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Welcome to SemEval-2017

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyse diverse semantic phenomena in text with the aim of extending the current state
of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2017 is the eleventh workshop in the series of International Workshops on Semantic Evaluation.
The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004), focused on
word sense disambiguation, each time growing in the number of languages offered, in the number of
tasks, and also in the number of participating teams. In 2007, the workshop was renamed to SemEval,
and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond word sense
disambiguation. In 2012, SemEval turned into a yearly event. It currently runs every year, but on a
two-year cycle, i.e., the tasks for SemEval-2017 were proposed in 2016.

SemEval-2017 was co-located with the 55th annual meeting of the Association for Computational
Linguistics (ACL’2017) in Vancouver, Canada. It included the following 12 shared tasks organized
in three tracks:

Semantic comparison for words and texts

• Task 1: Semantic Textual Similarity

• Task 2: Multi-lingual and Cross-lingual Semantic Word Similarity

• Task 3: Community Question Answering

Detecting sentiment, humor, and truth

• Task 4: Sentiment Analysis in Twitter

• Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News

• Task 6: #HashtagWars: Learning a Sense of Humor

• Task 7: Detection and Interpretation of English Puns

• Task 8: RumourEval: Determining rumour veracity and support for rumours

Parsing semantic structures

• Task 9: Abstract Meaning Representation Parsing and Generation

• Task 10: Extracting Keyphrases and Relations from Scientific Publications

• Task 11: End-User Development using Natural Language

• Task 12: Clinical TempEval
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This volume contains both Task Description papers that describe each of the above tasks and System
Description papers that describe the systems that participated in the above tasks. A total of 12 task
description papers and 169 system description papers are included in this volume.

We are grateful to all task organizers as well as the large number of participants whose enthusiastic
participation has made SemEval once again a successful event. We are thankful to the task organizers
who also served as area chairs, and to task organizers and participants who reviewed paper submissions.
These proceedings have greatly benefited from their detailed and thoughtful feedback. We also thank the
ACL 2017 conference organizers for their support. Finally, we most gratefully acknowledge the support
of our sponsor, the ACL Special Interest Group on the Lexicon (SIGLEX).

The SemEval-2017 organizers,

Steven Bethard, Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, David Jurgens
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Abstract

Semantic Textual Similarity (STS) mea-
sures the meaning similarity of sentences.
Applications include machine translation
(MT), summarization, generation, question
answering (QA), short answer grading, se-
mantic search, dialog and conversational
systems. The STS shared task is a venue
for assessing the current state-of-the-art.
The 2017 task focuses on multilingual and
cross-lingual pairs with one sub-track ex-
ploring MT quality estimation (MTQE)
data. The task obtained strong participa-
tion from 31 teams, with 17 participating
in all language tracks. We summarize per-
formance and review a selection of well
performing methods. Analysis highlights
common errors, providing insight into the
limitations of existing models. To support
ongoing work on semantic representations,
the STS Benchmark is introduced as a new
shared training and evaluation set carefully
selected from the corpus of English STS
shared task data (2012-2017).

1 Introduction
Semantic Textual Similarity (STS) assesses the
degree to which two sentences are semantically
equivalent to each other. The STS task is moti-
vated by the observation that accurately modeling
the meaning similarity of sentences is a founda-
tional language understanding problem relevant to
numerous applications including: machine trans-
lation (MT), summarization, generation, question
answering (QA), short answer grading, semantic
search, dialog and conversational systems. STS en-
ables the evaluation of techniques from a diverse
set of domains against a shared interpretable perfor-
mance criteria. Semantic inference tasks related to

STS include textual entailment (Bentivogli et al.,
2016; Bowman et al., 2015; Dagan et al., 2010),
semantic relatedness (Bentivogli et al., 2016) and
paraphrase detection (Xu et al., 2015; Ganitkevitch
et al., 2013; Dolan et al., 2004). STS differs from
both textual entailment and paraphrase detection
in that it captures gradations of meaning overlap
rather than making binary classifications of par-
ticular relationships. While semantic relatedness
expresses a graded semantic relationship as well, it
is non-specific about the nature of the relationship
with contradictory material still being a candidate
for a high score (e.g., “night” and “day” are highly
related but not particularly similar).

To encourage and support research in this area,
the STS shared task has been held annually since
2012, providing a venue for evaluation of state-of-
the-art algorithms and models (Agirre et al., 2012,
2013, 2014, 2015, 2016). During this time, di-
verse similarity methods and data sets1 have been
explored. Early methods focused on lexical se-
mantics, surface form matching and basic syntac-
tic similarity (Bär et al., 2012; Šarić et al., 2012a;
Jimenez et al., 2012a). During subsequent evalua-
tions, strong new similarity signals emerged, such
as Sultan et al. (2015)’s alignment based method.
More recently, deep learning became competitive
with top performing feature engineered systems
(He et al., 2016). The best performance tends to
be obtained by ensembling feature engineered and
deep learning models (Rychalska et al., 2016).

Significant research effort has focused on STS
over English sentence pairs.2 English STS is a

1i.a., news headlines, video and image descriptions,
glosses from lexical resources including WordNet (Miller,
1995; Fellbaum, 1998), FrameNet (Baker et al., 1998),
OntoNotes (Hovy et al., 2006), web discussion fora, plagia-
rism, MT post-editing and Q&A data sets. Data sets are sum-
marized on: http://ixa2.si.ehu.es/stswiki.

2The 2012 and 2013 STS tasks were English only. The
2014 and 2015 task included a Spanish track and 2016 had a
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well-studied problem, with state-of-the-art systems
often achieving 70 to 80% correlation with human
judgment. To promote progress in other languages,
the 2017 task emphasizes performance on Arabic
and Spanish as well as cross-lingual pairings of
English with material in Arabic, Spanish and Turk-
ish. The primary evaluation criteria combines per-
formance on all of the different language condi-
tions except English-Turkish, which was run as a
surprise language track. Even with this departure
from prior years, the task attracted 31 teams pro-
ducing 84 submissions.

STS shared task data sets have been used exten-
sively for research on sentence level similarity and
semantic representations (i.a., Arora et al. (2017);
Conneau et al. (2017); Mu et al. (2017); Pagliardini
et al. (2017); Wieting and Gimpel (2017); He and
Lin (2016); Hill et al. (2016); Kenter et al. (2016);
Lau and Baldwin (2016); Wieting et al. (2016b,a);
He et al. (2015); Pham et al. (2015)). To encourage
the use of a common evaluation set for assessing
new methods, we present the STS Benchmark, a
publicly available selection of data from English
STS shared tasks (2012-2017).

2 Task Overview
STS is the assessment of pairs of sentences accord-
ing to their degree of semantic similarity. The task
involves producing real-valued similarity scores
for sentence pairs. Performance is measured by the
Pearson correlation of machine scores with human
judgments. The ordinal scale in Table 1 guides
human annotation, ranging from 0 for no meaning
overlap to 5 for meaning equivalence. Intermediate
values reflect interpretable levels of partial overlap
in meaning. The annotation scale is designed to
be accessible by reasonable human judges with-
out any formal expertise in linguistics. Using rea-
sonable human interpretations of natural language
semantics was popularized by the related textual
entailment task (Dagan et al., 2010). The result-
ing annotations reflect both pragmatic and world
knowledge and are more interpretable and useful
within downstream systems.

3 Evaluation Data
The Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) is the primary evalu-
ation data source with the exception that one of the

pilot track on cross-lingual Spanish-English STS. The English
tracks attracted the most participation and have the largest use
of the evaluation data in ongoing research.

5

The two sentences are completely equivalent, as they
mean the same thing.
The bird is bathing in the sink.
Birdie is washing itself in the water basin.

4

The two sentences are mostly equivalent, but some
unimportant details differ.
Two boys on a couch are playing video games.
Two boys are playing a video game.

3

The two sentences are roughly equivalent, but some
important information differs/missing.
John said he is considered a witness but not a suspect.
“He is not a suspect anymore.” John said.

2

The two sentences are not equivalent, but share some
details.
They flew out of the nest in groups.
They flew into the nest together.

1

The two sentences are not equivalent, but are on the
same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

0

The two sentences are completely dissimilar.
The black dog is running through the snow.
A race car driver is driving his car through the mud.

Table 1: Similarity scores with explanations and
English examples from Agirre et al. (2013).

cross-lingual tracks explores data from the WMT
2014 quality estimation task (Bojar et al., 2014).3

Sentences pairs in SNLI derive from Flickr30k
image captions (Young et al., 2014) and are labeled
with the entailment relations: entailment, neutral,
and contradiction. Drawing from SNLI allows STS
models to be evaluated on the type of data used to
assess textual entailment methods. However, since
entailment strongly cues for semantic relatedness
(Marelli et al., 2014), we construct our own sen-
tence pairings to deter gold entailment labels from
informing evaluation set STS scores.

Track 4b investigates the relationship between
STS and MT quality estimation by providing STS
labels for WMT quality estimation data. The data
includes Spanish translations of English sentences
from a variety of methods including RBMT, SMT,
hybrid-MT and human translation. Translations
are annotated with the time required for human cor-
rection by post-editing and Human-targeted Trans-
lation Error Rate (HTER) (Snover et al., 2006).4

Participants are not allowed to use the gold quality
estimation annotations to inform STS scores.

3Previous years of the STS shared task include more data
sources. This year the task draws from two data sources and
includes a diverse set of languages and language-pairs.

4HTER is the minimal number of edits required for cor-
rection of a translation divided by its length after correction.
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Track Language(s) Pairs Source
1 Arabic (ar-ar) 250 SNLI
2 Arabic-English (ar-en) 250 SNLI
3 Spanish (es-es) 250 SNLI
4a Spanish-English (es-en) 250 SNLI
4b Spanish-English (es-en) 250 WMT QE
5 English (en-en) 250 SNLI
6 Turkish-English (tr-en) 250 SNLI

Total 1750

Table 2: STS 2017 evaluation data.

3.1 Tracks

Table 2 summarizes the evaluation data by track.
The six tracks span four languages: Arabic, En-
glish, Spanish and Turkish. Track 4 has subtracks
with 4a drawing from SNLI and 4b pulling from
WMT’s quality estimation task. Track 6 is a sur-
prise language track with no annotated training
data and the identity of the language pair first an-
nounced when the evaluation data was released.

3.2 Data Preparation

This section describes the preparation of the eval-
uation data. For SNLI data, this includes the se-
lection of sentence pairs, annotation of pairs with
STS labels and the translation of the original En-
glish sentences. WMT quality estimation data is
directly annotated with STS labels.

3.3 Arabic, Spanish and Turkish Translation

Sentences from SNLI are human translated into
Arabic, Spanish and Turkish. Sentences are trans-
lated independently from their pairs. Arabic trans-
lation is provided by CMU-Qatar by native Arabic
speakers with strong English skills. Translators
are given an English sentence and its Arabic ma-
chine translation5 where they perform post-editing
to correct errors. Spanish translation is completed
by a University of Sheffield graduate student who
is a native Spanish speaker and fluent in English.
Turkish translations are obtained from SDL.6

3.4 Embedding Space Pair Selection

We construct our own pairings of the SNLI sen-
tences to deter gold entailment labels being used
to inform STS scores. The word embedding sim-
ilarity selection heuristic from STS 2016 (Agirre
et al., 2016) is used to find interesting pairs. Sen-
tence embeddings are computed as the sum of in-

5Produced by the Google Translate API.
6http://www.sdl.com/languagecloud/

managed-translation/

dividual word embeddings, v(s) =
∑

w∈s v(w).7

Sentences with likely meaning overlap are identi-
fied using cosine similarity, Eq. (1).

simv(s1, s2) =
v(s1)v(s2)

‖v(s1)‖2‖v(s2)‖2 (1)

4 Annotation
Annotation of pairs with STS labels is performed
using Crowdsourcing, with the exception of Track
4b that uses a single expert annotator.

4.1 Crowdsourced Annotations

Crowdsourced annotation is performed on Amazon
Mechanical Turk.8 Annotators examine the STS
pairings of English SNLI sentences. STS labels
are then transferred to the translated pairs for cross-
lingual and non-English tracks. The annotation in-
structions and template are identical to Agirre et al.
(2016). Labels are collected in batches of 20 pairs
with annotators paid $1 USD per batch. Five anno-
tations are collected per pair. The MTurk master9

qualification is required to perform the task. Gold
scores average the five individual annotations.

4.2 Expert Annotation

English-Spanish WMT quality estimation pairs for
Track 4b are annotated for STS by a University of
Sheffield graduate student who is a native speaker
of Spanish and fluent in English. This track differs
significantly in label distribution and the complex-
ity of the annotation task. Sentences in a pair are
translations of each other and tend to be more se-
mantically similar. Interpreting the potentially sub-
tle meaning differences introduced by MT errors
is challenging. To accurately assess STS perfor-
mance on MT quality estimation data, no attempt
is made to balance the data by similarity scores.

5 Training Data
The following summarizes the training data: Ta-
ble 3 English; Table 4 Spanish;10 Table 5 Spanish-
English; Table 6 Arabic; and Table 7 Arabic-
English. Arabic-English parallel data is supplied
by translating English training data, Table 8.

7We use 50-dimensional GloVe word embeddings (Pen-
nington et al., 2014) trained on a combination of Gigaword
5 (Parker et al., 2011) and English Wikipedia available at
http://nlp.stanford.edu/projects/glove/.

8https://www.mturk.com/
9A designation that statistically identifies workers who

perform high quality work across a diverse set of tasks.
10Spanish data from 2015 and 2014 uses a 5 point scale

that collapses STS labels 4 and 3, removing the distinction
between unimportant and important details.
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Year Data set Pairs Source
2012 MSRpar 1500 newswire
2012 MSRvid 1500 videos
2012 OnWN 750 glosses
2012 SMTnews 750 WMT eval.
2012 SMTeuroparl 750 WMT eval.
2013 HDL 750 newswire
2013 FNWN 189 glosses
2013 OnWN 561 glosses
2013 SMT 750 MT eval.
2014 HDL 750 newswire headlines
2014 OnWN 750 glosses
2014 Deft-forum 450 forum posts
2014 Deft-news 300 news summary
2014 Images 750 image descriptions
2014 Tweet-news 750 tweet-news pairs
2015 HDL 750 newswire headlines
2015 Images 750 image descriptions
2015 Ans.-student 750 student answers
2015 Ans.-forum 375 Q&A forum answers
2015 Belief 375 committed belief
2016 HDL 249 newswire headlines
2016 Plagiarism 230 short-answer plag.
2016 post-editing 244 MT postedits
2016 Ans.-Ans. 254 Q&A forum answers
2016 Quest.-Quest. 209 Q&A forum questions
2017 Trial 23 Mixed STS 2016

Table 3: English training data.

Year Data set Pairs Source
2014 Trial 56
2014 Wiki 324 Spanish Wikipedia
2014 News 480 Newswire
2015 Wiki 251 Spanish Wikipedia
2015 News 500 Sewswire
2017 Trial 23 Mixed STS 2016

Table 4: Spanish training data.

English, Spanish and English-Spanish training
data pulls from prior STS evaluations. Arabic and
Arabic-English training data is produced by trans-
lating a subset of the English training data and
transferring the similarity scores. For the MT qual-
ity estimation data in track 4b, Spanish sentences
are translations of their English counterparts, dif-
fering substantially from existing Spanish-English
STS data. We release one thousand new Spanish-
English STS pairs sourced from the 2013 WMT
translation task and produced by a phrase-based
Moses SMT system (Bojar et al., 2013). The data
is expert annotated and has a similar label distribu-
tion to the track 4b test data with 17% of the pairs
scoring an STS score of less than 3, 23% scoring
3, 7% achieving a score of 4 and 53% scoring 5.

5.1 Training vs. Evaluation Data Analysis

Evaluation data from SNLI tend to have sentences
that are slightly shorter than those from prior years
of the STS shared task, while the track 4b MT qual-

Year Data set Pairs Source
2016 Trial 103 Sampled ≤ 2015 STS
2016 News 301 en-es news articles
2016 Multi-source 294 en news headlines,

short-answer plag.,
MT postedits,
Q&A forum answers,
Q&A forum questions

2017 Trial 23 Mixed STS 2016
2017 MT 1000 WMT13 Translation Task

Table 5: Spanish-English training data.

Year Data set Pairs Source
2017 Trial 23 Mixed STS 2016
2017 MSRpar 510 newswire
2017 MSRvid 368 videos
2017 SMTeuroparl 203 WMT eval.

Table 6: Arabic training data.

ity estimation data has sentences that are much
longer. The track 5 English data has an average
sentence length of 8.7 words, while the English
sentences from track 4b have an average length of
19.4. The English training data has the following
average lengths: 2012 10.8 words; 2013 8.8 words
(excludes restricted SMT data); 2014 9.1 words;
2015 11.5 words; 2016 13.8 words.

Similarity scores for our pairings of the SNLI
sentences are slightly lower than recent shared task
years and much lower than early years. The change
is attributed to differences in data selection and
filtering. The average 2017 similarity score is 2.2
overall and 2.3 on the track 7 English data. Prior
English data has the following average similarity
scores: 2016 2.4; 2015 2.4; 2014 2.8; 2013 3.0;
2012 3.5. Translation quality estimation data from
track 4b has an average similarity score of 4.0.

6 System Evaluation

This section reports participant evaluation results
for the SemEval-2017 STS shared task.

6.1 Participation

The task saw strong participation with 31 teams
producing 84 submissions. 17 teams provided 44
systems that participated in all tracks. Table 9 sum-
marizes participation by track. Traces of the focus
on English are seen in 12 teams participating just
in track 5, English. Two teams participated exclu-
sively in tracks 4a and 4b, English-Spanish. One
team took part solely in track 1, Arabic.
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Year Data set Pairs Source
2017 Trial 23 Mixed STS 2016
2017 MSRpar 1020 newswire
2017 MSRvid 736 videos
2017 SMTeuroparl 406 WMT eval.

Table 7: Arabic-English training data.

Year Data set Pairs Source
2017 MSRpar 1039 newswire
2017 MSRvid 749 videos
2017 SMTeuroparl 422 WMT eval.

Table 8: Arabic-English parallel data.

6.2 Evaluation Metric

Systems are evaluated on each track by their Pear-
son correlation with gold labels. The overall rank-
ing averages the correlations across tracks 1-5 with
tracks 4a and 4b individually contributing.

Track Language(s) Participants
1 Arabic 49
2 Arabic-English 45
3 Spanish 48
4a Spanish-English 53
4b Spanish-English MT 53
5 English 77
6 Turkish-English 48

Primary All except Turkish 44

Table 9: Participation by shared task track.

6.3 CodaLab

As directed by the SemEval workshop organizers,
the CodaLab research platform hosts the task.11

6.4 Baseline

The baseline is the cosine of binary sentence vec-
tors with each dimension representing whether an
individual word appears in a sentence.12 For cross-
lingual pairs, non-English sentences are translated
into English using state-of-the-art machine trans-
lation.13 The baseline achieves an average corre-
lation of 53.7 with human judgment on tracks 1-5
and would rank 23rd overall out the 44 system sub-
missions that participated in all tracks.

11https://competitions.codalab.org/
competitions/16051

12Words obtained using Arabic (ar), Spanish (es) and En-
glish (en) Treebank tokenizers.

13http://translate.google.com

6.5 Rankings

Participant performance is provided in Table 10.
ECNU is best overall (avg r: 0.7316) and achieves
the highest participant evaluation score on: track
2, Arabic-English (r: 0.7493); track 3, Spanish (r:
0.8559); and track 6, Turkish-English (r: 0.7706).
BIT attains the best performance on track 1, Arabic
(r: 0.7543). CompiLIG places first on track 4a,
SNLI Spanish-English (r: 0.8302). SEF@UHH
exhibits the best correlation on the difficult track
4b WMT quality estimation pairs (r: 0.3407). RTV
has the best system for the track 5 English data (r:
0.8547), followed closely by DT Team (r: 0.8536).

Especially challenging tracks with SNLI data
are: track 1, Arabic; track 2, Arabic-English; and
track 6, English-Turkish. Spanish-English perfor-
mance is much higher on track 4a’s SNLI data than
track 4b’s MT quality estimation data. This high-
lights the difficulty and importance of making fine
grained distinctions for certain downstream appli-
cations. Assessing STS methods for quality estima-
tion may benefit from using alternatives to Pearson
correlation for evaluation.14

Results tend to decrease on cross-lingual tracks.
The baseline drops > 10% relative on Arabic-
English and Spanish-English (SNLI) vs. mono-
lingual Arabic and Spanish. Many participant sys-
tems show smaller decreases. ECNU’s top ranking
entry performs slightly better on Arabic-English
than Arabic, with a slight drop from Spanish to
Spanish-English (SNLI).

6.6 Methods

Participating teams explore techniques ranging
from state-of-the-art deep learning models to elabo-
rate feature engineered systems. Prediction signals
include surface similarity scores such as edit dis-
tance and matching n-grams, scores derived from
word alignments across pairs, assessment by MT
evaluation metrics, estimates of conceptual simi-
larity as well as the similarity between word and
sentence level embeddings. For cross-lingual and
non-English tracks, MT was widely used to convert
the two sentences being compared into the same
language.15 Select methods are highlighted below.

14e.g., Reimers et al. (2016) report success using STS labels
with alternative metrics such as normalized Cumulative Gain
(nCG), normalized Discounted Cumulative Gain (nDCG) and
F1 to more accurately predict performance on the downstream
tasks: text reuse detection, binary classification of document
relatedness and document relatedness within a corpus.

15Within the highlighted submissions, the following use a
monolingual English system fed by MT: ECNU, BIT, HCTI
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Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6
Team Primary AR-AR AR-EN SP-SP SP-EN SP-EN-WMT EN-EN EN-TR

ECNU (Tian et al., 2017) 73.16 74.40 74.93• 85.59• 81.31 33.63 85.18 77.06•
ECNU (Tian et al., 2017) 70.44 73.80 71.26 84.56 74.95 33.11 81.81 73.62
ECNU (Tian et al., 2017) 69.40 72.71 69.75 82.47 76.49 26.33 83.87 74.20
BIT (Wu et al., 2017)* 67.89 74.17 69.65 84.99 78.28 11.07 84.00 73.05
BIT (Wu et al., 2017)* 67.03 75.35 70.07 83.23 78.13 7.58 81.61 73.27
BIT (Wu et al., 2017) 66.62 75.43• 69.53 82.89 77.61 5.84 82.22 72.80
HCTI (Shao, 2017) 65.98 71.30 68.36 82.63 76.21 14.83 81.13 67.41
MITRE (Henderson et al., 2017) 65.90 72.94 67.53 82.02 78.02 15.98 80.53 64.30
MITRE (Henderson et al., 2017) 65.87 73.04 67.40 82.01 77.99 15.74 80.48 64.41
FCICU (Hassan et al., 2017) 61.90 71.58 67.82 84.84 69.26 2.54 82.72 54.52
neobility (Zhuang and Chang, 2017) 61.71 68.21 64.59 79.28 71.69 2.00 79.27 66.96
FCICU (Hassan et al., 2017) 61.66 71.58 67.81 84.89 68.54 2.14 82.80 53.90
STS-UHH (Kohail et al., 2017) 60.58 67.81 63.07 77.13 72.01 4.81 79.89 59.37
RTV 60.50 67.13 55.95 74.85 70.50 7.61 85.41 62.04
HCTI (Shao, 2017) 59.88 43.73 68.36 67.09 76.21 14.83 81.56 67.41
RTV 59.80 66.89 54.82 74.24 69.99 7.34 85.41 59.89
MatrusriIndia 59.60 68.60 54.64 76.14 71.18 5.72 77.44 63.49
STS-UHH (Kohail et al., 2017) 57.25 61.04 59.10 72.04 63.38 12.05 73.39 59.72
SEF@UHH (Duma and Menzel, 2017) 56.76 57.90 53.84 74.23 58.66 18.02 72.56 62.11
SEF@UHH (Duma and Menzel, 2017) 56.44 55.88 47.89 74.56 57.39 30.69 78.80 49.90
RTV 56.33 61.43 48.32 68.63 61.40 8.29 85.47• 60.79
SEF@UHH (Duma and Menzel, 2017) 55.28 57.74 48.13 69.79 56.60 34.07• 71.86 48.78
neobility (Zhuang and Chang, 2017) 51.95 13.69 62.59 77.92 69.30 0.44 75.56 64.18
neobility (Zhuang and Chang, 2017) 50.25 3.69 62.07 76.90 69.47 1.47 75.35 62.79
MatrusriIndia 49.75 57.03 43.40 67.86 55.63 8.57 65.79 49.94
NLPProxem 49.02 51.93 53.13 66.42 51.44 9.96 62.56 47.67
UMDeep (Barrow and Peskov, 2017) 47.92 47.53 49.39 51.65 56.15 16.09 61.74 52.93
NLPProxem 47.90 55.06 43.69 63.81 50.79 14.14 64.63 43.20
UMDeep (Barrow and Peskov, 2017) 47.73 45.87 51.99 51.48 52.32 13.00 62.22 57.25
Lump (España Bonet and Barrón-Cedeño, 2017)* 47.25 60.52 18.29 75.74 43.27 1.16 73.76 58.00
Lump (España Bonet and Barrón-Cedeño, 2017)* 47.04 55.08 13.57 76.76 48.25 11.12 72.69 51.79
Lump (España Bonet and Barrón-Cedeño, 2017)* 44.38 62.87 18.05 73.80 44.47 1.51 73.47 36.52
NLPProxem 40.70 53.27 47.73 0.16 55.06 14.40 66.81 47.46
RTM (Biçici, 2017)* 36.69 33.65 17.11 69.90 60.04 14.55 54.68 6.87
UMDeep (Barrow and Peskov, 2017) 35.21 39.05 37.13 45.88 34.82 5.86 47.27 36.44
RTM (Biçici, 2017)* 32.91 33.65 0.25 56.82 50.54 13.68 64.05 11.36
RTM (Biçici, 2017)* 32.78 41.56 13.32 48.41 45.83 23.47 56.32 0.55
ResSim (Bjerva and Östling, 2017) 31.48 28.92 10.45 66.13 23.89 3.05 69.06 18.84
ResSim (Bjerva and Östling, 2017) 29.38 31.20 12.88 69.20 10.02 1.62 68.77 11.95
ResSim (Bjerva and Östling, 2017) 21.45 0.33 10.98 54.65 22.62 1.99 50.57 9.02
LIPN-IIMAS (Arroyo-Fernández and Meza Ruiz, 2017) 10.67 4.71 7.69 15.27 17.19 14.46 7.38 8.00
LIPN-IIMAS (Arroyo-Fernández and Meza Ruiz, 2017) 9.26 2.14 12.92 4.58 1.20 1.91 20.38 21.68
hjpwhu 4.80 4.12 6.39 6.17 2.04 6.24 1.14 7.53
hjpwhu 2.94 4.77 2.04 7.63 0.46 2.57 0.69 2.46
compiLIG (Ferrero et al., 2017) 83.02• 15.50
compiLIG (Ferrero et al., 2017) 76.84 14.64
compiLIG (Ferrero et al., 2017) 79.10 14.94
DT TEAM (Maharjan et al., 2017) 85.36
DT TEAM (Maharjan et al., 2017) 83.60
DT TEAM (Maharjan et al., 2017) 83.29
FCICU (Hassan et al., 2017) 82.17
ITNLPAiKF (Liu et al., 2017) 82.31
ITNLPAiKF (Liu et al., 2017) 82.31
ITNLPAiKF (Liu et al., 2017) 81.59
L2F/INESC-ID (Fialho et al., 2017)* 76.16 1.91 5.44 78.11 2.93
L2F/INESC-ID (Fialho et al., 2017) 69.52
L2F/INESC-ID (Fialho et al., 2017)* 63.85 15.61 5.24 66.61 3.56
LIM-LIG (Nagoudi et al., 2017) 74.63
LIM-LIG (Nagoudi et al., 2017) 73.09
LIM-LIG (Nagoudi et al., 2017) 59.57
MatrusriIndia 68.60 76.14 71.18 5.72 77.44 63.49
NRC* 42.25 0.23
NRC 28.08 11.33
OkadaNaoya 77.04
OPI-JSA (Śpiewak et al., 2017) 78.50
OPI-JSA (Śpiewak et al., 2017) 73.42
OPI-JSA (Śpiewak et al., 2017) 67.96
PurdueNLP (Lee et al., 2017) 79.28
PurdueNLP (Lee et al., 2017) 55.35
PurdueNLP (Lee et al., 2017) 53.11
QLUT (Meng et al., 2017)* 64.33
QLUT (Meng et al., 2017) 61.55
QLUT (Meng et al., 2017)* 49.24
SIGMA 80.47
SIGMA 80.08
SIGMA 79.12
SIGMA PKU 2 81.34
SIGMA PKU 2 81.27
SIGMA PKU 2 80.61
STS-UHH (Kohail et al., 2017) 80.93
UCSC-NLP 77.29
UdL (Al-Natsheh et al., 2017) 80.04
UdL (Al-Natsheh et al., 2017)* 79.01
UdL (Al-Natsheh et al., 2017) 78.05

cosine baseline 53.70 60.45 51.55 71.17 62.20 3.20 72.78 54.56
* Corrected or late submission

Table 10: STS 2017 rankings ordered by average correlation across tracks 1-5. Performance is reported
by convention as Pearson’s r × 100. For tracks 1-6, the top ranking result is marked with a • symbol
and results in bold have no statistically significant difference with the best result on a track, p > 0.05
Williams’ t-test (Diedenhofen and Musch, 2015).
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ECNU (Tian et al., 2017) The best overall sys-
tem is from ENCU and ensembles well perform-
ing a feature engineered models with deep learn-
ing methods. Three feature engineered models
use Random Forest (RF), Gradient Boosting (GB)
and XGBoost (XGB) regression methods with fea-
tures based on: n-gram overlap; edit distance;
longest common prefix/suffix/substring; tree ker-
nels (Moschitti, 2006); word alignments (Sul-
tan et al., 2015); summarization and MT evalua-
tion metrics (BLEU, GTM-3, NIST, WER, ME-
TEOR, ROUGE); and kernel similarity of bags-
of-words, bags-of-dependencies and pooled word-
embeddings. ECNU’s deep learning models are
differentiated by their approach to sentence em-
beddings using either: averaged word embeddings,
projected word embeddings, a deep averaging net-
work (DAN) (Iyyer et al., 2015) or LSTM (Hochre-
iter and Schmidhuber, 1997). Each network feeds
the element-wise multiplication, subtraction and
concatenation of paired sentence embeddings to
additional layers to predict similarity scores. The
ensemble averages scores from the four deep learn-
ing and three feature engineered models.16

BIT (Wu et al., 2017) Second place overall is
achieved by BIT primarily using sentence informa-
tion content (IC) informed by WordNet and BNC
word frequencies. One submission uses sentence
IC exclusively. Another ensembles IC with Sul-
tan et al. (2015)’s alignment method, while a third
ensembles IC with cosine similarity of summed
word embeddings with an IDF weighting scheme.
Sentence IC in isolation outperforms all systems
except those from ECNU. Combining sentence IC
with word embedding similarity performs best.

