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Abstract

This paper presents three systems
for semantic textual similarity (STS)
evaluation at SemEval-2017 STS task.
One is an unsupervised system and the
other two are supervised systems which
simply employ the unsupervised one.
All our systems mainly depend on the
semantic information space (SIS), which
is constructed based on the semantic
hierarchical taxonomy in WordNet, to
compute non-overlapping information
content (IC) of sentences. Our team
ranked 2nd among 31 participating
teams by the primary score of Pearson
correlation coefficient (PCC) mean of 7
tracks and achieved the best performance
on Track 1 (AR-AR) dataset.

1 Introduction

Given two snippets of text, semantic textual simi-
larity (STS) measures the degree of equivalence in
the underlying semantics. STS is a basic but im-
portant issue with multitude of application areas in
natural language processing (NLP) such as exam-
ple based machine translation (EBMT), machine
translation evaluation, information retrieval (IR),
question answering (QA), text summarization and
so on.

The SemEval STS task has become the most
famous activity for STS evaluation in recent years
and the STS shared task has been held annual-
ly since 2012 (Agirre et al., 2012, 2013, 2014,
2015, 2016; Cer et al., 2017), as part of the
SemEval/*SEM family of workshops. The orga-
nizers have set up publicly available datasets of
sentence pairs with similarity scores from human
annotators, which are up to more than 16,000
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sentence pairs for training and evaluation, and
attracted a large number of teams with a variety
of systems to participate the competitions.

Generally, STS systems could be divided into
two categories: One kind is unsupervised sys-
tems (Li et al., 2006; Mihalcea et al., 2006; Is-
lam and Inkpen, 2008; Han et al., 2013; Sultan
et al., 2014b; Wu and Huang, 2016), some of
which are appeared for a long time when there
wasn’t enough training data; The other kind is
supervised systems (Bär et al., 2012; Šarić et al.,
2012; Sultan et al., 2015; Rychalska et al., 2016;
Brychcı́n and Svoboda, 2016) applying machine
learning algorithms, including deep learning, after
adequate training data has been constructed. Each
kind of methods has its advantages and application
areas. In this paper, we present three systems, one
unsupervised system and two supervised systems
which simply make use of the unsupervised one.

2 Preliminaries

Following the standard argumentation of informa-
tion theory, Resnik (1995) proposed the definition
of the information content (IC) of a concept as
follows:

IC (c) = − log P(c), (1)

where P(c) refers to statistical frequency of con-
cept c.

Since information content (IC) for multiple
words, which sums the non-overlapping
concepts IC, is a computational difficulties
for knowledge based methods. For a long time,
IC related methods were usually used as word
similarity (Resnik, 1995; Jiang and Conrath,
1997; Lin, 1997) or word weight (Li et al., 2006;
Han et al., 2013) rather than the core evaluation
modules of sentence similarity methods (Wu and
Huang, 2016).
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2.1 STS evaluation using SIS

To apply non-overlapping IC of sentences in STS
evaluation, we construct the semantic information
space (SIS), which employs the super-subordinate
(is-a) relation from the hierarchical taxonomy of
WordNet (Wu and Huang, 2016). The space size
of a concept is the information content of the
concept. SIS is not a traditional orthogonality
multidimensional space, while it is the space with
inclusion relation among concepts. Sentences in
SIS are represented as a real physical space instead
of a point in vector space.

We have the intuitions about similarity: The
similarity between A and B is related to their com-
monality and differences, the more commonality
and the less differences they have, the more similar
they are; The maximum similarity is reached when
A and B are identical, no matter how much com-
monality they share(Lin, 1998). The principle of
Jaccard coefficient (Jaccard, 1908) is accordance
with the intuitions about similarity and we define
the similarity of two sentences S a and S b based on
it:

sim (sa, sb) =
IC (sa ∩ sb)
IC (sa ∪ sb)

. (2)

The quantity of the intersection of the informa-
tion provided by the two sentences can be obtained
through that of the union of them:

IC (sa ∩ sb) = IC (sa)+IC (sb)−IC (sa ∪ sb) . (3)

So the remaining problem is how to compute the
quantity of the union of non-overlapping informa-
tion of sentences. We calculate it by employing the
inclusion-exclusion principle from combinatorics
for the total IC of sentence sa and the same way is
used for sentence sb and both sentences:

IC (sa) = IC
(

n⋃
i=1

ca
i

)
=

n∑
k=1

(−1)k−1 ∑
1≤i1<···<ik≤n

IC
(
ca

i1
∩ · · · ∩ ca

ik

)
.

