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Abstract

This paper describes the winning system
for SemEval-2017 Task 6: #HashtagWars:
Learning a Sense of Humor. Humor de-
tection has up until now been predomi-
nantly addressed using feature-based ap-
proaches. Our system utilizes recurrent
deep learning methods with dense embed-
dings to predict humorous tweets from the
@midnight show #HashtagWars. In or-
der to include both meaning and sound in
the analysis, GloVe embeddings are com-
bined with a novel phonetic representa-
tion to serve as input to an LSTM com-
ponent. The output is combined with a
character-based CNN model, and an XG-
Boost component in an ensemble model
which achieved 0.675 accuracy in the of-
ficial task evaluation.

1 Introduction

Computational approaches to how humour is ex-
pressed in language have received relatively lim-
ited attention up until very recently. With few
exceptions, they have used feature-based machine
learning techniques (Zhang and Liu, 2014; Radev
et al., 2015) drawing on hand-engineered features
such as sentence length, the number of nouns,
number of adjectives, and tf-idf-based LexRank
(Erkan and Radev, 2004). Among the recent
proposals, puns have been emphasized as a cru-
cial component of humor expression (Jaech et al.,
2016). Others have proposed that text is per-
ceived as humorous when it deviates in some
way from what is expected (Radev et al., 2015).
One of the reasons for such dominant position of
the feature-based approaches is the fact that the
datasets have been relatively small, rendering deep
learning methods ineffective. Furthermore, exist-

ing humour detection datasets tended to treat hu-
mor as a classification task in which text has to
be labeled as funny or not funny, with nothing
in between, which makes the task considerably
simpler. In contrast, the #HashtagWars dataset
(Potash et al., 2016b) provided for SemEval-2016
Task 6 assumes that humor can be evaluated on
a scale, reflecting the reality that humor is non-
binary and some things may be seen as funnier
than others. It is also large in size, making it bet-
ter suited to the application of deep learning tech-
niques.

SemEval 2017 Task 6 used the tweets posted
by the viewers of the Comedy Central’s @mid-
night show, the #HashtagWars segment. Our team
participated in subtask A, which was as follows:
given a pair of tweets supplied for a given hashtag
by the viewers, the goal was to identify the tweet
that the show judged to be funnier (Potash et al.,
2017). This paper describes the winning submis-
sion, and specifically, our systems that took first
and second place in the official rankings for the
task.

Our goal was to create a model that could repre-
sent both meaning and sound, thus covering differ-
ent aspects of the tweet that might make it funny.
Word embeddings have been used in a variety of
applications, but phonetic information can pro-
vide new insights into the punchline of humor not
present in traditional embeddings. The pronuncia-
tion of a sentence is important to the delivery of a
punchline, and can connect sound-alike words.

In our first submission for Subtask A, seman-
tic information for each word is provided to the
model in the form of a GloVe embedding. We
then provide the model with a novel phonetic
representation of each word, in the form of a
learned phonetic embedding taken as an interme-
diate state from an encoder-decoder character-to-
phoneme model. With access to both meaning and
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sound embeddings, the model learns to read each
tweet using a Long Short-Term Memory (LSTM)
Recurrent Neural Network (RNN) encoder. The
encoded state of each tweet passes into dense lay-
ers, where a prediction is made as to which tweet
is funnier.

In addition to the embedding model described
above, we construct a Convolutional Neural Net-
work (CNN) to process each tweet character by
character. This character-level model was used by
Potash et al. (2016b), and serves as a baseline. The
output of the CNN feeds into the same final dense
layers as the embedding LSTM tweet encoders.
This model achieved 63.7% accuracy in the offi-
cial task evaluation, placing it second in the offi-
cial task rankings.

To boost prediction performance further, we
built an ensemble model over different model con-
figurations. In addition to the model above, we
provided an embedding-LSTM-only model and
a character-CNN-only model as input to the en-
semble. Inspired by previous work in NLP, we
added an XGBoost feature-based model as input
to the ensemble. This system was our second sub-
mission. The predictions of the ensemble model
achieved 67.5% accuracy, placing it first in the of-
ficial rankings for the task.

We also report experiments we conducted after
the release of the test data, in which a few of the
bugs present in the original submissions were ad-
dressed, and in which the best model achieves the
accuracy of 68.3%.

