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Abstract

This paper describes our approach to the
SemEval-2017 “Semantic Textual Similar-
ity” and “Multilingual Word Similarity”
tasks. In the former, we test our approach
in both English and Spanish, and use a
linguistically-rich set of features. These
move from lexical to semantic features. In
particular, we try to take advantage of the
recent Abstract Meaning Representation
and SMATCH measure. Although with-
out state of the art results, we introduce se-
mantic structures in textual similarity and
analyze their impact. Regarding word sim-
ilarity, we target the English language and
combine WordNet information with Word
Embeddings. Without matching the best
systems, our approach proved to be simple
and effective.

1 Introduction

In this paper we present two systems that com-
peted in SemEval-2017 tasks “Semantic Textual
Similarity” and “Multilingual Word Similarity”,
using supervised and unsupervised techniques, re-
spectively.

For the first task we used lexical features, as
well as a semantic feature, based in the Ab-
stract Meaning Representation (AMR) and in the
SMATCH measure. AMR is a semantic formal-
ism, structured as a graph (Banarescu et al., 2013).
SMATCH is a metric for comparison of AMRs
(Cai and Knight, 2013). To the best of our knowl-
edge, these were not yet applied to Semantic Tex-
tual Similarity. In this paper we focus on the con-
tribution of the SMATCH score as a semantic fea-
ture for Semantic Textual Similarity, relative to a
model based on lexical clues only.

For word similarity, we test semantic equiva-
lence functions based on WordNet (Miller, 1995)
and Word Embeddings (Mikolov et al., 2013). Ex-
periments are performed on test data provided
in the SemEval-2017 tasks, and yielded compet-
itive results, although outperformed by other ap-
proaches in the official ranking.

The document is organized as follows: in Sec-
tion 2 we briefly discuss some related work; in
Sections 3 and 4, we describe our systems regard-
ing the “Semantic Textual Similarity” and “Mul-
tilingual Word Similarity” tasks, respectively. In
Section 5 we present the main conclusions and
point to future work.

2 Related work

The general architecture of our STS system is
similar to that of Brychcı́n and Svoboda (2016),
Potash et al. (2016) or Tian and Lan (2016), but we
employ more lexical features and AMR semantics.

Brychcı́n and Svoboda (2016) model feature de-
pendence in Support Vector Machines by using the
product between pairs of features as new features,
while we rely on neural networks. In Potash et al.
(2016) it is concluded that feature based systems
have better performance than structural learning
with syntax trees. A fully-connected neural net-
work is employed on hand engineered features and
on an ensemble of predictions from feature based
and structural based systems. We also employ a
similar neural network on hand engineered fea-
tures, but use semantic graphs to obtain one of
such features.

For word similarity, our approach isolates the
micro view approach seen in (Tian and Lan, 2016),
where word embeddings are applied to measure
the similarity of word pairs in an unsupervised
manner. This work also describes supervised ex-
periments on a macro/sentence view, which em-
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ploy hand engineered features and the Gradient
Boosting algorithm, as in our STS system.

Henry and Sands (2016) employ WordNet for
their sentence and chunk similarity metric, as also
occurs in our system for word similarity.

3 Task 1 - Semantic textual similarity

In this section we describe our participation in
Task 1 of SemEval-2017 (Cer et al., 2017), aimed
at assessing the ability of a system to quantify the
semantic similarity between two sentences, using
a continuous value from 0 to 5 where 5 means se-
mantic equivalence. This task is defined for mono-
lingual and cross-lingual pairs. We participated
in the monolingual evaluation for English, and we
also report results for Spanish, both with test sets
composed by 250 pairs. Most of our lexical fea-
tures are language independent, thus we use the
same model.

For a pair of sentences, our system collects the
numeric output of metrics that assess their simi-
larity relative to lexical or semantic aspects. Such
features are supplied to a machine learning algo-
rithm to: a) build a model, using pairs labeled with
an equivalence value (compliant with the task), or
b) predict such value, using the model.

3.1 Features

In our system, the similarity between two sen-
tences is represented by multiple continuous val-
ues, obtained from metrics designed to leverage
lexical or semantic analysis on the comparison of
sequences or structures. Lexical features are also
applied to alternative views of the input text, such
as character or metaphone1 sequences. A total of
159 features was gathered, from which one relies
on semantic representations.

Lexical features are obtained from INESC-
ID@ASSIN (Fialho et al., 2016), such as TER,
edit distance and 17 others. These are applied
to 6 representations of an input pair, totaling 96
features since not all representations are valid on
all metrics (for instance, TER is not applicable on
character trigrams). Its metrics and input represen-
tations rely on linguistic phenomena, such as the
BLEU score on metaphones of input sentences.