HCTI (Shao, 2017) Third place overall is ob-
tained by HCTI with a model similar to a convolu-
tional Deep Structured Semantic Model (CDSSM)
(Chen et al., 2015; Huang et al., 2013). Sentence
embeddings are generated with twin convolutional
neural networks (CNNs). The embeddings are then
compared using cosine similarity and element wise
difference with the resulting values fed to addi-
tional layers to predict similarity labels. The archi-

and MITRE. HCTI submitted a separate run using ar, es and
en trained models that underperformed using their en model
with MT for ar and es. CompiLIG’s model is cross-lingual
but includes a word alignment feature that depends on MT.
SEF@UHH built ar, es, and en models and use bi-directional
MT for cross-lingual pairs. LIM-LIG and DT Team only par-
ticipate in monolingual tracks.

16The two remaining ECNU runs only use either RF or GB
and exclude the deep learning models.

tecture is abstractly similar to ECNU’s deep learn-
ing models. UMDeep (Barrow and Peskov, 2017)
took a similar approach using LSTMs rather than
CNNs for the sentence embeddings.

MITRE (Henderson et al., 2017) Fourth place
overall is MITRE that, like ECNU, takes an ambi-
tious feature engineering approach complemented
by deep learning. Ensembled components in-
clude: alignment similarity; TakeLab STS (Šarić
et al., 2012b); string similarity measures such as
matching n-grams, summarization and MT metrics
(BLEU, WER, PER, ROUGE); a RNN and recur-
rent convolutional neural networks (RCNN) over
word alignments; and a BiLSTM that is state-of-
the-art for textual entailment (Chen et al., 2016).

FCICU (Hassan et al., 2017) Fifth place overall
is FCICU that computes a sense-base alignment us-
ing BabelNet (Navigli and Ponzetto, 2010). Babel-
Net synsets are multilingual allowing non-English
and cross-lingual pairs to be processed similarly to
English pairs. Alignment similarity scores are used
with two runs: one that combines the scores within
a string kernel and another that uses them with a
weighted variant of Sultan et al. (2015)’s method.
Both runs average the Babelnet based scores with
soft-cardinality (Jimenez et al., 2012b).

CompiLIG (Ferrero et al., 2017) The best
Spanish-English performance on SNLI sentences
was achieved by CompiLIG using features in-
cluding: cross-lingual conceptual similarity using
DBNary (Serasset, 2015), cross-language Multi-
Vec word embeddings (Berard et al., 2016), and
Brychcin and Svoboda (2016)’s improvements to
Sultan et al. (2015)’s method.

LIM-LIG (Nagoudi et al., 2017) Using only
weighted word embeddings, LIM-LIG took sec-
ond place on Arabic.17 Arabic word embeddings
are summed into sentence embeddings using uni-
form, POS and IDF weighting schemes. Sentence
similarity is computed by cosine similarity. POS
and IDF outperform uniform weighting. Combin-
ing the IDF and POS weights by multiplication is
reported by LIM-LIG to achieve r 0.7667, higher
than all submitted Arabic (track 1) systems.

DT Team (Maharjan et al., 2017) Second place
on English (track 5)18 is DT Team using feature en-

17The approach is similar to SIF (Arora et al., 2017) but
without removal of the common principle component

18RTV took first place on track 5, English, but submitted
no system description paper.
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Genre Train Dev Test Total
news 3299 500 500 4299
caption 2000 625 525 3250
forum 450 375 254 1079
total 5749 1500 1379 8628

Table 11: STS Benchmark annotated examples
by genres (rows) and by train, dev. test splits
(columns).

gineering combined with the following deep learn-
ing models: DSSM (Huang et al., 2013), CDSSM
(Shen et al., 2014) and skip-thoughts (Kiros et al.,
2015). Engineered features include: unigram over-
lap, summed word alignments scores, fraction of
unaligned words, difference in word counts by type
(all, adj, adverbs, nouns, verbs), and min to max
ratios of words by type. Select features have a mul-
tiplicative penalty for unaligned words.

SEF@UHH (Duma and Menzel, 2017) First
place on the challenging Spanish-English MT pairs
(Track 4b) is SEF@UHH. Unsupervised similar-
ity scores are computed from paragraph vectors
(Le and Mikolov, 2014) using cosine, negation
of Bray-Curtis dissimilarity and vector correlation.
MT converts cross-lingual pairs, L1-L2, into two
monolingual pairs, L1-L1 and L2-L2, with aver-
aging used to combine the monolingual similarity
scores. Bray-Curtis performs well overall, while
cosine does best on the Spanish-English MT pairs.

7 Analysis

Figure 1 plots model similarity scores against hu-
man STS labels for the top 5 systems from tracks
5 (English), 1 (Arabic) and 4b (English-Spanish
MT). While many systems return scores on the
same scale as the gold labels, 0-5, others return
scores from approximately 0 and 1. Lines on the
graphs illustrate perfect performance for both a 0-5
and a 0-1 scale. Mapping the 0 to 1 scores to range
from 0-5,20 approximately 80% of the scores from
top performing English systems are within 1.0 pt of
the gold label. Errors for Arabic are more broadly
distributed, particularly for model scores between
1 and 4. The English-Spanish MT plots the weak
relationship between the predicted and gold scores.

Table 12 provides examples of difficult sentence
pairs for participant systems and illustrates com-
mon sources of error for even well-ranking systems
including: (i) word sense disambiguation “making”

19ECNU, BIT and LIM-LIG are scaled to the range 0-5.
20snew = 5× s−min(s)

max(s)−min(s)
is used to rescale scores.

and “preparing” are very similar in the context of
“food”, while “picture” and “movie” are not similar
when picture is followed by “day”; (ii) attribute
importance “outside” vs. “deserted” are smaller
details when contrasting “The man is in a deserted
field” with “The man is outside in the field”; (iii)
compositional meaning “A man is carrying a ca-
noe with a dog” has the same content words as
“A dog is carrying a man in a canoe” but carries
a different meaning; (iv) negation systems score
“. . . with goggles and a swimming cap” as nearly
equivalent to “. . . without goggles or a swimming
cap”. Inflated similarity scores for examples like
“There is a young girl” vs. “There is a young boy
with the woman” demonstrate (v) semantic blend-
ing, whereby appending “with a woman” to “boy”
brings its representation closer to that of “girl”.

For multilingual and cross-lingual pairs, these is-
sues are magnified by translation errors for systems
that use MT followed by the application of a mono-
lingual similarity model. For track 4b Spanish-
English MT pairs, some of the poor performance
can in part be attributed to many systems using MT
to re-translate the output of another MT system, ob-
scuring errors in the original translation.

7.1 Contrasting Cross-lingual STS with MT
Quality Estimation

Since MT quality estimation pairs are translations
of the same sentence, they are expected to be min-
imally on the same topic and have an STS score
≥ 1.21 The actual distribution of STS scores is
such that only 13% of the test instances score be-
low 3, 22% of the instances score 3, 12% score 4
and 53% score 5. The high STS scores indicate
that MT systems are surprisingly good at preserv-
ing meaning. However, even for a human, inter-
preting changes caused by translations errors can
be difficult due both to disfluencies and subtle er-
rors with important changes in meaning.

The Pearson correlation between the gold MT
quality scores and the gold STS scores is 0.41,
which shows that translation quality measures and
STS are only moderately correlated. Differences
are in part explained by translation quality scores
penalizing all mismatches between the source seg-
ment and its translation, whereas STS focuses on
differences in meaning. However, the difficult in-
terpretation work required for STS annotation may

21The evaluation data for track 4b does in fact have STS
scores that are≥ 1 for all pairs. In the 1,000 sentence training
set for this track, one sentence that received a score of zero.
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(c) Track 4b: English-Spanish MT

Figure 1: Model vs. human similarity scores for top systems.

Pairs Human DT Team ECNU BIT FCICU ITNLP-AiKF
There is a cook preparing food. 5.0 4.1 4.1 3.7 3.9 4.5
A cook is making food.
The man is in a deserted field. 4.0 3.0 3.1 3.6 3.1 2.8
The man is outside in the field.
A girl in water without goggles or a swimming cap. 3.0 4.8 4.6 4.0 4.7 0.1
A girl in water, with goggles and swimming cap.
A man is carrying a canoe with a dog. 1.8 3.2 4.7 4.9 5.0 4.6
A dog is carrying a man in a canoe.
There is a young girl. 1.0 2.6 3.3 3.9 1.9 3.1
There is a young boy with the woman.
The kids are at the theater watching a movie. 0.2 1.0 2.3 2.0 0.8 1.7
it is picture day for the boys

Table 12: Difficult English sentence pairs (Track 5) and scores assigned by top performing systems.19

Genre File Yr. Train Dev Test
news MSRpar 12 1000 250 250
news headlines 13/6 1999 250 250
news deft-news 14 300 0 0
captions MSRvid 12 1000 250 250
captions images 14/5 1000 250 250
captions track5.en-en 17 0 125 125
forum deft-forum 14 450 0 0
forum ans-forums 15 0 375 0
forum ans-ans 16 0 0 254

Table 13: STS Benchmark detailed break-down by
files and years.

increase the risk of inconsistent and subjective la-
bels. The annotations for MT quality estimation
are produced as by-product of post-editing. Hu-
mans fix MT output and the edit distance between
the output and its post-edited correction provides
the quality score. This post-editing based proce-
dure is known to produce relatively consistent esti-
mates across annotators.

8 STS Benchmark

The STS Benchmark is a careful selection of the
English data sets used in SemEval and *SEM STS
shared tasks between 2012 and 2017. Tables 11
and 13 provide details on the composition of the
benchmark. The data is partitioned into training,

development and test sets.22 The development set
can be used to design new models and tune hy-
perparameters. The test set should be used spar-
ingly and only after a model design and hyperpa-
rameters have been locked against further changes.
Using the STS Benchmark enables comparable as-
sessments across different research efforts and im-
proved tracking of the state-of-the-art.

Table 14 shows the STS Benchmark results for
some of the best systems from Track 5 (EN-EN)23

and compares their performance to competitive
baselines from the literature. All baselines were
run by the organizers using canonical pre-trained
models made available by the originator of each
method,24 with the exception of PV-DBOW that

22Similar to the STS shared task, while the training set
is provided as a convenience, researchers are encourage to
incorporate other supervised and unsupervised data as long as
no supervised annotations of the test partitions are used.

23Each participant submitted the run which did best in the
development set of the STS Benchmark, which happened to
be the same as their best run in Track 5 in all cases.

24sent2vec: https://github.com/epfml/
sent2vec, trained model sent2vec twitter unigrams;
SIF: https://github.com/epfml/sent2vec
Wikipedia trained word frequencies enwiki vocab min200.txt,
https://github.com/alexandres/lexvec em-
beddings from lexvec.commoncrawl.300d.W+C.pos.vectors,
first 15 principle components removed, α = 0.001, dev
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STS 2017 Participants on STS Benchmark
Name Description Dev Test
ECNU Ensemble (Tian et al., 2017) 84.7 81.0
BIT WordNet+Embeddings (Wu et al., 2017) 82.9 80.9
DT TEAM Ensemble (Maharjan et al., 2017) 83.0 79.2
HCTI CNN (Shao, 2017) 83.4 78.4
SEF@UHH Doc2Vec (Duma and Menzel, 2017) 61.6 59.2

Sentence Level Baselines
sent2vec Sentence spanning CBOW with words & bigrams (Pagliardini et al., 2017) 78.7 75.5
SIF Word embedding weighting & principle component removal (Arora et al., 2017) 80.1 72.0
InferSent Sentence embedding from bi-directional LSTM trained on SNLI (Conneau et al., 2017) 80.1 75.8
C-PHRASE Prediction of syntactic constituent context words (Pham et al., 2015) 74.3 63.9
PV-DBOW Paragraph vectors, Doc2Vec DBOW (Le and Mikolov, 2014; Lau and Baldwin, 2016) 72.2 64.9

Averaged Word Embedding Baselines
LexVec Weighted matrix factorization of PPMI (Salle et al., 2016a,b) 68.9 55.8
FastText Skip-gram with sub-word character n-grams (Joulin et al., 2016) 65.3 53.6
Paragram Paraphrase Database (PPDB) fit word embeddings (Wieting et al., 2015) 63.0 50.1
GloVe Word co-occurrence count fit embeddings (Pennington et al., 2014) 52.4 40.6
Word2vec Skip-gram prediction of words in a context window (Mikolov et al., 2013a,b) 70.0 56.5

Table 14: STS Benchmark. Pearson’s r × 100 results for select participants and baseline models.

uses the model from Lau and Baldwin (2016)
and InferSent which was reported independently.
When multiple pre-trained models are available for
a method, we report results for the one with the
best dev set performance. For each method, input
sentences are preprocessed to closely match the
tokenization of the pre-trained models.25 Default

experiments varied α, principle components removed and
whether GloVe, LexVec, or Word2Vec word embeddings
were used; C-PHRASE: http://clic.cimec.unitn.
it/composes/cphrase-vectors.html; PV-
DBOW: https://github.com/jhlau/doc2vec,
A P - N E W S trained apnews dbow.tgz; LexVec: https:
//github.com/alexandres/lexvec, embedddings
lexvec.commoncrawl.300d.W.pos.vectors.gz; FastText:
https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md, Wikipedia trained embeddings from wiki.en.vec; Para-
gram: http://ttic.uchicago.edu/˜wieting/,
embeddings trained on PPDB and tuned to WS353 from
Paragram-WS353; GloVe: https://nlp.stanford.
edu/projects/glove/, Wikipedia and Gigaword
trained 300 dim. embeddings from glove.6B.zip;
Word2vec: https://code.google.com/archive/
p/word2vec/, Google News trained embeddings from
GoogleNews-vectors-negative300.bin.gz.

25sent2vec: results shown here tokenized by tweetTok-
enize.py constrasting dev experiments used wikiTokenize.py,
both distributed with sent2vec. LexVec: numbers were con-
verted into words, all punctuation was removed, and text
is lowercased; FastText: Since, to our knowledge, the tok-
enizer and preprocessing used for the pre-trained FastText
embeddings is not publicly described. We use the follow-
ing heuristics to preprocess and tokenize sentences for Fast-
Text: numbers are converted into words, text is lowercased,
and finally prefixed, suffixed and infixed punctuation is re-
cursively removed from each token that does not match an
entry in the model’s lexicon; Paragram: Joshua (Matt Post,
2015) pipeline to pre-process and tokenized English text; C-
PHRASE, GloVe, PV-DBOW & SIF: PTB tokenization pro-
vided by Stanford CoreNLP (Manning et al., 2014) with post-
processing based on dev OOVs; Word2vec: Similar to Fast-

inference hyperparameters are used unless noted
otherwise. The averaged word embedding base-
lines compute a sentence embedding by averaging
word embeddings and then using cosine to com-
pute pairwise sentence similarity scores.

While state-of-the-art baselines for obtaining
sentence embeddings perform reasonably well on
the benchmark data, improved performance is ob-
tained by top 2017 STS shared task systems. There
is still substantial room for further improvement.
To follow the current state-of-the-art, visit the
leaderboard on the STS wiki.26

9 Conclusion
We have presented the results of the 2017 STS
shared task. This year’s shared task differed sub-
stantially from previous iterations of STS in that
the primary emphasis of the task shifted from
English to multilingual and cross-lingual STS in-
volving four different languages: Arabic, Spanish,
English and Turkish. Even with this substantial
change relative to prior evaluations, the shared task
obtained strong participation. 31 teams produced
84 system submissions with 17 teams producing
a total of 44 system submissions that processed
pairs in all of the STS 2017 languages. For lan-
guages that were part of prior STS evaluations

Text, to our knownledge, the preprocessing for the pre-trained
Word2vec embeddings is not publicly described. We use the
following heuristics for the Word2vec experiment: All num-
bers longer than a single digit are converted into a ‘#’ (e.g.,
24→ ##) then prefixed, suffixed and infixed punctuation is
recursively removed from each token that does not match an
entry in the model’s lexicon.

26http://ixa2.si.ehu.es/stswiki/index.
php/STSbenchmark
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(e.g., English and Spanish), state-of-the-art sys-
tems are able to achieve strong correlations with
human judgment. However, we obtain weaker
correlations from participating systems for Ara-
bic, Arabic-English and Turkish-English. This
suggests further research is necessary in order to
develop robust models that can both be readily
applied to new languages and perform well even
when less supervised training data is available. To
provide a standard benchmark for English STS, we
present the STS Benchmark, a careful selection
of the English data sets from previous STS tasks
(2012-2017). To assist in interpreting the results
from new models, a number of competitive base-
lines and select participant systems are evaluated
on the benchmark data. Ongoing improvements
to the current state-of-the-art is available from an
online leaderboard.
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Abstract

This paper introduces a new task on Multi-
lingual and Cross-lingual Semantic Word
Similarity which measures the semantic
similarity of word pairs within and across
five languages: English, Farsi, German,
Italian and Spanish. High quality datasets
were manually curated for the five lan-
guages with high inter-annotator agree-
ments (consistently in the 0.9 ballpark).
These were used for semi-automatic con-
struction of ten cross-lingual datasets. 17
teams participated in the task, submitting
24 systems in subtask 1 and 14 systems in
subtask 2. Results show that systems that
combine statistical knowledge from text
corpora, in the form of word embeddings,
and external knowledge from lexical re-
sources are best performers in both sub-
tasks. More information can be found on
the task website: http://alt.qcri.
org/semeval2017/task2/ .

1 Introduction

Measuring the extent to which two words are se-
mantically similar is one of the most popular re-
search fields in lexical semantics, with a wide
range of Natural Language Processing (NLP) ap-
plications. Examples include Word Sense Disam-
biguation (Miller et al., 2012), Information Re-
trieval (Hliaoutakis et al., 2006), Machine Trans-
lation (Lavie and Denkowski, 2009), Lexical Sub-
stitution (McCarthy and Navigli, 2009), Question
Answering (Mohler et al., 2011), Text Summa-
rization (Mohammad and Hirst, 2012), and On-
tology Alignment (Pilehvar and Navigli, 2014).
Moreover, word similarity is generally accepted as
the most direct in-vitro evaluation framework for

Authors marked with * contributed equally.

word representation, a research field that has re-
cently received massive research attention mainly
as a result of the advancements in the use of neural
networks for learning dense low-dimensional se-
mantic representations, often referred to as word
embeddings (Mikolov et al., 2013; Pennington
et al., 2014). Almost any application in NLP that
deals with semantics can benefit from efficient se-
mantic representation of words (Turney and Pan-
tel, 2010).

However, research in semantic representation
has in the main focused on the English language
only. This is partly due to the limited availabil-
ity of word similarity benchmarks in languages
other than English. Given the central role of
similarity datasets in lexical semantics, and given
the importance of moving beyond the barriers of
the English language and developing language-
independent and multilingual techniques, we felt
that this was an appropriate time to conduct a task
that provides a reliable framework for evaluating
multilingual and cross-lingual semantic represen-
tation and similarity techniques. The task has
two related subtasks: multilingual semantic sim-
ilarity (Section 1.1), which focuses on representa-
tion learning for individual languages, and cross-
lingual semantic similarity (Section 1.2), which
provides a benchmark for multilingual research
that learns unified representations for multiple lan-
guages.

1.1 Subtask 1: Multilingual Semantic
Similarity

While the English community has been using
standard word similarity datasets as a common
evaluation benchmark, semantic representation for
other languages has generally proved difficult to
evaluate. A reliable multilingual word similar-
ity benchmark can be hugely beneficial in eval-
uating the robustness and reliability of semantic
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representation techniques across languages. De-
spite this, very few word similarity datasets ex-
ist for languages other than English: The origi-
nal English RG-65 (Rubenstein and Goodenough,
1965) and WordSim-353 (Finkelstein et al., 2002)
datasets have been translated into other languages,
either by experts (Gurevych, 2005; Joubarne and
Inkpen, 2011; Granada et al., 2014; Camacho-
Collados et al., 2015), or by means of crowdsourc-
ing (Leviant and Reichart, 2015), thereby creat-
ing equivalent datasets in languages other than En-
glish. However, the existing English word similar-
ity datasets suffer from various issues:

1. The similarity scale used for the annotation of
WordSim-353 and MEN (Bruni et al., 2014)
does not distinguish between similarity and
relatedness, and hence conflates these two.
As a result, the datasets contain pairs that
are judged to be highly similar even if they
are not of similar type or nature. For in-
stance, the WordSim-353 dataset contains the
pairs weather-forecast or clothes-closet with
assigned similarity scores of 8.34 and 8.00
(on the [0,10] scale), respectively. Clearly,
the words in the two pairs are (highly) re-
lated, but they are not similar.

2. The performance of state-of-the-art systems
have already surpassed the levels of human
inter-annotator agreement (IAA) for many
of the old datasets, e.g., for RG-65 and
WordSim-353. This makes these datasets
unreliable benchmarks for the evaluation of
newly-developed systems.

3. Conventional datasets such as RG-65, MC-
30 (Miller and Charles, 1991), and WS-Sim
(Agirre et al., 2009) (the similarity portion
of WordSim-353) are relatively small, con-
taining 65, 30, and 200 word pairs, respec-
tively. Hence, these benchmarks do not allow
reliable conclusions to be drawn, since per-
formance improvements have to be large to
be statistically significant (Batchkarov et al.,
2016).

4. The recent SimLex-999 dataset (Hill et al.,
2015) improves both the size and consistency
issues of the conventional datasets by provid-
ing word similarity scores for 999 word pairs
on a consistent scale that focuses on simi-
larity only (and not relatedness). However,

the dataset suffers from other issues. First,
given that SimLex-999 has been annotated
by turkers, and not by human experts, the
similarity scores assigned to individual word
pairs have a high variance, resulting in rela-
tively low IAA (Camacho-Collados and Nav-
igli, 2016). In fact, the reported IAA for this
dataset is 0.67 in terms of average pairwise
correlation, which is considerably lower than
conventional expert-based datasets whose
IAA are generally above 0.80 (Rubenstein
and Goodenough, 1965; Camacho-Collados
et al., 2015). Second, similarly to many of the
above-mentioned datasets, SimLex-999 does
not contain named entities (e.g., Microsoft),
or multiword expressions (e.g., black hole).
In fact, the dataset includes only words that
are defined in WordNet's vocabulary (Miller
et al., 1990), and therefore lacks the ability
to test the reliability of systems for WordNet
out-of-vocabulary words. Third, the dataset
contains a large number of antonymy pairs.
Indeed, several recent works have shown how
significant performance improvements can be
obtained on this dataset by simply tweaking
usual word embedding approaches to handle
antonymy (Schwartz et al., 2015; Pham et al.,
2015; Nguyen et al., 2016).

Since most existing multilingual word similar-
ity datasets are constructed on the basis of con-
ventional English datasets, any issues associated
with the latter tend simply to be transferred to
the former. This is the reason why we proposed
this task and constructed new challenging datasets
for five different languages (i.e., English, Farsi,
German, Italian, and Spanish) addressing all the
above-mentioned issues. Given that multiple large
and high-quality verb similarity datasets have been
created in recent years (Yang and Powers, 2006;
Baker et al., 2014; Gerz et al., 2016), we decided
to focus on nominal words.

1.2 Subtask 2: Cross-lingual Semantic
Similarity

Over the past few years multilingual embeddings
that represent lexical items from multiple lan-
guages in a unified semantic space have garnered
considerable research attention (Zou et al., 2013;
de Melo, 2015; Vulić and Moens, 2016; Ammar
et al., 2016; Upadhyay et al., 2016), while at
the same time cross-lingual applications have also
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been increasingly studied (Xiao and Guo, 2014;
Franco-Salvador et al., 2016). However, there
have been very few reliable datasets for evaluat-
ing cross-lingual systems. Similarly to the case of
multilingual datasets, these cross-lingual datasets
have been constructed on the basis of conven-
tional English word similarity datasets: MC-30
and WordSim-353 (Hassan and Mihalcea, 2009),
and RG-65 (Camacho-Collados et al., 2015). As
a result, they inherit the issues affecting their par-
ent datasets mentioned in the previous subsection:
while MC-30 and RG-65 are composed of only
30 and 65 pairs, WordSim-353 conflates similarity
and relatedness in different languages. Moreover,
the datasets of Hassan and Mihalcea (2009) were
not re-scored after having been translated to the
other languages, thus ignoring possible semantic
shifts across languages and producing unreliable
scores for many translated word pairs.

For this subtask we provided ten high qual-
ity cross-lingual datasets, constructed according to
the procedure of Camacho-Collados et al. (2015),
in a semi-automatic manner exploiting the mono-
lingual datasets of subtask 1. These datasets con-
stitute a reliable evaluation framework across five
languages.

2 Task Data

Subtask 1, i.e., multilingual semantic similarity,
has five datasets for the five languages of the task,
i.e., English, Farsi, German, Italian, and Span-
ish. These datasets were manually created with the
help of trained annotators (as opposed to Mechan-
ical Turk) that were native or fluent speakers of
the target language. Based on these five datasets,
10 cross-lingual datasets were automatically gen-
erated (described in Section 2.2) for subtask 2, i.e.,
cross-lingual semantic similarity.