(4)

For the IC of n-concepts intersection in Equa-
tion (4), we use the following equation1:

1For the sake of high computational complexity in-
troduced by Equation (4), we simplify the calculation of
common IC of n-concepts and use the approximate formula
in Equation (6). The accurate formula of common IC is:

commonIC (c1,· · ·, cn)= IC
(

n⋂
i=1

ci

)
= IC

(
m⋃

j=1
c j

)
, (5)

Algorithm 1: getInExTotalIC(S )
Input: S : {ci|i = 1, 2, . . . , n; n = |S |}
Output: tIC: Total IC of input S

1 if S = ∅ then
2 return 0

3 Initialize: tIC ← 0
4 for i = 1; i ≤ n; i + + do
5 foreach comb in C(n, i)-combinations do
6 cIC ← commonIC (comb)
7 tIC+ = (−1)i−1 · cIC

8 return tIC

commonIC (c1, · · · , cn) = IC
(

n⋂
i=1

ci

)
≈ max

c∈subsum(c1,···,cn)
[− log P(c)],

(6)

where, subsum (c1, · · · , cn) is the set of concepts
that subsume all the concepts of c1, · · · , cn in SIS.

Algorithm 1 is according to Equation (4)
and (6), here C (n, i) is the number of combinations
of i-concepts from n-concepts, commonIC(comb)
is calculated through Equation (6).

For more details about this section, please see
the paper (Wu and Huang, 2016) for reference.

2.2 The Efficient Algorithm for Sentence IC

According to the Binomial Theorem, the amount
of combinations for commonIC(comb) calculation
from Equation (4) is:

C (n, 1) + · · · + C (n, n) = 2n − 1. (7)

Searching subsumers in the hierarchical taxono-
my of WordNet is the most time-consuming opera-
tion. Define one time searching between concepts
be the minimum computational unit. Considering
searching subsumers among multiple concepts,
the real computational complexity is more than
0 ∗C(n, 1) + 1 ∗C (n, 2) + · · · + (n − 1) ∗C (n, n).

Note that the computational complexity through
the inclusion-exclusion principle is more than
O(2n). To decrease the computational complexity,
we exploit the efficient algorithm for precise
non-overlapping IC computing of sentences by
making use of the thinking of the different
set in hierarchical network (Wu and Huang,

where c j ∈ subsum (c1, · · · , cn), m is the total number of c j.
We could see Equation.(4) and (5) are indirect recursion.
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Algorithm 2: getTotalIC(S )
Input: S : {ci|i = 1, 2, . . . , n; n = |S |}
Output: tIC: Total IC of input S

1 if S = ∅ then
2 return 0

3 Initialize: tIC ← 0, Root(0)← ∅
4 for i = 1; i ≤ n; i + + do
5 Intersect(i|i − 1),Root(i)←

getIntersect(ci,Root(i − 1))
6 ICG ←

IC(ci) − getTotalIC(Intersect(i|i − 1))
7 tIC+ = ICG

8 return tIC

2017): We add the words into the SIS one by
one each time and sum the gain IC of ICG(ci)
from the newly added concept ci. For sentence
S = {ci|i = 1, 2, . . . , n; n = |S |}, where ci is the
concept of the i-th concept in S , |S | is concept
count of S , the formula of ICG(ci) is as follows:

IC(S ) =
n∑

i=1
ICG(ci) (8)

For convenience in the expression of ICG(ci),
we define some functions: Root(ci) indicates the
set of paths, each path is the node list from
ci to the root in the nominal hierarchical tax-
onomy of WordNet. Root(n) is the short form
of Root (c1, · · · , cn). Formally, let S et(p) be the
set of nodes in path p, Root (n) = {pk|∀pk ∈
Root(ci),@pt ∈ Root(c j), S et(pk) ⊆ S et(pt).i =

1, 2, . . . , n; j = 1, 2, . . . , n}. |Root(ci)| means the
number of paths in Root(ci). HS N(ci) expresses
the set of nodes in any of path in Root(ci). HS N(n)
is the short form of HS N (c1, · · · , cn), formally,
HS N (n) = {ck|ck ∈ HS N(ci).i = 1, 2, . . . , n}.

