
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 334–338,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

SwissAlps at SemEval-2017 Task 3: Attention-based Convolutional Neural
Network for Community Question Answering

Jan Deriu
Zurich University of Applied Sciences

deri@zhaw.ch

Mark Cieliebak
Zurich University of Applied Sciences

ciel@zhaw.ch

Abstract

In this paper we propose a system for re-
ranking answers for a given question. Our
method builds on a siamese CNN archi-
tecture which is extended by two attention
mechanisms. The approach was evaluated
on the datasets of the SemEval-2017 com-
petition for Community Question Answer-
ing (cQA), where it achieved 7th place ob-
taining a MAP score of 86.24 points on the
Question-Comment Similarity subtask.

1 Introduction

Community Question Answering (cQA) describes
the task of finding a relevant answer to a never-
before seen question (Nakov et al., 2017). The
cQA task in SemEval-2017 is subdivided into
three subtasks: (a) Question-Comment Similar-
ity, (b) Question-Question Similarity, and (c)
Question-External Comment Similarity. We par-
ticipated at the Question-Comment Similarity sub-
task, which consists of re-ranking a set of 10
answers to a given question, such that all the
relevant answers are ranked higher than the ir-
relevant answers. We evaluated this system on
the dataset provided by SemEval-2017 for the
Question-Comment Similarity subtask, wich con-
sits of approximately 2000 questions with 10 an-
swers each. Our system ranked 7th place, achiev-
ing a MAP score of 86.2 which was outperformed
by 2 points by the 1st ranked system. In this paper
we describe the implementation details of our sys-
tem, which follows a siamese CNN architecture
based on (Severyn and Moschitti, 2015) extended
by the attention mechanisms introduced by (Yin
et al., 2015).

Siamese Architecture Siamese architectures
usually consist of two parallel CNNs, each

processing one sentence and then using the
representations for the classification. Siamese ar-
chitectures have been proposed for various tasks,
e.g. (Bromley et al., 1993) used the structure
for signature verification, and they have been
shown to be very useful for modelling sentence
pairs: (He et al., 2015), (Severyn and Moschitti,
2015), and (Tan et al., 2015) used the siamese
architecture to generate representations for both
sentences which then are used for classification.

Attention Mechanisms Recently the notion of
attention has been introduced in neural network
architectures to mimic human behaviour, as we
tend to focus on key parts of the sentences to
extract relevant parts. Most of the work on
attention mechanisms is focused on LSTMs: for
instance in (Bahdanau et al., 2014) the authors use
an attention mechanism for language translation,
and in (Vinyals et al., 2015) the authors use it
for generating parse trees. Regarding attention
mechanisms for CNNs, we are only aware of
(Yin et al., 2015), on which our system is based on.

The rest of the paper is structured as follows:
in Section 2 we present our model showing the
siamese architecture augmented with two different
attention mechanisms. In Section 3 we describe
our experimental setup and show the results ob-
tained with our system. We conclude our discus-
sion in Section 4.

2 Model

The input to the system are pairs of questions and
answer candidates where the model should clas-
sify if the answer candidate is relevant to the ques-
tion, thus, being a binary classification problem.
Given such an input a question and an answer can-
didate, the parallel CNNs produce a representation

334



Question 
Input

Answer 
Input

Question-
Sentence 

Matrix

Answer-
Sentence 

Matrix

Attention 
Matrix

Convolution
Layer

Convolution
Layer

Pooling

Pooling

Hidden 
Layer

Softmax

Figure 1: The architecture of the attention-based CNN used in our approach. The bold part highlights
the first attention mechanism the dotted line highlight the second attention mechanism.

for both sentences, which are then concatenated
and fed into a fully connected hidden layer before
being fed into a softmax layer for classification
(see Figure 1). The model is extended with two at-
tention mechanisms: one modifies the input to the
convolution and the second modifies the output of
the convolution. Both methods aim at giving more
weight to relevant parts of the sentences.

2.1 Language Model

We use word embeddings based on word2vec
(Mikolov et al., 2013) as input to the convolu-
tions. As described in (Mikolov et al., 2013) we
first learn representations for phrases by learning
which bigrams and trigrams appear frequently to-
gether. These n-grams are replaced by a unique
token, e.g. ’New York’ is replaced by the token
’New York’. The word embeddings are gener-
ated using the skip-gram model setting the context
window to 5 and the dimensionality to d = 200.
The data used to create the word embeddings is a
large corpus of 200M English Twitter messages.
The word embeddings are stored as a matrix E ∈
Rn×d where n is the number of tokens in the vo-
cabulary. We generate a mapping V from each to-
ken t to the index of the corresponding word vec-
tor in the matrix E where V (t) denotes the index
of token t.

2.2 Siamese CNN Architecture

Input Layer A minimal preprocessing is ap-
plied to both sentences. First, each sentence is
lower-cased and tokenized. Each token t is re-
placed with the corresponding vocabulary index
V (t). Thus, each sentence is represented as a vec-

tor s of indices. We denote the length of the vector
as sq for the length of the question and sa for the
length of the answer.

