
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 280–286,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

Beihang-MSRA at SemEval-2017 Task 3: A Ranking System with Neural
Matching Features for Community Question Answering

Wenzheng Feng†, Yu Wu†, Wei Wu‡, Zhoujun Li†∗, Ming Zhou‡
†State Key Lab of Software Development Environment, Beihang University, Beijing, China

‡ Microsoft Research, Beijing, China
{wuyu,lizj,wenzhengfeng}@buaa.edu.cn {wuwei,mingzhou}@microsoft.com

Abstract

This paper presents the system in
SemEval-2017 Task 3, Community Ques-
tion Answering (CQA). We develop a
ranking system that is capable of captur-
ing semantic relations between text pairs
with little word overlap. In addition to
traditional NLP features, we introduce
several neural network based matching
features which enable our system to mea-
sure text similarity beyond lexicons. Our
system significantly outperforms baseline
methods and holds the second place in
Subtask A and the fifth place in Subtask
B, which demonstrates its efficacy on
answer selection and question retrieval.

1 Introduction

In task 3 of SemEval 2017, participants are
required to address typical problems in mod-
ern CQA forums. We participate two sub-
tasks: question-comment similarity (Subtask A)
and question-question similarity (Subtask B). In
Subtask A, given a question and 10 comments in
its comment thread, one is required to re-rank the
10 comments according to their relevance with the
question. Subtask B gives a question and asks par-
ticipants to re-rank 10 related questions according
to their similarity to the input question.

The challenge of both subtasks is that two natu-
ral language sentences often express similar mean-
ings with different but semantically related words,
which results in semantic gaps between them. To
bridge the semantic gaps, we build a ranking sys-
tem with a variety of features. In addition to tra-
ditional NLP features such as tf-idf (Salton and
Buckley, 1988), the longest common subsequence
(Allison and Dix, 1986), translation models (Jeon

∗ Corresponding Author

et al., 2005), and tree kernels (Schlkopf et al.,
2003; Collins and Duffy, 2002; Moschitti, 2006),
which match sentences based on word overlap,
syntax (tree kenerls), and word-word translations
(translation models), we also introduce neural net-
work based matching models into the system as
features. The neural matching features, includ-
ing a long short term memory network (LSTM)
(Schuster and Paliwal, 1997) and a 2D matching
network which is a variant of our model in (Wu
et al., 2016), can extract high level matching sig-
nals from distributed representations of the sen-
tences and capture their similarity beyond lexi-
cons. We also design some specific features for
each subtask. All the features are combined as
a ranking model by a gradient boosted regression
tree which is implemented by Xgboost (Chen and
Guestrin, 2016). Our system significantly outper-
forms baseline methods on the two subtasks. On
Subtask A, it holds the second place and is compa-
rable with the best system. On Subtask B, it holds
the fifth place. The results demonstrate that our
system can alleviate the semantic gaps in the tasks
of CQA and effectively rank relevant comments
and similar questions to high positions.

2 System Description

Our system is built under a learning to rank frame-
work (Liu et al., 2009). It takes a question and
a group of candidates (comments or related ques-
tions) as input, and outputs a ranking list of the
candidates based on scores of question-candidate
pairs. The ranking scores are calculated in three
steps: text preprocessing, feature extraction, and
feature combination. In preprocessing, we replace
special characters and punctuations with spaces,
normalize all letters to their lowercase, remove
stop-words, and conduct stemming and syntax
analysis. Subsequently, we extract a variety of fea-

280

tures from text pairs including traditional NLP fea-
tures and neural matching features for both sub-
tasks and some task-specific features. Finally,
we feed the features to a ranking model which
is trained under a pairwise loss using the training
data provided in the subtasks to calculate the rank-
ing scores.

In the following, we will describe details of pre-
processing, features, and feature combination.

2.1 Preprocessing

We exploit NLTK toolkit (Loper and Bird, 2002)
to conduct stemming, tokenization, and POS tag-
ging. We use Stanford PCFG parser (Klein and
Manning, 2003) to get the parse tree of each sen-
tence.

2.2 Traditional NLP Features

The following features are designed based on
words and syntactic analysis.

Tf-idf cosine: each piece of text is converted to
a one hot representation weighted by tf-idf values,
where tf is the term frequency in the text, and idf
is calculated using the unannotated Qatar corpora
(Nakov et al., 2017). The cosine of representations
of the two pieces of text is used as a feature.

