
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 396–400,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

TakeLab at SemEval-2017 Task 6: #RankingHumorIn4Pages

Marin Kukovačec, Juraj Malenica, Ivan Mršić, Antonio Šajatović,
Domagoj Alagić, Jan Šnajder

Text Analysis and Knowledge Engineering Lab
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia
{name.surname}@fer.hr

Abstract

This paper describes our system for hu-
mor ranking in tweets within the SemEval
2017 Task 6: #HashtagWars (6A and 6B).
For both subtasks, we use an off-the-shelf
gradient boosting model built on a rich
set of features, handcrafted to provide the
model with the external knowledge needed
to better predict the humor in the text.
The features capture various cultural ref-
erences and specific humor patterns. Our
system ranked 2nd (officially 7th) among
10 submissions on the Subtask A and 2nd
among 9 submissions on the Subtask B.

1 Introduction

While extremely interesting, understanding humor
expressed in text is a challenging natural language
problem. Besides standard ambiguity of natu-
ral language, humor is also highly subjective and
lacks an universal definition (Mihalcea and Strap-
parava, 2005). Moreover, humor should almost
never be taken at face value, as its understanding
often requires a broader context – external knowl-
edge and common sense. On top of that, what is
funny today might not be funny tomorrow, as hu-
mor goes hand in hand with ever-changing trends
of popular culture.

Even though there has been some work on hu-
mor generation (Petrović and Matthews, 2013;
Valitutti et al., 2013), most work has been con-
cerned with humor detection, a task of classify-
ing whether a given text snippet is humorous (Mi-
halcea and Strapparava, 2005; Kiddon and Brun,
2011; Yang et al., 2015; Chen and Lee, 2017).
However, this research was mostly focused on a
simple binary detection of humor.

In this paper, we describe a system for rank-
ing humor in tweets, which we participated with

in the SemEval-2017 Task 6 (Potash et al., 2017).
It comprised two subtasks, one dealing with pre-
dicting which tweet out of two is more humorous,
and other with ranking a set of tweets by their
humorousness. Even though these tasks can be
both posed and tackled differently, we straightfor-
wardly used the obtained pairwise classifications
from the first task in coming up with ranked lists
for the second. Our system uses a standard gra-
dient boosting classifier (GB) based on a rich set
of features and collections of external knowledge.
We ranked 2nd among 10 submissions (7th offi-
cially) at the Subtask 6A, and 2nd among 9 sub-
missions at the Subtask 6B.

2 Task Description

The dataset provided by the task organizers com-
prises the tweets collected from many episodes
of the Comedy Central show @midnight.1 This
game show is based around contestants and view-
ers providing humorous and witty tweets in re-
sponse to a given topic (hashtag), which are then
ranked by their humorousness. The compiled
dataset consists of 11,685 tweets grouped into 106
hashtags. Each group is further split into three
bins: the most humorous tweet (denoted 1), nine
less humorous tweets (denoted 2), and a varying
number of the least humorous tweets (denoted 0).
The test set consists of 749 tweets grouped into 6
hashtags not present in the train set.

The task is divided into subtasks 6A and 6B. In
the first subtask, participants must recognize the
more humorous tweet of the two, whereas the sec-
ond subtask asks for a complete tripartite ranking
of all tweets under a given hashtag. This basically
means that the order of the tweets is not important
as long they are placed in the correct bin. For more
details consult (Potash et al., 2017).

1http://www.cc.com/shows/-midnight

396

3 Model

We tackle both subtasks with a single base model.
For the subtask A, we trained a model that predicts
which tweet of the given two is more humorous,
and then used this information to rank the tweets
for the subtask B. More specifically, we counted
how many times a tweet was more humorous than
other tweets, and ranked the tweets by that num-
ber. Note that this resulted in a complete ranking,
which we reorganized into bins (which is possi-
ble as the cardinality of the two out of three bins
is known). In the following sections, we describe
our rich set of features and model optimization.

3.1 Features

We used Twitter-specialized preprocessing tools.
More precisely, we first tokenize the dataset
and then obtain the part-of-speech (POS) tags
with Twokenizer.2 This tool also accounts for
the normalization of the elongated vowels (e.g.,
“heeeeello”→“hello”). For dependency parsing,
we use TweeboParser.3 We lemmatize the ob-
tained words using the NLTK toolkit (Bird et al.,
2009). In the end, we obtain a 140-dimensional
feature vector of a tweet.4 Below we describe the
features grouped into categories (number of fea-
tures per group given in parentheses).