Let depth(c) be the max depth from concept c
to the root. We define Intersect(n + 1|n) =

{ci|∀ci ∈ {S et(pt) ∧ HS N(n)},@c j ∈
{S et(pt) ∧ HS N(n)}, depth(ci) ≤ depth(c j).pt ∈
Root(cn+1); t = 1, · · · , |Root(cn+1)|} and
totalIC (c1, · · · , cn) is the quantity of total
information of n-concepts. We have

ICG(Ci)= IC(ci)−totalIC(Intersect(i|i−1)).
(9)

Algorithm 2 and 3 are according to Equation (8)
and (9). Algorithm 3 is approximately equal to one
time subsumer searching between concepts, thus

Algorithm 3: getIntersect(ci,Root(i − 1))
Input: ci, Root(i − 1)
Output: Intersect(i|i − 1), Root(i)

1 Initialize: get Root(ci) from WordNet
Intersect(i|i − 1)← ∅; Root(i)← Root(i − 1)

2 if Root(i) = ∅ then /* i = 1 */
3 Root(i)← Root(ci)
4 return Intersect(i|i − 1),Root(i)

5 foreach ri ∈ Root(ci) do
6 pos← depth(ri)− 1 /* pos⇔ root */
7 foreach ri−1 ∈ Root(i − 1) do
8 (p, q)← deepest common node

position: p in ri, q in ri−1
9 if p = 0 then /* ri in ri−1 */

10 add ci to Intersect(i|i − 1)
11 break the outer foreach loop

12 if q = 0 then /* ri−1 in ri */

13 remove ri−1 from Root(i)

14 if p < pos then /* ri−1 intersect

at deeper node in ri */

15 pos← p

16 add ri to Root(i)
17 add cpos ∈ ri to Intersect(i|i − 1)

18 return Intersect(i|i − 1),Root(i)

the computational complexity of Algorithm 2 is
O(n). This indicates SIS methods could be applied
to any length of sentences even short paragraphs.
The open source implementations of Algorithm 2
and 3 with related library are also available at
GitHub2.

Theoretical system with lemmas and theorems
has been established for supporting the correctness
of Equation (8) and (9). For more details about
this section, please see the paper (Wu and Huang,
2017) for reference.

2.3 Increasing Word Recall Rate for SIS

We made three aspects improvements in our an-
other previous work:

First, we utilize WordNet to directly obtain the
nominal forms of a content word which is not
a noun mainly through derivational pointers in
WordNet. The word formation helps enhance the
recall rate of known content words in sentence-to-
SIS mappings. Second, name entity (NE) recogni-
tion tool (Manning et al., 2014) and the alignment

2https://github.com/hao123wu/STS
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tool (Sultan et al., 2014a) are employed to obtain
non-overlapping unknown NEs, which are used
for simulating non-overlapping IC in SIS. The
alignment tool is mainly used for finding actually
same NEs with different string forms and incon-
sistent NE annotations by the NE recognition tool.
Through the statistic values of known NEs of the
same kinds from previous datasets, we simulate
the IC of out-of-vocabulary NEs in SIS. Finally,
sentence IC is augmented by word weights which
could deem as the importance of words.

The above contents of this subsection is mainly
based on the work which is currently under review.

3 System Overview

We submitted three systems: One is the unsu-
pervised system of exploiting non-overlapping IC
in SIS, the other two are supervised systems of
making use of the methods of sentence alignment
and word embedding respectively.

3.1 Preprocessing

First of all, we translated all the other languages
into English by employing Google machine trans-
lation system3 and preprocessed the test datasets
with tokenizer.perl and truecase.perl, which are
the tools from Moses machine translation toolk-
it (Koehn et al., 2007), then utilized the prepro-
cessed datasets to do POS obtaining and lemmati-
zation by utilizing NLTK (Bird, 2006), and finally
made use of lemma to do sentence alignmen-
t (Sultan et al., 2014a) and name entity recogni-
tion (Manning et al., 2014). We use the lemma
instead of the original word in all the situations
where need words to participate for the considera-
tion of simplicity.

We also developed a word spelling correction
module based on Levenshtein distance which is
special for the spelling mistakes in STS datasets.
It proved important for the eventual performances
in previous years, however, it was not so critical
this year.