Longest common subsequence: we measure
the lexical similarity of each text pair with the
term-level longest common subsequence (LCS)
(Allison and Dix, 1986). The length of LCS is
normalized by dividing the maximum length of the
two pieces of text.

Word overlap: we calculate the normalized
count of common ngrams (n=1,2,3) and nouns.

Tree kernels: tree kernels are similarity func-
tions used to measure the syntactic similarity of
a text pair. We compute the subtree kernel (ST)
(Schlkopf et al., 2003), the subset tree kernel
(SST) (Collins and Duffy, 2002), and the partial
tree kernel (PTK) (Moschitti, 2006) on the parse
trees of a text pair.

Translation probability: we learn word-to-
word translation probabilities using GIZA++ 1

with the unannotated Qatar Living data. In
training, we regard questions as source lan-
guage and their answers as target language.
Following (Jeon et al., 2005), we use trans-
lation probability p(qusetion A|question B) and
p(comment|question) as features for a question-

1http://www.statmt.org/moses/giza/
GIZA++.html

question pair and a question-comment pair respec-
tively.

In Subtask A, we compute the features on both
(question body, comment) and (question subject,
comment), and in Subtask B, we compute the fea-
tures on (question body, question body) and (ques-
tion subject, question subject).

2.3 Neural Matching Features

In addition to the traditional NLP features, we also
use neural matching features to measure text sim-
ilarity based on their distributed representations.
These neural network based models have proven
their effectiveness in previous works (Zhang et al.,
2016; Fang et al., 2016; Wu et al., 2016; Zhao
et al., 2016).

Word embedding cosine: we em-
ploy a pre-trained word embedding from
https://github.com/tbmihailov/
semeval2016-task3-cqa, where the di-
mensionality of word vectors is 200. We average
the embedding of words in a piece of text as its
representation, and compute the cosine of the
representations of two pieces of text as a feature.

Bi-LSTM: long short term memory (LSTM)
is an advanced type of recurrent neural net-
work which leverages memory cells and gates to
learn long-term dependencies within a sequence
(Hochreiter and Schmidhuber, 1997). We use a
bidirectional LSTM (bi-LSTM) with a multi-layer
perceptron (MLP) to calculate a matching score
for a text pair as a feature.

Specifically, given a text pair (Sx, Sy), the
model looks up an embedding table to convert Sx

and Sy to Sx = [ex,1, ..., ex,i, ..., ex,I] and Sy =
[ey,1, ..., ey,i, ..., ey,J] respectively, where ex,i, ey,i

are the embeddings of the i-th words of Sx and Sy

respectively. Then Sx and Sy are encoded in hid-
den sequences by a bi-LSTM which consists of a
forward LSTM and a backward LSTM. The for-
ward LSTM reads Sx in its order (i.e., from wx,1

to wx,I) and transforms it to a forward hidden se-
quence {−→h x,i}Ii=1. ∀i ∈ {1, . . . , I}, −→h x,i is de-
fined by:

ii = σ(W (i)ex,i + U (i)hx,i−1 + b(i))

fi = σ(W (f)ex,i + U (f)hx,i−1 + b(f))

oi = σ(W (o)ex,i + U (o)hx,i−1 + b(o))

ui = tanh(W (u)ex,i + U (u)hx,i−1 + b(u))

ci = ii ⊗ ui + fi ⊗ c(i−1)

hi = oi ⊗ tanh(ci),

281

Score

Pooling Layer

xS

2M

1M

yS Convolution Feature Maps

Convolution Layer Score Layer

MLP

BiLSTM

BiLSTM

Figure 1: Architecture of 2D matching network

where σ(·) is a sigmoid function and tanh(·)
is a hyperbolic tangent function. W (i), W (f),
W (o), W (u) U (i), U (f), U (o), U (u), b(i), b(f), b(o),
and b(u) are parameters. Similarly, the backward
LSTM reads Sx in its reverse order (i.e., from wx,I

to wx,1) and transforms it to a backward hidden
sequence {←−h x,i}Ii=1. Then ∀i ∈ {1, . . . , I}, we
concatenate

−→
h x,i and

←−
h x,i as hx,i, and then rep-

resent Sx as vx = average(hx,1, ..., hx,I). Fol-
lowing the same procedure, we have vy as the rep-
resentation of Sy. Finally, we concatenate (vx, vy)
as an input of a multi-layer perceptron (MLP) to
calculate a score.