Cultural reference features (96). By inspect-
ing the dataset, we noticed that, at least within
the @midnight game show, most jokes are based
solely on taking the names of famous people,
movies, TV series, and other culture references,
and modifying them in an unexpected, yet humor-
ous way. To this end, we acquired a number of
collections covering such references, so that our
model could recognize them within the tweets.
The collections comprise, among others, movie ti-
tles, song names, book titles, TV series titles, car-
toon titles, people names and their professions, na-
tionality, and birth year (Yu et al., 2016) (Table 1).
To obtain the features, we first calculate the tf-
idf-weighted bag-of-words (BoW) vectors of all
tweets and all items in the acquired collections.
Then, for each collection, we construct a single
feature that denotes the maximum cosine similar-

2https://github.com/brendano/
ark-tweet-nlp/

3https://github.com/ikekonglp/
TweeboParser

4Note that this has nothing to do with the character limit
on Twitter, which is coincidentally also 140.

Collection Number of items

Movie titles 6,609
Song names 3,820
Book titles 191
TV series titles 228
Cartoon titles 183
People information 10,951
One-line jokes 2,868
Curse words 165

Table 1: External knowledge collections we used
in the model.

ity between a given tweet’s vector and those of
the items from the collection. We also construct a
one-hot-encoded vector of professions of a person
mentioned in the text (the resource covers 88 dif-
ferent occupations). In the case no person is men-
tioned in a tweet, this vector is set to a zero vector.
Additionally, we specifically check whether there
is a USA citizen mentioned in a tweet and fetch
an average Google Trends5 rank of all the named
entities found within a tweet.

Binary and count-based features (15). Besides
simple tweet length in characters, we also measure
the common noun, proper noun, pronoun, adjec-
tive, and verb to token ratios. Analogously, we
measure the punctuation count and punctuation to
character ratio. Besides this, we detect whether
time and place deixes occur in a tweet (Zhang
and Liu, 2014) using a precompiled list of deixes.
Furthermore, we used binary features that denote
whether the tweet contains a exclamation mark,
negation, hashtag, or a URL. On top of these fea-
tures, we calculated how much times single words
are repeated in a tweet.

Readability-based features (3). Our intuition
tells us that good jokes “flow”: they are catchy and
easily pronounceable. To capture this, we used the
features that gauge tweet readability. First, we em-
ploy the Flesch reading-ease test (Flesch, 1948).
Secondly, we follow the work of Zhang and Liu
(2014) and extract all the alliteration chains (se-
quences of at least two words that start with the
same phone). We construct the alliteration feature
as a total length of alliteration chains divided by
the number of tweet tokens. Lastly, we measure
the vowels to characters ratio.

5https://trends.google.com/trends/

397

Humor-specific features (25). As the simplest
feature in this category, we measure the num-
ber of tokens between the root of a dependency-
parsed sentence and furthest node pointing to it.
With this feature we hope to capture punchlines,
whose common characteristic is that they are usu-
ally found at the end of a sentence.

Additionally, by examining the dataset, we no-
ticed that humor often arises from the use of a
modifier that does not seem to fit with the word
it modifies. For instance, in the case of “Co-
nan the Apologizer” (orig. “Conan the Barbar-
ian”), the tweet is humorous because Conan is
never attributed with such a trait, as he never apol-
ogizes. To detect this disparity, we measure the
cosine similarity of skip-gram (SG) embeddings
(Mikolov et al., 2013) between certain parts of a
tweet: the root and the subject, the root and the
object, and the root and all of its modifiers. In the
last case, we sum all the similarities. We use the
freely-available pre-trained vectors.6

To detect puns, we use a simple heuristic – a
tweet contains a pun if it matches in all but one
word with any of the items from our collections.
We also acquired a collection of one-line jokes
and curse words (Table 1). For one-line jokes,
we realized that it would be unreasonable to ex-
pect having a complete joke within a tweet. To ac-
count for this, we simply counted how many words
from the collection of one-line jokes are present in
a tweet. This way we hope to capture the char-
acteristic words found in one-line jokes. Lastly,
we map the tweet’s hashtag to a predefined set
of humor patterns, which we manually compiled
out of all the hashtags from the dataset: Movie,
Song, Book, Cartoon, Show, Sci*Fi, Celeb, Food,
Words, Add, Make*, If*, Before*, *Because,
One*letter, Ruin*, Sexy*, y* (where * denotes a
wildcard). We construct a one-hot-encoded vec-
tor of these patterns, which is set to zero if a new
hashtag could not match to any of these patterns.

