifying the two meanings
referred by the pun in the given context.

Current approaches to pun interpretation rely on
Lesk (1986), which considers the highest overlap

between the context and gloss in order to return the
target sense (two senses) for the pun. Miller and
Gurevych (2015) performs automatic pun disam-
biguation in a comprehensive experimental setup
for the first time using three Lesk variants along
with Random and MFS (Most Frequent Sense)
baselines. The general conclusion is that pun dis-
ambiguation results are poorer when compared
with traditional WSD and traditional WSD must
be extended with pun-specific features to increase
accuracy in this area.

Our consideration for the task of detection and
interpretation of English puns is mainly based on
the assumption that pun containing contexts in-
clude a distinctive word that can be paired with
the pun. This word has a central role in the word-
play such that the intended humorous meaning of
pun is in connection with this word. This claim
implies that this word’s association with a pun
is considerably greater than the other words’ as-
sociation scores with the pun. As the threshold
to be used here is determined using all the sen-
tences (either pun or not), the unsupervised nature
of our method is preserved. In the computation of
word association scores; we used the information-
theoretic measure, Pointwise Mutual Information
(PMI) (Church and Hanks, 1990). Our experi-
ments support this claim computationally. The re-
sults both in homographic and heterographic puns
are promising in detecting whether the given con-
text is a pun or not.

In the remainder of this paper, we describe our
system including the components for pun detec-
tion, pun location, and pun interpretation. In Sec-
tion 3 we present our performance results. Finally,
we summarize our findings and give comment on
possible future extensions.

436



2 System Description

First of all, we performed exploratory analysis
on both homographic and heterographic trial
datasets. We observed that sentences containing
a pun have a distinctive word that has a high
semantic/phonetic association with the pun. In
accordance with this observation, for a sentence,
all the pairwise word associations should be
calculated to determine the most correlated word
pair. If an element of this most correlated word
pair has a second sense/spelling, it’s an evidence
of being a pun. To illustrate; in the following
sentence, ”banker-interest” word pair has the
highest correlation and the word ”interest” of
this pair has a second sense, making it a good
candidate for the pun.

I used to be a banker but I lost interest.

We used PMI to measure the association be-
tween words. PMI distinguishes the relevant
word pairs (e.g. banker-interest) from the irrele-
vant ones (e.g. used-interest) because word co-
occurrence frequencies are normalized by the in-
dividual word frequencies, as seen in 1.

pmi(w1, w2) = log2
p(w1, w2)

p(w1)p(w2)
(1)

To calculate the PMI scores, we used a subset of
Wikipedia data1. Because pun words seldom ap-
pear in Wikipedia, we added test datasets to guar-
antee words co-occur at least once and thus the
system is able to compute PMI scores for each
word pair. We calculated PMI scores using nltk
library (Bird et al., 2009)2 using bigram colloca-
tion with a window size of 20.

2.1 Pun Detection
This subtask requires deciding whether a given
sentence contains a pun or not. In order to accom-
plish this, we followed a process that consists of
the following steps:

• Converting each sentence into tokens.

• Stopword removal.

• Generating word pairs preserving word or-
der in the sentence (leaving out the reverse
of each ordered pair).

1https://dumps.wikimedia.org/enwiki/latest/enwiki-
latest-pages-articles.xml.bz2

2http://www.nltk.org/howto/collocations.html

• Calculating PMI scores for each pair and
sorting the list of scores for each sentence.

For instance, if the input of the system is the
sentence below:

They threw a party for the inventor of the
toaster. And he was toasted.

The following sorted PMI scores of word pairs
are given as output (Table 1).

Pair of words PMI score
toaster, toasted 11.6896
threw, toasted 7.9549
threw, toaster 7.8618
inventor, toasted 7.4851
inventor, toaster 7.3920
threw, inventor 3.6572
party, toasted 3.1461
party, toaster 3.0530
threw, party 1.6402
party, inventor -1.1516

Table 1: Sorted PMI scores for each pair in the
sentence.