2D matching network: the model is a variant
of the one proposed in (Wu et al., 2016) which
has proven effective on the data of SemEval-2015.
The model in (Wu et al., 2016) leverages prior
knowledge and performs text matching with multi-
ple channels. In our system, we only use two chan-
nels, which means we do not take prior knowl-
edge such as knowledge base (Zheng et al., 2016)
and topic information into consideration. The ar-
chitecture is shown in Figure 1. Given a text
pair (Sx, Sy), their word embedding representa-
tions Sx, Sy and their bi-LSTM representations
{hx,i}Ii=1 and {hy,i}Ji=1, we compute a word sim-
ilarity matrix M1 = [m1,i,j]I×J and a sequence
similarity matrix M2 = [m2,i,j]I×J . ∀i, j, the
(i, j)-th element of M1 is defined by

m1,i,j = e>u,i · er,j . (1)

where eu,i is the i-th word embedding of the utter-
ance, and er,j is the j-th word embedding of the
response. The (i, j)-th element of M2 is defined
by

m2,i,j = h>u,iAhr,j , (2)

where A is a parameter. After that, a convolu-
tional neural network (CNN) takes M1 and M2

as input channels, and alternates convolution and
max-pooling operations (The system only has one
convolution and one pooling layer). Suppose that

z(l,f) =
[
z
(l,f)
i,j

]
I(l,f)×J(l,f)

denotes the output of

feature maps of type-f on layer-l, where z(0,f) =
Mf , ∀f = 1, 2. On convolution layers, we em-
ploy a 2D convolution operation with a window
size r(l,f)

w × r(l,f)
h , and define z(l,f)

i,j as

z
(l,f)
i,j = σ(

Fl−1∑
f ′=0

r
(l,f)
w∑
s=0

r
(l,f)
h∑
t=0

w
(l,f)
s,t · z(l−1,f ′)

i+s,j+t + bl,k), (3)

where σ(·) is a ReLU (Nair and Hinton, 2010),

and w(l,f) ∈ Rr
(l,f)
w ×r

(l,f)
h and bl,k are parameters

of the f -th feature map on the l-th layer, and Fl−1

is the number of feature maps on the (l − 1)-th
layer. A max pooling operation can be formulated
as

z
(l,f)
i,j = max

p
(l,f)
w >s≥0

max
p
(l,f)
h

>t≥0

zi+s,j+t. (4)

Feature vectors at the last pooling layer are con-
catenated to form a similarity vector v, which is
fed to an MLP to predict the final similarity score.

We learn the bi-LSTM and the 2D matching
network by minimizing cross entropy on training
data. Let Θ denote the parameters, then the objec-
tive function can be formulated as

−
N∑

i=1

[lilog(f(sx,i, sy,i)) + (1− li)log(1− f(sx,i, sy,i))] ,

(5)

where li ∈ {0, 1} is a label, f(sx,i, sy,i) is the neu-
ral network we want to learn, and N is the number
of instances in the training data.

We use two data sets to learn the neural net-
works, which means we obtain two features from
each model. The first one is the training data pro-
vided by SemEval-2017 task 3, and the other one
is 2 million Yahoo! Answer data we crawled,
which is released in (Zhang et al., 2016). In
both data, question subjects and question bodies
are concatenated together. In SemEval-2017 data,
comments in Subtask A are annotated as Good,
PotentiallyUseful, and Bad, and we treat “Good”
as 1 and the others as 0. In Subtask B, each re-
lated question is annotated as PerfectMatch, Rele-
vant, and Irrelevant, and we treat “PerfectMatch”
and “Relevant” as 1 and “Irrelevant” as “0”. The
Yahoo Answer data is only used to learn the neu-
ral networks for Subtask A, in which we take a
question and its best answer as a positive instance,
and randomly sample an answer from other ques-
tions as a negative instance. The motivation of
leveraging external data is that the training data of
SemEval-2017 is small, which may cause overfit-
ting in learning of neural networks.