Embedding Layer The embedding layer uses
the indices provided by the input layer to select
and concatenate the vectors from the embedding
matrix E , thus, creating a matrix representation S
for the sentence. For the question we have Sq ∈
Rsq×d and for the answer candidate Sa ∈ Rsa×d.

Convolution Layer This layer applies a set ofm
convolutional filters of length h over the sentence
matrix S ∈ {Sq, Sa}. Let S[i:i+h] denote the con-
catenation of word vectors Si to Si+h. A feature
ci is generated for a given filter F by:

ci :=
∑
k,j

(S[i:i+h])k,j · Fk,j (1)

The concatenation of all vectors in a sentence de-
fines a feature vector c ∈ Rs−h+1, where s denotes
the sentence length. The vectors are then aggre-
gated from all m filters into a feature map matrix
C ∈ Rm×(s−h+1). The output of the convolutional
layer is passed through the relu-activation function
(Nair and Hinton, 2010), before entering a pooling
layer.

Zero Padding When computing the convolution
at the boundary of the sentence, the convolutional
filter is off the edge. Zero Padding is applied by
adding h− 1 zero vectors at the beginning and the
end of the sentence matrix. The padded sentence
matrix is of the form: Szq ∈ Rsq+2∗(h−1)×d and
Sza ∈ Rsa+2∗(h−1)×d for the question and answer
candidate respectively. Note that the feature map

335



matrix has the form: C ∈ Rm×(s+h−1) if the input
is padded.

Pooling Layer The pooling layer aggregates the
vectors in the feature map matrix C by taking the
maximum value for each feature vector. This re-
duces the representation of both the question and
the answer candidate to cq,pooled, ca,pooled ∈ Rm.

Hidden Layer The two vectors cq,pooled and
ca,pooled are concatenated to a vector x ∈ R2m and
passed into a fully connected hidden layer which
computes the following transformation: xh =
relu(W ∗ x + b), where W ∈ R2m×2m is the
weight matrix and b ∈ R2m the bias vector.

Softmax Finally, the outputs of the previous
layer x ∈ R2m are fully connected to a soft-
max regression layer, which returns the class ŷ ∈
[1,K] with largest probability, i.e.,

ŷ = arg max
j

P (y = j | x,w,a)

= arg max
j

ex
ᵀwj+aj∑K

k=1 e
xᵀwk+ak

,
(2)

where wj and aj denotes the weights and bias
of class j.

2.3 Attention Mechanism
We implemented the two different ways of intro-
ducing an attention mechanism into the siamese
structure. The first manipulates the input to the
convolution directly, the second modifies output to
the convolution. Both approaches are based on an
attention matrix.

Attention Matrix The attention matrix A ∈
Rsq×sa is derived from the sentence matrices Sq

and Sa by computing the pairwise Euclidean simi-
larity between the word embeddings of Sq and the
word embeddings of Sa. Thus, Ai,j = (1+ |Sqi −
Saj |)−1 denotes the similarity of the i-th word in
the question with the j-th word in the answer can-
didate.

Convolution Modification The first mechanism
modifies the input to the convolution by apply-
ing a linear transformation to the attention ma-
trix A to create the attention features. For this,
two weight matrices are used: one for the ques-
tion Wq ∈ Rsc×d and one for the answer candi-
date Wa ∈ Rsq×d. To attention matrix is multi-
plied with the weight matrices to generate the at-
tention features: Aq = A∗Wq andAa = AT ∗Wa

with Aq ∈ Rsq×d and Aa ∈ Rsa×d, where the
weight matrices are learned during the training
phase. The attention features are stacked on top
of the sentence matrix, creating an order-3-tensor:
S2

q ∈ Rsq×d×2 for the question and S2
a ∈ Rsa×d×2

for the answer candidate. These tensors are used
as the input into the convolution layer, giving more
weight to the relevant regions in the sentence. As
in (Yin et al., 2015) we refer to this architecture as
ABCNN 1.

Attention Based Pooling The second mech-
anism modifies the output of the convolution.
First a sliding window is applied on h consecu-
tive columns of the feature map matrix Cw

:,i =∑
k=i:i+h

C:,k where i ∈ [1..sq] and the window size

h is the same as the filter length h used for the
convolution. The values of the resulting feature
map matrix Cw ∈ Rm×sq are weighted to include
the attention values. The attention values are gen-
erated by summing the attention matrix column-
wise for the question and row-wise for the an-
swer candidate. Thus, aq =

∑
Aj,: ∈ Rsq and

aa =
∑
A:,j ∈ Rsa represent the attention val-

ues for each token in the question and the an-
swer candidate, respectively. These vectors are
used to weight the feature map matrix, thus, we
get Cq

:,i = aq
i ∗ Cwq

:,i for the question and Ca
:,i =

aa
i ∗ Cwa

:,i where Cwq and Cwa denote the win-
dow averaged feature map matrices for the ques-
tion and answer candidate, respectively. Finally,
standard max pooling is applied to the attention
weighted feature map matrices. As in (Yin et al.,
2015) we refer to this architecture as ABCNN 2.

3 Experiments

For the experiments we compared the three dif-
ferent architectures: (i) the siamese architecture
without the attention mechanism; we refer to this
as siamese CNN (sCNN) (ii) the ABCNN 1 archi-
tecture, and (iii) the ABCNN 2 architecture.