Sentiment-based features (1). We used the out-
put of model for sentiment classification of tweets
(Lozić et al., 2017) as one of our features.

3.2 Model Optimization

Considering that we tackle both subtasks using a
binary classification model, we construct the in-
stances by concatenating feature vectors of both

6https://code.google.com/archive/p/
word2vec/

tweets in a pair. The pairs are constructed as a
Cartesian product between all the tweets in all dif-
ferent bin pairings. Note that this results in an
extremely large number of instances, as there are
1 · 9 + 1 · (n− 10) + 9 · (n− 10) different pairs,
where n denotes the number of tweets under a
given hashtag. Additionally, to help the model
learn the symmetric predictions, we include these
pairs’ symmetric counterparts as well, which dou-
bles the total number.

Due to resource constraints, we decided to start
off with a variety of readily-available models and
rule out those that perform badly in our rough pre-
liminary evaluation. Specifically, we trained a se-
lection of models with their default hyperparame-
ters on the train set and evaluated them on the trial
set. Surprisingly, a single model, gradient boost-
ing (GB) with variance loss, performed the best, so
we decided to use it in as our base model. We used
a GB implementation of the scikit-learn package
(Pedregosa et al., 2011). We ran a fine-grained
5-fold cross-validation over two GB hyperparam-
eters: number of estimators and maximum tree
depth. As we are working with tweets grouped
into hashtags, the folds actually contained whole
hashtags. Additionally, note that we used a ran-
dom sample of 80% of pairs for training in order
to reduce the computation costs.

4 Evaluation

The subtask 6A was evaluated in terms of accu-
racy (higher is better), whereas the subtask 6B was
evaluated in terms of a metric inspired by edit dis-
tance. The metric captures how many moves the
tweet must make to fall into a correct bin (lower is
better). This metric was normalized by the max-
imum possible edit distance. Both metrics were
micro-averaged across hashtags.

4.1 Feature Analysis

A gradient boosting model allowed us to effort-
lessly acquire the list of feature importances. We
report the top ten most relevant features, accord-
ing to the model, in Figure 1. Most notably, five
cultural reference features found their spot within
this list. This confirmed our earlier intuition that,
at least within the @midnight game show, most
jokes are based on culture references, which are
slightly transformed to induce a comical feel.

398

0.000

0.025

0.050

0.075

M
ov

ie
 r

ef
er

en
ce

M
od

ifi
er

 s
ki

p−
gr

am

S
on

g
re

fe
re

nc
e

V
ow

el
 to

 c
ha

ra
ct

er
 r

at
io

Tw
ee

t l
en

gt
h

T
v

se
rie

s
re

fe
re

nc
e

H
um

or
 p

at
te

rn

B
oo

k
re

fe
re

nc
e

C
ar

to
on

 r
ef

er
en

ce

A
dj

ec
tiv

e
to

 to
ke

n
ra

tio

Feature

Im
po

rt
an

ce

Feature groups

Binary and count−based features

Cultural reference features

Humor−specific features

Readability−based features

Figure 1: Top ten most important features, accord-
ing to the trained GB model.

4.2 Model Variants

The two models we submitted for the subtask 6A
are effectively identical. The only thing that makes
them different is the size of the hyperparameter
search space used model optimization: the second
model used a more fine-grained grid of values and
thus expectedly performed better. Our best (unof-
ficial) model, denoted TakeLab-2, ranked 2nd (of-
ficially 7th) among 10 submissions with the ac-
curacy of 0.641. Other participants’ scores can
be found in Table 2. We also included our offi-
cial submissions (TakeLab-official-1 and TakeLab-
official-2 along their non-official counterparts.7

As mentioned earlier, to obtain the tripartite
ranking for the subtask 6B, we used the pairwise
classifications obtained by the model used in the
subtask 6A. This brought us to the distance metric
value of 0.908, placing us at the 2nd place out of 9
submissions. Additionally, we experimented with
LambdaMART algorithm to see how a full-fledged
learning-to-rank algorithm would perform at this
subtask. To that end, we explored two different
variants of the model: one using all the described
features (denoted LambdaMART-all) and one only
the top ten features according to the model we
used in subtask 6A (denoted LambdaMART-10).
In comparison to the models we submitted, it is in-
triguing to see that both of these models perform
only slightly worse. What is more, model variant
trained using only the top ten features would rank
third among all submissions.