In this section we focus on the creation of the
evaluation test sets. We additionally created a set
of small trial datasets by following a similar pro-
cess. These datasets were used by some partici-
pants during system development.

2.1 Monolingual datasets

As for monolingual datasets, we opted for a size of
500 word pairs in order to provide a large enough
set to allow reliable evaluation and comparison of
the systems. The following procedure was used
for the construction of multilingual datasets: (1)
we first collected 500 English word pairs from a

Animals Language and linguistics
Art, architecture and archaeology Law and crime

Biology Literature and theatre
Business, economics, and finance Mathematics

Chemistry and mineralogy Media
Computing Meteorology

Culture and society Music
Education Numismatics and currencies

Engineering and technology Philosophy and psychology
Farming Physics and astronomy

Food and drink Politics and government
Games and video games Religion, mysticism and mythology
Geography and places Royalty and nobility

Geology and geophysics Sport and recreation
Health and medicine Textile and clothing

Heraldry, honors, and vexillology Transport and travel
History Warfare and defense

Table 1: The set of thirty-four domains.

wide range of domains (Section 2.1.1), (2) through
translation of these pairs, we obtained word pairs
for the other four languages (Section 2.1.2) and,
(3) all word pairs of each dataset were manually
scored by multiple annotators (Section 2.1.3).

2.1.1 English dataset creation
Seed set selection. The dataset creation started
with the selection of 500 English words. One of
the main objectives of the task was to provide an
evaluation framework that contains named enti-
ties and multiword expressions and covers a wide
range of domains. To achieve this, we considered
the 34 different domains available in BabelDo-
mains1 (Camacho-Collados and Navigli, 2017),
which in the main correspond to the domains of
the Wikipedia featured articles page2. Table 1
shows the list of all the 34 domains used for the
creation of the datasets. From each domain, 12
words were sampled in such a way as to have at
least one multiword expression and two named en-
tities. In order to include words that may not be-
long to any of the pre-defined domains, we added
92 extra words whose domain was not decided
beforehand. We also tried to sample these seed
words in such a way as to have a balanced set
across occurrence frequency.3 Of the 500 English
seed words, 84 (17%) and 83 were, respectively,
named entities and multiwords.

Similarity scale. For the annotation of the
datasets, we adopted the five-point Likert scale of
the SemEval-2014 task on Cross-Level Semantic

1http://lcl.uniroma1.it/babeldomains/
2https://en.wikipedia.org/wiki/

Wikipedia:Featured_articles
3We used the Wikipedia corpus for word frequency calcu-

lation during the dataset construction.
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4 Very similar The two words are synonyms (e.g., midday-noon or motherboard-mainboard).

3 Similar The two words share many of the important ideas of their meaning but include slightly different details.
They refer to similar but not identical concepts (e.g., lion-zebra or firefighter-policeman).

2 Slightly similar The two words do not have a very similar meaning, but share a common topic/domain/function and ideas
or concepts that are related (e.g., house-window or airplane-pilot).

1 Dissimilar The two words describe clearly dissimilar concepts, but may share some small details, a far relationship
or a domain in common and might be likely to be found together in a longer document on the same topic
(e.g., software-keyboard or driver-suspension).

0 Totally dissimilar
and unrelated

The two words do not mean the same thing and are not on the same topic (e.g., pencil-frog or PlayStation-
monarchy).

Table 2: The five-point Likert scale used to rate the similarity of item pairs. See Table 4 for examples.

Similarity (Jurgens et al., 2014) which was de-
signed to systematically order a broad range of
semantic relations: synonymy, similarity, related-
ness, topical association, and unrelatedness. Table
2 describes the five points in the similarity scale
along with example word pairs.

Pairing word selection. Having the initial 500-
word seed set at hand, we selected a pair for each
word. The selection was carried out in such a
way as to ensure a uniform distribution of pairs
across the similarity scale. In order to do this, we
first assigned a random intended similarity to each
pair. The annotator then had to pick the second
word so as to match the intended score. In order
to allow the annotator to have a broader range of
candidate words, the intended score was consid-
ered as a similarity interval, one of [0-1], [1-2],
[2-3] and [3,4]. For instance, if the first word was
helicopter and the presumed similarity was [3-4],
the annotator had to pick a pairing word which
was “semantically similar” (see Table 2) to heli-
copter, e.g., plane. Of the 500 pairing words, 45
(9%) and 71 (14%) were named entities and mul-
tiwords, respectively. This resulted in an English
dataset comprising 500 word pairs, 105 (21%) and
112 (22%) of which have at least one named entity
and multiword, respectively.

2.1.2 Dataset translation

The remaining four multilingual datasets (i.e.,
Farsi, German, Italian, and Spanish) were con-
structed by translating words in the English dataset
to the target language. We had two goals in
mind while selecting translation as the construc-
tion strategy of these datasets (as opposed to inde-
pendent word samplings per language): (1) to have
comparable datasets across languages in terms
of domain coverage, multiword and named en-

tity distribution4 and (2) to enable an automatic
construction of cross-lingual datasets (see Section
2.2).

Each English word pair was translated by two
independent annotators. In the case of disagree-
ment, a third annotator was asked to pick the pre-
ferred translation. While translating, the annota-
tors were shown the word pair along with their
initial similarity score, which was provided to help
them in selecting the correct translation for the in-
tended meanings of the words.

2.1.3 Scoring
The annotators were instructed to follow the
guidelines, with special emphasis on distinguish-
ing between similarity and relatedness. Further-
more, although the similarity scale was originally
designed as a Likert scale, annotators were given
flexibility to assign values between the defined
points in the scale (with a step size of 0.25), in-
dicating a blend of two relations. As a result of
this procedure, we obtained 500 word pairs for
each of the five languages. The pairs in each lan-
guage were shuffled and their initial scores were
discarded. Three annotators were then asked to
assign a similarity score to each pair according to
our similarity scale (see Section 2.1.1).

Table 3 (first row) reports the average pairwise
Pearson correlation among the three annotators for
each of the five languages. Given the fact that our
word pairs spanned a wide range of domains, and
that there was a possibility for annotators to mis-
understand some words, we devised a procedure
to check the quality of the annotations and to im-
prove the reliability of the similarity scores. To
this end, for each dataset and for each annotator

4Apart from the German dataset in which the proportion
of multiwords significantly reduces (from 22% of English to
around 11%) due to the compounding nature of the German
language, other datasets maintain similar proportions of mul-
tiwords to those of the English dataset.
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English Farsi German Italian Spanish

Initial scores 0.836 0.839 0.864 0.798 0.829
Revised scores 0.893 0.906 0.916 0.900 0.890

Table 3: Average pairwise Pearson correlation among annotators for the five monolingual datasets.

MONOLINGUAL

DE Tuberkulose LED 0.25
ES zumo batido 3.00
EN Multiple Sclerosis MS 4.00
IT Nazioni Unite Ban Ki-moon 2.25
FA 2.08

CROSS-LINGUAL

DE-ES Sessel taburete 3.08
DE-FA Lawine 2.25
DE-IT Taifun ciclone 3.46
EN-DE pancreatic cancer Chemotherapie 1.75
EN-ES Jupiter Mercurio 3.25
EN-FA film 0.25
EN-IT island penisola 3.08
ES-FA duna 2.25
ES-IT estrella pianeta 2.83
IT-FA avvocato 0.08

Table 4: Example pairs and their ratings (EN: En-
glish, DE: German, ES: Spanish, IT: Italian, FA:
Farsi).

we picked the subset of pairs for which the dif-
ference between the assigned similarity score and
the average of the other two annotations was more
than 1.0, according to our similarity scale. The
annotator was then asked to revise this subset per-
forming a more careful investigation of the possi-
ble meanings of the word pairs contained therein,
and change the score if necessary. This procedure
resulted in considerable improvements in the con-
sistency of the scores. The second row in Table
3 (“Revised scores”) shows the average pairwise
Pearson correlation among the three revised sets
of scores for each of the five languages. The inter-
annotator agreement for all the datasets is consis-
tently in the 0.9 ballpark, which demonstrates the
high quality of our multilingual datasets thanks to
careful annotation of word pairs by experts.

2.2 Cross-lingual datasets

The cross-lingual datasets were automatically cre-
ated on the basis of the translations obtained with
the method described in Section 2.1.2 and using
the approach of Camacho-Collados et al. (2015).5

By intersecting two aligned translated pairs across

5http://lcl.uniroma1.it/
similarity-datasets/

EN DE ES IT FA
EN 500 914 978 970 952
DE - 500 956 912 888
ES - - 500 967 967
IT - - - 500 916
FA - - - - 500

Table 5: Number of word pairs in each dataset.
The cells in the main diagonal of the table (e.g.,
EN-EN) correspond the monolingual datasets of
subtask 1.

two languages (e.g., mind-brain in English and
mente-cerebro in Spanish), the approach creates
two cross-lingual pairs between the two languages
(mind-cerebro and brain-mente in the example).
The similarity scores for the constructed cross-
lingual pairs are computed as the average of
the corresponding language-specific scores in the
monolingual datasets. In order to avoid seman-
tic shifts between languages interfering in the pro-
cess, these pairs are only created if the differ-
ence between the corresponding language-specific
scores is lower than 1.0. The full details of the al-
gorithm can be found in Camacho-Collados et al.
(2015). The approach has been validated by hu-
man judges and shown to achieve agreements of
around 0.90 with human judges, which is similar
to inter-annotator agreements reported in Section
2.1.3. See Table 4 for some sample pairs in all
monolingual and cross-lingual datasets. Table 5
shows the final number of pairs for each language
pair.

3 Evaluation

We carried out the evaluation on the datasets de-
scribed in the previous section. The experimental
setting is described in Section 3.1 and the results
are presented in Section 3.2.

3.1 Experimental setting

3.1.1 Evaluation measures and official scores
Participating systems were evaluated according to
standard Pearson and Spearman correlation mea-
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sures on all word similarity datasets, with the fi-
nal official score being calculated as the harmonic
mean of Pearson and Spearman correlations (Jur-
gens et al., 2014). Systems were allowed to partic-
ipate in either multilingual word similarity, cross-
lingual word similarity, or both. Each participat-
ing system was allowed to submit a maximum of
two runs.

For the multilingual word similarity subtask,
some systems were multilingual (applicable to dif-
ferent languages), whereas others were monolin-
gual (only applicable to a single language). While
monolingual approaches were evaluated in their
respective languages, multilingual and language-
independent approaches were additionally given a
global ranking provided that they tested their sys-
tems on at least four languages. The final score of
a system was calculated as the average harmonic
mean of Pearson and Spearman correlations of the
four languages on which it performed best.

Likewise, the participating systems of the cross-
lingual semantic similarity subtask were allowed
to provide a score for a single cross-lingual
dataset, but must have provided results for at least
six cross-lingual word similarity datasets in order
to be considered for the final ranking. For each
system, the global score was computed as the aver-
age harmonic mean of Pearson and Spearman cor-
relation on the six cross-lingual datasets on which
it provided the best performance.

3.1.2 Shared training corpus
We encouraged the participants to use a shared text
corpus for the training of their systems. The use
of the shared corpus was intended to mitigate the
influence that the underlying training corpus might
have upon the quality of obtained representations,
laying a common ground for a fair comparison of
the systems.

• Subtask 1. The common corpus for subtask
1 was the Wikipedia corpus of the target lan-
guage. Specifically, systems made use of the
Wikipedia dumps released by Al-Rfou et al.
(2013).6

• Subtask 2. The common corpus for subtask
2 was the Europarl parallel corpus7. This
corpus is available for all languages except

6https://sites.google.com/site/rmyeid/
projects/polyglot

7http://opus.lingfil.uu.se/Europarl.
php

Farsi. For pairs involving Farsi, participants
were allowed to use the OpenSubtitles2016
parallel corpora8. Additionally, we proposed
a second type of multilingual corpus to al-
low the use of different techniques exploiting
comparable corpora. To this end, some par-
ticipants made use of Wikipedia.

3.1.3 Participating systems
This task was targeted at evaluating multilingual
and cross-lingual word similarity measurement
techniques. However, it was not only limited to
this area of research, as other fields such as se-
mantic representation consider word similarity as
one of their most direct benchmarks for evalua-
tion. All kinds of semantic representation tech-
niques and semantic similarity systems were en-
couraged to participate.

In the end we received a wide variety of par-
ticipants: proposing distributional semantic mod-
els learnt directly from raw corpora, using syn-
tactic features, exploiting knowledge from lexi-
cal resources, and hybrid approaches combining
corpus-based and knowledge-based clues. Due to
lack of space we cannot describe all the systems in
detail, but we recommend the reader to refer to the
system description papers for more information
about the individual systems: HCCL (He et al.,
2017), Citius (Gamallo, 2017), jmp8 (Melka and
Bernard, 2017), l2f (Fialho et al., 2017), QLUT
(Meng et al., 2017), RUFINO (Jimenez et al.,
2017), MERALI (Mensa et al., 2017), Luminoso
(Speer and Lowry-Duda, 2017), hhu (Qasem-
iZadeh and Kallmeyer, 2017), Mahtab (Ranjbar
et al., 2017), SEW (Delli Bovi and Raganato,
2017) and Wild Devs (Rotari et al., 2017), and
OoO.

3.1.4 Baseline
As the baseline system we included the results of
the concept and entity embeddings of NASARI
(Camacho-Collados et al., 2016). These em-
beddings were obtained by exploiting knowledge
from Wikipedia and WordNet coupled with gen-
eral domain corpus-based Word2Vec embeddings
(Mikolov et al., 2013). We performed the eval-
uation with the 300-dimensional English embed-
ded vectors (version 3.0)9 and used them for
all languages. For the comparison within and

8http://opus.lingfil.uu.se/
OpenSubtitles2016.php

9http://lcl.uniroma1.it/nasari/
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System English Farsi German Italian Spanish

r ρ Final r ρ Final r ρ Final r ρ Final r ρ Final

Luminoso run2 0.78 0.80 0.79 0.51 0.50 0.50 0.70 0.70 0.70 0.73 0.75 0.74 0.73 0.75 0.74
Luminoso run1 0.78 0.79 0.79 0.51 0.50 0.50 0.69 0.69 0.69 0.73 0.75 0.74 0.73 0.75 0.74
QLUT run1∗ 0.78 0.78 0.78 - - - - - - - - - - - -
hhu run1∗ 0.71 0.70 0.70 0.54 0.59 0.56 - - - - - - - - -
HCCL run1∗ 0.68 0.70 0.69 0.42 0.45 0.44 0.58 0.61 0.59 0.63 0.67 0.65 0.69 0.72 0.70
NASARI (baseline) 0.68 0.68 0.68 0.41 0.40 0.41 0.51 0.51 0.51 0.60 0.59 0.60 0.60 0.60 0.60
hhu run2∗ 0.66 0.70 0.68 0.61 0.60 0.60 - - - - - - - - -
QLUT run2∗ 0.67 0.67 0.67 - - - - - - - - - - -
RUFINO run1∗ 0.65 0.66 0.66 0.38 0.34 0.36 0.54 0.54 0.54 0.48 0.47 0.48 0.53 0.57 0.55
Citius run2 0.60 0.71 0.65 - - - - - - - - - 0.44 0.64 0.52
l2f run2 (a.d.) 0.64 0.65 0.65 - - - - - - - - - - - -
l2f run1 (a.d.) 0.64 0.65 0.64 - - - - - - - - - - - -
Citius run1∗ 0.57 0.65 0.61 - - - - - - - - - 0.44 0.63 0.51
MERALI run1∗ 0.59 0.60 0.59 - - - - - - - - - - - -
Amateur run1∗ 0.58 0.59 0.59 - - - - - - - - - - - -
Amateur run2∗ 0.58 0.59 0.59 - - - - - - - - - - - -
MERALI run2∗ 0.57 0.58 0.58 - - - - - - - - - - - -
SEW run2 (a.d.) 0.56 0.58 0.57 0.38 0.40 0.39 0.45 0.45 0.45 0.57 0.57 0.57 0.61 0.62 0.62
jmp8 run1∗ 0.47 0.69 0.56 - - - 0.26 0.51 0.35 0.41 0.64 0.50 - - -
Wild Devs run1 0.46 0.48 0.47 - - - - - - - - - - - -
RUFINO run2∗ 0.39 0.40 0.39 0.25 0.26 0.26 0.38 0.36 0.37 0.30 0.31 0.31 0.40 0.41 0.41
SEW run1 0.37 0.41 0.39 0.38 0.40 0.39 0.45 0.45 0.45 0.57 0.57 0.57 0.61 0.62 0.62
hjpwhuer run1 -0.04 -0.03 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.05 0.05 0.05 -0.06 -0.06 0.00
Mahtab run2∗ - - - 0.72 0.71 0.71 - - - - - - - - -
Mahtab run1∗ - - - 0.72 0.71 0.71 - - - - - - - - -

Table 6: Pearson (r), Spearman (ρ) and official (Final) results of participating systems on the five
monolingual word similarity datasets (subtask 1).

across languages NASARI relies on the lexicaliza-
tions provided by BabelNet (Navigli and Ponzetto,
2012) for the concepts and entities in each lan-
guage. Then, the final score was computed
through the conventional closest senses strategy
(Resnik, 1995; Budanitsky and Hirst, 2006), using
cosine similarity as the comparison measure.

3.2 Results

We present the results of subtask 1 in Section 3.2.1
and subtask 2 in Section 3.2.2.

3.2.1 Subtask 1
Table 6 lists the results on all monolingual
datasets.10 The systems which made use of
the shared Wikipedia corpus are marked with
* in Table 6. Luminoso achieved the best re-
sults in all languages except Farsi. Luminoso
couples word embeddings with knowledge from
ConceptNet (Speer et al., 2017) using an exten-
sion of Retrofitting (Faruqui et al., 2015), which
proved highly effective. This system addition-
ally proposed two fallback strategies to handle

10Systems followed by (a.d.) submitted their results after
the official deadline.

System Score Official Rank

Luminoso run2 0.743 1
Luminoso run1 0.740 2
HCCL run1∗ 0.658 3
NASARI (baseline) 0.598 -
RUFINO run1∗ 0.555 4
SEW run2 (a.d.) 0.552 -
SEW run1 0.506 5
RUFINO run2∗ 0.369 6
hjpwhuer run1 0.018 7

Table 7: Global results of participating systems
on subtask 1 (multilingual word similarity).

out-of-vocabulary (OOV) instances based on loan-
words and cognates. These two fallback strategies
proved essential given the amount of rare words
or domain-specific words which were present in
the datasets. In fact, most systems fail to provide
scores for all pairs in the datasets, with OOV rates
close to 10% in some cases.

The combination of corpus-based and
knowledge-based features was not unique to
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System German-Spanish German-Farsi German-Italian English-German English-Spanish

r ρ Final r ρ Final r ρ Final r ρ Final r ρ Final

Luminoso run2 0.72 0.74 0.73 0.59 0.59 0.59 0.74 0.75 0.74 0.76 0.77 0.76 0.75 0.77 0.76
Luminoso run1 0.72 0.73 0.72 0.59 0.59 0.59 0.73 0.74 0.73 0.75 0.77 0.76 0.75 0.77 0.76
NASARI (baseline) 0.55 0.55 0.55 0.46 0.45 0.46 0.56 0.56 0.56 0.60 0.59 0.60 0.64 0.63 0.63
OoO run1 0.54 0.56 0.55 - - - 0.54 0.55 0.55 0.56 0.58 0.57 0.58 0.59 0.58
SEW run2 (a.d.) 0.52 0.54 0.53 0.42 0.44 0.43 0.52 0.52 0.52 0.50 0.53 0.51 0.59 0.60 0.59
SEW run1 0.52 0.54 0.53 0.42 0.44 0.43 0.52 0.52 0.52 0.46 0.47 0.46 0.50 0.51 0.50
HCCL run2∗ (a.d.) 0.42 0.39 0.41 0.33 0.28 0.30 0.38 0.34 0.36 0.49 0.48 0.48 0.55 0.56 0.55
RUFINO run1† 0.31 0.32 0.32 0.23 0.25 0.24 0.32 0.33 0.33 0.33 0.34 0.33 0.34 0.34 0.34
RUFINO run2† 0.30 0.30 0.30 0.26 0.27 0.27 0.22 0.24 0.23 0.30 0.30 0.30 0.34 0.33 0.34
hjpwhu run2 0.05 0.05 0.05 0.01 0.01 0.01 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04
hjpwhu run1 0.05 0.05 0.05 0.01 0.01 0.01 0.06 0.05 0.05 -0.01 -0.01 0.00 0.04 0.04 0.04
HCCL run1∗ 0.03 0.02 0.02 0.03 0.02 0.02 0.03 -0.01 0.00 0.34 0.28 0.31 0.10 0.08 0.09
UniBuc-Sem run1∗ − − − - - - - - - 0.05 0.06 0.06 0.08 0.10 0.09
Citius run1† − − − - - - - - - - - - 0.57 0.59 0.58
Citius run2† − − − - - - - - - - - - 0.56 0.58 0.57

System English-Farsi English-Italian Spanish-Farsi Spanish-Italian Italian-Farsi

r ρ Final r ρ Final r ρ Final r ρ Final r ρ Final

Luminoso run2 0.60 0.59 0.60 0.77 0.79 0.78 0.62 0.63 0.63 0.74 0.77 0.75 0.60 0.61 0.60
Luminoso run1 0.60 0.59 0.60 0.76 0.78 0.77 0.62 0.63 0.63 0.74 0.76 0.75 0.60 0.60 0.60
hhu run1 0.49 0.54 0.51 - - - - - - - - - - - -
NASARI (baseline) 0.52 0.49 0.51 0.65 0.65 0.65 0.49 0.47 0.48 0.60 0.59 0.60 0.50 0.48 0.49
hhu run2 0.43 0.58 0.49 - - - - - - - - - - - -
SEW run2 (a.d.) 0.46 0.49 0.48 0.58 0.60 0.59 0.50 0.53 0.52 0.59 0.60 0.60 0.48 0.50 0.49
HCCL run2∗ (a.d.) 0.44 0.42 0.43 0.50 0.49 0.49 0.37 0.33 0.35 0.43 0.41 0.42 0.33 0.28 0.30
SEW run1 0.41 0.43 0.42 0.52 0.53 0.53 0.50 0.53 0.52 0.59 0.60 0.60 0.48 0.50 0.49
RUFINO run2† 0.37 0.37 0.37 0.24 0.23 0.24 0.30 0.30 0.30 0.28 0.29 0.29 0.21 0.21 0.21
RUFINO run1† 0.26 0.25 0.25 0.34 0.34 0.34 0.25 0.26 0.26 0.35 0.36 0.36 0.25 0.25 0.25
HCCL run1∗ 0.02 0.01 0.01 0.12 0.07 0.09 0.05 0.05 0.05 0.08 0.06 0.06 0.02 0.00 0.00
hjpwhu run1 0.00 -0.01 0.00 -0.05 -0.05 0.00 0.01 0.00 0.01 0.03 0.03 0.03 0.02 0.02 0.02
hjpwhu run2 0.00 -0.01 0.00 -0.05 -0.05 0.00 0.01 0.00 0.01 0.03 0.03 0.03 0.02 0.02 0.02
OoO run1 - - - 0.58 0.59 0.58 - - - 0.57 0.57 0.57 - - -
UniBuc-Sem run1∗ - - - 0.08 0.10 0.09 - - - - - - - - -

Table 8: Pearson (r), Spearman (ρ) and the official (Final) results of participating systems on the ten
cross-lingual word similarity datasets (subtask 2).

Luminoso. In fact, most top performing systems
combined these two sources of information. For
Farsi, the best performing system was Mahtab,
which couples information from Word2Vec word
embeddings (Mikolov et al., 2013) and knowledge
resources, in this case FarsNet (Shamsfard et al.,
2010) and BabelNet. For English, the only system
that came close to Luminoso was QLUT, which
was the best-performing system that made use
of the shared Wikipedia corpus for training.
The best configuration of this system exploits
the Skip-Gram model of Word2Vec with an
additive compositional function for computing
the similarity of multiwords. However, Mahtab
and QLUT only performed their experiments in a
single language (Farsi and English, respectively).

For the systems that performed experiments in
at least four of the five languages we computed
a global score (see Section 3.1.1). Global rank-

ings and results are displayed in Table 7. Lumi-
noso clearly achieves the best overall results. The
second-best performing system was HCCL, which
also managed to outperform the baseline. HCCL
exploited the Skip-Gram model of Word2Vec
and performed hyperparameter tuning on existing
word similarity datasets. This system did not make
use of external resources apart from the shared
Wikipedia corpus for training. RUFINO, which
also made use of the Wikipedia corpus only, at-
tained the third overall position. The system ex-
ploits PMI and an association measure to capture
second-order relations between words based on
the Jaccard distance (Jimenez et al., 2016).

3.2.2 Subtask 2
The results for all ten cross-lingual datasets are
shown in Table 8. Systems that made use of
the shared Europarl parallel corpus are marked
with * in the table, while systems making use of
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System Score Official Rank

Luminoso run2 0.754 1
Luminoso run1 0.750 2
NASARI (baseline) 0.598 -
OoO run1∗ 0.567 3
SEW run2 (a.d.) 0.558 -
SEW run1 0.532 4
HCCL run2∗ (a.d.) 0.464 -
RUFINO run1† 0.336 5
RUFINO run2† 0.317 6
HCCL run1∗ 0.103 7
hjpwhu run2 0.039 8
hjpwhu run1 0.034 9

Table 9: Global results of participating systems in
subtask 2 (cross-lingual word similarity).

Wikipedia are marked with †. Luminoso, the best-
performing system in Subtask 1, also achieved
the best overall results on the ten cross-lingual
datasets. This shows that the combination of
knowledge from word embeddings and the Con-
ceptNet graph is equally effective in the cross-
lingual setting.

The global ranking for this subtask was com-
puted by averaging the results of the six datasets
on which each system performed best. The global
rankings are displayed in Table 9. Luminoso
was the only system outperforming the baseline,
achieving the best overall results. OoO achieved
the second best overall performance using an
extension of the Bilingual Bag-of-Words with-
out Alignments (BilBOWA) approach of Gouws
et al. (2015) on the shared Europarl corpus. The
third overall system was SEW, which leveraged
Wikipedia-based concept vectors (Raganato et al.,
2016) and pre-trained word embeddings for learn-
ing language-independent concept embeddings.

4 Conclusion

In this paper we have presented the SemEval 2017
task on Multilingual and Cross-lingual Semantic
Word Similarity. We provided a reliable frame-
work to measure the similarity between nomi-
nal instances within and across five different lan-
guages (English, Farsi, German, Italian, and Span-
ish). We hope this framework will contribute
to the development of distributional semantics in
general and for languages other than English in
particular, with a special emphasis on multilin-

gual and cross-lingual approaches. All evaluation
datasets are available for download at http://
alt.qcri.org/semeval2017/task2/.

The best overall system in both tasks was Lu-
minoso, which is a hybrid system that effectively
integrates word embeddings and information from
knowledge resources. In general, this combina-
tion proved effective in this task, as most other top
systems somehow combined knowledge from text
corpora and lexical resources.
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Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of NAACL. pages 19–27.

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word representations
for multilingual nlp. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning. Sofia, Bulgaria, pages 183–192.

Waleed Ammar, George Mulcaire, Yulia Tsvetkov,
Guillaume Lample, Chris Dyer, and Noah A Smith.
2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925 .

Simon Baker, Roi Reichart, and Anna Korhonen. 2014.
An unsupervised model for instance level subcate-
gorization acquisition. In Proceedings of EMNLP.
pages 278–289.

Miroslav Batchkarov, Thomas Kober, Jeremy Reffin,
Julie Weeds, and David Weir. 2016. A critique of
word similarity as a method for evaluating distribu-
tional semantic models. In Proceedings of the ACL
Workshop on Evaluating Vector Space Representa-
tions for NLP. Berlin, Germany, pages 7–12.

23



Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR) 49(1-47).