3.1 Setup
For all experiments we used the same pre-trained
200-dimensional word embeddings introduced in
Section 2.1. We employ AdaDelta (Zeiler, 2012)
as optimizer and L2 regularization to avoid over-
fitting. Table 1 gives an overview of the hyper-
parameters chosen via grid search. Furthermore
we employ early stopping on the SemEval-2016
test-set, using a patience of 50 epochs. The final

336



lr ε ρ m h L2

sCNN 0.1 1e−6 0.95 500 3 0.001
ABCNN1 0.05 1e−8 0.95 200 3 0.0005
ABCNN2 0.01 1e−8 0.95 200 3 0.0001

Table 1: Hyperparameters of the system. lr: learn-
ing rate,ρ and ε: AdaDelta hyperparameters , h:
filter width, m: number of filters

ranking of the answer candidates for a question is
derived from the softmax probability, i.e. the an-
swer candidates are sorted by their probability of
being relevant.

3.2 Data
The training data provided by SemEval consist of
approx. 2000 questions with 10 answer candidates
each. Each answer candidate is manually labelled
as either Relevant, Irrelevant, or Potentially Use-
ful. Table 2 gives an overview of the data. For the
training phase we combined the Training Part 1,
Training Part 2, and Dev 2016, and we used Test
2016 as validation set for early stopping. Further-
more, we aggregated the Irrelevant and the Poten-
tially Useful pairs to reduce the problem to a bi-
nary classification task.

Relevant Irrelevant Pot. Useful Total
Training Part 1 5287 6362 2461 14110
Training Part 2 1364 1777 649 3790
Dev 2016 2440 1209 413 818
Test 2016 1329 1485 456 3270

Table 2: Overview of the datasets used for training
and validation.

3.3 Results
Table 3 shows the results obtained by the systems
on the Test 2016. The results show that the at-
tention based mechanism boosts the MAP score
by 3-4 points, the AvgRec by 3 points, and the
MRR score by 3-4 points compared to the sCNN
architecture. We also observe that ABCNN2 out-
performs ABCNN1 by 1 point in every metric.

MAP AvgRec MRR Prec Rec F1 Acc
sCNN 0.741 0.854 0.806 0.589 0.815 0.684 0.693
ABCNN1 0.776 0.878 0.833 0.807 0.313 0.451 0.690
ABCNN2 0.788 0.883 0.845 0.798 0.352 0.489 0.700

Table 3: Resutls on the Test 2016 set.

Based on these results we decided to use
ABCNN2 as our primary submission and ABCNN1
as the contrastive submission. Table 4 shows

the results obtained on the SemEval-2017 test-set.
We observe the same pattern as with Test 2016,
i.e. ABCNN2 outperforms ABCNN1 by 1 point.
We included the scores of the 1st, 2nd, and 3rd

placed submissions for comparison. Our system
is outperformed by 2 points by the KeLP and the
Beihang-MSRA submission and by only 0.6 points
by the IIT-UHH submission.

MAP AvgRec MRR Prec Rec F1 Acc
ABCNN1 0.855 0.919 0.905 0.903 0.240 0.379 0.591
ABCNN2 0.862 0.922 0.908 0.907 0.284 0.433 0.613
KeLP(1st) 0.884 0.937 0.928 0.873 0.582 0.698 0.738
Beihang-MSRA(2nd) 0.882 0.938 0.923 0.519 1.0 0.684 0.519
IIT-UHH (3rd) 0.868 0.920 0.912 0.733 0.745 0.739 0.727

Table 4: Resutls on the Test 2017 set.

4 Conclusion

We described a deep learning approach to
question-answering. The proposed architecture
is based on parallel CNNs that compute a sen-
tence representation for the question and the an-
swer. These representations are then concatenated
and used to predict whether the answer is relevant
to the question. The architecture is augmented
by two different attention mechanisms which im-
prove the performance. Our system was evaluated
on the SemEval-2017 competition for Commu-
nity Question Answering, where it ranked 7th on
the Question-Comment subtask. Our system per-
formed poorly on the other two subtasks, thus, for
future work we will improve our system to tackle
these tasks with high performance.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Sackinger, and Roopak Shah. 1993. Signature ver-
ification using a ”siamese” time delay neural net-
work. In International Journal of Pattern Recog-
nition and Artificial Intelligence.

Hua He, Kevin Gimpel, and Jimmy J Lin. 2015.
Multi-perspective sentence similarity modeling with
convolutional neural networks. In EMNLP. pages
1576–1586.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

337



Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning (ICML-10). pages 807–814.

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. SemEval-2017
task 3: Community question answering. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation. Association for Computational Linguis-
tics, Vancouver, Canada, SemEval ’17.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
pages 373–382.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Lstm-based deep learning models
for non-factoid answer selection. arXiv preprint
arXiv:1511.04108 .

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems. pages 2773–2781.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2015. Abcnn: Attention-based convo-
lutional neural network for modeling sentence pairs.
arXiv preprint arXiv:1512.05193 .

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

338