282

Subtask A Subtask B
Train Test Train Test

2016-train 2016-dev 2016-test 2017-test 2016-train 2016-dev 2016-test 2017-test
Original questions - - - - 267 50 70 88
Related questions 6154 244 327 293 2670 500 700 880

Comments 37848 2440 3270 2930 - - -

Table 1: Statistics of the datasets

2.4 Task Specific Features

The features described above are used in both Sub-
task A and Subtask B. In addition to them, we also
design some specific features for each subtask.

In Subtask A, we design some features based
on heuristic rules which might indicate whether a
comment is good or not: (i) whether a comment
is written by the author of the question. (ii) the
length of a comment. (iii) whether a comment
contains URLs or email addresses. (iv) whether
a comment contains positive or negative smileys,
e.g., ;), :), ;(, :(.

In Subtask B, a related question has a meta-
data field that shows its relative rank in an exter-
nal search engine by considering its similarity with
the original question. We use the relative rank as a
feature for subtask B.

2.5 Feature Combination

Since both Subtask A and Subtask B are ranking
problems, we learn gradient boosted regression
trees using XgBoost (Chen and Guestrin, 2016)
as ranking models to combine all features. The
ranking models are learned by minimizing pair-
wise loss on training instances provided by the
subtasks.

3 Experiments

3.1 Data Sets and Evaluation Metrics

We used the data sets provided by SemEval-2017
(Nakov et al., 2017). Table 1 gives the statistics.
We employed Mean Average Precision (MAP),
Average Recall (AveRec), and Mean Reciprocal
Rank (MRR) as evaluation metrics.

3.2 Parameter Tuning and Feature Selection

We tuned parameters according to average MAP
on 5-fold cross validation (CV) with grid search
algorithm. There are three sensitive parameters of
XGBoost that should be tuned in training, namely
gamma, subsample, colsample bytree. The best
parameters of two subtasks is shown in Table 2.

Subtask A Subtask B
gamma 19 10

subsample 0.5 1
colsample bytree 0.5 0.2

bst:max depth 10 10
bst:eta 0.01 0.01

scale pos weight 0.7 0.7

Table 2: Parameters of XgBoost

Bi-LSTM 2D MN
Two LSTMs not shared shared

Dim. of embedding 200 200
Dim. of hidden states 200 200

CNN filters - 8
CNN filter size - (3,3)
nodes of MLP (200,50,2) (400,50,2)

Table 3: Parameters of neural networks

We adopted Adagrad (Duchi et al., 2011) which
is a stochastic gradient descent method to optimize
the neural network models. In order to prevent
overfitting, we used early-stopping (Lawrence and
Giles, 2000) and dropout (Srivastava et al., 2014)
with rate of 0.5. In bi-LSTM and 2D matching
network (2D MN), the dimensionality of word em-
bedding is 200. Word embedding was initialized
by the result of word2vec (Mikolov et al., 2013)
trained on unannotated Qatar data (Nakov et al.,
2017) and updated in training. We set the initial
learning rate and batch size as 0.001 and 30 re-
spectively. The other parameters of the two mod-
els are listed in Table 3.

We conducted feature selection by 5-fold CV to
filter out useless features for the two subtasks. Our
approach is that we first used all features and ob-
tained an MAP on 5-fold CV, then we removed
the features one by one and checked how MAP
changes. If MAP increased significantly by re-
moving that feature, we removed the feature. The
final result is that we preserved all features for
Subtask A, and removed neural matching features
for Subtask B. Details of feature contributions will
be described in Section 3.5.

Apart from the primary submission, we also

283

5-fold cross validation Test-2017
Features MAP AvgRec MRR MAP AvgRec MRR
All 70.65 88.54 76.17 88.24 93.87 92.34
- traditional NLP features 69.06 87.94 75.16 87.83 93.60 92.73

- tf-idf cosine 70.28 88.21 76.23 87.88 93.75 92.21
- LCS 69.95 88.01 76.15 88.04 93.90 92.21
- word overlap 69.69 88.10 75.41 88.62 94.14 92.97
- tree kernels 69.50 87.98 95.38 87.97 93.84 92.38
- translation probability 69.77 88.25 75.50 87.81 93.77 92.59

- neural matching features 64.81 82.85 71.91 85.06 91.40 91.52
- word embedding cosine 69.90 88.28 76.24 88.31 93.81 92.40
- bi-LSTM 67.57 86.67 74.54 88.02 93.90 92.54
- 2D MN 69.72 88.01 75.86 88.17 94.04 92.50