Alexander Budanitsky and Graeme Hirst. 2006. Evalu-
ating WordNet-based measures of Lexical Semantic
Relatedness. Computational Linguistics 32(1):13–
47.
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Abstract

We describe SemEval2017 Task 3 on Com-
munity Question Answering. This year,
we reran the four subtasks from SemEval-
2016: (A) Question–Comment Similarity, (B)
Question–Question Similarity, (C) Question–
External Comment Similarity, and (D) Rerank
the correct answers for a new question in Arabic,
providing all the data from 2015 and 2016 for
training, and fresh data for testing. Additionally,
we added a new subtask E in order to enable ex-
perimentation with Multi-domain Question Du-
plicate Detection in a larger-scale scenario, using
StackExchange subforums. A total of 23 teams
participated in the task, and submitted a total of
85 runs (36 primary and 49 contrastive) for sub-
tasks A–D. Unfortunately, no teams participated
in subtask E. A variety of approaches and fea-
tures were used by the participating systems to
address the different subtasks. The best systems
achieved an official score (MAP) of 88.43, 47.22,
15.46, and 61.16 in subtasks A, B, C, and D, re-
spectively. These scores are better than the base-
lines, especially for subtasks A–C.

1 Introduction

Community Question Answering (CQA) on web
forums such as Stack Overflow1 and Qatar Liv-
ing,2 is gaining popularity, thanks to the flexibility
of forums to provide information to a user (Mos-
chitti et al., 2016). Forums are moderated only in-
directly via the community, rather open, and sub-
ject to few restrictions, if any, on who can post and
answer a question, or what questions can be asked.
On the positive side, a user can freely ask any
question and can expect a variety of answers. On
the negative side, it takes efforts to go through the
provided answers of varying quality and to make
sense of them. It is not unusual for a popular ques-
tion to have hundreds of answers, and it is very
time-consuming for a user to inspect them all.

1http://stackoverflow.com/
2http://www.qatarliving.com/forum

Hence, users can benefit from automated tools to
help them navigate these forums, including sup-
port for finding similar existing questions to a
new question, and for identifying good answers,
e.g., by retrieving similar questions that already
provide an answer to the new question.

Given the important role that natural language
processing (NLP) plays for CQA, we have orga-
nized a challenge series to promote related re-
search for the past three years. We have provided
datasets, annotated data and we have developed
robust evaluation procedures in order to establish
a common ground for comparing and evaluating
different approaches to CQA.

In greater detail, in SemEval-2015 Task 3 “An-
swer Selection in Community Question Answer-
ing” (Nakov et al., 2015),3 we mainly targeted
conventional Question Answering (QA) tasks,
i.e., answer selection. In contrast, in SemEval-
2016 Task 3 (Nakov et al., 2016b), we targeted
a fuller spectrum of CQA-specific tasks, moving
closer to the real application needs,4 particularly in
Subtask C, which was defined as follows: “given
(i) a new question and (ii) a large collection of
question-comment threads created by a user com-
munity, rank the comments that are most useful
for answering the new question”. A test question
is new with respect to the forum, but can be re-
lated to one or more questions that have been pre-
viously asked in the forum. The best answers can
come from different question–comment threads.
The threads are independent of each other, the lists
of comments are chronologically sorted, and there
is meta information, e.g., date of posting, who is
the user who asked/answered the question, cate-
gory the question was asked in, etc.

3http://alt.qcri.org/semeval2015/task3
4A system based on SemEval-2016 Task 3 was integrated

in Qatar Living’s betasearch (Hoque et al., 2016):
http://www.qatarliving.com/betasearch
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The comments in a thread are intended to answer
the question initiating that thread, but since this is
a resource created by a community of casual users,
there is a lot of noise and irrelevant material, in ad-
dition to the complications of informal language
use, typos, and grammatical mistakes. Questions
in the collection can also be related in different
ways, although there is in general no explicit rep-
resentation of this structure.

In addition to Subtask C, we designed subtasks
A and B to give participants the tools to create a
CQA system to solve subtask C. Specifically, Sub-
task A (Question-Comment Similarity) is defined
as follows: “given a question from a question–
comment thread, rank the comments according
to their relevance (similarity) with respect to the
question.” Subtask B (Question-Question Similar-
ity) is defined as follows: “given a new question,
rerank all similar questions retrieved by a search
engine, assuming that the answers to the similar
questions should also answer the new question.”

The relationship between subtasks A, B, and C
is illustrated in Figure 1. In the figure, q stands for
the new question, q′ is an existing related question,
and c is a comment within the thread of question
q′. The edge qc relates to the main CQA task (sub-
task C), i.e., deciding whether a comment for a po-
tentially related question is a good answer to the
original question. This relation captures the rele-
vance of c for q. The edge qq′ represents the sim-
ilarity between the original and the related ques-
tions (subtask B). This relation captures the relat-
edness of q and q′. Finally, the edge q′c represents
the decision of whether c is a good answer for the
question from its thread, q′ (subtask A). This re-
lation captures the appropriateness of c for q′. In
this particular example, q and q′ are indeed related,
and c is a good answer for both q′ and q.

The participants were free to approach Subtask
C with or without solving Subtasks A and B, and
participation in the main subtask and/or the two
subtasks was optional.

We had three objectives for the first two edi-
tions of our task: (i) to focus on semantic-based
solutions beyond simple “bag-of-words” represen-
tations and “word matching” techniques; (ii) to
study new NLP challenges arising in the CQA
scenario, e.g., relations between the comments in
a thread, relations between different threads, and
question-to-question similarity; and (iii) to facili-
tate the participation of non-IR/QA experts.

Can I drive with an Australian driver’s license in Qatar? q: 

q’: How long can i drive in Qatar with my 
international driver's permit before I'm forced 
to change my Australian license to a Qatari 
one? When I do change over to a Qatar license 
do I actually lose my Australian license? I'd 
prefer to keep it if possible... 

c: 
depends on the insurer, Qatar Insurance Company said this in email 
to me:“Thank you for your email! With regards to your query 
below, a foreigner is valid to drive in Doha with the following 
conditions: Foreign driver with his country valid driving license 
allowed driving only for one week from entry date Foreign driver 
with international valid driving license allowed driving for 6 
months from entry date Foreign driver with GCC driving license 
allowed driving for 3 months from entry”. As an Aussie your driving 
licence should be transferable to a Qatar one with only the eyetest 
(temporary, then permanent once RP sorted). 

Figure 1: The similarity triangle for CQA, show-
ing the three pairwise interactions between the
original question q, the related question q′, and a
comment c in the related question’s thread.

The third objective was achieved by providing the
set of potential answers and asking the participants
to (re)rank the answers, and also by defining two
optional subtasks (A and B), in addition to the
main subtask (i.e., C).

Last year, we were successful in attracting a
large number of participants to all subtasks. How-
ever, as the task design was new (we added sub-
tasks B and C in the 2016 edition of the task), we
felt that participants would benefit from a rerun,
with new test sets for subtasks A–C.

We preserved the multilinguality aspect (as in
2015 and 2016), providing data for two languages:
English and Arabic. In particular, we had an Ara-
bic subtask D, which used data collected from
three medical forums. This year, we used a
slightly different procedure for the preparation of
test set compared to the way the training, devel-
opment, and test data for subtask D was collected
last year.

Additionally, we included a new subtask,
subtask E, which enables experimentation on
Question–Question Similarity on a large-scale
CQA dataset, i.e., StackExchange, based on the
CQADupStack data set (Hoogeveen et al., 2015).
Subtask E is a duplicate question detection task,
and like Subtask B, it is focused on question–
question similarity. Participants were asked to
rerank 50 candidate questions according to their
relevance with respect to each query question. The
subtask included several elements that differenti-
ate it from Subtask B (see Section 3.2).
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We provided manually annotated training data for
both languages and for all subtasks. All exam-
ples were manually labeled by a community of
annotators using a crowdsourcing platform. The
datasets and the annotation procedure for the old
data for subtasks A, B and C are described in
(Nakov et al., 2016b). In order to produce the new
data for Subtask D, we used a slightly different
procedure compared to 2016, which we describe
in Section 3.1.1.

The remainder of this paper is organized as fol-
lows: Section 2 introduces related work. Section 3
gives a more detailed definition of the subtasks;
it also describes the datasets and the process of
their creation, and it explains the evaluation mea-
sures we used. Section 4 presents the results for
all subtasks and for all participating systems. Sec-
tion 5 summarizes the main approaches used by
these systems and provides further discussion. Fi-
nally, Section 6 presents the main conclusions.

2 Related Work

The first step to automatically answer questions on
CQA sites is to retrieve a set of questions similar
to the question that the user has asked. This set of
similar questions is then used to extract possible
answers for the original input question. Despite
its importance, question similarity for CQA is a
hard task due to problems such as the “lexical gap”
between the two questions.

Question-question similarity has been featured
as a subtask (subtask B) of SemEval-2016 Task 3
on Community Question Answering (Nakov et al.,
2016b); there was also a similar subtask as part of
SemEval-2016 Task 1 on Semantic Textual Sim-
ilarity (Agirre et al., 2016). Question-question
similarity is an important problem with applica-
tion to question recommendation, question du-
plicate detection, community question answering,
and question answering in general. Typically,
it has been addressed using a variety of textual
similarity measures. Some work has paid atten-
tion to modeling the question topic, which can be
done explicitly, e.g., using question topic and fo-
cus (Duan et al., 2008) or using a graph of topic
terms (Cao et al., 2008), or implicitly, e.g., using
a language model with a smoothing method based
on the category structure of Yahoo! Answers (Cao
et al., 2009) or using LDA topic language model
that matches the questions not only at the term
level but also at the topic level (Zhang et al., 2014).

Another important aspect is syntactic structure,
e.g., Wang et al. (2009) proposed a retrieval model
for finding similar questions based on the similar-
ity of syntactic trees, and Da San Martino et al.
(2016) used syntactic kernels. Yet another emerg-
ing approach is to use neural networks, e.g., dos
Santos et al. (2015) used convolutional neural net-
works (CNNs), Romeo et al. (2016) used long
short-term memory (LSTMs) networks with neu-
ral attention to select the important part of text
when comparing two questions, and Lei et al.
(2016) used a combined recurrent–convolutional
model to map questions to continuous semantic
representations. Finally, translation (Jeon et al.,
2005; Zhou et al., 2011) and cross-language mod-
els (Da San Martino et al., 2017) have also been
popular for question-question similarity.

Question-answer similarity has been a subtask
(subtask A) of our task in its two previous edi-
tions (Nakov et al., 2015, 2016b). This is a well-
researched problem in the context of general ques-
tion answering. One research direction has been
to try to match the syntactic structure of the ques-
tion to that of the candidate answer. For exam-
ple, Wang et al. (2007) proposed a probabilis-
tic quasi-synchronous grammar to learn syntac-
tic transformations from the question to the can-
didate answers. Heilman and Smith (2010) used
an algorithm based on Tree Edit Distance (TED)
to learn tree transformations in pairs. Wang and
Manning (2010) developed a probabilistic model
to learn tree-edit operations on dependency parse
trees. Yao et al. (2013) applied linear chain condi-
tional random fields (CRFs) with features derived
from TED to learn associations between questions
and candidate answers. Moreover, syntactic struc-
ture was central for some of the top systems that
participated in SemEval-2016 Task 3 (Filice et al.,
2016; Barrón-Cedeño et al., 2016).

Another important research direction has been
on using neural network models for question-
answer similarity (Feng et al., 2015; Severyn and
Moschitti, 2015; Wang and Nyberg, 2015; Tan
et al., 2015; Barrón-Cedeño et al., 2016; Filice
et al., 2016; Mohtarami et al., 2016). For instance,
Tan et al. (2015) used neural attention over a bidi-
rectional long short-term memory (LSTM) neural
network in order to generate better answer repre-
sentations given the questions. Another example is
the work of Tymoshenko et al. (2016), who com-
bined neural networks with syntactic kernels.
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Yet another research direction has been on us-
ing machine translation models as features for
question-answer similarity (Berger et al., 2000;
Echihabi and Marcu, 2003; Jeon et al., 2005; Sori-
cut and Brill, 2006; Riezler et al., 2007; Li and
Manandhar, 2011; Surdeanu et al., 2011; Tran
et al., 2015; Hoogeveen et al., 2016a; Wu and
Zhang, 2016), e.g., a variation of IBM model 1
(Brown et al., 1993), to compute the probability
that the question is a “translation” of the candidate
answer. Similarly, (Guzmán et al., 2016a,b) ported
an entire machine translation evaluation frame-
work (Guzmán et al., 2015) to the CQA problem.

Using information about the answer thread is
another important direction, which has been ex-
plored mainly to address Subtask A. In the 2015
edition of the task, the top participating systems
used thread-level features, in addition to local fea-
tures that only look at the question–answer pair.
For example, the second-best team, HITSZ-ICRC,
used as a feature the position of the comment in
the thread, such as whether the answer is first or
last (Hou et al., 2015). Similarly, the third-best
team, QCRI, used features to model a comment in
the context of the entire comment thread, focusing
on user interaction (Nicosia et al., 2015). Finally,
the fifth-best team, ICRC-HIT, treated the answer
selection task as a sequence labeling problem and
proposed recurrent convolutional neural networks
to recognize good comments (Zhou et al., 2015b).

In follow-up work, Zhou et al. (2015a) included
long-short term memory (LSTM) units in their
convolutional neural network to model the classifi-
cation sequence for the thread, and Barrón-Cedeño
et al. (2015) exploited the dependencies between
the thread comments to tackle the same task. This
was done by designing features that look globally
at the thread and by applying structured prediction
models, such as CRFs.

This research direction was further extended by
Joty et al. (2015), who used the output structure at
the thread level in order to make more consistent
global decisions about the goodness of the answers
in the thread. They modeled the relations between
pairs of comments at any distance in the thread,
and combined the predictions of local classifiers
using graph-cut and Integer Linear Programming.
In follow up work, Joty et al. (2016) proposed joint
learning models that integrate inference within the
learning process using global normalization and
an Ising-like edge potential.

Question–External comment similarity is our
main task (subtask C), and it is inter-related to
subtasks A and B, as described in the triangle of
Figure 1. This task has been much less studied
in the literature, mainly because its definition is
specific to our SemEval Task 3, and it first ap-
peared in the 2016 edition (Nakov et al., 2016b).
Most of the systems that took part in the compe-
tition, including the winning system of the SU-
per team (Mihaylova et al., 2016), approached
the task indirectly by solving subtask A at the
thread level and then using these predictions to-
gether with the reciprocal rank of the related ques-
tions in order to produce a final ranking for sub-
task C. One exception is the KeLP system (Fil-
ice et al., 2016), which was ranked second in the
competition. This system combined information
from different subtasks and from all input com-
ponents. It used a modular kernel function, in-
cluding stacking from independent subtask A and
B classifiers, and applying SVMs to train a Good
vs. Bad classifier (Filice et al., 2016). In a related
study, Nakov et al. (2016a) discussed the input in-
formation to solve Subtask C, and concluded that
one has to model mainly question-to-question sim-
ilarity (Subtask B) and answer goodness (subtask
A), while modeling the direct relation between the
new question and the candidate answer (from a re-
lated question) was found to be far less important.

Finally, in another recent approach, Bonadiman
et al. (2017) studied how to combine the different
CQA subtasks. They presented a multitask neural
architecture where the three tasks are trained to-
gether with the same representation. The authors
showed that the multitask system yields good im-
provement for Subtask C, which is more complex
and clearly dependent on the other two tasks.

Some notable features across all subtasks. Fi-
nally, we should mention some interesting fea-
tures used by the participating systems across all
three subtasks. This includes fine-tuned word em-
beddings5 (Mihaylov and Nakov, 2016b); features
modeling text complexity, veracity, and user troll-
ness6 (Mihaylova et al., 2016); sentiment polar-
ity features (Nicosia et al., 2015); and PMI-based
goodness polarity lexicons (Balchev et al., 2016;
Mihaylov et al., 2017a).

5https://github.com/tbmihailov/
semeval2016-task3-cqa

6Using a heuristic that if several users call somebody a
troll, then s/he should be one (Mihaylov et al., 2015a,b; Mi-
haylov and Nakov, 2016a; Mihaylov et al., 2017b).
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Category Train+Dev+Test Train(1,2)+Dev+Test Testfrom SemEval-2015 from SemEval-2016
Original Questions – (200+67)+50+70 88

Related Questions 2,480+291+319 (1,999+670)+500+700 880
– Perfect Match – (181+54)+59+81 24
– Relevant – (606+242)+155+152 139
– Irrelevant – (1,212+374)+286+467 717

Related Comments – (19,990+6,700)+5,000+7,000 8,800
(with respect to Original Question)
– Good – (1,988+849)+345+654 246
– Bad – (16,319+5,154)+4,061+5,943 8,291
– Potentially Useful – (1,683+697)+594+403 263

Related Comments 14,893+1,529+1,876 (14,110+3,790)+2,440+3,270 2,930
(with respect to Related Question)
– Good 7,418+813+946 (5,287+1,364)+818+1,329 1,523
– Bad 5,971+544+774 (6,362+1,777)+1,209+1,485 1,407
– Potentially Useful 1,504+172+156 (2,461+649)+413+456 0

Table 1: Statistics about the English CQA-QL dataset. Note that the Potentially Useful class was merged
with Bad at test time for SemEval-2016 Task 3, and was eliminated altogether at SemEval-2017 task 3.

3 Subtasks and Data Description

The 2017 challenge was structured as a set of five
subtasks, four of which (A, B, C and E) were of-
fered for English, while the fifth (D) one was for
Arabic. We leveraged the data we developed in
2016 for the first four subtasks, creating only new
test sets for them, whereas we built a completely
new dataset for the new Subtask E.

3.1 Old Subtasks

The first four tasks and the datasets for them are
described in (Nakov et al., 2016b). Here we re-
view them briefly.

English subtask A Question-Comment Similar-
ity. Given a question Q and the first ten com-
ments7 in its question thread (c1, . . . , c10), the goal
is to rank these ten comments according to their
relevance with respect to that question.

Note that this is a ranking task, not a classifica-
tion task; we use mean average precision (MAP)
as an official evaluation measure. This setting
was adopted as it is closer to the application sce-
nario than pure comment classification. For a per-
fect ranking, a system has to place all “Good”
comments above the “PotentiallyUseful” and the
“Bad” comments; the latter two are not actually
distinguished and are considered “Bad” at evalu-
ation time. This year, we elliminated the “Poten-
tiallyUseful” class for test at annotation time.

7We limit the number of comments we consider to the first
ten only in order to spare some annotation efforts.

English subtask B Question-Question Similar-
ity. Given a new question Q (aka original ques-
tion) and the set of the first ten related ques-
tions from the forum (Q1, . . . , Q10) retrieved by a
search engine, the goal is to rank the related ques-
tions according to their similarity with respect to
the original question.

In this case, we consider the “PerfectMatch”
and the “Relevant” questions both as good (i.e.,
we do not distinguish between them and we will
consider them both “Relevant”), and they should
be ranked above the “Irrelevant” questions. As in
subtask A, we use MAP as the official evaluation
measure. To produce the ranking of related ques-
tions, participants have access to the correspond-
ing related question-thread.8 Thus, being more
precise, this subtask could have been named Ques-
tion — Question+Thread Similarity.

English subtask C Question-External Com-
ment Similarity. Given a new question Q (also
known as the original question), and the set of the
first ten related questions (Q1, . . . , Q10) from the
forum retrieved by a search engine for Q, each as-
sociated with its first ten comments appearing in
Q’s thread (c1

1, . . . , c
10
1 , . . . , c1

10, . . . , c
10
10), the goal

is to rank these 10×10 = 100 comments {cj
i}10

i,j=1

according to their relevance with respect to the
original question Q.

8Note that the search engine indexes entire Web pages,
and thus, the search engine has compared the original ques-
tion to the related questions together with their comment
threads.
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This is the main English subtask. As for subtask
A, we want the “Good” comments to be ranked
above the “PotentiallyUseful” and the “Bad” com-
ments, which will be considered just bad in terms
of evaluation. Although, the systems are supposed
to work on 100 comments, we take an application-
oriented view in the evaluation, assuming that
users would like to have good comments concen-
trated in the first ten positions. We believe users
care much less about what happens in lower po-
sitions (e.g., after the 10th) in the rank, as they
typically do not ask for the next page of results
in a search engine such as Google or Bing. This
is reflected in our primary evaluation score, MAP,
which we restrict to consider only the top ten re-
sults for subtask C.

Arabic subtask D Rank the correct answers
for a new question. Given a new question Q
(aka the original question), the set of the first
30 related questions retrieved by a search en-
gine, each associated with one correct answer
((Q1, c1) . . . , (Q30, c30)), the goal is to rank the 30
question-answer pairs according to their relevance
with respect to the original question. We want the
“Direct” and the “Relevant” answers to be ranked
above the “Irrelevant” answers; the former two are
considered “Relevant” in terms of evaluation. We
evaluate the position of “Relevant” answers in the
rank, and this is again a ranking task. Unlike the
English subtasks, here we use 30 answers since
the retrieval task is much more difficult, leading
to low recall, and the number of correct answers
is much lower. Again, the systems were evaluated
using MAP, restricted to the top-10 results.

3.1.1 Data Description for A–D

The English data for subtasks A, B, and C comes
from the Qatar Living forum, which is orga-
nized as a set of seemingly independent question–
comment threads. In short, for subtask A, we
annotated the comments in a question-thread as
“Good”, “PotentiallyUseful” or “Bad” with re-
spect to the question that started the thread. Addi-
tionally, given original questions, we retrieved re-
lated question–comment threads and annotated the
related questions as “PerfectMatch”, “Relevant”,
or “Irrelevant” with respect to the original ques-
tion (Subtask B). We then annotated the comments
in the threads of related questions as “Good”, “Po-
tentiallyUseful” or “Bad” with respect to the orig-
inal question (Subtask C).

For Arabic, the data was extracted from medical
forums and has a different format. Given an orig-
inal question, we retrieved pairs of the form (re-
lated question, answer to the related question).
These pairs were annotated as “Direct” answer,
“Relevant” and “Irrelevant” with respect to the
original question.

For subtasks A, B, and C we annotated new
English test data following the same setup as for
SemEval-2016 Task 3 (Nakov et al., 2016b), ex-
cept that we elliminated the “Potentially Useful”
class for subtask A. We first selected a set of ques-
tions to serve as original questions. In a real-world
scenario those would be questions that had never
been asked previously, but here we used existing
questions from Qatar Living.

From each original question, we generated a
query, using the question’s subject (after some
word removal if the subject was too long). Then,
we executed the query against Google, limiting
the search to the Qatar Living forum, and we
collected up to 200 resulting question-comment
threads as related questions. Afterwards, we fil-
tered out threads with less than ten comments as
well as those for which the question was more than
2,000 characters long. Finally, we kept the top-10
surviving threads, keeping just the first 10 com-
ments in each thread.

We formatted the results in XML with UTF-8
encoding, adding metadata for the related ques-
tions and for their comments; however, we did not
provide any meta information about the original
question, in order to emulate a scenario where it is
a new question, never asked before in the forum.
In order to have a valid XML, we had to do some
cleansing and normalization of the data. We added
an XML format definition at the beginning of the
XML file and we made sure it validated.

We organized the XML data as a sequence
of original questions (OrgQuestion), where each
question has a subject, a body, and a unique
question identifier (ORGQ ID). Each such orig-
inal question is followed by ten threads, where
each thread consists of a related question (from the
search engine results) and its first ten comments.

We made available to the participants for train-
ing and development the data from 2016 (and for
subtask A, also from 2015), and we created a new
test set of 88 new questions associated with 880
question candidates and 8,800 comments; details
are shown in Table 1.

32



Category SemEval-2016 data Test-2017Train Dev Test
Questions 1,031 250 250 1,400
QA Pairs 30,411 7,384 7,369 12,600
– Direct 917 70 65 891
– Related 17,412 1,446 1,353 4,054
– Irrelevant 12,082 5,868 5,951 7,655

Table 2: Statistics about the CQA-MD corpus.

For subtasks D we had to annotate new test
data. In 2016, we used data from three Arabic
medical websites, which we downloaded and in-
dexed locally using Solr.9 Then, we performed
21 different query/document formulations, and we
merged the retrieved results, ranking them accord-
ing to the reciprocal rank fusion algorithm (Cor-
mack et al., 2009). Finally, we truncated the result
list to the 30 top-ranked question–answer pairs.

This year we only used one of these websites,
namely Altibbi.com10 First, we selected some
questions from that website to be used as original
questions, and then we used Google to retrieve po-
tentially related questions using the site:* filter.

We turned the question into a query as follows:
We first queried Google using the first thirty words
from the original question. If this did not return
ten results, we reduced the query to the first ten
non-stopwords11 from the question, and if needed
we further tried using the first five non-stopwords
only. If we did not manage to obtain ten results,
we discarded that original question.

If we managed to obtain ten results, we fol-
lowed the resulting links and we parsed the target
page to extract the question and the answer, which
is given by a physician, as well as some metadata
such as date, question classification, doctor’s name
and country, etc.

In many cases, Google returned our original
question as one of the search results, in which
case we had to exclude it, thus reducing the re-
sults to nine. In the remaining cases, we excluded
the 10th result in order to have the same num-
ber of candidate question–answer pairs for each
original question, namely nine. Overall, we col-
lected 1,400 original questions, with exactly nine
potentially related question–answer pairs for each
of them, i.e., a total of 12,600 pairs.

9https://lucene.apache.org/solr/
10http://www.altibbi.com/

�éJ
J.£- �éÊJ�@
11We used the following Arabic stopword list: https:

//sites.google.com/site/kevinbouge/
stopwords-lists

We created an annotation job on CrowdFlower
to obtain judgments about the relevance of the
question–answer pairs with respect to the origi-
nal question. We controlled the quality of anno-
tation using a hidden set of 50 test questions. We
had three judgments per example, which we com-
bined using the CrowdFlower mechanism. The av-
erage agreement was 81%. Table 2 shows statistics
about the resulting dataset, together with statistics
about the datasets from 2016, which could be used
for training and development.

3.1.2 Evaluation Measures for A–D
The official evaluation measure we used to rank
the participating systems is Mean Average Pre-
cision (“MAP”), calculated over the top-10 com-
ments as ranked by a participating system. We
further report the results for two unofficial ranking
measures, which we also calculated over the top-
10 results only: Mean Reciprocal Rank (“MRR”)
and Average Recall (“AvgRec”). Additionally, we
report the results for four standard classification
measures, which we calculate over the full list of
results: Precision, Recall and F1 (with respect to
the Good/Relevant class), and Accuracy.

We released a specialized scorer that calculates
and returns all the above-mentioned scores.

3.2 The New Subtask E
Subtask E is a duplicate question detection task,
similar to Subtask B. Participants were asked to
rerank 50 candidate questions according to their
relevance with respect to each query question. The
subtask included several elements that distinguish
it from Subtask B:

• Several meta-data fields were added, includ-
ing the tags that are associated with each
question, the number of times a question has
been viewed, and the score of each question,
answer and comment (the number of upvotes
it has received from the community, minus
the number of downvotes), as well as user
statistics, containing information such as user
reputation and user badges.12

• At test time, two extra test sets containing
data from two surprise subforums were pro-
vided, to test the participants’ system’s cross-
domain performance.

12The complete list of available meta-data fields can be
found on the Task website.
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Subforums Train Development Test

Android 10,360 3,197 3,531
English 20,701 6,596 6,383
Gaming 14,951 4,964 4,675
Wordpress 13,733 5,007 3,816

Surprise 1 — — 5,123
Surprise 2 — — 4,039

Table 3: Statistics on the data for Subtask E.
Shown is the number of query questions; for each
of them, 50 candidate questions were provided.

• The participants were asked to truncate their
result list in such a way that only “Perfect-
Match” questions appeared in it. The evalua-
tion metrics were adjusted to be able to han-
dle empty result lists (see Section 3.2.2).

• The data was taken from StackExchange in-
stead of the Qatar Living forums, and re-
flected the real-world distribution of dupli-
cate questions in having many query ques-
tions with zero relevant results.

The cross-domain aspect was of particular inter-
est, as it has not received much attention in earlier
duplicate question detection research.

3.2.1 Data Description for E
The data consisted of questions from the follow-
ing four StackExchange subforums: Android, En-
glish, Gaming, and Wordpress, derived from a data
set known as CQADupStack (Hoogeveen et al.,
2015). Data size statistics can be found in Ta-
ble 3. These subforums were chosen due to their
size, and to reflect a variety of domains.