We also gather lexical features from HARRY2,
where 21 similarity metrics are calculated for bits,

1Symbols representing how a word sounds, according to
the Double Metaphone algorithm.

2http://www.mlsec.org/harry/

bytes and tokens of a pair of sentences, except for
the Spectrum kernel on bits (as it is not a valid
combination), resulting in 62 of our 159 features.

The only semantic feature is the SMATCH
score (Cai and Knight, 2013) which represents
the similarity among two AMR graphs (Banarescu
et al., 2013). The AMR for each sentence in a
pair is generated with JAMR3, and then supplied
to SMATCH, which returns a numeric value be-
tween 0 and 1 denoting their similarity.

In SMATCH, an AMR is translated into triples
that represent variable instances, their relations,
and global attributes such as the start node and lit-
erals. The final SMATCH score is the maximum
F score of matching triples, according to various
variable mappings, obtained by comparing their
instance tokens. These are converted into lower
case and then matched for exact equality.

3.2 Experimental setup

We applied all metrics to the train, test and trial
examples of the SICK corpus (Marelli et al., 2014)
and train and test examples from previous Seman-
tic Textual Similarity in SemEval, as compiled by
Tan et al. (2015).

Thus, our training dataset is comprised of 24623
vectors (with 9841 from SICK) assigned to a con-
tinuous value ranging from 0 to 5. Each vector
contains our 159 feature values for the similarity
among the sentences in an example pair.

We standardized the features by removing the
mean and scaling to unit variance and norm. Then,
machine learning algorithms were applied to the
feature sets to train a model of our Semantic Tex-
tual Similarity representations. Namely, we em-
ployed ensemble learning by gradient boosting
with decision trees, and feedforward neural net-
works (NN) with 1 and 2 fully connected hidden
layers.

SMATCH is not available for Spanish, therefore
this feature was left out when evaluating Spanish
pairs (es-es). For English pairs (en-en), the sce-
narios include: a) only lexical features, or b) an
ensemble with lexical features and the SMATCH
score (without differentiation).

Gradient boosting was applied with the default
configuration provided in scikit-learn (Pedregosa
et al., 2011). NN were configured with single and
multiple hidden layers, both with a rectifier as ac-
tivation function. The first layer combines the 159

3https://github.com/jflanigan/jamr
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input features (or 158 when not using SMATCH)
into 270 neurons, which are either combined into
a second layer with 100 neurons, or to the output
layer (with 1 neuron). Finally, we employed the
mean square error cost function and the ADAM
optimizer (Kingma and Ba, 2014), and fit a model
in 100 epochs and batches of 5.

Our experiments were run with Tensorflow 0.11
(Abadi et al., 2015), with NN implementations
from the Keras framework4. Gradient boosting
implementation is from scikit-learn.

3.3 Results
System performance in the Semantic Textual Sim-
ilarity task was measured with the Pearson coef-
ficient. A selection of results is shown in Table
1, featuring our different scenarios/configurations,
our official scores (in bold), and systems that
achieved results similar to ours or are the best of
each language/track. Variations of our system are
identified by the “l2f ” prefix.

System es-es en-en

RTV (best of en-en) 0.6863 0.8547
ECNU (best of es-es) 0.8559 0.8518
neobility 0.7928 0.7927
l2f G. boost 0.7620 0.7919
l2f G. boost (+smatch) - 0.7811
UdL - 0.7805
MatrusriIndia 0.7614 0.7744
cosine baseline 0.71169 0.7278
l2f NN-1 (+smatch) - 0.6998
l2f NN-1 0.6808 0.6952
l2f NN-2 0.6065 0.6832
l2f NN-2 (+smatch) - 0.6661

Table 1: Pearson scores on monolingual evalu-
ation, in descending order of performance on the
English track.

We should mention that, afterwards, we ran our
experiments with Theano 0.8.2, which yielded dif-
ferent results. As an example, on the English
track, using the same settings (network topology,
training data and normalization) of run “l2f NN-2
(+smatch)” resulted in a Pearson score of 0.72374.
More recently, Tensorflow released version 1.0,
which resulted in a score of 0.70437 for the same
setup5.

4https://keras.io/
5https://www.tensorflow.org/install/

migration#numeric_differences

In order to evaluate the contribution of
SMATCH, we analyzed some examples where
SMATCH led to a lower deviation from the gold
standard, and, at the same time, higher deviation
from runs without SMATCH.

On 15 pairs, SMATCH based predictions were
consistently closer to the gold standard, across all
learning algorithms, with an average difference
of 0.27 from non SMATCH predictions. How-
ever, after analyzing the resulting AMR of some of
these cases, we noticed that information was lost
during AMR conversion. For instance, consider
the following examples, which led to the results
presented in Table 2.