- meta-data features 68.09 86.75 74.90 86.54 92.58 91.66

Table 4: Subtask A: results of ablation experiments

5-fold cross validation Test-2017
Features MAP AvgRec MRR MAP AvgRec MRR
All 77.13 91.86 83.89 44.78 79.13 49.89

- tf-idf cosine 72.81 87.85 79.91 44.80 78.60 49.89
- LCS 74.25 88.95 80.90 42.93 78.59 46.94
- word overlap 74.04 88.79 80.67 45.19 80.63 49.65
- tree kernels 76.10 90.98 82.88 45.48 80.63 49.65
- translation probability 75.99 90.35 82.20 44.89 79.57 49.18

- meta-data feature 76.14 91.16 82.98 47.00 80.31 50.83
+ neural matching features* 71.32 86.74 78.21 42.77 77.23 45.98

+ word embedding cosine* 74.76 89.31 81.21 43.59 78.76 46.83
+ bi-LSTM* 71.43 86.88 78.39 42.89 77.89 46.65
+ 2D MN* 70.39 85.49 77.53 43.46 78.60 46.71

Table 5: Subtask B: results of ablation experiments. * means we did not use it in our submitted system
for its bad performance on CV.

submitted two contrastive results. The only differ-
ence is the parameter setting of XgBoost. In the
primary submission, we selected the parameters
with which our system achieved the best perfor-
mance on 5-fold CV, while in the two contrastive
submissions, we selected two parameter combina-
tions that correspond to the smallest and the sec-
ond smallest variance of MAP on 5 runs.

3.3 Baseline
We selected the relative rank provided by the
search engine, Google, as a baseline method, and
denote it as IR baseline.

3.4 Overall results
We show the primary and contrastive results of
Subtask A and Subtask B in Table 6 and Table 7
respectively. There is no significant difference be-

Submission MAP AvgRec MRR
primary 88.24 93.87 92.34
contrastive1 88.17 93.82 92.17
contrastive2 88.18 93.91 92.45
KeLP (first) 88.43 93.79 92.82
Baseline (IR) 72.61 79.32 82.37

Table 6: Subtask A: results of our system on test set

tween our primary and contrastive results, indicat-
ing that the final result is not sensitive to our pa-
rameter selection of Xgboost. On subtask A, the
primary and contrastive results significantly out-
perform the baseline method with a big margin.
The primary result, achieving 88.24 on MAP, is
ranked second in all submitted systems, demon-
strating that neural matching features are effective

284

Submission MAP AvgRec MRR
primary 44.78 79.13 49.88
contrastive1 43.89 79.48 48.18
contrastive2 44.79 79.13 49.89
simbow (first) 47.22 82.60 50.07
Baseline (IR) 41.85 77.59 46.42

Table 7: Subtask B: results of our system on test set

on the task of answer selection. Our improvement
is not big on Subtask B, which is only 3 points on
MAP score. This is because we only use shallow
features on this task and neural matching features
are useless according to our experiments. There
are two reasons why neural matching fails on this
task: (1) training data provided by SemEval-2017
is too small to train a neural network, and our ex-
ternal data only consists of question-answer pairs
which does not support learning neural networks
for question-question similarity; (2) a question and
its question often share most of words and are only
different on a small proportion of function words.
Neural matching models, however, are not good at
capturing such difference.

3.5 Feature Contribution

We conducted ablation experiments on training
data with 5-fold CV and on test data to examine
the usefulness of features. The conclusion is that
traditional NLP features are effective on both sub-
tasks, while neural matching features can only im-
prove the system performance on Subtask A.

In Table 4, we present the results on Subtask A,
including our system with all features and the sys-
tem with one of the features excluded. We can ob-
serve that all features are useful on training data,
but the system can achieve a better result on test
data if we exclude the word overlap feature. Neu-
ral matching features are important on Subtask A,
with which we obtain 5 point gain on training data
and 3 point gain on test data. Meta-data features
are also useful, indicating that they are good com-
plementary to the similarity based features.

In Table 5, we show the results of ablation ex-
periments on Subtask B. Neural matching features
caused performance drop on this task, therefore
we did not include them in our submitted system.
Although all the traditional NLP features are use-
ful on training data, word overlap, tree kernels,
and meta-data feature hurt the performance on the
test data. It is also worth noting that our system

can be further improved on the test data if the
meta-data feature, i.e., relative rank of Google, is
excluded from our system.