The data was provided in the same format as for
the other subtasks. Each original question had 50
candidate questions, and these related questions
each had a number of comments. On top of that,
they had a number of answers, and each answer
potentially had individual comments. The differ-
ence between answers and comments is that an-
swers should contain a well-formed answer to the
question, while comments contain things such as
requests for clarification, remarks, and small addi-
tions to someone else’s answer. Since the content
of StackExchange is provided by the community,
the precise delineation between comments and the
main body of a post can vary across forums.

The relevance labels in the development and in the
training data were sourced directly from the users
of the StackExchange sites, who can vote for ques-
tions to be closed as duplicates: these are the ques-
tions we labeled as PerfectMatch.

The questions labeled as Related are questions
that are not duplicates, but that are somehow sim-
ilar to the original question, also as judged by
the StackExchange community. It is possible that
some duplicate labels are missing, due to the vol-
untary nature of the duplicate labeling on Stack-
Exchange. The development and training data
should therefore be considered a silver standard
(Hoogeveen et al., 2016b).

For the test data, we started an annotation
project together with StackExchange.13 The goal
was to obtain multiple annotations per question
pair in the test set, from the same community that
provided the labels in the development and in the
training data. We expected the community to react
enthusiastically, because the data would be used to
build systems that can improve duplicate question
detection on the site, ultimately saving the users
manual effort. Unfortunately, only a handful of
people were willing to annotate a sizeable set of
question pairs, thus making their annotations un-
usable for the purpose of this shared task.

An example that includes a query question from
the English subforum, a duplicate of that question,
and a non-duplicate question (with respect to the
query) is shown below:

• Query: Why do bread companies add sugar
to bread?

• Duplicate: What is the purpose of sugar in
baking plain bread?

• Non-duplicate: Is it safe to eat potatoes that
have sprouted?

3.2.2 Evaluation Measure for E
In CQA archives, the majority of new questions do
not have a duplicate in the archive. We maintained
this characteristic in the training, in the develop-
ment, and in the test data, to stay as close to a real
world setting as possible. This means that for most
query questions, the correct result is an empty list.

13A post made by StackExchange about the project can
be found here: http://meta.stackexchange.com/
questions/286329/project-reduplication-
of-deduplication-has-begun
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This has two consequences: (1) a system that al-
ways returns an empty list is a challenging base-
line to beat, and (2) standard IR evaluation met-
rics like MAP, which is used in the other subtasks,
cannot be used, because they break down when the
result list is empty or there are no relevant docu-
ments for a given query.

To solve this problem we used a modified ver-
sion of MAP, as proposed by Liu et al. (2016).
To make sure standard IR evaluation metrics do
not break down on empty result list queries, Liu
et al. (2016) add a nominal terminal document to
the end of the ranking returned by a system, to
indicate where the number of relevant documents
ended. This terminal document has a correspond-
ing gain value of:

rt =

{
1 if R = 0∑d

i=1 ri/R if R > 0

The result of this adjustment is that queries with-
out relevant documents in the index, receive a
MAP score of 1.0 for an empty result ranking.
This is desired, because in such cases, the empty
ranking is the correct result.

4 Participants and Results

The list of all participating teams can be found in
Table 4. The results for subtasks A, B, C, and D
are shown in tables 5, 6, 7, and 8, respectively.
Unfortunately, there were no official participants
in Subtask E, and thus we present baseline re-
sults in Table 9. In all tables, the systems are
ranked by the official MAP scores for their pri-
mary runs14 (shown in the third column). The
following columns show the scores based on the
other six unofficial measures; the ranking with re-
spect to these additional measures are marked with
a subindex (for the primary runs).

Twenty two teams participated in the challenge
presenting a variety of approaches and features to
address the different subtasks. They submitted a
total of 85 runs (36 primary and 49 contrastive),
which breaks down by subtask as follows: The En-
glish subtasks A, B and C attracted 14, 13, and 6
systems and 31, 34 and 14 runs, respectively. The
Arabic subtask D got 3 systems and 6 runs. And
there were no participants for subtask E.

14Participants could submit one primary run, to be used for
the official ranking, and up to two contrastive runs, which are
scored, but they have unofficial status.

The best MAP scores had large variability depend-
ing on the subtask, going from 15.46 (best result
for subtask C) to 88.43 (best result for subtask A).
The best systems for subtasks A, B, and C were
able to beat the baselines we provided by sizeable
margins. In subtask D, only the best system was
above the IR baseline.

4.1 Subtask A, English (Question-Comment
Similarity)

Table 5 shows the results for subtask A, English,
which attracted 14 teams (two more than in the
2016 edition). In total 31 runs were submitted: 14
primary and 17 contrastive. The last four rows of
the table show the performance of four baselines.
The first one is the chronological ranking, where
the comments are ordered by their time of posting;
we can see that all submissions but one outper-
form this baseline on all three ranking measures.
The second baseline is a random baseline, which
is 10 MAP points below the chronological rank-
ing. Baseline 3 classifies all comments as Good,
and it outperforms all but three of the primary sys-
tems in terms of F1 and one system in terms of
Accuracy. However, it should be noted that the
systems were not optimized for such measures. Fi-
nally, baseline 4 classifies all comments as Bad; it
is outperformed by all primary systems in terms of
Accuracy.

The winner of Subtask A is KeLP with a MAP
of 88.43, closely followed by Beihang-MSRA,
scoring 88.24. Relatively far from the first two, we
find five systems, IIT-UHH, ECNU, bunji, EICA
and SwissAlps, which all obtained an MAP of
around 86.5.

4.2 Subtask B, English (Question-Question
Similarity)

Table 6 shows the results for subtask B, English,
which attracted 13 teams (3 more than in last
year’s edition) and 34 runs: 13 primary and 21
contrastive. This is known to be a hard task. In
contrast to the 2016 results, in which only 6 out
of 11 teams beat the strong IR baseline (i.e., or-
dering the related questions in the order provided
by the search engine), this year 10 of the 13 sys-
tems outperformed this baseline in terms of MAP,
AvgRec and MRR. Moreover, the improvements
for the best systems over the IR baseline are larger
(reaching > 7 MAP points absolute). This is a
remarkable improvement over last year’s results.
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The random baseline outperforms two systems
in terms of Accuracy. The “all-good” baseline
is below almost all systems on F1, but the “all-
false” baseline yields the best Accuracy results.
This is partly because the label distribution in the
dataset is biased (81.5% of negative cases), but
also because the systems were optimized for MAP
rather than for classification accuracy (or preci-
sion/recall).

The winner of the task is SimBow with a MAP
of 47.22, followed by LearningToQuestion with
46.93, KeLP with 46.66, and Talla with 45.70.
The other nine systems scored sensibly lower than
them, ranging from about 41 to 45. Note that
the contrastive1 run of KeLP, which corresponds
to the KeLP system from last year (Filice et al.,
2016), achieved an even higher MAP of 49.00.

4.3 Subtask C, English (Question-External
Comment Similarity)

The results for subtask C, English are shown in
Table 7. This subtask attracted 6 teams (sizable
decrease compared to last year’s 10 teams), and
14 runs: 6 primary and 8 contrastive. The test set
from 2017 had much more skewed label distribu-
tion, with only 2.8% positive instances, compared
to the ∼10% of the 2016 test set. This makes the
overall MAP scores look much lower, as the num-
ber of examples without a single positive comment
increased significantly, and they contribute 0 to the
average, due to the definition of the measure. Con-
sequently, the results cannot be compared directly
to last year’s.

All primary systems managed to outperform all
baselines with respect to the ranking measures.
Moreover, all but one system outperformed the
“all true” system on F1, and all of them were be-
low the accuracy of the “all false” baseline, due to
the extreme class imbalance.

The best-performing team for subtask C is IIT-
UHH, with a MAP of 15.46, followed by bunji
with 14.71, and KeLP with 14.35. The con-
trastive1 run of bunji, which used a neural net-
work, obtained the highest MAP, 16.57, two points
higher than their primary run, which also uses the
comment plausibility features. Thus, the differ-
ence seems to be due to the use of comment plau-
sibility features, which hurt the accuracy. In their
SemEval system paper, Koreeda et al. (2017) ex-
plain that the similarity features are more impor-
tant for Subtask C than plausibility features.

Indeed, Subtask C contains many comments that
are not related to the original question, while can-
didate comments for subtask A are almost always
on the same topic. Another explanation may be the
overfitting to the development set since the authors
manually designed plausibility features using that
set. As a result, such features perform much worse
on the 2017 test set.

4.4 Subtask D, Arabic (Reranking the
Correct Answers for a New Question)

Finally, the results for subtask D, Arabic are
shown in Table 8. This year, subtask D attracted
only 3 teams, which submitted 6 runs: 3 primary
and 3 contrastive. Compared to last year, the 2017
test set contains a significantly larger number of
positive question–answer pairs (∼40% in 2017,
compared to ∼20% in 2016), and thus the MAP
scores are higher this year. Moreover, this year,
the IR baseline is coming from Google and is thus
very strong and difficult to beat. Indeed, only the
best system was able to improve on it (marginally)
in terms of MAP, MRR and AvgRec.

As in some of the other tasks, the participants in
Subtask D did not concentrate on optimizing for
precision/recall/F1/accuracy and they did not pro-
duce sensible class predictions in most cases.

The best-performing system is GW QA with a
MAP score of 61.16, which barely improves over
the IR baseline of 60.55. The other two systems
UPC-USMBA and QU BIGIR are about 3-4 points
behind.

4.5 Subtask E, English (Multi-Domain
Question Duplicate Detection)

The baselines for Subtask E can be found in Ta-
ble 9. The IR baseline is BM25 with perfect
truncation after the final relevant document for a
given document (equating to an empty result list
if there are no relevant documents). The zero re-
sults baseline is the score for a system that returns
an empty result list for every single query. This
is a high number for each subforum because for
many queries there are no duplicate questions in
the archive.

As previously stated, there are no results sub-
mitted by participants to be discussed for this sub-
task. Eight teams signed up to participate, but un-
fortunately none of them submitted test results.
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5 Discussion and Conclusions

In this section, we first describe features that are
common across the different subtasks. Then, we
discuss the characteristics of the best systems for
each subtask with focus on the machine learning
algorithms and the instance representations used.

5.1 Feature Types

The features the participants used across the sutb-
tasks can be organized into the following groups:

(i) similarity features between questions and
comments from their threads or between original
questions and related questions, e.g., cosine sim-
ilarity applied to lexical, syntactic and semantic
representations, including distributed representa-
tions, often derived using neural networks;

(ii) content features, which are special signals
that can clearly indicate a bad comment, e.g.,
when a comment contains “thanks”;

(iii) thread level/meta features, e.g., user ID,
comment rank in the thread;

(iv) automatically generated features from syn-
tactic structures using tree kernels.

Generally, similarity features were developed
for the subtasks as follows:

Subtask A. Similarities between question sub-
ject vs. comment, question body vs. comment, and
question subject+body vs. comment.

Subtask B. Similarities between the original
and the related question at different levels: sub-
ject vs. subject, body vs. body, and subject+body
vs. subject+body.

Subtask C. The same as above, plus the similar-
ities of the original question, subject and body at
all levels with the comments from the thread of the
related question.

Subtask D. The same as above, without infor-
mation about the thread, as there is no thread.

The similarity scores to be used as features
were computed in various ways, e.g., most teams
used dot product calculated over word n-grams
(n=1,2,3), character n-grams, or with TF-IDF
weighting. Simple word overlap, i.e., the num-
ber of common words between two texts, was
also considered, often normalized, e.g., by ques-
tion/comment length. Overlap in terms of nouns
or named entities was also explored.

5.2 Learning Methods

This year, we saw variety of machine learning ap-
proaches, ranging from SVMs to deep learning.

The KeLP system, which performed best on
Subtask A, was SVM-based and used syntactic
tree kernels with relational links between ques-
tions and comments, together with some standard
text similarity measures linearly combined with
the tree kernel. Variants of this approach were
successfully used in related research (Tymoshenko
et al., 2016; Da San Martino et al., 2016), as well
as in last year’s KeLP system (Filice et al., 2016).

The best performing system on Subtask C, IIT-
UHH, was also SVM-based, and it used tex-
tual, domain-specific, word-embedding and topic-
modeling features. The most interesting as-
pect of this system is their method for dialogue
chain identification in the comment threads, which
yielded substantial improvements.

The best-performing system on Subtask B was
SimBow. They used logistic regression on a rich
combination of different unsupervised textual sim-
ilarities, built using a relation matrix based on
standard cosine similarity between bag-of-words
and other semantic or lexical relations.

This year, we also saw a jump in the popularity
of deep learning and neural networks. For exam-
ple, the Beihang-MSRA system was ranked second
with a result very close to that of KeLP for Subtask
A. They used gradient boosted regression trees,
i.e., XgBoost, as a ranking model to combine
(i) TF×IDF, word sequence overlap, translation
probability, (ii) three different types of tree ker-
nels, (iii) subtask-specific features, e.g., whether a
comment is written by the author of the question,
the length of a comment or whether a comment
contains URLs or email addresses, and (iv) neural
word embeddings, and the similarity score from
Bi-LSTM and 2D matching neural networks.

LearningToQuestion achieved the second best
result for Subtask B using SVM and Logistic Re-
gression as integrators of rich feature representa-
tions, mainly embeddings generated by the follow-
ing neural networks: (i) siamese networks to learn
similarity measures using GloVe vectors (Pen-
nington et al., 2014), (ii) bidirectional LSTMs,
(iii) gated recurrent unit (GRU) used as another
network to generate the neural embeddings trained
by a siamese network similar to Bi-LSTM, (iv) and
convolutional neural networks to generate embed-
dings inside the siamese network.
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The bunji system, second on Subtask C, produced
features using neural networks that capture the se-
mantic similarities between two sentences as well
as comment plausibility. The neural similarity fea-
tures were extracted using a decomposable atten-
tion model (Parikh et al., 2016), which can model
alignment between two sequences of text, allow-
ing the system to identify possibly related regions
of a question and of a comment, which then helps
it predict whether the comment is relevant with re-
spect to the question. The model compares each
token pair from the question tokens and comment
tokens associating them with an attention weight.
Each question-comment pair is mapped to a real-
value score using a neural network with shared
weights and the prediction loss is calculated list-
wise. The plausibility features are task-specific,
e.g., is the person giving the answer actually trying
to answer the question or is s/he making remarks
or asking for more information. Other features are
the presence keywords such as what, which, who,
where within the question. There are also features
about the question and the comment length. All
these features were merged in a CRF.

Another interesting system is that of Talla,
which consists of an ensemble of syntactic, se-
mantic, and IR-based features, i.e., semantic word
alignment, term frequency Kullback-Leibler di-
vergence, and tree kernels. These were integrated
in a pairwise-preference learning handled with a
random forest classifier with 2,000 weak estima-
tors. This system achieved very good performance
on Subtask B.

Regarding Arabic, GW QA, the best-
performing system for Subtask D, used fea-
tures based on latent semantic models, namely,
weighted textual matrix factorization models
(WTMF), as well as a set of lexical features based
on string lengths and surface-level matching.
WTMF builds a latent model, which is appro-
priate for semantic profiling of a short text. Its
main goal is to address the sparseness of short
texts using both observed and missing words to
explicitly capture what the text is and is not about.
The missing words are defined as those of the
entire training data vocabulary minus those of
the target document. The model was trained on
text data from the Arabic Gigaword as well as on
Arabic data that we provided in the task website,
as part of the task. For Arabic text processing, the
MADAMIRA toolkit was used.

The second-best team for Arabic, QU-BIGIR, used
SVM-rank with two similarity feature sets. The
first set captured similarity between pairs of text,
i.e., synonym overlap, language model score, co-
sine similarity, Jaccard similarity, etc. The second
set used word2vec to build average word embed-
ding and covariance word embedding similarity to
build the text representation.

The third-best team for Arabic, UPC-USMBA,
combined several classifiers, including (i) lexical
string similarities in vector representations, and
(ii) rule-based features. A core component of
their approach was the use of medical terminology
covering both Arabic and English terms, which
was organized into the following three categories:
body parts, drugs, and diseases. In particular, they
translated the Arabic dataset into English using
the Google Translate service. The linguistic pro-
cessing was carried out with Stanford CoreNLP
for English and MADAMIRA for Arabic. Finally,
WordNet synsets both for Arabic and English were
added to the representation without performing
word sense disambiguation.

6 Conclusions

We have described SemEval-2017 Task 3 on Com-
munity Question Answering, which extended the
four subtasks at SemEval-2016 Task 3 (Nakov
et al., 2016b) with a new subtask on multi-domain
question duplicate detection. Overall, the task at-
tracted 23 teams, which submitted 85 runs; this is
comparable to 2016, when 18 teams submitted 95
runs. The participants built on the lessons learned
from the 2016 edition of the task, and further ex-
perimented with new features and learning frame-
works. The top systems used neural networks with
distributed representations or SVMs with syntactic
kernels for linguistic analysis. A number of new
features have been tried as well.

Apart from the new lessons learned from this
year’s edition, we believe that the task has another
important contribution: the datasets we have cre-
ated as part of the task, and which we have re-
leased for use to the research community, should
be useful for follow-up research beyond SemEval.

Finally, while the new subtask E did not get any
submissions, mainly because of the need to work
with a large amount of data, we believe that it is
about an important problem and that it will attract
the interest of many researchers of the field.
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Alessandro Moschitti, and Preslav Nakov. 2017.
Cross-language question re-ranking. In Proceed-
ings of the 40th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval. Tokyo, Japan, SIGIR ’17.

Jan Milan Deriu and Mark Cieliebak. 2017. SwissAlps
at SemEval-2017 task 3: Attention-based convo-
lutional neural network for community question
answering. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation. Vancou-
ver, Canada, SemEval ’17, pages 334–338.

Cicero dos Santos, Luciano Barbosa, Dasha Bog-
danova, and Bianca Zadrozny. 2015. Learning hy-
brid representations to retrieve semantically equiva-
lent questions. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing. Beijing, China,
ACL-IJCNLP ’15, pages 694–699.

Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong
Yu. 2008. Searching questions by identifying ques-
tion topic and question focus. In Proceedings of the
46th Annual Meeting of the Association for Compu-
tational Linguistics. Columbus, Ohio, USA, pages
156–164.

Abdessamad Echihabi and Daniel Marcu. 2003. A
noisy-channel approach to question answering. In
Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics. Sapporo,
Japan, ACL ’03, pages 16–23.

Yassine El Adlouni, Imane LAHBARI, Horacio Ro-
driguez, Mohammed Meknassi, Said Ouatik El
Alaoui, and Noureddine Ennahnahi. 2017. UPC-
USMBA at SemEval-2017 task 3: Combining mul-
tiple approaches for CQA for Arabic. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation. Vancouver, Canada, SemEval ’17, pages
276–280.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep
learning to answer selection: a study and an open
task. In Proceedings of the Workshop on Automatic
Speech Recognition and Understanding. Scottsdale,
Arizona, USA, ASRU ’15, pages 813–820.

Simone Filice, Danilo Croce, Alessandro Moschitti,
and Roberto Basili. 2016. KeLP at SemEval-2016
Task 3: Learning semantic relations between ques-
tions and answers. In Proceedings of the Work-
shop on Semantic Evaluation. San Diego, Califor-
nia, USA, SemEval ’16, pages 1116–1123.

Simone Filice, Giovanni Da San Martino, and Alessan-
dro Moschitti. 2017. KeLP at SemEval-2017 task
3: Learning pairwise patterns in community ques-
tion answering. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation. Vancou-
ver, Canada, SemEval ’17, pages 327–334.

Byron Galbraith, Bhanu Pratap, and Daniel Shank.
2017. Talla at SemEval-2017 task 3: Identifying
similar questions through paraphrase detection. In
Proceedings of the 11th International Workshop on
Semantic Evaluation. Vancouver, Canada, SemEval
’17, pages 375–379.

Naman Goyal. 2017. LearningToQuestion at SemEval
2017 task 3: Ranking similar questions by learning
to rank using rich features. In Proceedings of the In-
ternational Workshop on Semantic Evaluation. Van-
couver, Canada, SemEval ’17, pages 310–314.

Francisco Guzmán, Shafiq Joty, Lluı́s Màrquez, and
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10 SnowMan-primary 81.8410 88.6710 87.2112 79.548 58.447 67.377 70.585

11 TakeLab-QA-primary 81.1411 88.4812 87.5111 78.729 58.318 66.998 70.146

12 LS2N-primary 80.9912 88.5511 87.9210 80.077 43.2711 56.1811 64.9110

TakeLab-QA-contrastive1 79.71 87.31 87.03 73.88 62.77 67.87 69.11

TakeLab-QA-contrastive2 78.98 86.33 87.13 80.06 56.66 66.36 70.14

13 TrentoTeam-primary 78.5613 86.6613 85.7613 65.5912 75.712 70.284 66.729

LS2N-contrastive1 74.08 81.88 81.66 70.66 28.30 40.41 56.62

14 MoRS-primary 63.3214 71.6714 71.9914 59.2313 5.0614 9.3214 48.8414

Baseline 1 (chronological) 72.61 79.32 82.37 — — — —

Baseline 2 (random) 62.30 70.56 68.74 53.15 75.97 62.54 52.70

Baseline 3 (all ‘true’) — — — 51.98 100.00 68.40 51.98

Baseline 4 (all ‘false’) — — — — — — 48.02

Table 5: Subtask A, English (Question-Comment Similarity): results for all submissions. The first
column shows the rank of the primary runs with respect to the official MAP score. The second column
contains the team’s name and its submission type (primary vs. contrastive). The following columns show
the results for the primary, and then for other, unofficial evaluation measures. The subindices show the
rank of the primary runs with respect to the evaluation measure in the respective column. All results are
presented as percentages. The system marked with a ? was a late submission.
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Submission MAP AvgRec MRR P R F1 Acc

KeLP-contrastive1 49.00 83.92 52.41 36.18 88.34 51.34 68.98

SimBow-contrastive2 47.87 82.77 50.97 27.03 93.87 41.98 51.93

1 SimBow-primary 47.221 82.601 50.073 27.3010 94.483 42.379 52.3911

LearningToQuestion-contrastive2 47.20 81.73 53.22 18.52 100.00 31.26 18.52

LearningToQuestion-contrastive1 47.03 81.45 52.47 18.52 100.00 31.26 18.52

2 LearningToQuestion-primary 46.932 81.294 53.011 18.5212 100.001 31.2612 18.5212

SimBow-contrastive1 46.84 82.73 50.43 27.80 94.48 42.96 53.52

3 KeLP-primary 46.663 81.363 50.852 36.013 85.285 50.641 69.205

Talla-contrastive1 46.54 82.15 49.61 30.39 76.07 43.43 63.30

Talla-contrastive2 46.31 81.81 49.14 29.88 74.23 42.61 62.95

4 Talla-primary 45.704 81.482 49.555 29.599 76.078 42.618 62.058

Beihang-MSRA-contrastive2 44.79 79.13 49.89 18.52 100.00 31.26 18.52

5 Beihang-MSRA-primary 44.785 79.137 49.884 18.5213 100.002 31.2613 18.5213

NLM NIH-contrastive1 44.66 79.66 48.08 33.68 79.14 47.25 67.27

6 NLM NIH-primary 44.626 79.595 47.746 33.685 79.146 47.253 67.276

UINSUSKA-TiTech-contrastive1 44.29 78.59 48.97 34.47 68.10 45.77 70.11

NLM NIH-contrastive2 44.29 79.05 47.45 33.68 79.14 47.25 67.27

Beihang-MSRA-contrastive1 43.89 79.48 48.18 18.52 100.00 31.26 18.52

7 UINSUSKA-TiTech-primary 43.447 77.5011 47.039 35.714 67.4811 46.714 71.484

8 IIT-UHH-primary 43.128 79.236 47.257 26.8511 71.1710 38.9910 58.7510

UINSUSKA-TiTech-contrastive2 43.06 76.45 46.22 35.71 67.48 46.71 71.48

9 SCIR-QA-primary 42.729 78.249 46.6510 31.268 89.574 46.355 61.599

SCIR-QA-contrastive1 42.72 78.24 46.65 32.69 83.44 46.98 65.11

ECNU-contrastive2 42.48 79.44 45.09 36.47 78.53 49.81 70.68

IIT-UHH-contrastive2 42.38 78.59 46.82 32.99 59.51 42.45 70.11

ECNU-contrastive1 42.37 78.41 45.04 34.34 83.44 48.66 67.39

IIT-UHH-contrastive1 42.29 78.41 46.40 32.66 59.51 42.17 69.77

10 FA3L-primary 42.2410 77.7110 47.058 33.176 40.4913 36.4611 73.862

LS2N-contrastive1 42.06 77.36 47.13 32.01 59.51 41.63 69.09

11 ECNU-primary 41.3711 78.718 44.5213 37.431 76.697 50.302 71.933

12 EICA-primary 41.1112 77.4512 45.5712 32.607 72.399 44.956 67.167

EICA-contrastive1 41.07 77.70 46.38 32.30 70.55 44.32 67.16

13 LS2N-primary 40.5613 76.6713 46.3311 36.552 53.3712 43.397 74.201

EICA-contrastive2 40.04 76.98 44.00 31.69 71.17 43.86 66.25

Baseline 1 (IR) 41.85 77.59 46.42 — — — —

Baseline 2 (random) 29.81 62.65 33.02 18.72 75.46 30.00 34.77

Baseline 3 (all ‘true’) — — — 18.52 100.00 31.26 18.52

Baseline 4 (all ‘false’) — — — — — — 81.48

Table 6: Subtask B, English (Question-Question Similarity): results for all submissions. The first
column shows the rank of the primary runs with respect to the official MAP score. The second column
contains the team’s name and its submission type (primary vs. contrastive). The following columns show
the results for the primary, and then for other, unofficial evaluation measures. The subindices show the
rank of the primary runs with respect to the evaluation measure in the respective column. All results are
presented as percentages.
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Submission MAP AvgRec MRR P R F1 Acc

bunji-contrastive2 16.57 30.98 17.04 19.83 19.11 19.46 95.58

1 IIT-UHH-primary 15.461 33.421 18.141 8.413 51.223 14.442 83.034

IIT-UHH-contrastive1 15.43 33.78 17.52 9.45 54.07 16.08 84.23

2 bunji-primary 14.712 29.474 16.482 20.261 19.114 19.671 95.642

EICA-contrastive1 14.60 32.71 16.14 10.80 9.35 10.02 95.31

3 KeLP-primary 14.353 30.742 16.073 6.485 89.022 12.074 63.755

IIT-UHH-contrastive2 14.00 30.53 14.65 5.98 85.37 11.17 62.06

4 EICA-primary 13.484 24.446 16.044 7.694 0.416 0.776 97.081

ECNU-contrastive2 13.29 30.15 14.95 13.86 26.42 18.18 93.35

5 ?FuRongWang-primary 13.235 29.513 14.275 2.806 100.001 5.445 2.806

EICA-contrastive2 13.18 25.16 15.05 10.00 0.81 1.50 97.02

6 ECNU-primary 10.546 25.565 11.096 13.442 13.825 13.633 95.103

ECNU-contrastive1 10.54 25.56 11.09 13.83 14.23 14.03 95.13

bunji-contrastive1 8.19 15.12 9.25 0.00 0.00 0.00 97.20

Baseline 1 (IR) 9.18 21.72 10.11 — — — —

Baseline 2 (random) 5.77 7.69 5.70 2.76 73.98 5.32 26.37

Baseline 3 (all ‘true’) — — — 2.80 100.00 5.44 2.80

Baseline 4 (all ‘false’) — — — — — — 97.20

Table 7: Subtask C, English (Question-External Comment Similarity): results for all submissions.
The first column shows the rank of the primary runs with respect to the official MAP score. The sec-
ond column contains the team’s name and its submission type (primary vs. contrastive). The follow-
ing columns show the results for the primary, and then for other, unofficial evaluation measures. The
subindices show the rank of the primary runs with respect to the evaluation measure in the respective
column. All results are presented as percentages. The system marked with a ? was a late submission.