3.2 Run 1: Unsupervised SIS

Run 1 is from the unsupervised system constructed
using the framework described in Section 2 and
the implementation is as follows:

Word IC calculation employs Equation (1) and

3http://translate.google.com

the probability of a concept c is:

P (c) =

∑
n∈words(c) count(n)

N
(10)

where words (c) is the set of all the words con-
tained in concept c and its sub-concepts in Word-
Net, N is the sum of frequencies of words con-
tained in all the concepts in the hierarchy of
semantic net. The word statistics are from British
National Corpus (BNC) obtained by NLTK (Bird,
2006). Sentence IC computation applies Equa-
tion (9).

For the simplification, we choose the concept
of a word with the minimal IC, which denotes
the most common sense of a word, in all the
circumstances of conversion of word-to-concept
and the selection between two aligned words,
instead of word sense disambiguation (WSD).

3.3 Run 2: Supervised IC and Alignment
As the aligner of Sultan et al. (2014a) is suc-
cessfully applied in STS evaluation, we should
leverage its advantage of finding potential word
aligned pairs from both sentences, especially for
different surface forms. However, we did not
obtain the global inverse document frequency (ID-
F) data on time, thus we did not employ the
aligner of Brychcı́n and Svoboda (2016), which
is the improved version of Sultan et al. (2014a),
that introduces IDF information of words in the
similarity formula.

In this run, we use support vector
machines (Chang and Lin, 2011) (SVM) for
regression, more specifically sequential minimal
optimization (Shevade et al., 2000) (SMO). There
two features: One is the output of SIS, the other
is that of unsupervised method of Sultan et al.
(2015).

Actually, we tested some other regression meth-
ods. We found that LR and SVM always outper-
form the others. The tool for regression methods
are implemented in WEKA (Hall et al., 2009).

3.4 Run 3: Supervised IC and Embeddings
Deep learning has become a hot topic in recent
years and many supervised methods of STS in-
corporate deep learning models. At SemEval
2016 STS task, at least top 5 teams included
deep learning modules according to incomplete
statistics (Agirre et al., 2016).

In this run, we take advantage of the embed-
dings that obtained information from large scale
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Track Dataset Total GS Pairs
Track 1 Arabic-Arabic 250 250
Track 2 Arabic-English 250 250
Track 3 Spanish-Spanish 250 250
Track 4a Spanish-English 250 250
Track 4b Spanish-English-WMT 250 250
Track 5 English-English 250 250
Track 6 English-Turkish 500 250
Sum 2000 1750

Table 1: Test sets at SemEval 2017 STS task.

corpora and train the linear regression (LR) model.
There two features: One is the outputs of SIS, the
other is from a modified version of basic sentence
embedding which is the simply combination of
word embeddings.

The word embedding vectors are generated
from word2vec (Mikolov et al., 2013) over the 5th
edition of the Gigaword (LDC2011T07) (Parker
et al., 2011). We also preprocess the Gigaword
data with tokenizer.perl and truecase.perl.
We modify this basic sentence embedding by
importing domain IDF information. The domain
IDFs of words could be obtained from the current
test dataset by deeming each sentence as a
document. We did not directly use the domain
IDFs d as the weight of a word embedding. On
previous datasets, we found d0.8 as its weight
performed nearly the best.

4 Data

SemEval 2017 STS task assesses the ability of
systems to determine the degree of semantic simi-
larity between monolingual and cross-lingual sen-
tences in Arabic, English, Spanish and a surprise
language of Turkish. The shared task is organized
into a set of secondary sub-tracks and a single
combined primary track. Each secondary sub-
track involves providing STS scores for monolin-
gual sentence pairs in a particular language or for
cross-lingual sentence pairs from the combination
of two particular languages. Participation in the
primary track is achieved by submitting results for
all of the secondary sub-tracks (Cer et al., 2017).

As shown in Table 1, the SemEval 2017 STS
shared task contains 1750 pairs with gold standard
(GS) out of total 2000 pairs from 7 different tracks.
Systems were required to annotate all the pairs and
performance was evaluated on all pairs or a subset
with GS in the datasets. The GS for each pair
ranges from 0 to 5, with the values indicating the
corresponding interpretations:

5 indicates completely equivalence; 4 expresses
mostly equivalent with differences only in some
unimportant details; 3 means roughly equivalent
but with differences in some important details; 2
means non-equivalence but sharing some details;
1 means the pairs only share the same topic; and 0
represents no overlap in similarity.