2 Previous Work

Considerable research has gone into understand-
ing the properties of humor in text. Radev et al.
(2015) used a feature-bucket approach to ana-
lyze captions from the New Yorker Caption Con-
test. They noted that negative sentiment, human-
centeredness and lexical centrality were their most
important model features. Zhang and Liu (2014)
trained a classifier using tweets that use the hash-
tag #Humor for positive examples. They con-
cluded that tweet part-of-speech ratios are a major
factor in humor detection. They also showed that
sexuality and politics are popular topics in Twitter
jokes that can boost humor perception. Jaech et al.
(2016) and Miller and Turković (2016) explored
the complicated nature of puns and their role in
humor. Barbieri and Saggion (2014) explored the
concept of irony in humor and used a large va-

riety of syntactic and semantic features to detect
irony in tweets. To summarize, negative senti-
ment, human-centeredness, lexical centrality, syn-
tax, puns, and irony represent just a few of many
aspects that characterize humor in text.

The majority of attempts at humor detec-
tion, including those listed above, rely on hand-
engineered features to distinguish humor from
non-humor. However, recently deep learning
strategies have also been employed. Chen and Lee
(2017) used convolutional networks to make pre-
dictions on humorous/non-humorous sentences in
a TED talk corpus. Bertero and Fung (2016) pre-
dicted punchlines using textual and audio features
from the popular sitcom The Big Bang Theory.
While feature-based solutions use linguistic prop-
erties of text to detect humour, our hope in exper-
imenting with deep learning models for this task
was that they could capture such properties in a
more unstructured form, without pre-determined
hand-engineered indicators.

3 System Description

In order to identify the funnier tweet in each pair,
as required by the task setup, we build the follow-
ing models:

• Character-to-Phoneme Model (C2P)
• Embedding Humor Model (EHM)
• Character Humor Model (CHM)
• Embedding/Character Joint Model (ECJM)
• XGBoost Feature-Based Model (XGBM)
• Ensemble Model (ENSEMBLE)

3.1 Character-to-Phoneme Model
In addition to understanding the meaning of each
word in the sentence and how those meanings fit
together, some words sound funnier to the ear than
others. The sound of a sentence might also reveal
the power of its punchline.

To give the model a representation of sound
(i.e., pronunciation) for each word, we train an
encoder-decoder LSTM model to convert a se-
quence of characters (via learned character em-
beddings) into a sequence of phonemes. Much like
other sequence-to-sequence models, our model
learns how to convert an English word into a se-
quence of phonemes that determine how that word
is pronounced (see Figure 1).

We train and evaluate this model on the CMU
Pronouncing Dictionary corpus (Lenzo, 2017),
which contains mappings from each word to its
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Figure 1: Character-to-Phoneme Model

corresponding phonemes. We use a 0.6/0.4 train-
test split. Once the model is trained, we extract the
intermediate embedding state (200 dim) between
the encoder and decoder; this acts as a phonetic
embedding, containing all information needed to
pronounce the word. The resulting phonetic em-
bedding for each word is concatenated with a se-
mantic embedding to serve as the input for the
embedding humor model (see below). Table 3.1
shows sample output of the model.

3.2 Embedding Humor Model

For both tweets in a tweet pair, a concatenation of
a GloVe word embedding (Pennington et al., 2014)
and phonetic embedding is processed by an LSTM
encoder at each time-step (per word). We use word
embeddings pre-trained on a Twitter corpus, avail-
able on the GloVe website1. Zero padding is added
to the end of each tweet for a maximum length
of 20 words/tweet. The output of each LSTM en-
coder (800 dim) is inserted into dense layers, and
a binary classification decision is generated.

3.3 Character Humor Model

The character-based humor model processes each
tweet as a sequence of characters with a CNN
(Koushik, 2016). 30-dimensional embeddings are
learned per character as input. The output of the
CNN for both tweets in the pair are inserted into
dense layers.

3.4 XGBoost Feature-Based Model

In order to approach the problem from a differ-
ent prospective, in addition to the neural network-
based systems described above, we constructed a
feature-based model using XGBoost (Chen and
Guestrin, 2016). In line with previous work
(Radev et al., 2015; Zhang and Liu, 2014), we
used the following features as input to the model:

1https://nlp.stanford.edu/projects/
glove/

1. Sentiment of each tweet in a pair, obtained
with TwitterHawk, a state-of-the-art senti-
ment analysis system for Twitter (Boag et al.,
2015).

2. Sentiment of the tokenized hashtag.
3. Length of each tweet in both tokens and char-

acters (a very long tweet might not be funny)
4. Distance of the average GloVe embeddings of

the tokens of the tweets to the global centroid
of the embeddings of all tweets for the given
hashtag.