Submission MAP AvgRec MRR P R F1 Acc

1 GW QA-primary 61.161 85.431 66.851 0.003 0.003 0.003 60.772

QU BIGIR-contrastive2 59.48 83.83 64.56 55.35 70.95 62.19 66.15

QU BIGIR-contrastive1 59.13 83.56 64.68 49.37 85.41 62.57 59.91

2 UPC-USMBA-primary 57.732 81.763 62.882 63.411 33.002 43.412 66.241

3 QU BIGIR-primary 56.693 81.892 61.833 41.592 70.161 52.221 49.643

UPC-USMBA-contrastive1 56.66 81.16 62.87 45.00 64.04 52.86 55.18

Baseline 1 (IR) 60.55 85.06 66.80 — — — —

Baseline 2 (random) 48.48 73.89 53.27 39.04 66.43 49.18 46.13

Baseline 3 (all ‘true’) — — — 39.23 100.00 56.36 39.23

Baseline 4 (all ‘false’) — — — — — — 60.77

Table 8: Subtask D, Arabic (Reranking the correct answers for a new question): results for all
submissions. The first column shows the rank of the primary runs with respect to the official MAP score.
The second column contains the team’s name and its submission type (primary vs. contrastive). The
following columns show the results for the primary, and then for other, unofficial evaluation measures.
The subindices show the rank of the primary runs with respect to the evaluation measure in the respective
column. All results are presented as percentages.
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Baseline TMAP

Android Baseline 1 (IR oracle) 99.00
Android Baseline 2 (all empty results) 98.56

English Baseline 1 (IR oracle) 98.05
English Baseline 2 (all empty results) 97.65

Gaming Baseline 1 (IR oracle) 99.18
Gaming Baseline 2 (all empty results) 98.73

Wordpress Baseline 1 (IR oracle) 99.21
Wordpress Baseline 2 (all empty results) 98.98

Table 9: Subtask E, English (Multi-Domain Duplicate Detection): Baseline results on the test dataset.
The empty result baseline has an empty result list for all queries. The IR baselines are the results of
applying BM25 with perfect truncation. All results are presented as percentages.
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Abstract

This paper describes a new shared task for
humor understanding that attempts to es-
chew the ubiquitous binary approach to
humor detection and focus on comparative
humor ranking instead. The task is based
on a new dataset of funny tweets posted
in response to shared hashtags, collected
from the ‘Hashtag Wars’ segment of the
TV show @midnight. The results are eval-
uated in two subtasks that require the par-
ticipants to generate either the correct pair-
wise comparisons of tweets (subtask A), or
the correct ranking of the tweets (subtask
B) in terms of how funny they are. 7 teams
participated in subtask A, and 5 teams par-
ticipated in subtask B. The best accuracy
in subtask A was 0.675. The best (lowest)
rank edit distance for subtask B was 0.872.

1 Introduction

Most work on humor detection approaches the
problem as binary classification: humor or not hu-
mor. While this is a reasonable initial step, in
practice humor is continuous, so we believe it is
interesting to evaluate different degrees of humor,
particularly as it relates to a given person’s sense
of humor. To further such research, we propose
a dataset based on humorous responses submitted
to a Comedy Central TV show, allowing for com-
putational approaches to comparative humor rank-
ing.

Debuting in Fall 2013, the Comedy Central
show @midnight1 is a late-night “game-show”
that presents a modern outlook on current events
by focusing on content from social media. The
show’s contestants (generally professional come-
dians or actors) are awarded points based on how

1http://www.cc.com/shows/-midnight

funny their answers are. The segment of the
show that best illustrates this attitude is the Hash-
tag Wars (HW). Every episode the show’s host
proposes a topic in the form of a hashtag, and
the show’s contestants must provide tweets that
would have this hashtag. Viewers are encouraged
to tweet their own responses. From the viewers’
tweets, we are able to apply labels that determine
how relatively humorous the show finds a given
tweet.

Because of the contest’s format, it provides an
adequate method for addressing the selection bias
(Heckman, 1979) often present in machine learn-
ing techniques (Zadrozny, 2004). Since each tweet
is intended for the same hashtag, each tweet is ef-
fectively drawn from the same sample distribution.
Consequently, tweets are seen not as humor/non-
humor, but rather varying degrees of wit and clev-
erness. Moreover, given the subjective nature of
humor, labels in the dataset are only “gold” with
respect to the show’s sense of humor. This concept
becomes more grounded when considering the use
of supervised systems for the dataset.

The idea of the dataset is to learn to character-
ize the sense of humor represented in this show.
Given a set of hashtags, the goal is to predict which
tweets the show will find funnier within each hash-
tag. The degree of humor in a given tweet is de-
termined by the labels provided by the show. We
propose two subtasks to evaluate systems on the
dataset. The first subtask is pairwise comparison:
given two tweets, select the funnier tweet, and the
pairs will be derived from the labels assigned by
the show to individual tweets. The second subtask
is to rank the the tweets based on the compara-
tive labels provided by the show. This is a semi-
ranking task because most labels are applied to
more than one tweet. Seen as a classification task,
the labels are comparative, because there is a no-
tion of distance. We introduce a new edit distance-
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inspired metric for this subtask.
A number of different computational ap-

proaches to humor have been proposed within the
last decade (Yang et al., 2015; Mihalcea and Strap-
parava, 2005; Zhang and Liu, 2014; Radev et al.,
2015; Raz, 2012; Reyes et al., 2013; Barbieri and
Saggion, 2014; Shahaf et al., 2015; Purandare and
Litman, 2006; Kiddon and Brun, 2011). In par-
ticular, Zhang and Liu (2014); Raz (2012); Reyes
et al. (2013); Barbieri and Saggion (2014) focus on
recognizing humor in Twitter. However, the ma-
jority of this work focuses on distinguishing hu-
mor from non-humor.

This representation has two shortcomings: (1) it
ignores the continuous nature of humor, and (2) it
does not take into account the subjectivity in hu-
mor perception. Regarding the first issue, we be-
lieve that shifting away from the binary approach
to humor detection as done in the present task is
a good pathway towards advancing this work. Re-
garding the second issue, consider a humour anno-
tation task done by Shahaf et al. (2015), in which
the annotators looked at pairs of captions from
the New Yorker Caption Content2, Shahaf et al.
(2015) report that “Only 35% of the unique pairs
that were ranked by at least five people achieved
80% agreement...” In contrast, the goal of the
present task is to not to identify humour that is uni-
versal, but rather, to capture the specific sense of
humour represented in the show.

2 Related Work

Mihalcea and Strapparava (2005) developed a hu-
mor dataset of puns and humorous one-liners in-
tended for supervised learning. In order to gen-
erate negative examples for their experimental de-
sign, the authors used news titles from Reuters and
the British National Corpus, as well as proverbs.
Recently, Yang et al. (2015) used the same dataset
for experimental purposes, taking text from AP
News, New York Times, Yahoo! Answers, and
proverbs as their negative examples. To further
reduce the bias of their negative examples, the au-
thors selected negative examples with a vocabu-
lary that is in the dictionary created from the pos-
itive examples. Also, the authors forced the neg-
ative examples to have a similar text length com-
pared to the positive examples.

Zhang and Liu (2014) constructed a dataset for
recognizing humor in Twitter in two parts. First,

2http://contest.newyorker.com/

the authors use the Twitter API with targeted user
mentions and hashtags to produce a set of 1,500
humorous tweets. After manual inspections, 1,267
of the original 1,500 tweets were found to be hu-
morous, of which 1,000 were randomly sampled
as positive examples in the final dataset. Sec-
ond, the authors collect negative examples by ex-
tracting 1,500 tweets from the Twitter Streaming
API, manually checking for the presence of hu-
mor. Next, the authors combine these tweets with
tweets from part one that were found to actually
not contain humor. The authors argue this last step
will partly assuage the selection bias of the nega-
tive examples.

In Reyes et al. (2013) the authors create a model
to detect ironic tweets. To construct their dataset
they collect tweets with the following hashtags:
irony, humor, politics, and education. Therefore,
a tweet is considered ironic solely because of the
presence of the appropriate hashtag. Barbieri and
Saggion (2014) also use this dataset for their work.

Finally, recently researchers have developed a
dataset similar to our HW dataset based on the
New Yorker Caption Contest (NYCC) (Radev
et al., 2015; Shahaf et al., 2015). Whereas for
the HW segment, viewers submit a tweet in re-
sponse to a hashtag, for the NYCC readers sub-
mit humorous captions in response to a cartoon. It
is important to note this key distinction between
the two datasets, because we believe that the pres-
ence of the hashtag allows for further innovative
NLP methodologies aside from solely analyzing
the tweets themselves. In Radev et al. (2015),
the authors developed more than 15 unsupervised
methods for ranking submissions for the NYCC.
The methods can be categorized into broader cat-
egories such as originality and content-based.

Alternatively, Shahaf et al.(2015) approach the
NYCC dataset with supervised models, evaluat-
ing on a pairwise comparison task, upon which we
base our evaluation methodology. The features to
represent a given caption fall in the general areas
of Unusual Language, Sentiment, and Taking Ex-
pert Advice. For a single data point (which rep-
resents two captions), the authors concatenate the
features of each individual caption, as well as en-
coding the difference between each caption’s vec-
tor. The authors’ best-performing system records
a 69% accuracy on the pairwise evaluation task.
Note that for this evaluation task, random baseline
is 50%.
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3 #HashtagWars Dataset

3.1 Data collection

The following section describes our data collec-
tion process. First, when a new episode airs
(which generally happens four nights a week), a
new hashtag will be given. We wait until the fol-
lowing morning to use the public Twitter search
API3 to collect tweets that have been posted with
the new hashtag. Generally, this returns 100-200
tweets. We wait until the following day to al-
low for as many tweets as possible to be submit-
ted. The day of the ensuing episode (i.e. on a
Monday for a hashtag that came out for a Thurs-
day episode), @midnight creates a Tumblr post4

that announces the top-10 tweets from the pre-
vious episode’s hashtag (the tweets are listed as
embedded images, as is often done for sharing
public tweets on websites). If they’re not already
present, we add the tweets from the top-10 to our
existing list of tweets for the hashtag. We also
perform automated filtering to remove redundant
tweets. Specifically, we see that the text of tweets
(aside from hashtags and user mentions) are not
the same. The need for this results from the fact
that some viewers submit identical tweets.

Using both the @midnight official Tumblr ac-
count, as well as the show’s official website where
the winning tweet is posted, we annotate each
tweet with labels 0, 1 and 2. Label 2 desig-
nates the winning tweet. Thus, the label 2 only
occurs once for each hashtag. Label 1 indicates
that the tweet was selected as a top-10 tweet (but
not the winning tweet) and label 0 is assigned for
all other tweets. It is important to note that every
time we collect a tweet, we must also collect its
tweet ID. While this was initially done to comply
with Twitter’s terms of use5, which disallows the
public distribution of users’ tweets, The presence
of tweet IDs allows us to easily handle the eval-
uation process when referencing tweets (see Sec-
tion 4). The need to determine the tweet IDs for
tweets that weren’t found in the initial query (i.e.
tweets added from the top 10) makes the data col-
lection process slightly laborious, since the top-10
list doesn’t contain the tweet ID. In fact, it doesn’t
even contain the text itself since it’s actually an

3https://dev.twitter.com/rest/public/
search

4http://atmidnightcc.tumblr.com/
5https://dev.twitter.com/overview/

terms

image.

3.1.1 A Semi-Automated System for Data
Collection

Because the data collection process is continu-
ously repeated and requires a non-trivial amount
of human labor, we have built a helper system that
can partially automate the process of data collec-
tion. This system is organized as a website with a
convenient user interface.

On the start page the user enters the id of the
Tumblr post with the tweets in the top 10. Next,
we invoke Tesseract 6, an OCR command-line util-
ity, to recognize the textual content of the tweet
images. Using the recognized content, the system
forms a webpage on which the user can simultane-
ously see the text of the tweets as well as the orig-
inal images. On this page, the user can query the
Twitter API to search by text, or click the button
”Open twitter search” to open the Twitter Search
page if the API returns zero results. We note that
the process is not fully automated because a given
text query can we return redundant results, and we
primarily check to make sure we add the tweet that
came from the appropriate user. With the help of
this system, the process of collecting the top-10
tweets (along with their tweet IDs) takes roughly
2 minutes. Lastly, we note that the process for an-
notating the winning tweet (which is already in-
cluded in the top-10 posted in the Tumblr list) is
currently manual, because it requires going to the
@midnight website. This is another aspect of the
data collection system that could potentially be au-
tomated.

3.2 Dataset
Data collection occurred for roughly eight months,
producing a total of 12,734 tweets for 112 hash-
tags. The resulting dataset is what we used for the
task.

The distribution of the number of tweets per
hashtag is represented in Figure 1. For 71% of
hashtags, we have at least 90 tweets. The files of
the individual hashtags are formatted so that the
individual hashtag tokens are easily recoverable.
Specifically, tokens are separated by the ‘ ’ char-
acter. For example, the hashtag FastFoodBooks
has the file name “fast food books.tsv”.

Figure 2 represents an example of the tweets
collected for the hashtag FastFoodBooks. Ob-

6https://github.com/tesseract-ocr/
tesseract
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Figure 1: Distribution of the numbers of tweets
per hashtag

serve that this hashtag requires external knowl-
edge about fast food and books in order to un-
derstand the humor. Furthermore, this hashtag
illustrates how prevalent puns are in the dataset,
especially related to certain target hashtags. In
contrast, the hashtag IfIWerePresident (see Fig-
ure 3) does not require external knowledge and
the tweets are understandable without awareness
of any specific concepts.

For the purpose of our task, we released 5
files/660 tweets as the trial data, 101 files/11,325
tweets (separate from the trial data) as the train-
ing data, and 6 files/749 tweets as the evaluation
data. The 6 evaluation files were chosen based
on the following logic: first, we examined the
results of our own systems on individual hash-
tags using leave-one-out evaluation (Potash et al.,
2016). We looked for a mixture of hashtags that
had high, average, and low performance. Sec-
ondly, we wanted a mixture of hashtags that pro-
mote different types of humor, such as puns that
use external knowledge (for example the hashtag
FastFoodBooks in Figure 3.2), or hashtags that
seek to express more general humor (for example
the hashtag IfIWerePresident in Figure 3.2).

4 Subtasks

In this task, the results are evaluated in two sub-
tasks. Subtask A requires the participants to gen-
erate the correct pairwise comparisons of tweets to
determine which tweet is funnier according to the
TV show @midnight. Subtask B asks for the cor-
rect ranking of tweets in terms of how funny they
are (again, according to @midnight).

As I Lay Dying of congestive heart failure
@midnight #FastFoodBooks
Harry Potter and the Order of the Big Mac
#FastFoodBooks @midnight
The Girl With The Jared Tattoo #FastFood-
Books @midnight
A Room With a Drive-thru @midnight #Fast-
FoodBooks

Figure 2: An example of the items in the dataset
for the hashtag FastFoodBooks that requires exter-
nal knowledge in order to understand the humor.
Furthermore, the tweets for this hashtag are puns
connecting book titles and fast food-related lan-
guage

#IfIWerePresident my Cabinet would just be
cats. @midnight
Historically, I’d oversleep and eventually get
fired. @midnight #IfIWerePresident
#IfIWerePresident I’d pardon Dad so we
could be together again... @midnight
#IfIWerePresident my estranged children
would finally know where I was @midnight

Figure 3: An example of the items in the dataset
for the hashtag IfIWerePresident that does not re-
quire external knowledge in order to understand
the humor

4.1 Subtask A: Pairwise Comparison
For the first subtask, we follow the approach taken
by Shahaf et al. (2015) and make predictions on
pairs of tweets with the goal of determining which
tweet is funnier. Using the tweets for each hashtag,
we construct pairs of tweets in which one tweet is
judged by the show to be funnier than the other.
The pairs used for evaluation are constructed as
follows:

(1) The tweets that are the top-10 funniest tweets
are paired with the tweets not in the top-10.

(2) The winning tweet is paired with the other
tweets in the top-10.

If we have n tweets for a given hashtag, (1) will
produce 10(n − 10) pairs, and (2) will produce 9
pairs, giving us 10n − 91 data points for a single
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hashtag. Constructing the pairs for evaluation in
this way ensures that one of the tweets in each pair
has been judged to be funnier than the other. We
follow Shahaf et al. and use the label 1 to denote
that the first tweet is funnier, and 0 to denote that
the second tweet is funnier. However, this labeling
is counter-intuitive to zero-indexing, and could be
changed to avoid confusion in labeling (see Sec-
tion 5).

Since we only provide teams with files contain-
ing tweet ID, tweet text, and tweet label (gold la-
bel: 0, 1, or 2), it is up to the teams to form the
appropriate pairs with the correct labels. In order
to produce balanced training data, we recommend
that the ordering of tweets in a pair be determined
by a coin-flip. At evaluation time, we provide the
teams with hashtag files with tweet id and tweet
text. We then ask the teams to provide predictions
for every possible tweet combination. Our evalua-
tion script then chooses only the tweet pairs where
two different labels are present. The pairs can be
listed in either ordering of the tweets because the
scorer accounts for the two possible orderings for
each pair. We decided against the idea of provid-
ing the appropriate pairs themselves for evaluation
because it is very easy to use frequencies of tweet
IDs in the pairs to determine overall tweet label.

The evaluation measure for subtask A is the mi-
cro average of accuracy across the individual eval-
uation hashtags. For a given hashtag, the accuracy
is the number of correctly predicted pairs divided
by the total number of pairs. Therefore, random
guessing will produce 50% accuracy on this task.

4.2 Subtask B: Ranking

The second subtask asks teams to use the same
input data for training and evaluation as subtask
A. However, whereas subtask A creates pairs of
tweets based on the labeling, subtask B asks teams
to predict the labels directly. For this dataset, the
number of tweets per class is known. Moreover,
since the labels describe a partial ordering, pre-
dicting the labels is akin to providing a ranking of
tweets in order of how funny they are. Therefore,
for subtask B, we ask the teams to provide pre-
diction files where the tweets are ranking by how
funny they are. From the provided ranking we in-
fer the labeling: the first tweet is labeled 2, the
next nine labeled 1, and the rest labeled 0.

The metric for evaluating subtask B is inspired
by a notion of edit distance, because standard clas-

sification metrics do not take into account class’
comparative rankings. Treating labels as buckets,
the metric determines, for a predicted label, how
many ‘moves’ are needed to place it in the cor-
rect bucket. For example, if the correct label is 1
and the predicted label is 0, the edit distance is 1.
Similarly, if the correct label is 0 and the predicted
label is 2, the edit distance is 2. For a given hash-
tag file, the maximum edit distance for all tweets is
22. As a result, the edit distance for a given hash-
tag file is the total number of moves for all tweets
divided by 22. This gives a normalized metric be-
tween 0 and 1 where a lower value is better. For
the final distance metric, we micro-average across
all evaluation files.

5 Results

Three teams participated only in subtask A, one
team participated only in subtask B, and four
teams participated in both subtasks. The offi-
cial results for participating teams are shown in
Tables 1 and 2 for subtasks A and B, respec-
tively. Note that due to space constraints we
use short versions of hashtag names in the tables.
Namely, “Christmas” corresponds to the hash-
tag RuinAChristmasMovie, “Shakespeare” corre-
sponds to ModernShakespeare, “Bad Job” to Bad-
JobIn5Words, “Break Up” to BreakUpIn5Words,
“Broadway” to BroadwayACeleb, and “Cereal” to
CerealSongs.

We report the results broken down by hashtag,
as well as the overall micro-average. This ta-
ble records results that were submitted to the Co-
daLab competition pages7. TakeLab (Kukovačec
et al., 2017) submitted predictions with the labels
flipped, which causes each run to appear in the ta-
ble twice. The corrected files are not given an offi-
cial ranking. After the release of the labeled evalu-
ation data, many teams reported improved results.
We have accrued these new results and combined
them with the official submission rankings to pro-
duce Tables 3 and 4. The goal of these tables is
to report the most up-to-date results on the evalu-
ation set. Moreover, all results that do not have an
official ranking in these tables are results that are
reported individually by the teams in their system
papers (except for TakeLab’s results) after the gold
evaluation labels were released.

7https://competitions.codalab.org/
competitions/15682, https://competitions.
codalab.org/competitions/15689
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Rank Team Run Hashatag AverageChristmas Shakespeare Bad Job Break Up Broadway Cereal
1 HumorHawk 2 0.673 0.789 0.704 0.723 0.643 0.492 0.675 (±0.101)

TakeLab 2 0.683 0.543 0.641 0.576 0.716 0.704 0.641 (±0.071)
2 HumorHawk 1 0.650 0.726 0.603 0.620 0.627 0.588 0.637 (±0.049)
3 DataStories 1 0.641 0.714 0.828 0.686 0.496 0.479 0.632 (±0.134)
4 Duluth 2 0.485 0.585 0.557 0.913 0.527 0.589 0.627 (±0.154)

TakeLab 1 0.575 0.550 0.620 0.563 0.603 0.689 0.597 (±0.051)
5 SRHR 1 0.520 0.451 0.606 0.505 0.550 0.524 0.523 (±0.051)
6 SVNIT 1 0.455 0.353 0.395 0.654 0.542 0.563 0.506 (±0.113)
7 TakeLab 1 0.425 0.450 0.380 0.437 0.397 0.311 0.403 (±0.051)
8 Duluth 1 0.441 0.445 0.417 0.240 0.470 0.402 0.397 (±0.083)
9 TakeLab 2 0.317 0.457 0.359 0.424 0.284 0.296 0.359 (±0.071)
10 QUB 1 0.165 0.343 0.229 0.165 0.091 0.154 0.187 (±0.086)

Average 0.529 (±0.157) 0.550 (±0.156) 0.560 (±0.171) 0.565 (±0.221) 0.527 (±0.170) 0.518 (±0.158) 0.542 (±0.150)

Table 1: The official results for the subtask A broken down by hashtag. Bold indicates the best run
for the given hashtag. “Christmas” corresponds to the hashtag RuinAChristmasMovie, “Shakespeare”
corresponds to ModernShakespeare, “Bad Job” to BadJobIn5Words, “Break Up” to BreakUpIn5Words,
“Broadway” to BroadwayACeleb, and “Cereal” to CerealSongs.

Rank Team Run Hashatag AverageChristmas Shakespeare Bad Job Break Up Broadway Cereal
1 Duluth 2 0.818 0.909 1.000 0.636 1.000 0.909 0.872 (±0.137)
2 TakeLab 1 0.909 0.909 1.000 0.818 1.000 0.818 0.908 (±0.081)
3 QUB 1 0.818 0.909 0.818 1.000 1.000 0.909 0.924 (±0.081)
3 QUB 2 0.818 0.909 0.818 1.000 1.000 0.909 0.924 (±0.081)
5 SVNIT 2 0.818 1.000 0.909 1.000 1.000 0.818 0.938 (±0.089)
6 TakeLab 2 0.818 1.000 1.000 0.909 1.000 0.909 0.944 (±0.074)
7 SVNIT 1 1.000 0.818 1.000 0.909 1.000 1.000 0.949 (±0.076)
8 Duluth 1 1.000 1.000 1.000 1.000 0.909 0.909 0.967 (±0.047)
9 #WarTeam 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (±0.000)

Average 0.889 (±0.088) 0.939 (±0.064) 0.949 (±0.08) 0.919 (±0.124) 0.990 (±0.030) 0.909 (±0.064) 0.936 (±0.036)

Table 2: The official results for the subtask B broken down by hashtag. Bold indicates the best run
for the given hashtag. “Christmas” corresponds to the hashtag RuinAChristmasMovie, “Shakespeare”
corresponds to ModernShakespeare, “Bad Job” to BadJobIn5Words, “Break Up” to BreakUpIn5Words,
“Broadway” to BroadwayACeleb, and “Cereal” to CerealSongs.

6 Discussion

6.1 Task Analysis

The last row of Table 1 shows the average ac-
curacy of each hashtag across all systems (the
official results of the TakeLab systems are not
included in this average since we also include
in the average the unofficial, corrected results).
The two easiest hashtags are ones that require
less external knowledge compared to the other
four. These four hashtags specifically riff on a
particular Christmas movie, Shakespeare quote,
celebrity/Broadway play, or cereal/song. Conse-
quently, one single system did best in three out of
four of these hashtags (TakeLab). It is not coin-
cidence, since this system made extensive use of
external knowledge bases. Furthermore, the three
hashtags where it did best required knowledge of
specific entities, whereas the knowledge required
in the hashtag ModernShakespeare is the actual
lines from Shakespeare plays.

As we mentioned in Section 3.2, the evaluation

hashtags were chosen partly because of our own
system performance on the hashtags (Potash et al.,
2016). One of the most difficult hashtags from our
initial experiments was the hashtag CerealSongs,
which was the hashtag systems performed the
worse on in this task. We believe this is because
the humor in this hashtag is based on two sources
of external knowledge: cereals and songs. Cor-
respondingly, the hashtag with the second worse
performance also requires two sources of external
knowledge: Broadway plays and celebrities (this
hashtag was originally chosen as a representative
of the hashtags our systems recorded average per-
formance). The hashtag BadJobIn5Words was one
that had high performance by our own systems,
and that continued in this task. This hashtag had
the second highest accuracy, and would have had
the highest if the Duluth team (Yan and Pedersen,
2017) did not have such remarkable success on the
highest accuracy hashtag, BreakUpIn5Words.

The poor performance for the hashtags Cere-
alSongs and BroadwayACeleb is also interesting
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Official Ranking Team Accuracy Notes
SVNIT 0.751 An SVM classifier with incongruity, ambiguity, and stylistic features
DataStories 0.711 Siamese biderectional LSTM with attention
HumorHawk 0.683 Embedding/Character Joint Humor Model

1 HumorHawk 0.675 XGBoost ensemble of feature-based and emedding models
TakeLab 0.641 Gradient boosting classifier with a rich set of features, including cultural references

2 HumorHawk 0.637 Embedding/Character Joint Humor Model
3 DataStories 0.632 Siamese biderectional LSTM with attention
4 Duluth 0.627 Trigram language model (news dataset)

SRHR 0.564 Random Forest classifier with word association and sematic relatedness features
5 SRHR 0.523 Random Forest classifier with word association and sematic relatedness features
6 SVNIT 0.506 Multilayer perceptron with incongruity, ambiguity, and stylistic features
7 TakeLab 0.403 Gradient boosting classifier with a rich set of features, including cultural references (reversed labels)
8 Duluth 0.397 Trigram language model (tweets dataset)
9 TakeLab 0.359 Gradient boosting classifier with a rich set of features, including cultural references (reversed labels)
10 QUB 0.187 A set of imblanaced classifiers with n-gram features

Table 3: Unofficial results for the subtask A on the released evaluation set reported by the participating
teams

Official Ranking Team Score Notes
Duluth 0.853 Bigram language model (news dataset)

1 Duluth 0.872 Trigram language model (news dataset)
2 TakeLab 0.908 Gradient boosting classifier with a rich set of features, including cultural references
3 QUB 0.924 A set of imblanaced classifiers with n-gram features
3 QUB 0.924 A set of imblanaced classifiers with n-gram features
5 SVNIT 0.938 Multilayer perceptron with incongruity, ambiguity, and stylistic features
6 TakeLab 0.944 Gradient boosting classifier with a rich set of features, including cultural references
7 SVNIT 0.949 A Naive Bayes classifier with incongruity, ambiguity, and stylistic features
8 Duluth 0.967 Trigram language model (tweets dataset)
9 #WarTeam 1.000 A word-based voting algorithm of a Naive Bayes and neural network word scorers

Table 4: Unofficial results for the subtask B on the released evaluation set reported by the participating
teams

to note since they were chosen because the hash-
tag names had strong similarity to hashtags in the
training data. For example, 12 hashtags in the
training data had the word ‘Song’. Likewise, five
hashtags had the word ‘Celeb’, and there was one
more hashtag with the word ‘Broadway’. Alterna-
tively, The two hashtags with the best performance
followed the ‘X in X words’ format, for which
there were 16 such hashtags in the training data.
Regarding the hashtag BadJobIn5Words, there are
six hashtags in the training data beginning with the
word ‘Bad’.