5 Evaluation

The evaluation metric is the Pearson product-
moment correlation coefficient (PCC) between se-
mantic similarity scores of machine assigned and
human judgements. PCC is used for each individ-
ual test set, and the primary evaluation is measured
by weighted mean of PCC on all datasets (Cer
et al., 2017).

Performances of our three runs on each of
SemEval 2017 STS test set are shown in Table 2.
Bold numbers represents the best scores from
any our system on each test set, including the
primary scores. Cosine Baseline utilizes basic
sentence embedding method for monolingual sim-
ilarity (Track 1, 3 and 5) provided officially by
STS organizers; Best system denotes all the scores
are from the state-of-the-art system; All Systems
Best means the best scores from all the systems
participated in each track, regardless of whether
they come from the same system; Differences
indicates the differences between the best scores
from our three systems and All Single Best in
each track, primary difference is between our
best system and state-of-the-art system. Team
Rankings show the rankings of our best scores
from that of other teams. Team Rankings of
Primary could be the most important ranking for
participants who submitted scores for all tracks.

Our team ranked 2nd for the primary score and
achieved the best performance in Track 1 (Arabic-
Arabic). Track 1 is the only track that totally
employed new languages which has no references
from the past (cross-lingual evaluation contains
English sentences).

The very failing performance is in Track 4b.
We guess the reasons could be the followings and
further research is needed on this issue:

1) Our methods, especially for unsupervised
SIS, ignore some important information as the
embedding methods and are currently not suit for
complicated post-editing sentences. We tested
basic sentence embedding method in isolation
which could achieve the score of more than 0.16,
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Primary Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6
Run 1 0.6703 0.7535 0.7007 0.8323 0.7813 0.0758 0.8161 0.7327
Run 2 0.6662 0.7543 0.6953 0.8289 0.7761 0.0584 0.8222 0.7280
Run 3 0.6789 0.7417 0.6965 0.8499 0.7828 0.1107 0.8400 0.7305

Cosine Baseline 0.5370 0.6045 0.5155 0.7117 0.6220 0.0320 0.7278 0.5456
Best System 0.7316 0.7440 0.7493 0.8559 0.8131 0.3363 0.8518 0.7706

All Single Best - 0.7543 0.7493 0.8559 0.8302 0.3407 0.8547 0.7706
Differences 5.3% -0.8% 4.9% 0.6% 4.7% 23.0% 1.5% 3.8%

Team Rankings 2 1 2 2 3 14 4 2

Table 2: Performances on SemEval 2017 STS evaluation datasets.

much better than our IC based systems of Run 1
(0.0758) and Run 2 (0.0584),which are without
embedding modules.

2) The translation quantity for long sentences
by machine translation may be not good enough
as that for short sentences. The translation results
may lose some information in the original sen-
tences for SIS and introduce more noise.

6 STS benchmark

In order to provide a standard benchmark to com-
pare among the state-of-the-art in Semantic Tex-
tual Similarity for English, the organizers of Se-
mEval STS tasks are already setting a leaderboard
this year which includes results of some selected
systems. The benchmark comprises a selection
of the English datasets used in the STS tasks in
the context of SemEval from 2012 to 2017 and it
is organized into train, development and test (Cer
et al., 2017).

Our systems are selected by the organizers to
submit the results for STS benchmark. We employ
the models that described above, but a small
difference is in Run 3: d0.9 was used as the weights
of word embeddings, which could achieve the best
performance of cosine similarity from the summed
word embeddings in isolation. As our models need
not tune hyperparameters, the train part is used
for tuning parameters and training models while
the development part and the test part are used for
the testing of the final systems. Table 3 shows the
performances of our systems.

From the table we could see Run 3 provides
the best performance in benchmark, which is in
accordance with the results in SemEval 2017 STS
task. Our best system ranks 2nd at present. More
details about STS benchmark and the real-time
leaderboard could be find in the official website4.

4http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

Set Size Run 1 Run 2 Run 3
Development 1500 0.8194 0.8240 0.8291

Test 1379 0.7942 0.7962 0.8085

Table 3: Performances of runs on STS benchmark.

7 Conclusions

At SemEval 2017 STS task, we introduced a un-
supervised knowledge based method, SIS, which
could be new at SemEval. SIS is the extension
of information content for STS evaluation. The
performance of SIS is pretty good on STS test
sets for it’s just a new unsupervised method with
room to improve. Currently, our main concern
is how to gain the information contained in word
embeddings, which may be lost in knowledge
based SIS, and combine it with SIS to improve
STS performance.
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