4 Conclusion

We developed a ranking system with neural
matching features for Subtask A and Subtask B
in SemEval-2017. The system holds the second
place in Subtask A and the fifth place in Subtask
B, which demonstrates its efficacy on answer se-
lection and similar question retrieval.

5 Acknowledgment

Thanks for the valuable comments given by
anonymous reviewers and the discussion with
Zhao Yan. This work was supported by the
National Natural Science Foundation of China
(Grand Nos. 61672081,U1636211, 61370126),
Beijing Advanced Innovation Center for Imag-
ing Technology (No.BAICIT-2016001), National
High Technology Research and Development Pro-
gram of China (No.2015AA016004),the Fund of
the State Key Laboratory of Software Develop-
ment Environment (No.SKLSDE-2015ZX-16).

References
L Allison and T I Dix. 1986. A bit-string longest-

common-subsequence algorithm. Information Pro-
cessing Letters 23(5):305–310.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. pages 785–794.

Michael Collins and Nigel Duffy. 2002. New ranking
algorithms for parsing and tagging: kernels over dis-
crete structures, and the voted perceptron. In Meet-
ing on Association for Computational Linguistics.
pages 263–270.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(7):2121–2159.

Hanyin Fang, Fei Wu, Zhou Zhao, Xinyu Duan, Yuet-
ing Zhuang, and Martin Ester. 2016. Community-
based question answering via heterogeneous social
network learning. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence. AAAI
Press, pages 122–128.

S Hochreiter and J Schmidhuber. 1997. Long short-
term memory. Neural Computation 9(8):1735–
1780.

285

Jiwoon Jeon, W. Bruce Croft, and Joon Ho Lee. 2005.
Finding similar questions in large question and an-
swer archives. In ACM International Conference
on Information and Knowledge Management. pages
84–90.

Dan Klein and Christopher D Manning. 2003. Accu-
rate unlexicalized parsing. In Meeting on Associa-
tion for Computational Linguistics. pages 423–430.

Steve Lawrence and C. Lee Giles. 2000. Overfitting
and neural networks: Conjugate gradient and back-
propagation 1:114–119 vol.1.

Tie-Yan Liu et al. 2009. Learning to rank for informa-
tion retrieval. Foundations and Trends R© in Infor-
mation Retrieval 3(3):225–331.

Edward Loper and Steven Bird. 2002. Nltk: the nat-
ural language toolkit. In ACL 2006, International
Conference on Computational Linguistics and Meet-
ing of the Association for Computational Linguis-
tics, Proceedings of the Conference, Sydney, Aus-
tralia, 17-21 July. pages 63–70.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. Advances in Neural Information Processing
Systems 26:3111–3119.

Alessandro Moschitti. 2006. Efficient convolution
kernels for dependency and constituent syntactic
trees. In European Conference on Machine Learn-
ing. pages 318–329.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10). pages 807–814.

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. SemEval-2017
task 3: Community question answering. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation. Association for Computational Linguis-
tics, Vancouver, Canada, SemEval ’17.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval.
Information processing & management 24(5):513–
523.

B Schlkopf, K Tsuda, and J Vert. 2003. Fast kernels
for string and tree matching. Advances in Neural
Information Processing Systems 15(1):296.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Yu Wu, Wei Wu, Zhoujun Li, and Ming Zhou. 2016.
Knowledge enhanced hybrid neural network for text
matching. arXiv preprint arXiv:1611.04684 .

Kai Zhang, Wei Wu, Fang Wang, Ming Zhou, and
Zhoujun Li. 2016. Learning distributed representa-
tions of data in community question answering for
question retrieval. In Proceedings of the Ninth ACM
International Conference on Web Search and Data
Mining. ACM, pages 533–542.

Zhou Zhao, Qifan Yang, Deng Cai, Xiaofei He,
and Yueting Zhuang. 2016. Expert finding for
community-based question answering via ranking
metric network learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence. AAAI Press, pages 3000–3006.

Hao Zheng, Zhoujun Li, Senzhang Wang, Zhao Yan,
and Jianshe Zhou. 2016. Aggregating inter-sentence
information to enhance relation extraction. In Pro-
ceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence. AAAI Press, pages 3108–3114.

286