Our current task analysis has focused on subtask
A. The primary reason for this is that the perfor-
mance on subtask B was relatively poor. To put the
results in perspective, we created random guesses
for subtask B, and these random guesses recorded
an average distance of 0.880. From the results,
only one team was able to beat this score. We can
see that two of the three highest performing teams
in subtask A did not participate in subtask B, and
the other team that did participate approached sub-
task B as a secondary task (see Section 6.2).

6.2 System Analysis

For the teams that participated in both subtasks,
they used the output of a single system to predict
for both subtasks. Two teams, SVNIT (Mahajan
and Zaveri, 2017) and QUB (Han and Toner, 2017)
, initially predicted the labels of each tweet based
on the output of a supervised classifier, and then
used these labels to both rank the tweets and make
pairwise predictions for the subtasks. Duluth took
a similar approach, but used the output of a lan-
guage model to rank the tweets, as opposed to la-
bels provided by a classifier. Conversely, TakeLab
sought to solve subtask A first, then used the fre-
quencies of a tweet being chosen as funnier in a
pair to provide a single, ordered metric to make
predictions for subtask B. The team that only par-
ticipated in subtask B, #WarTeam, also used the
output of a supervised classifier to label the tweets,
which in turn provided the ranking. One of inter-
esting results from having the two subtasks (which
are effectively two different ways of evaluating the
same overall task) is to see how it distinguishes
the unified approaches to solving both subtasks.
We can see that, in fact, the top team is not con-
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sistent between the two subtasks. It is not a sur-
prise to see that the best performing team (out of
the four that participated in both subtasks) in sub-
task A was TakeLab, who focused primarily on
this task. Conversely, TakeLab finished second in
subtask B to Duluth, who focused on creating an
ordered metric for ranking via language models.

In terms of overall system approach, we can
analyze how heavily systems rely on feature-
engineering, verse using learned representations
from neural networks. Three of the top four sys-
tems for subtask A leveraged neural network ar-
chitectures. Two of these systems used only pre-
trained word representations as external knowl-
edge for the neural network systems. This is in
opposition to other systems that relied on the out-
put of separate tools, or looking up terms in cor-
pora. Some teams, such as HumorHawk8 (Don-
ahue et al., 2017) and #WarTeam, used a com-
bination of these two types of systems, and no-
tably, the system that was ranked first in Subtask
A (HumorHawk) was an ensemble system that uti-
lized prediction from both feature-based and neu-
ral networks-based models.

As for the feature-based systems, one trend we
observed is that many teams tried to capture the in-
congruity aspect of humor (Cattle and Ma, 2017)
, often present in the dataset. The approaches
used by teams varied from n-gram language mod-
els, word association, to semantic relatedness fea-
tures. In addition, the TakeLab team used cul-
tural reference features, such as movie and song
references, and Google Trends features for named
entities. During the performed analysis, the team
found these features most useful for the model.

Considering neural network-based systems,
LSTMs were used the most, which is expected
given the sequential nature of text data. Plain
LSTM models alone, using pretrained word
embeddings, achieved competitive results, and
DataStories (Baziotis et al., 2017) ranked third us-
ing a siamese bidirectional LSTM model with at-
tention.

One key difference between the dataset used
in this task and the datasets based on the
NYCC (Radev et al., 2015; Shahaf et al., 2015)
is the presence of the hashtag. Some teams used
additional hashtag-based features in their systems.

8Two of the organizers were members of this team. They
were not involved in the data selection process. They had no
knowledge of which files were selected for evaluation, nor
how these files were chosen.

For example, humor patterns, defined by the hash-
tag, were one of the most important features for
the TakeLab team. Other teams used semantic dis-
tances between the hashtag and tweets as features.

Table 1 also includes the standard deviation of
system scores across the hashtags. Looking at the
numbers there appears to be little in the way of
a pattern regarding the standard deviation num-
bers. When correlated with system accuracy, the
results is 0.11, which supports the idea that consis-
tency across the hashtags has no relation to over-
all system performance. Even between the two
purest neural network-based systems, DataStories
and HumorHawk run 1, the standard deviations
vary greatly: 0.134 (DataStories) and 0.049 (Hu-
morHawk run 1). In fact, 0.049 was the low-
est standard deviation across all systems. Duluth
recorded the highest standard deviation across the
datasets, primarily due to the fact that it had the
single highest accuracy on any hashtag (0.913 for
the hashtag BreakUpIn5Words), as well as the low-
est single hashtag score for any system with an
overall accuracy greater than 0.600 (0.485 for the
hashtag RuinAChristmasMovie). One possibility
for this high standard deviation is that this is the
only unsupervised system. However, the other run
submitted by Duluth (whose primary difference is
that its language model was trained on a dataset
of tweets as opposed to news articles) has a both
a significantly lower accuracy and standard devia-
tion.

7 Conclusion

We have presented the results of the SemEval
2017 shared task: #HashtagWars: Learning a
Sense of Humor. It was the first year this task
was presented, attracting 8 teams and 19 systems
across two substasks. The top performing systems
achieved 0.675 accuracy in subtask A and 0.872
score on subtask B, advancing the difficult task
of humor understanding. Interestingly, the top-
ranked system used an ensemble of both feature-
based and neural network-based systems, suggest-
ing that despite the overwhelming success of neu-
ral networks in the past few years, human intuition
is still important for systems that seek to automat-
ically understand humor.
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Abstract

Apun is a form of wordplay in which aword
suggests two or more meanings by exploit-
ing polysemy, homonymy, or phonological
similarity to another word, for an intended
humorous or rhetorical effect. Though a
recurrent and expected feature in many dis-
course types, puns stymie traditional ap-
proaches to computational lexical semantics
because they violate their one-sense-per-
context assumption. This paper describes
the first competitive evaluation for the auto-
matic detection, location, and interpretation
of puns. We describe the motivation for
these tasks, the evaluation methods, and
the manually annotated data set. Finally,
we present an overview and discussion of
the participating systems’ methodologies,
resources, and results.

1 Introduction
Word sense disambiguation (WSD), the task of
identifying a word’s meaning in context, has long
been recognized as an important task in compu-
tational linguistics, and has been the focus of a
considerable number of Senseval/SemEval evalu-
ation tasks. Traditional approaches to WSD rest
on the assumption that there is a single, unambigu-
ous communicative intention underlying each word
in the document. However, there exists a class
of language constructs known as puns, in which
lexical-semantic ambiguity is a deliberate effect
of the communication act. That is, the speaker or
writer intends for a certain word or other lexical
item to be interpreted as simultaneously carrying
two or more separate meanings. Though puns are a
recurrent and expected feature in many discourse

types, they have attracted relatively little attention
in the fields of computational linguistics and nat-
ural language processing in general, or WSD in
particular. In this document, we describe a shared
task for evaluating computational approaches to the
detection and semantic interpretation of puns.
A pun is a form of wordplay in which one sign

(e.g., a word or phrase) suggests two or more mean-
ings by exploiting polysemy, homonymy, or phono-
logical similarity to another sign, for an intended hu-
morous or rhetorical effect (Aarons, 2017; Hempel-
mann and Miller, 2017). For example, the first of
the following two punning jokes exploits the sound
similarity between the surface sign “propane” and
the latent target “profane”, while the second exploits
contrasting meanings of the word “interest”:

(1) When the church bought gas for their annual
barbecue, proceeds went from the sacred
to the propane.

(2) I used to be a banker but I lost interest.

Puns where the two meanings share the same pro-
nunciation are known as homophonic or perfect,
while those relying on similar- but not identical-
sounding signs are known as heterophonic or im-
perfect. Where the signs are considered as written
rather than spoken sequences, a similar distinction
can be made between homographic and hetero-
graphic puns.
Conscious or tacit linguistic knowledge—

particularly of lexical semantics and phonology—is
an essential prerequisite for the production and in-
terpretation of puns. This has long made them an
attractive subject of study in theoretical linguistics,
and has led to a small but growing body of research
into puns in computational linguistics. Most compu-
tational treatments of puns to date have focused on
generative algorithms (Binsted and Ritchie, 1994,
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1997; Ritchie, 2005; Hong and Ong, 2009; Waller
et al., 2009; Kawahara, 2010) or modelling their
phonological properties (Hempelmann, 2003a,b).
However, several studies have explored the detection
and interpretation of puns (Yokogawa, 2002; Taylor
and Mazlack, 2004; Miller and Gurevych, 2015;
Kao et al., 2015; Miller and Turković, 2016; Miller,
2016); the most recent of these focus squarely on
computational semantics. In this paper, we present
the first organized public evaluation for the compu-
tational processing of puns.

We believe computational interpretation of puns
to be an important research question with a number
of real-world applications. For example:

• It has often been argued that humour
can enhance human–computer interaction
(HCI) (Hempelmann, 2008), and at least one
study (Morkes et al., 1999) has already shown
that incorporating canned humour into a user
interface can increase user satisfaction with-
out adversely affecting user efficiency. An
interactive system that is able to recognize and
produce contextually appropriate responses
to users’ puns could further enhance the HCI
experience.

• Recognizing humorous ambiguity is also im-
portant in machine translation, particularly
for sitcoms and other comedic works, which
feature puns and other forms of wordplay as
a recurrent and expected feature (Schröter,
2005). Puns can be extremely difficult for
non-native speakers to detect, let alone trans-
late. Future automatic translation aids could
scan source texts, flagging potential puns for
special attention, and perhaps even propos-
ing ambiguity-preserving translations that best
match the original pun’s double meaning.

• Wordplay is a perennial topic of scholarship
in literary criticism and analysis, with entire
books (e.g., Wurth, 1895; Rubinstein, 1984;
Keller, 2009) having been dedicated to cata-
loguing the puns of certain authors. Computer-
assisted detection and classification of puns
could help digital humanists in producing sim-
ilar surveys of other œuvres.

2 Data sets

The pun processing tasks at SemEval-2017 used
two manually annotated data sets, both of which

we are freely releasing to the research community.1
Our first data set, containing English homo-

graphic puns, is based on the one described by
Miller and Turković (2016) and Miller (2016).2 It
contains punning and non-punning jokes, apho-
risms, and other short, self-contained contexts
sourced from professional humorists and online
collections. For the purposes of deciding which
contexts contain a pun, we used a somewhat weaker
definition of homography: the lexical units corre-
sponding to a pun’s two distinct meanings must be
spelled exactly the same way, with the exception
that inflections and particles (e.g., the prepositions
or dummy object pronouns in phrasal verbs such
as “duke it out”) may be disregarded. The contexts
have the following characteristics:

• Each context contains a maximum of one pun.

• Each pun (and its latent target) contains exactly
one content word (i.e., a noun, verb, adjective,
or adverb) and zero or more non-content words
(e.g., prepositions or articles). Here “word” is
defined as a sequence of letters delimited by
space or punctuation. This means that puns
and targets do not include hyphenated words,
and they do not consist of multi-word expres-
sions containing more than one content word,
such as “get off the ground” or “state of the art”.
Puns and targets may be multi-word expres-
sions containing only one content word—this
includes phrasal verbs such as “take off” or
“put up with”.

• Each pun (and its target) has a lexical entry in
WordNet 3.1. However, the sense of the pun or
the target may or may not exist in WordNet 3.1.

The homographic data set contains 2250 contexts,
of which 1607 (71%) contain a pun. Sense annota-
tion was carried out by three trained human judges,
two of whom independently applied sense keys
from WordNet 3.1. Each pun word was annotated
with two sets of sense keys, one for each meaning
of the pun. As in previous Senseval/SemEval word
sense annotation tasks, annotators were permitted
to select more than one sense key per meaning,
or to indicate that the meaning was not listed in

1https://www.ukp.tu-darmstadt.de/data/sense-
labelling-resources/sense-annotated-english-
puns/

2The only significant difference is that we removed several
hundred of the contexts not containing puns and added them
to our new heterographic data set.
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words / context
pun type subtask contexts words min mean max

homographic detection 2 250 24 499 2 10.9 44
homographic location 1 607 18 998 3 11.8 44
homographic interpretation 1 298 15 510 3 11.9 44
heterographic detection 1 780 19 461 2 10.9 69
heterographic location 1 271 15 145 3 11.9 69
heterographic interpretation 1 098 13 258 3 12.1 69

Table 1: Data set statistics

WordNet. Interannotator agreement, as measured
by Krippendorff’s (1980) α and a variation of the
MASI set comparison metric (Passonneau, 2006;
Miller, 2016), was 0.777. Disagreements were
resolved automatically by taking the intersection of
the corresponding sense sets; for contexts where
this was not possible, the third judge manually adju-
dicated the disagreements. Of the 1607 puns, 1298
(81%) have both meanings in WordNet.

The second data set is similar to the first, except
that the puns are heterographic rather than homo-
graphic. It was constructed in a similar manner,
including the use of two annotators and an adju-
dicator. However, as heterographic puns have an
extra level of complexity (it being sometimes nec-
essary to discuss or explain an obscure joke before
one “gets it”), the annotators were given an oppor-
tunity to resolve their disagreements themselves
before passing the remainder on to the adjudicator.
Pre-adjudication agreement for the sense annota-
tions was α = 0.838. The final data set contains
1780 contexts, of which 1271 (71%) contain a pun.
Of the puns, 1098 (86%) have both meanings in
WordNet.

As described in the following section, the two
data sets are used in three subtasks—pun detection,
pun location, and pun interpretation. The pun
detection subtask uses the full data sets, while the
other two subtasks use subsets of the full data sets.
Table 1 presents some statistics on the size of each
subtask’s data set in terms of the number of contexts
and word tokens.

3 Task definition

Participating systems competed in any or all of the
following three subtasks, evaluated consecutively.
Within each subtask, participants had the choice of
running their system on either or both data sets.

Subtask 1: Pun detection. For this subtask, par-
ticipants were given an entire raw data set. For each
context in the data set, the system had to decide
whether or not it contains a pun. For example, take
the following two contexts:
(2) I used to be a banker but I lost interest.
(3) What if there were no hypothetical ques-

tions?
For (2), the system should have returned “pun”,
whereas for (3) the system should have returned
“non-pun”.

Systems had to classify all contexts in the data set.
Scores were calculated using the standard precision,
recall, accuracy, and F-score measures as used in
classification (Manning et al., 2008, §8.3):

P =
TP

TP + FP

R =
TP

TP + FN

A =
TP + TN

TP + TN + FP + FN

F1 =
2PR

P + R
where TP, TN , FP, and FN are the numbers of true
positives, true negatives, false positives, and false
negatives, respectively.

Subtask 2: Pun location. For this subtask, the
contexts not containing puns were removed from
the data sets. For any or all of the contexts, systems
had to make a single guess as to which word is
the pun. For example, given context (2) above, the
system should have indicated that the tenth word,
“interest”, is the pun.

Scores were calculated using the standard cover-
age, precision, recall, and F-score measures as used
in word sense disambiguation (Palmer et al., 2007):

C =
# of guesses
# of contexts
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P =
# of correct guesses

# of guesses

R =
# of correct guesses

# of contexts

F1 =
2PR

P + R
.

Note that, according to the above definitions, it
is always the case that P ≥ R, and F1 = P = R
whenever P = R.

Subtask 3: Pun interpretation. For this subtask,
the punword in each context ismarked, and contexts
where the pun’s two meanings are not found in
WordNet are removed from the data sets. For any or
all of the contexts, systems had to annotate the two
meanings of the given pun by reference to WordNet
sense keys. For example, given context (2), the
system should have returned the WordNet sense
keys interest%1:09:00:: (glossed as “a sense
of concern with and curiosity about someone or
something”) and interest%1:21:00:: (“a fixed
charge for borrowing money; usually a percentage
of the amount borrowed”).
As with the pun location subtask, scores were

calculated using the coverage, precision, recall, and
F-score measures from word sense disambiguation.
A guess is considered to be “correct” if one of
its sense lists is a non-empty subset of one of the
sense lists from the gold standard, and the other of
its sense lists is a non-empty subset of the other
sense list from the gold standard. That is, the order
of the two sense lists is not significant, nor is the
order of the sense keys within each list. If the gold
standard sense lists contain multiple senses, then it
is sufficient for the system to correctly guess only
one sense from each list.

4 Baselines
For each subtask, we provide results for various
baselines:

Pun detection. The only baseline we use for this
subtask is a random classifier. It makes no as-
sumption about the underlying class distribution,
labelling each context as “pun” or “non-pun” with
equal probability. On average, its recall and accu-
racy will therefore be 0.5, and its precision equal
to the proportion of contexts containing puns.

Pun location. For this subtask we present the
results of three naïve baselines. The first simply
selects one of the context words at random. The

second baseline always selects the last word of the
context as a pun. It is informed by empirical studies
of large joke corpora, which have found that punch-
lines tend to occur in a terminal position (Attardo,
1994). The third baseline is a slightly more sophis-
ticated pun location baseline inspired by Mihalcea
et al. (2010). In that study, genuine joke punchlines
were selected among several non-humorous alterna-
tives by finding the candidate whose words have the
highest mean polysemy. We adapt this technique
by selecting as the pun the word with the highest
polysemy (counting together senses from all parts
of speech). In the case of a tie, we choose the most
polysemous word nearest to the end of the context.

Pun interpretation. Following the practice in
traditional word sense disambiguation, we present
the results of the random and most frequent sense
baselines, as adapted to pun annotation.
The random baseline attempts to lemmatize the

pun word, looks it up in WordNet, and selects two
of its senses at random, one for each meaning of
the pun. It scores

P = R =
1
n

n∑
i=1

Gi
1 · G

i
2(Si

2
) ,

where n is the number of contexts, Gi
j is the number

of gold-standard sense keys in the jth meaning of
the pun word in context i, and Si is the number of
sense keys WordNet contains for the pun word in
context i. We compute the random baseline only
for the homographic data set. (It would in principle
be adaptable to the heterographic data set, though
the large number of potential target words means
the scores would be negligible.)
The most frequent sense (MFS) baseline is a

supervised baseline in that it depends on a man-
ually sense-annotated background corpus. As its
name suggests, it involves always selecting from the
candidates that sense that has the highest frequency
in the corpus. For the homographic data set, our
MFS implementation attempts to lemmatize the
pun word (if necessary, building a list of candidate
lemmas) and then selects the two most frequent
senses of these lemmas according to WordNet’s
built-in sense frequency counts.3 For the hetero-
graphic data set, only the first sense is selected
from the list of candidate lemmas. A second list is
constructed by finding all other lemmas inWordNet

3These counts come from the SemCor (Miller et al., 1993)
corpus.
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with the minimum Levenshtein (1966) distance to
the lemmas in the first list. The most frequent sense
of the lemmas in the second list is selected as the
second meaning of the pun.
In addition to the two naïve baselines, we also

provide scores for the homographic pun interpre-
tation system described by Miller and Gurevych
(2015). This system works by running each pun
through a variation of the Lesk (1986) algorithm
that scores each candidate sense according to the
lexical overlap with the pun’s context. The two
top-scoring senses are then selected; in case of ties,
the system attempts to select senses which are not
closely related to each other, and at least one of
whose parts of speech matches the one applied to
the pun by a POS tagger.

The baseline pun interpretation scores presented
in this paper differ slightly from those given in
Miller and Gurevych (2015) and Miller (2016).
This is because the scoring program used in those
studies compared sense keys on the basis of their
underlyingWordNet synsets, whereas in this shared
task the sense keys are compared directly.

5 Participating systems
Our shared task saw participation from ten systems:

BuzzSaw (Oele and Evang, 2017). BuzzSaw as-
sumes that each meaning of the pun will ex-
hibit high semantic similarity with one and
only one part of the context. The system’s
approach to homographic pun interpretation
is to compute the semantic similarity between
the two halves of every possible contiguous,
binary partitioning of the context, retaining the
partitioning with the lowest similarity between
the two parts. A Lesk-like WSD algorithm
based on word and sense embeddings is then
used to disambiguate the pun word separately
with respect to each part of the context.
The pun interpretation system is also used for
homographic pun location. First, the interpre-
tation system is run once for each polysemous
word in the context. The word whose two
disambiguated senses have maximum cosine
distance between their sense embeddings is
selected as the pun word.

Duluth (Pedersen, 2017). For pun detection, the
Duluth system assumes that all-words WSD
systems will have difficulties in consistently
assigning sense labels to contexts containing

puns. The system therefore disambiguates
each context with four slightly different config-
urations of the same WSD algorithm. If more
than two sense labels differ across runs, the
context is assumed to contain a pun. For pun
location, the system selects the word whose
sense label changed across runs; if multiple
words changed senses, then the system selects
the one closest to the end of the context.
Homographic pun interpretation is carried out
by running various configurations of aWSD al-
gorithm on the pun word and selecting the two
most frequently returned senses. For hetero-
graphic puns, the system attempts to recover
the target form either by generating a list of
WordNet lemmas with minimal edit distance
to the pun word, or by querying the Datamuse
API for words with similar spellings, pronun-
ciations, and meanings. WSD algorithms are
then run separately on the pun and the set of
target candidates, with the best matching pun
and target senses retained.

ECNU (Xiu et al., 2017). ECNU uses a super-
vised approach to pun detection. The au-
thors collected a training set of 60 homo-
graphic and 60 heterographic puns, plus 60
proverbs and famous sayings, from various
Web sources. The data is then used to train a
classifier, using features derived from Word-
Net and word2vec embeddings. The ECNU
pun locator is knowledge-based, determining
each context word’s likelihood of being the
pun on the basis of the distance between its
sense vectors, or between its senses and the
context.

ELiRF-UPV (Hurtado et al., 2017). This sys-
tem’s approach to homographic pun location
rests on two hypotheses: that the pun will
be semantically very similar to one of the
non-adjacent words in the sentence, and that
the pun will be located near the end of the
sentence. The system therefore calculates the
similarity between every pair of non-adjacent
words in the context using word2vec, retaining
the pair with the highest similarity. The word
in the pair that is closer to the end of the
context is selected as the pun.
To interpret homographic puns, ELiRF-UPV
first finds the two context words whose word
embeddings are closest to that of the pun.
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Then, for each context word, the system builds
a bag-of-words representation for each of its
candidate senses, and for each of the pun
word’s candidate senses, using information
from WordNet. The lexical overlap between
every pair of pun and context senses is cal-
culated, and the pun sense with the highest
overlap is selected as one of the meanings of
the pun.

Fermi (Indurthi and Oota, 2017). Fermi takes a
supervised approach to the detection of homo-
graphic puns. Unlike ECNU, the authors did
not construct their own data set of puns, but
rather split the shared task data set into sep-
arate training and test sets, the first of which
they manually annotated. A bi-directional
RNN then learns a classification model, using
distributed word embeddings as input features.
Fermi’s approach to pun location is a
knowledge-based approach similar to that of
ELiRF-UPV. For every pair of words in the
context, a similarity score is calculated on the
basis of the maximum pairwise similarity of
their WordNet synsets. In the highest-scoring
pair, the word closest to the end of the context
is selected as the pun.

Idiom Savant (Doogan et al., 2017). Idiom Sa-
vant uses a variety of different methods de-
pending on the subtask and pun type, butwhich
are generally based on Google n-grams and
word2vec. Target recovery in heterographic
puns involves computing phonetic distance
with the aid of the CMU Pronouncing Dictio-
nary. Uniquely among participating systems,
Idiom Savant attempts to flag and specially
process TomSwifties, a genre of punning jokes
commonly seen in the test data.

JU_CSE_NLP (Pramanick and Das, 2017). As
a supervised approach, JU_CSE_NLP relies
on a manually annotated data set of 413
puns sourced by the authors from Project
Gutenberg. The data is used to train a
hidden Markov model and cyclic dependency
network, using features from a part-of-speech
tagger and a syntactic parser. The classifiers
are applied to the pun detection and location
subtasks.

PunFields (Mikhalkova and Karyakin, 2017).
PunFields uses separate methods for pun

detection, location, and interpretation; central
to all of them is the notion of semantic fields.
The system’s approach to pun detection
is a supervised one, with features being
vectors tabulating the number of words in the
context that appear in each of the 34 sections
of Roget’s Thesaurus. For pun location,
PunFields uses a weakly supervised approach
that scores candidates on the basis of their
presence in Roget’s sections, their position
within the context, and their part of speech.

For pun interpretation, the system partitions
the context on the basis of semantic fields,
and then selects as the first sense of the pun
the one whose WordNet gloss has the greatest
number of words in common with the first
partition. For homographic puns, the second
sense selected is the one with the highest fre-
quency count in WordNet (or the next-highest
frequency count, in case the first selected sense
already has the highest frequency). For hetero-
graphic puns, a list of candidate target words is
produced using Damerau-Levenshtein (1964)
distance. Among their corresponding Word-
Net senses, the system selects the one whose
definition has the highest lexical overlap with
the second partition.

UWaterloo (Vechtomova, 2017). UWaterloo is a
rule-based pun locator that scores candidate
words according to eleven simple heuristics.
These heuristics involve the position of the
word within the context or relative to certain
punctuation or function words, the word’s in-
verse document frequency in a large reference
corpus, normalized pointwise mutual informa-
tion (PMI) with other words in the context,
and whether the word exists in a reference set
of homophones and similar-sounding words.
Only words in the second half of the context
are scored; in the event of a tie, the system
chooses the word closer to the end of the
context.

UWAV (Vadehra, 2017). UWAV participated in
the pun detection and location subtasks. The
detection component is another supervised
system, taking the votes of three classifiers
(support vector machine, naïve Bayes, and
logistic regression) trained on lexical-semantic
and word embedding features of a manually
annotated data set.
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For pun location, UWAV splits the context in
half and checkswhether anyword in the second
half is in some predefined lists of homonyms,
homophones, and antonyms. If so, one of
those words is selected as the pun. Otherwise,
word2vec similarity is calculated between ev-
ery pair of words in the context. In the highest-
scoring word pair, the word closest to the end
of the context is selected.

One further team submitted answers after the
official evaluation period was over:

N-Hance (Sevgili et al., 2017). The N-Hance sys-
tem assumes every pun has a particularly
strong association with exactly one other word
in the context. To detect and locate puns,
then, it calculates the PMI between every pair
of words in the context. If the PMI of the
highest-scoring pair exceeds a certain thresh-
old relative to the other pairs’ PMI scores, then
the context is assumed to contain a pun, with
the pun being the word in the pair closest to
the end of the context. Otherwise, the context
is assumed to have no pun.

For homographic pun interpretation, the first
sense is selected by finding the maximum over-
lap between the candidate sense definitions
and the pun’s context. N-Hance then finds
the word in the context that has the highest
PMI score with the pun. The system selects as
the second sense of the pun that sense whose
synonyms have the greatest word2vec cosine
similarity with the paired word.

6 Results and analysis
Tables 2 through 4 show the results for each of
the three subtasks and two data sets. Results for
the participating systems are shown in the upper
section of each table; the lower section shows the
baselines and the N-Hance system entered out of
competition. Pun detection results for ECNU and
Fermi are also in the non-competition section, since
their training data, by accident or design, included
some contexts from the test data. To calculate the
pun detection scores for these two systems, we
first removed the overlapping contexts from the test
set.4 The PunFields pun locator is also marked

4Two further supervised pun detection systems, UWAV
and Punfields, were found to have inadvertently used training
contexts that also appear in the test data. In these two cases,
however, the authors removed the overlapping contexts from

as it makes use of POS frequency counts of the
homographic data set that were published in Miller
and Gurevych (2015).

For each metric, the result of the best-performing
participating system is shown in boldface. Where a
baseline or non-competition entry matched or out-
performed the best participating system, its result
is also shown in boldface. Generally only the best-
scoring run submitted by each system is shown;5 we
have made an exception for Duluth’s Datamuse- and
edit distance–based pun interpretation variations
(“DM” and “ED”, respectively), neither of which
outperformed the other on all metrics.

Subtask 1: Pun detection. No one system
emerged as the clear winner for this subtask, mak-
ing it hard to draw conclusions on what approaches
work best. Among the participating systems for
the homographic data set, Punfields achieved the
highest precision (0.7993), JU_CSE_NLP the high-
est recall (0.9079), and Duluth the highest accu-
racy and F-score (0.7364 and 0.8254, respectively).
N-Hance equalled or outperformed the participat-
ing systems on recall, accuracy, and F-score. For the
heterographic data set, Idiom Savant had the highest
precision, accuracy, and F-score (0.8704, 0.7837,
and 0.8439, respectively), while JU_CSE_NLP
achieved the best recall (0.9402). N-Hance per-
formed about as well as Idiom Savant in terms of
F-Score (0.8440). For both data sets, all systems
outperformed the random baseline.