(A) The player shoots the winning points. / The
basketball player is about to score points for
his team., with a gold score of 2.8.

(B) A woman jumps and poses for the camera. /
A woman poses for the camera., with a gold
score of 4.0.

(C) Small child playing with letter P / 2 young
girls are sitting in front of a bookcase and 1
is reading a book., with a gold score of 0.8.

Considering example A, we can see the infor-
mation lost during the AMR conversion in the fol-
lowing.

(w / win-01
:ARG1 (p / point))
vs.
(b / basketball
:ARG1-of (s / score-01
:ARG2 (t / team
:location-of (p / point))))

(1)

The top structure (until “vs.”) is the AMR for
the first sentence, where “winning” is incorrectly
identified as a verb, and the actual verb (“shoot”)
and its subject (“player”) are missing. The same
subject is also missing in the bottom AMR. For
a comprehensive understanding of the AMR no-
tation and the parser we employed please see Ba-
narescu et al. (2013) and Flanigan et al. (2014),
respectively.

The same happened with example B (and C, al-
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Algorithm SMATCH no SMATCH Gold

G. boost 2.77 2.93
A NN-1 3.31 1.82 2.8

NN-2 2.00 1.74

G. boost 4.13 4.15
B NN-1 4.00 4.31 4.0

NN-2 4.05 4.34

G. boost 1.76 1.89
C NN-1 1.01 1.66 0.8

NN-2 1.32 1.89

Table 2: Predictions for pairs A, B and C where SMATCH excels, grouped by pair.

though not presented here):

(a / and
:op1 (p / pose-02
:ARG0 (w / woman)
:ARG1 (c / camera)))

vs.
(p / pose-02
:ARG0 (w / woman)
:location (c / camera))

(2)

Thus, we could not identify specific situations
to which AMR explicitly contributed, since exam-
ples where using SMATCH yielded better results
reveal that SMATCH was applied to AMR with
less information than in the source sentence.

To conclude, we should say that 20 pairs were
consistently better predicted without SMATCH,
with an average difference to SMATCH based pre-
dictions of 0.38.

4 Task 2.1 - Multilingual word
similarity: English

In this section we report the experiments con-
ducted for the second task of 2017 SemEval
(Camacho-Collados et al., 2017). The task con-
sists of, given a pair of words, automatically mea-
suring their semantic similarity, in a continuous
range of [0 − 4], from unrelated to totally sim-
ilar. The test set was composed of 500 pairs of
tokens (which can be words or multiple-word ex-
pressions); a small trial of 18 pairs set was also
provided by the organizers.

For this task we used a family of equivalence
functions, from now on equiv(t1, t2), where t1
and t2 are the tokens to be compared. equiv func-
tions return a value in the range [0−1]. This value
was later scaled into the goal’s range. Then, we

analyzed how to combine them. In the following
subsections we detail our approach.

4.1 Equivalence functions
Two functions were considered:

• equivWN , which uses WordNet (Miller,
1995).

• equivW2V , which employs Word2Vec vec-
tors (Mikolov et al., 2013) to compare the
two tokens – we use the pre-trained vectors
model available, trained on the Google News
dataset6.

equivWN (t1, t2) is defined as:

equivWN =


1 if syn(t1) = syn(t2)
x if syn

(
hyp(t1)

) ⊃ hyp(t2)
x if hyp(t1) ⊂ syn

(
hyp(t2)

)
0 otherwise,

where:

• syn(t) gives the synset of the token t;

• hyp(t) gives the hypernyms of t;

• x = 1−max(n× 0.1, m× 0.1), with n and
m being the number of nodes traversed in the
synsets of t1 and t2, respectively.

equivWN matches, thus, two tokens if they
have a common hypernym (Resnik, 1995) in their
synset path. We compute the path distance by
traversing the synsets upwards until finding the
least common hypernym. For each node up, a
decrement of 0.1 is awarded, starting at 1.0. If,
no concrete common hypernym is found, then 0 is
the result returned.
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Token 1 Token 2 equivWN (×4) equivW2V (×4) Gold

eagle falcon 0.8 (3.20) 0.44 (1.76) 3.72
keyboard light 0.7 (2.80) 0.02 (0.09) 0.24
science fiction comedy 0.0 (0.00) 0.34 (1.37) 2.78
sunset string 0.0 (0.00) 0.09 (0.36) 0.05

Table 3: Results of our functions in some instances of the trial set.