5. Minimum, maximum and average distance
from each token in a tweet to the hashtag.

6. Number of tokens belonging to the top-10
most frequent POS tags on the training data.

3.5 Embedding/Character Joint Model
The output of the embedding model LSTM en-
coders and the character model CNN encoders are
fed into dense layers. For encoder input N , the
three dense layers are of size (3/4)N , (1/2)N ,
and 1. Each layer gradually reduces dimension-
ality to final binary decision.

3.6 Ensemble Model
Inspired by the success of ensemble models in
other tasks (Potash et al., 2016a; Rychalska et al.,
2016) we built an ensemble model that com-
bines the predictions of the character-based model,
embedding-based model, the character/embedding
joint humor model, and the feature-based XG-
Boost model to make the final prediction which
incorporates different views of the input data. For
the ensemble model itself, we use an XGBoost
model again. Input predictions are obtained by us-
ing 5-fold cross-validation on the training data.

4 Results

Accuracies are calculated over three run aver-
age. Embedding/character models trained for five
epochs with a learning rate of 1e-5 using the Adam
optimizer (Kingma and Ba, 2014). Parameters are
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Word Model Output CMU Dictionary
rupard R UW0 P ER0 D D R UW1 P ER0 D

disabling D AY1 S EY1 B L IH0 NG D IH0 S EY1 B AH0 L IH0 NG
clipping K L IH1 P IH0 NG K L IH1 P IH0 NG

enfranchised IH0 N F R AE1 N SH AY2 D D EH0 N F R AE1 N CH AY2 Z D
eimer AY1 M ER0 AY1 M ER0
dowel D AW1 AH0 L D AW1 AH0 L
vasilly V AE1 S IH0 L IY0 V AH0 S IH1 L IY0

Table 1: Sample character-to-phoneme model output.

Model Configuration/Features Trial Acc Evaluation Acc Official Evaluation Acc
ENSEMBLE 64.02% 65.99 % 67.5% (Run #2)
ECJM 59.31% 68.30% 63.7% (Run #1)
ECJM (GloVe-only) 64.42% 65.95%
EHM 58.09% 67.56%
EHM (GloVe-only) 64.76% 67.44%
EHM (Phonetic-only) 54.55% 65.93%
CHM 59.59% 63.52%
XGBM 57.02% 60.35%

Table 2: Model performance (accuracy). Official results reported for joint and ensemble models.

tuned to the trial set, which contained five hash-
tags. Train, trial and evaluation datasets were pro-
vided by task organizers, with the evaluation data
containing six hashtags. Table 2 shows the re-
sults obtained by different models on the evalua-
tion data. Note that the reported figures were ob-
tained in additional experiments after a few of the
bugs present in the original submission were ad-
dressed. For completeness, we also report the of-
ficial results obtained by our system submissions
(runs #1 and #2).

5 Discussion

The ensemble model performed the best during the
official evaluation, placing it 1st among 10 runs,
submitted by the 7 participating teams. Note that
accuracies on evaluation hashtags are on average
5.36% higher than on trial hashtags (see Table 2).
This suggests each dataset contains different hash-
tag types, and that the evaluation set more closely
matches the training set. For example, phonetic
embeddings reduce performance in the trial set
and improve performance in the evaluation set.
We hypothesize that phonetic embeddings are not
important for some hashtags, and that the evalua-
tion set contains more such hashtags .

While adding phonetic embeddings and/or the
character model yields inconsistent results across

the trial and evaluation sets, adding the GloVe
representation produced the best scores for both
datasets. From these results, token-based semantic
knowledge appears to be the most important fac-
tor in humor recognition for this dataset. These re-
sults differ from that of Potash et al. (2016b), who
report that a CNN-based character model achieves
the highest accuracy on leave-one-out evaluation.

The character-to-phoneme model yields very
interesting results upon testing. The model cor-
rectly classifies 75% of phonemes in the test set.
As shown in Table 3.1, the model often guesses a
similar-sounding phoneme in cases when the cor-
rect phoneme is not guessed. For example, in
’vasilly’, AE1 is guessed instead of AH0.

6 Conclusion

The learned character embeddings achieved rea-
sonable results on both trial and evaluation data.
The incorporation of phonetic embeddings in hu-
mor prediction, on the other hand, appears to yield
inconsistent performance across different hash-
tags. The ensemble model improved performance
on the official data. Overall, GloVe embeddings
consistently improved performance, highlighting
the importance of lexical semantic information for
this humour classification task.
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