In the realization of this subtask, we ask
whether the highest PMI score is distinctively
higher than the others. In order to answer this,
we need a global threshold value to be used for
the whole set of sentences (either pun or not). To
determine this threshold value, we used the in-
terquartile range (IQR) of the set of sorted PMI
scores of every sentence. IQR is preferred because
it is able to eliminate outliers.

To sum up, we had an IQR value for each sen-
tence and we took their median as the threshold
value because median and IQR are consistent with
each other. Our threshold value for homographic
sentences was 2.458 and for heterographic sen-
tences was 2.940. Thus, if the difference between
the highest PMI score and the succeeding one in a
sentence was higher than the threshold value, the
sentence was marked as containing a pun.

2.2 Pun Location
The main aim of the subtask is to find the location
of pun in pun containing sentences. Here we as-
sumed that the second element of the pair with the
highest PMI score in a sentence is the pun using
the observation that pun word usually is located at
the end of the sentence.

437



2.3 Pun Interpretation

In this subtask, we are given the location of the pun
word and we are required to find the two relevant
senses of it. We provided a solution only for the
homographic dataset for this subtask.

In order to identify the first relevant sense in
the context, we used lesk method which predicts
the answer on the basis of the overlap between the
given sentence and the dictionary entries. It is ap-
propriate because we need a context-based predic-
tion. As an implementation detail, we used pywsd
(Tan, 2014)3 library that includes simple lesk al-
gorithm implementation.

As for the second sense of the pun word, we
again rely on our assumption that the given sen-
tence has a target word that can be paired with the
pun by its highest correlation. In order to deter-
mine this target word, we get help from pairwise
associations using PMI scores. Then, the second
sense of the pun word can be predicted by finding
the highest similar sense to this target word. This
final step requires to find all senses of the pun word
and choose the highest similar sense among them,
respectively. Here, we represented each individual
sense of pun by its synonym. We used wordnet
(Miller, 1995)4 dictionary to extract all senses and
synonyms for a given word.

To measure similarity, we used word2vec
(Mikolov et al., 2013)5 method in which words
are represented by local vectors to be used in
a computational manner. The similarity of two
words are calculated by taking cosine of vec-
tors of those words. We used the gensim library
(Řehůřek and Sojka, 2010)6 to calculate word2vec
for each word. To feed word2vec, we used, again,
Wikipedia data. Our vector size was set as 128-
dimensional and our window size was 10.

To sum up, we selected pun’s best word pair
with respect to the PMI score. Then, we took ev-
ery sense of the pun and retrieved the synonymous
words for every sense. After that, we calculated
cosine similarity between each sense and pun’s
word pair. As a result, the sense with the highest
similarity is recognized as the second suggested
meaning of pun. To illustrate, in the following
sentence, the word pair ”room - admitted” is the
most correlated with the PMI score of 0.6130:

3https://github.com/alvations/pywsd
4http://www.nltk.org/howto/wordnet.html
5https://code.google.com/p/word2vec/
6https://radimrehurek.com/gensim/models/word2vec.html

”There’s room for one more,” Tom admitted.

All senses of the pun word, namely ”admitted”,
and their synonymous words were taken. Then,
using their word vectors, cosine similarities be-
tween the synonyms and the word, ”room” were
calculated, as seen in Table 2.

word and synonym cosine similarity
room, admit -0.0113
room, accommodate 0.2292
room, accept -0.0972

Table 2: Cosine similarity values between syn-
onymous words of the senses of pun and its high-
est correlated word in the sentence.

According to the cosine similarity values, as
the second sense of pun ”accommodate” (”accom-
modate.v.04”) which means ”have room for; hold
without crowding” was chosen. As we said before,
the first sense was identified using the simple lesk
algorithm. For the above example sentence, the
algorithm returned the result ”admit.v.08” which
means ”serve as a means of entrance”.