TeamName Pearson Spearman Final

Luminoso run2 0.783 0.795 0.789
Luminoso run1 0.781 0.794 0.788
QLUT run1 0.775 0.781 0.778
hhu run1 0.71 0.699 0.704
HCCL* run1 0.675 0.7 0.687

...
l2f(a.d.) run2 0.644 0.654 0.649
l2f(a.d.) run1 0.637 0.648 0.643

...
SEW run1 0.373 0.414 0.392
hjpwhuer run1 -0.037 -0.032 0.0

Table 4: Results for the runs submitted for Task 2.1 - English.

For example, laptop and notebook have the
common synset Portable Computer, one
node above both words, which results in a score
of 1 − 0.1 = 0.9. Crocodile and lizard return
0.8, as one needs to go up two nodes in both to-
kens to find the common synset Diapsid. We do
not consider generic synsets such as artifact
or item.

Regarding equivW2V , it computes the cosine
similarity between the vectors representing the
two tokens:

equivW2V (t1, t2) = cos
(
W2V (t1), W2V (t2)

)
,

where W2V (t) is the vector representing the word
embedding for the token t. If the token is com-
posed by more than one word, their vectors are
added before computing the cosine similarity. For
example, self-driving car and autonomous car ob-
tain a cosine similarity of 0.53 (showing a de-
gree of similarity, resulting from multiple-word to-
kens), while brainstorming and telescope result in
a score of 0.04, which means the tokens are not re-
lated. Note that the scores are rounded to 0 if they
are negative.

6https://code.google.com/archive/p/
word2vec/

4.2 Combining the equivalence functions

We started by applying the equiv(t1, t2) to the
trial set. Table 3 shows some results for this
experience. As one can see, in certain cases it
would be better to use equivWN , and in others the
equivW2V function.

Just these few examples show how hard it is to
combine these functions. Although we did not
expect to accomplish relevant results with such
approach, we decided to train a linear regression
model in Weka (Hall et al., 2009) with the (very
small) provided example set.

The final result obtained was C1 = 5.0381 ×
equivw2v + 0.6355, which only uses one of the
functions. We used this equation in one of our
runs, RunW2V, with a modified version: C ′ =
min(C1, 4).

Believing equivWN had potential to be im-
portant in certain cases, we manually designed a
weighed function to combine both functions. The
threshold was decided by analyzing the trial set
only. We ended up with the following decision
function:

C2 =

{
equivWN × 4 if equivW2V < 0.12
C ′ otherwise.
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The idea behind it is the following: when
equivW2V is below a threshold (set to 0.12), we
use equivWN . Then either equivWN does not find
a relation as well (and probably has a value of 0.0),
or it finds one and it is probably correct (see sun-
set/string in Table 3). This led to our second run,
RunMix.

4.3 Results

Results for the task are presented in Table 4, with
our runs in bold as submitted (run1 is RunW2V
and run2 is RunMix). Both our runs attain a
similar score, which is somehow surprising given
how differently the scores were calculated. We
placed at the middle of the table, although only
a few points short from the 5th best ranked run - a
difference of less than 0.04 on both Pearson and fi-
nal score. This ends up being an interesting result,
based on how simple our approach was, and the
lack of data to properly learn a function to com-
bine our equiv functions.

5 Conclusions and Future Work

In this paper we present our results on two tasks
of 2017 SemEval competition, “Semantic Textual
Similarity” and “Multilingual Word Similarity”.
The results obtained yielded competitive results,
although being outperformed by other approaches
in the official ranking.

For the “Semantic Textual Similarity” task, our
models performed similarly for multilingual data,
since most features are language independent, and
essentially rely on matching tokens among input
sentences. Therefore, our method is feasible for
all monolingual pairs.

We could not identify situations where the
SMATCH metric improved the results, although in
15 cases SMATCH based predictions were closer
to the gold standard, across all learning algo-
rithms.

Future work includes replacing the exact in-
stance matching in SMATCH with our word sim-
ilarity module, and using the SMATCH repre-
sentation in a structural learning method such as
Tree-LSTM (Tai et al., 2015), or in a more bal-
anced/weighed ensemble with the lexical features.

In what respects the “Multilingual Word Simi-
larity” task, we believe that our participation was
simple, but still effective. We used two semantic
resources (WordNet and Word2Vec), a weighting
function learned on a small trial set, and a hand-

crafted formula to combine the similarity scores
of our two functions, which makes it an approach
lacking ground. The results were still promising,
given the simplicity of our approach.

As future work, the word similarity module it-
self could be largely improved by automatically
learning a set of weights to combine the two func-
tions. For instance, the gold standard, now avail-
able, can be a useful tool for this task, as other
large datasets like Simlex-999 (Hill et al., 2014).

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
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