7Unfortunately, we accidentally swapped the labels in the
submission file so we had to unofficially submit a fixed file.

Team name Accuracy

HumorHawk-2 0.675
TakeLab-2 0.641
HumorHawk-1 0.637
DataStories-1 0.632
Duluth-2 0.627
TakeLab-official-1 0.597
SRHR 0.523
SVNIT@SemEval 0.506
TakeLab-1 0.403
Duluth-1 0.397
TakeLab-official-2 0.359
QUB 0.187

Table 2: Final rankings on the subtask 6A. Our
submissions are bolded.

Team name Distance

Duluth-2 0.872
TakeLab-1 0.908
LambdaMART-10 0.912
QUB-1 0.924
QUB-2 0.924
SVNIT@SemEval-2 0.938
TakeLab-2 0.944
LambdaMART-all 0.946
SVNIT@SemEval-1 0.949
Duluth-1 0.967
WarTeam-1 1.000

Table 3: Final rankings on the subtask 6B. Our
submissions are bolded.

5 Conclusion

We described the system for humor detection
which we participated with in the SemEval-2017
Task 6 (subtasks A and B). The gist of our system
lies in an off-the-shelf gradient boosting model
built on a rich set of handcrafted features. Know-
ing that humor understanding requires a broader
context that also asks for external knowledge, we
manually compiled a series of features that can
capture the cultural references in a tweet – celebri-
ties, movies, TV series, books, and so on. Be-
sides that, we also included pronounciation-based,
as well as humor-specific features that can recog-
nize one-line jokes and puns, hoping to capture
the humor patterns used throughout the @mid-
night game show. Future work includes exper-
iments with full-fledged learning-to-rank models
and a more detailed investigation of linguistically-
motivated humor features, both backed up by ex-
haustive cross-dataset analyses.

399

References
Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly
Media, Inc.

Lei Chen and Chong Min Lee. 2017. Convolu-
tional neural network for humor recognition. arXiv
preprint arXiv:1702.02584 .

Rudolph Flesch. 1948. A new readability yardstick.
Journal of applied psychology 32(3):221.

Chloe Kiddon and Yuriy Brun. 2011. That’s what she
said: double entendre identification. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies (ACL HLT 2011). Portland, Oregon, USA,
pages 89–94.

David Lozić, Doria Šarić, Ivan Tokić, Zoran Medić,
and Jan Šnajder. 2017. TakeLab at SemEval-2017
Task 4: Recent deaths and the power of nostalgia
in sentiment analysis in Twitter. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017). Vancouver, Canada, pages
782–787.

Rada Mihalcea and Carlo Strapparava. 2005. Mak-
ing computers laugh: Investigations in automatic
humor recognition. In Proceedings of the 2005
Conference on Human Language Technology and
Empirical Methods in Natural Language Process-
ing (HIT EMNLP 2005). Vancouver, B.C., Canada,
pages 531–538.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Proceedings of the Neural Information
Processing Systems Conference (NIPS 2013). Lake
Tahoe, USA, pages 3111–3119.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12:2825–2830.

Sasa Petrović and David Matthews. 2013. Unsuper-
vised joke generation from big data. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL 2013). Sofia, Bul-
garia, pages 228–232.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2017. SemEval-2017 Task 6: #HashtagWars:
Learning a sense of humor. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017). Vancouver, Canada, pages 49–
57.

Alessandro Valitutti, Hannu Toivonen, Antoine
Doucet, and Jukka M. Toivanen. 2013. “Let every-
thing turn well in your wife”: Generation of adult
humor using lexical constraints. In Proceedings
of the 51st Annual Meeting of the Association
for Computational Linguistics (ACL 2013). Sofia,
Bulgaria, pages 243–248.

Diyi Yang, Alon Lavie, Chris Dyer, and Eduard H.
Hovy. 2015. Humor recognition and humor an-
chor extraction. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2015). Lisbon, Portugal, pages
2367–2376.

Amy Zhao Yu, Shahar Ronen, Kevin Hu, Tiffany Lu,
and César A Hidalgo. 2016. Pantheon 1.0, a manu-
ally verified dataset of globally famous biographies.
Scientific data 3.

Renxian Zhang and Naishi Liu. 2014. Recognizing hu-
mor on Twitter. In Proceedings of the 23rd ACM In-
ternational Conference on Information and Knowl-
edge Management (CIKM 2014). ACM, Shanghai,
China, pages 889–898.

400