3 Evaluation Results

Table 3 presents the official scores7 of our sys-
tem. As results show, our main success comes
from the task of pun detection. We have 0.7553
precision for homographic and 0.7725 for hetero-
graphic datasets and around 0.93 recall value for
both of them. The relatively lower precision scores
we get can be attributed to the general feature of
unsupervised methods when compared with that
of their supervised counterparts. In our implemen-
tation, there are minor errors while extracting pairs
or calculating PMI scores. In those inconvenience
cases, our system predicts randomly, for exactly
22 sentences in homographic dataset and 28 sen-
tences in heterographic one which may cause a
wrong decision.

For pun detection and pun location, our results
for heterographic sentences are better than the ho-
mographic ones. Actually, it is because our pair-
wise association is more appropriate for hetero-
graphic sentences in which two words are distinc-
tively correlated in one spelling than the others.

For pun interpretation, our results are lower than
the other subtasks. To begin with; in identifying

7system submitted after the official end of the evaluation

438



dataset subtask precision recall F1
homographic pun detection 0.7553 0.9334 0.8350

pun location 0.4269 0.4250 0.4259
pun interpretation 0.0204 0.0200 0.0202

heterographic pun detection 0.7725 0.9300 0.8440
pun location 0.6592 0.6515 0.6553

Table 3: The performances of our system for three subtasks in each dataset.

the first sense of pun, we are limited by the per-
formance of simple Lesk algorithm, 50− 70%, as
Lesk (1986) explained. Therefore, another algo-
rithm for WSD may enable us to reach better re-
sults. As for disambiguating the second sense of
the pun word, we utilize synonymous words for
each sense of pun, however, there is sometimes
none or limited synonymous words for an input
sense. This may result in reaching a wrong deci-
sion.

4 Conclusion

We have described the system submitted to the
SemEval-2017 Task 7, Detection and Interpreta-
tion of English Puns. For participated system de-
scriptions and their highlighted ideas, please re-
fer to the task description paper by Miller et al.
(2017). Our system uses word association scores
based on PMI to determine a target word that can
be paired with the pun. The substantially high as-
sociation score of this target word with pun is used
as an indicator that the given sentence is a pun.
Moreover, this word can be exploited to disam-
biguate the second meaning of a pun. The eval-
uation results show that the idea of this word pair
association could reasonably accomplish the goal
of the subtasks especially the task of pun detec-
tion.

This work suggests an interesting further direc-
tion to use PMI scores in conjunction with local
vector similarities to identify pun-specific features
in WSD.

References
Steven Bird, Ewan Klein, and Edward Loper.

2009. Natural Language Processing with Python.
O’Reilly Media.

Kenneth Ward Church and Patrick Hanks. 1990.
Word association norms, mutual information, and
lexicography. Comput. Linguist. 16(1):22–29.
http://dl.acm.org/citation.cfm?id=89086.89095.

Michael Lesk. 1986. Automatic sense disambigua-
tion using machine readable dictionaries: How to
tell a pine cone from an ice cream cone. In
Proceedings of the 5th Annual International Con-
ference on Systems Documentation. ACM, New
York, NY, USA, SIGDOC ’86, pages 24–26.
https://doi.org/10.1145/318723.318728.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

George A. Miller. 1995. Wordnet: A lexical
database for english. Commun. ACM 38(11):39–41.
https://doi.org/10.1145/219717.219748.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of english puns. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(ACL-IJCNLP 2015).

Tristan Miller, Christian Hempelmann, and Iryna
Gurevych. 2017. Semeval-2017 task 7: Detection
and interpretation of english puns. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017). Association for Computa-
tional Linguistics, Vancouver, Canada, pages 58–68.
http://www.aclweb.org/anthology/S17-2005.

Roberto Navigli. 2009. Word sense disambiguation:
A survey. ACM Comput. Surv. 41(2):10:1–10:69.
https://doi.org/10.1145/1459352.1459355.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. ELRA, Valletta,
Malta, pages 45–50. http://is.muni.cz/
publication/884893/en.

Liling Tan. 2014. Pywsd: Python implementations
of word sense disambiguation (wsd) technologies
[software]. https://github.com/alvations/pywsd.

439