Subtask 2: Pun location. The last word baseline
(F1 = 0.4704 and 0.5704 for homographic and
heterographic puns, respectively) turned out to be
surprisingly hard to beat for this subtask. For the
homographic data set, this baseline was exceeded
only by Idiom Savant (F1 = 0.6631) and UWaterloo
(F1 = 0.6523). For the heterographic puns, it
was bested only by Idiom Savant (F1 = 0.6845),
UWaterloo (F1 = 0.7964), and N-Hance (F1 =

0.6553).
Idiom Savant was not the only system to measure

semantic relatedness via word2vec, though it was
the only one to do so with n-grams from a large
background corpus. It was also the only system
to directly (albeit simplistically) measure phonetic

their training data, retrained their systems, and submitted new
results, which we report here.

5Participants were permitted to submit the results of up
to two runs for each subtask and data set. The intention was
to allow participants the opportunity to fix problems in the
formatting of their output files, or to try minor variations of
the same system.
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homographic heterographic
system P R A F1 P R A F1

Duluth 0.7832 0.8724 0.7364 0.8254 0.7399 0.8662 0.6871 0.7981
Idiom Savant — — — — 0.8704 0.8190 0.7837 0.8439
JU_CSE_NLP 0.7251 0.9079 0.6884 0.8063 0.7367 0.9402 0.7174 0.8261
PunFields 0.7993 0.7337 0.6782 0.7651 0.7580 0.5940 0.5747 0.6661
UWAV 0.6838 0.4723 0.4671 0.5587 0.6523 0.4178 0.4253 0.5094

random 0.7142 0.5000 0.5000 0.5882 0.7140 0.5000 0.5000 0.5882
ECNU* 0.7127 0.6474 0.5628 0.6785 0.7807 0.6761 0.6333 0.7247
Fermi† 0.9024 0.8970 0.8533 0.8997 — — — —
N-Hance 0.7553 0.9334 0.7364 0.8350 0.7725 0.9300 0.7545 0.8440

Table 2: Pun detection results

homographic heterographic
system C P R F1 C P R F1

BuzzSaw 1.0000 0.2775 0.2775 0.2775 — — — —
Duluth 1.0000 0.4400 0.4400 0.4400 1.0000 0.5311 0.5311 0.5311
ECNU 1.0000 0.3373 0.3373 0.3373 1.0000 0.5681 0.5681 0.5681
ELiRF-UPV 1.0000 0.4462 0.4462 0.4462 — — — —
Fermi 1.0000 0.5215 0.5215 0.5215 — — — —
Idiom Savant 0.9988 0.6636 0.6627 0.6631 1.0000 0.6845 0.6845 0.6845
JU_CSE_NLP 1.0000 0.3348 0.3348 0.3348 1.0000 0.3792 0.3792 0.3792
PunFields‡ 1.0000 0.3279 0.3279 0.3279 1.0000 0.3501 0.3501 0.3501
UWaterloo 0.9994 0.6526 0.6521 0.6523 0.9976 0.7973 0.7954 0.7964
UWAV 1.0000 0.3410 0.3410 0.3410 1.0000 0.4280 0.4280 0.4280

random 1.0000 0.0846 0.0846 0.0846 1.0000 0.0839 0.0839 0.0839
last word 1.0000 0.4704 0.4704 0.4704 1.0000 0.5704 0.5704 0.5704
max. polysemy 1.0000 0.1798 0.1798 0.1798 1.0000 0.0110 0.0110 0.0110
N-Hance 0.9956 0.4269 0.4250 0.4259 0.9882 0.6592 0.6515 0.6553

Table 3: Pun location results

homographic heterographic
system C P R F1 C P R F1

BuzzSaw 0.9761 0.1563 0.1525 0.1544 — — — —
Duluth (DM) 0.8606 0.1683 0.1448 0.1557 0.9791 0.0009 0.0009 0.0009
Duluth (ED) 0.9992 0.1480 0.1479 0.1480 0.9262 0.0315 0.0291 0.0303
ELiRF-UPV 0.9646 0.1014 0.0978 0.0996 — — — —
Idiom Savant 0.9900 0.0778 0.0770 0.0774 0.8434 0.0842 0.0710 0.0771
PunFields 0.8760 0.0484 0.0424 0.0452 0.9709 0.0169 0.0164 0.0166

random 1.0000 0.0931 0.0931 0.0931 — — — —
MFS 1.0000 0.1348 0.1348 0.1348 0.9800 0.0716 0.0701 0.0708
Miller & Gurevych 0.6826 0.1975 0.1348 0.1603 — — — —
N-Hance 0.9831 0.0204 0.0200 0.0202 — — — —

Table 4: Pun interpretation results
*Evaluated on 2237 of the 2250 homographic contexts, and 1778 of the 1780 heterographic contexts.
†Evaluated on 675 of the 2250 homographic contexts.
‡Uses POS frequency counts from the homographic test set.
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distance using a pronunciation dictionary, and the
only system that flagged puns of a certain genre
for special processing. These features, alone or in
combination, may have contributed to the system’s
success.
UWaterloo and N-Hance were the only systems

making use of pointwise mutual information, to
which their success might be credited. Evidently
the notion of a unique “trigger” word in the context
that activates the pun is an important one to model.
UWaterloo also shares with Idiom Savant the use of
hand-crafted rules based on real-world knowledge
of punning jokes.

Subtask 3: Pun interpretation. As in the pun
detection subtask, no one approach worked best
here, at least for the homographic data set. Only
two systems (BuzzSaw and Duluth) were able to
beat the most frequent sense baseline. The Miller
and Gurevych (2015) system remains the best-
performing pun interpreter in terms of precision
(0.1975) and F-score (0.1603), though BuzzSaw
was able to exceed it in terms of recall (0.1525).
Both BuzzSaw and Miller and Gurevych (2015)
apply Lesk-like algorithms to “disambiguate” the
pun word. However, lexical overlap approaches
are also used by most of the lower-performing sys-
tems. For heterographic pun interpretation, Idiom
Savant achieved the highest scores (P = 0.0842,
R = 0.0710, F1 = 0.0771), though its recall is not
much higher than the most frequent sense baseline
(0.0701).

It seems that for probabilistic approaches like
those submitted, classifying texts as puns and, to
a lesser degree, pinpointing the punning lexical
material are easier than actual semantic tasks like
our Subtask 3. This may be because probabilis-
tic approaches cannot, in principle, see past the
arbitrariness of the linguistic sign, instead relying
on context to reflect meaning. We assume that
producing a full semantic analysis in terms of a
knowledge-based system, akin to those proposed in
Bar-Hillel’s (1960) famous evaluation of fully auto-
matic high-quality translation, might be necessary,
because only these approaches can get beyond ob-
served shared features to natural language meaning.
Such knowledge-based approaches to meaning in
humour, based on relevant semantic humour theo-
ries (Raskin, 1985; Attardo and Raskin, 1991), have
been in development since Raskin et al. (2009) and
one recent (albeit non-scalable) approach, Kao et al.
(2015), has already shown very interesting results.

7 Concluding remarks

In this paper we have introduced SemEval-2017
Task 7, the first shared task for the computational
processing of puns. We have described the rules for
three subtasks—pun detection, pun location, and
pun interpretation—and described the manually
annotated data sets used for their evaluation. Both
data sets are now freely available for use by the
research community. We have also described the
approaches and presented the results of ten partici-
pating teams, as well as several baseline algorithms
and a further system entered out of competition.

We observe most systems performed well on the
pun detection task, with F-scores in the range of
0.5587 to 0.8440. However, only a few systems beat
a simple baseline on pun location. Pun interpre-
tation remains an extremely challenging problem,
with most systems failing to exceed the baselines,
and with sense assignment accuracy much lower
than what is seen with traditional word sense dis-
ambiguation. Interestingly, though there exists
a considerable body of research in linguistics on
phonological models of punning (Hempelmann
and Miller, 2017) and on semantic theories of hu-
mour (Raskin, 2008), little to none of this work
appeared to inform the participating systems.
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Abstract

Media is full of false claims. Even Ox-
ford Dictionaries named “post-truth” as
the word of 2016. This makes it more
important than ever to build systems that
can identify the veracity of a story, and
the nature of the discourse around it. Ru-
mourEval is a SemEval shared task that
aims to identify and handle rumours and
reactions to them, in text. We present an
annotation scheme, a large dataset cov-
ering multiple topics – each having their
own families of claims and replies – and
use these to pose two concrete challenges
as well as the results achieved by partici-
pants on these challenges.

1 Introduction and Motivation

Rumours are rife on the web. False claims affect
people’s perceptions of events and their behaviour,
sometimes in harmful ways. With the increasing
reliance on the Web – social media, in particular –
as a source of information and news updates by in-
dividuals, news professionals, and automated sys-
tems, the potential disruptive impact of rumours is
further accentuated.

The task of analysing and determining veracity
of social media content has been of recent interest
to the field of natural language processing. After
initial work (Qazvinian et al., 2011), increasingly
advanced systems and annotation schemas have
been developed to support the analysis of rumour
and misinformation in text (Kumar and Geethaku-
mari, 2014; Zhang et al., 2015; Shao et al., 2016;
Zubiaga et al., 2016b). Veracity judgment can
be decomposed intuitively in terms of a compar-
ison between assertions made in – and entailments
from – a candidate text, and external world knowl-
edge. Intermediate linguistic cues have also been

shown to play a role. Critically, based on recent
work the task appears deeply nuanced and very
challenging, while having important applications
in, for example, journalism and disaster mitigation
(Hermida, 2012; Procter et al., 2013a; Veil et al.,
2011).

We propose a shared task where participants
analyse rumours in the form of claims made in
user-generated content, and where users respond
to one another within conversations attempting to
resolve the veracity of the rumour. We define a ru-
mour as a “circulating story of questionable verac-
ity, which is apparently credible but hard to verify,
and produces sufficient scepticism and/or anxiety
so as to motivate finding out the actual truth” (Zu-
biaga et al., 2015b). While breaking news unfold,
gathering opinions and evidence from as many
sources as possible as communities react becomes
crucial to determine the veracity of rumours and
consequently reduce the impact of the spread of
misinformation.

Within this scenario where one needs to listen
to, and assess the testimony of, different sources
to make a final decision with respect to a rumour’s
veracity, we ran a task in SemEval consisting of
two subtasks: (a) stance classification towards ru-
mours, and (b) veracity classification. Subtask A
corresponds to the core problem in crowd response
analysis when using discourse around claims to
verify or disprove them. Subtask B corresponds
to the AI-hard task of assessing directly whether
or not a claim is false.

1.1 Subtask A - SDQC Support/ Rumour
stance classification

Related to the objective of predicting a rumour’s
veracity, Subtask A deals with the complementary
objective of tracking how other sources orient to
the accuracy of the rumourous story. A key step
in the analysis of the surrounding discourse is to
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SDQC support classification. Example 1:

u1: We understand there are two gunmen and up to a dozen hostages inside the cafe under siege at Sydney.. ISIS flags
remain on display #7News [support]

u2: @u1 not ISIS flags [deny]
u3: @u1 sorry - how do you know it’s an ISIS flag? Can you actually confirm that? [query]

u4: @u3 no she can’t cos it’s actually not [deny]
u5: @u1 More on situation at Martin Place in Sydney, AU –LINK– [comment]
u6: @u1 Have you actually confirmed its an ISIS flag or are you talking shit [query]

SDQC support classification. Example 2:

u1: These are not timid colours; soldiers back guarding Tomb of Unknown Soldier after today’s shooting #StandforCanada
–PICTURE– [support]

u2: @u1 Apparently a hoax. Best to take Tweet down. [deny]
u3: @u1 This photo was taken this morning, before the shooting. [deny]
u4: @u1 I don’t believe there are soldiers guarding this area right now. [deny]

u5: @u4 wondered as well. I’ve reached out to someone who would know just to confirm that. Hopefully get
response soon. [comment]

u4: @u5 ok, thanks. [comment]

Figure 1: Examples of tree-structured threads discussing the veracity of a rumour, where the label asso-
ciated with each tweet is the target of the SDQC support classification task.

determine how other users in social media regard
the rumour (Procter et al., 2013b). We propose
to tackle this analysis by looking at the conversa-
tion stemming from direct and nested replies to the
tweet originating the rumour (source tweet).

To this effect RumourEval provided partici-
pants with a tree-structured conversation formed
of tweets replying to the originating rumourous
tweet, directly or indirectly. Each tweet presents
its own type of support with respect to the rumour
(see Figure 1). We frame this in terms of support-
ing, denying, querying or commenting on (SDQC)
the original rumour (Zubiaga et al., 2016b). There-
fore, we introduce a subtask where the goal is to
label the type of interaction between a given state-
ment (rumourous tweet) and a reply tweet (the lat-
ter can be either direct or nested replies).

We note that superficially this subtask may bear
similarity to SemEval-2016 Task 6 on stance de-
tection from tweets (Mohammad et al., 2016),
where participants are asked to determine whether
a tweet is in favour, against or neither, of a given
target entity (e.g. Hillary Clinton) or topic (e.g.
climate change). Our SQDC subtask differs in two
aspects. Firstly, participants needed to determine
the objective support towards a rumour, an entire
statement, rather than individual target concepts.
Moreover, they are asked to determine additional
response types to the rumourous tweet that are rel-
evant to the discourse, such as a request for more
information (questioning, Q) and making a com-

ment (C), where the latter doesn’t directly address
support or denial towards the rumour, but pro-
vides an indication of the conversational context
surrounding rumours. For example, certain pat-
terns of comments and questions can be indicative
of false rumours and others indicative of rumours
that turn out to be true.

Secondly, participants need to determine the
type of response towards a rumourous tweet from
a tree-structured conversation, where each tweet is
not necessarily sufficiently descriptive on its own,
but needs to be viewed in the context of an aggre-
gate discussion consisting of tweets preceding it
in the thread. This is more closely aligned with
stance classification as defined in other domains,
such as public debates (Anand et al., 2011). The
latter also relates somewhat to the SemEval-2015
Task 3 on Answer Selection in Community Ques-
tion Answering (Moschitti et al., 2015), where the
task was to determine the quality of responses in
tree-structured threads in CQA platforms. Re-
sponses to questions are classified as ‘good’, ‘po-
tential’ or ‘bad’. Both tasks are related to tex-
tual entailment and textual similarity. However,
Semeval-2015 Task3 is clearly a question answer-
ing task, the platform itself supporting a QA for-
mat in contrast with the more free-form format of
conversations in Twitter. Moreover, as a question
answering task Semeval-2015 Task 3 is more con-
cerned with relevance and retrieval whereas the
task we propose here is about whether support or
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denial can be inferred towards the original state-
ment (source tweet) from the reply tweets.

Each tweet in the tree-structured thread is cate-
gorised into one of the following four categories,
following Procter et al. (2013b):
• Support: the author of the response supports

the veracity of the rumour.
• Deny: the author of the response denies the

veracity of the rumour.
• Query: the author of the response asks for

additional evidence in relation to the veracity
of the rumour.
• Comment: the author of the response makes

their own comment without a clear contribu-
tion to assessing the veracity of the rumour.

Prior work in the area has found the task dif-
ficult, compounded by the variety present in lan-
guage use between different stories (Lukasik et al.,
2015; Zubiaga et al., 2017). This indicates it is
challenging enough to make for an interesting Se-
mEval shared task.

1.2 Subtask B - Veracity prediction

The goal of this subtask is to predict the verac-
ity of a given rumour. The rumour is presented
as a tweet, reporting an update associated with a
newsworthy event, but deemed unsubstantiated at
the time of release. Given such a tweet/claim, and
a set of other resources provided, systems should
return a label describing the anticipated veracity of
the rumour as true or false – see Figure 2.

The ground truth of this task has been manually
established by journalist members of the team who
identified official statements or other trustworthy
sources of evidence that resolved the veracity of
the given rumour. Examples of tweets annotated
for veracity are shown in Figure 2.

The participants in this subtask chose between
two variants. In the first case – the closed vari-
ant – the veracity of a rumour had to be predicted
solely from the tweet itself (for example (Liu et al.,
2015) rely only on the content of tweets to assess
the veracity of tweets in real time, while systems
such as Tweet-Cred (Gupta et al., 2014) follow a
tweet level analysis for a similar task where the
credibility of a tweet is predicted). In the second
case – the open variant – additional context was
provided as input to veracity prediction systems;
this context consists of a Wikipedia dump. Criti-
cally, no external resources could be used that con-
tained information from after the rumour’s resolu-

tion. To control this, we specified precise versions
of external information that participants could use.
This was important to make sure we introduced
time sensitivity into the task of veracity prediction.
In a practical system, the classified conversation
threads from Subtask A could be used as context.

We take a simple approach to this task, us-
ing only true/false labels for rumours. In prac-
tice, however, many claims are hard to verify;
for example, there were many rumours concern-
ing Vladimir Putin’s activities in early 2015, many
wholly unsubstantiable. Therefore, we also expect
systems to return a confidence value in the range
of 0-1 for each rumour; if the rumour is unverifi-
able, a confidence of 0 should be returned.

1.3 Impact

Identifying the veracity of claims made on the web
is an increasingly important task (Zubiaga et al.,
2015b). Decision support, digital journalism and
disaster response already rely on picking out such
claims (Procter et al., 2013b). Additionally, web
and social media are a more challenging environ-
ment than e.g. newswire, which has traditionally
provided the mainstay of similar tasks (such as
RTE (Bentivogli et al., 2011)). Last year we ran
a workshop at WWW 2015, Rumors and Decep-
tion in Social Media: Detection, Tracking, and
Visualization (RDSM 2015)1 which garnered in-
terest from researchers coming from a variety of
backgrounds, including natural language process-
ing, web science and computational journalism.

2 Data & Resources

To capture web claims and the community reac-
tion around them, we take data from the “model
organism” of social media, Twitter (Tufekci,
2014). Data for the task is available in the form
of online discussion threads, each pertaining to a
particular event and the rumours around it. These
threads form a tree, where each tweet has a par-
ent tweet it responds to. Together these form a
conversation, initiated by a source tweet (see Fig-
ure 1). The data has already been annotated for
veracity and SDQC following a published anno-
tation scheme (Zubiaga et al., 2016b), as part of
the PHEME project (Derczynski and Bontcheva,
2014), in which the task organisers are partners.

1http://www.pheme.eu/events/rdsm2015/
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Veracity prediction examples:

u1: Hostage-taker in supermarket siege killed, reports say. #ParisAttacks –LINK– [true]

u1: OMG. #Prince rumoured to be performing in Toronto today. Exciting! [false]

Figure 2: Examples of source tweets with a veracity value, which has to be predicted in the veracity
prediction task.

Subtask A

S D Q C

Train 910 344 358 2,907
Test 94 71 106 778

Subtask B

T F U

Train 137 62 98
Test 8 12 8

Table 1: Label distribution of training and test
datasets.

2.1 Training Data

Our training dataset comprises 297 rumourous
threads collected for 8 events in total, which in-
clude 297 source and 4,222 reply tweets, amount-
ing to 4,519 tweets in total. These events include
well-known breaking news such as the Charlie
Hebdo shooting in Paris, the Ferguson unrest in
the US, and the Germanwings plane crash in the
French Alps. The size of the dataset means it can
be distributed without modifications, according to
Twitter’s current data usage policy, as JSON files.

This dataset is already publicly available (Zubi-
aga et al., 2016a) and constitutes the training and
development data.

2.2 Test Data

For the test data, we annotated 28 additional
threads. These include 20 threads extracted from
the same events as the training set, and 8 threads
from two newly collected events: (1) a rumour
that Hillary Clinton was diagnosed with pneumo-
nia during the 2016 US election campaign, and
(2) a rumour that Youtuber Marina Joyce had been
kidnapped.

The test dataset includes, in total, 1,080 tweets,
28 of which are source tweets and 1,052 replies.
The distribution of labels in the training and test
datasets is summarised in Table 1.

2.3 Context Data

Along with the tweet threads, we also provided ad-
ditional context that participants could make use
of. The context we provided was two-fold: (1)
Wikipedia articles associated with the event in
question. We provided the last revision of the ar-
ticle prior to the source tweet being posted, and
(2) content of linked URLs, using the Internet
Archive to retrieve the latest revision prior to the
link being tweeted, where available.

2.4 Data Annotation

The annotation of rumours and their subsequent
interactions was performed in two steps. In the
first step, we sampled a subset of likely rumourous
tweets from all the tweets associated with the
event in question, where we used the high num-
ber of retweets as an indication of a tweet be-
ing potentially rumourous. These sampled tweets
were fed to an annotation tool, by means of which
our expert journalist annotators members manu-
ally identified the ones that did indeed report un-
verified updates and were considered to be ru-
mours. Whenever possible, they also annotated
rumours that had ultimately been proven true or
the ones that had been debunked as false stories;
the rest were annotated as “unverified”. In the
second step, we collected conversations associ-
ated with those rumourous tweets, which included
all replies succeeding a rumourous source tweet.
The type of support (SDQC) expressed by each
participant in the conversation was then annotated
through crowdsourcing. The methodology for per-
forming this crowdsourced annotation process has
been previously assessed and validated (Zubiaga
et al., 2015a), and is further detailed in (Zubiaga
et al., 2016b). The overall inter-annotator agree-
ment rate of 63.7% showed the task to be chal-
lenging, and easier for source tweets (81.1%) than
for replying tweets (62.2%).

The evaluation data was not available to those
participating in any way in the task, and selec-
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tion decisions were taken only by organisers not
connected with any submission, to retain fairness
across submissions.

Figure 1 shows an example of what a data in-
stance looks like, where the source tweet in the
tree presents a rumourous statement that is sup-
ported, denied, queried and commented on by oth-
ers. Note that replies are nested, where some
tweets reply directly to the source, while other
tweets reply to earlier replies, e.g., u4 and u5 en-
gage in a short conversation replying to each other
in the second example. The input to the verac-
ity prediction task is simpler than this; here par-
ticipants had to determine if a rumour was true or
false by only looking at the source tweet (see Fig-
ure 2), and optionally making use of the additional
context provided by the organisers.

To prepare the evaluation resources, we col-
lected and sampled the tweets around which there
is most interaction, placed these in an existing an-
notation tool to be annotated as rumour vs. non-
rumour, categorised them into rumour sub-stories,
and labelled them for veracity.

For Subtask A, the extra annotation for sup-
port / deny / question / comment at the tweet level
within the conversations were performed through
crowdsourcing – as performed to satisfactory qual-
ity already with the existing training data (Zubiaga
et al., 2015a).

3 Evaluation

The two subtasks were evaluated as follows.

SDQC stance classification: The evaluation of
the SDQC needed careful consideration, as the
distribution of the categories is clearly skewed to-
wards comments. Evaluation is through classifica-
tion accuracy.

Veracity prediction: The evaluation of the pre-
dicted veracity, which is either true or false for
each instance, was done using macroaveraged ac-
curacy, hence measuring the ratio of instances for
which a correct prediction was made. Addition-
ally, we calculated RMSE ρ for the difference be-
tween system and reference confidence in correct
examples and provided the mean of these scores.
Incorrect examples have an RMSE of 1. This
is normalised and combined with the macroaver-
aged accuracy to give a final score; e.g. acc =
(1− ρ)acc.

The baseline is the most common class. For

Team Score
DFKI DKT 0.635
ECNU 0.778
IITP 0.641
IKM 0.701
Mama Edha 0.749
NileTMRG 0.709
Turing 0.784
UWaterloo 0.780
Baseline (4-way) 0.741
Baseline (SDQ) 0.391

Table 2: Results for Task A: sup-
port/deny/query/comment classification.

Task A, we also introduce a baseline excluding the
common, low-impact “comment” class, consider-
ing accuracy over only support, deny and query.
This is included as the SDQ baseline.

4 Participant Systems and Results

We have had 13 system submissions at Ru-
mourEval, eight submissions for Subtask A
(Kochkina et al., 2017; Bahuleyan and Vech-
tomova, 2017; Srivastava et al., 2017; Wang
et al., 2017; Singh et al., 2017; Chen et al.,
2017; Garcı́a Lozano et al., 2017; Enayet and El-
Beltagy, 2017), the identification of stance to-
wards rumours, and five submissions for Sub-
task B (Srivastava et al., 2017; Wang et al., 2017;
Singh et al., 2017; Chen et al., 2017; Enayet and
El-Beltagy, 2017), the rumour veracity classifi-
cation task, with participant teams coming from
four continents (Europe: Germany, Sweden, UK;
North America: Canada; Asia: China, India, Tai-
wan; Africa: Egypt), showing the global reach of
the issue of rumour veracity on social media.

Most participants tackled Subtask A, which in-
volves classifying a tweet in a conversation thread
as either supporting (S), denying (D), querying (Q)
or commenting on (C) a rumour. Results are given
in Table 2 The distribution of SDQC labels in the
training, development and test sets favours com-
ments (see Table 1. Including and recognising the
items that fit in this class is important for reduc-
ing noise in the other, information-bearing classi-
fications (support, deny and query). In actual fact,
comments are often express implicit support; the
absence of dispute is a soft signal of agreement.

Systems generally viewed this task as a four-
way single tweet classification task, with the ex-
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ception of the best performing system (Turing),
which addressed it as a sequential classification
problem, where the SDQC label of each tweet
depends on the features and labels of the pre-
vious tweets, and the ECNU and IITP systems.
The IITP system takes as input pairs of source
and reply tweets whereas the ECNU system ad-
dressed class imbalance by decomposing the prob-
lem into a two step classification task (com-
ment vs. non-comment), and all non-comment
tweets classified as SDQ. Half of the systems em-
ployed ensemble classifiers, where classification
was obtained through majority voting (ECNU,
MamaEdha, UWaterloo, DFKI-DKT). In some
cases the ensembles were hybrid, consisting both
of machine learning classifiers and manually cre-
ated rules, with differential weighting of classi-
fiers for different class labels (ECNU, MamaEdha,
DFKI-DKT). Three systems used deep learning,
with team Turing employing LSTMs for sequen-
tial classification, team IKM using convolutional
neural networks (CNN) for obtaining the repre-
sentation of each tweet, assigned a probability for
a class by a softmax classifier and team Mama
Edha using CNN as one of the classifiers in their
hybrid conglomeration. The remaining two sys-
tems NileTMRG and IITP used support vector
machines with linear and polynomial kernel re-
spectively. Half of the systems invested in elabo-
rate feature engineering including cue words and
expressions denoting Belief, Knowledge, Doubt
and Denial (UWaterloo) as well as Tweet domain
features including meta-data about users, hash-
tags and event specific keywords (ECNU, UWa-
terloo, IITP, NileTMRG). The systems with the
least elaborate features were IKM and Mama Edha
for CNNs (word embeddings), DFKI-DKT (sparse
word vectors as input to logistic regression) and
Turing (average word vectors, punctuation, sim-
ilarity between word vectors in current tweet,
source tweet and previous tweet, presence of nega-
tion, picture, URL). Five out of the eight systems
used pre-trained word embeddings, mostly Google
News word2vec embeddings, while ECNU used
four different types of embeddings. Overall, elab-
orate feature engineering and a strategy for ad-
dressing class imbalance seemed to pay off, as can
be seen by the success of the high performance
of the UWaterloo and ECNU systems. The suc-
cess of the best performing system (Turing) can
be attributed both to the use of LSTM to address

Team Score Confidence RMSE
IITP 0.393 0.746

Table 3: Results for Task B: Rumour veracity -
open variant.

Team Score Confidence RMSE
DFKI DKT 0.393 0.845
ECNU 0.464 0.736
IITP 0.286 0.807
IKM 0.536 0.763
NileTMRG 0.536 0.672
Baseline 0.571 –

Table 4: Results for Task B: Rumour veracity -
closed variant.

the problem as a sequential task and the choice of
word embeddings.

Subtask B, veracity classification of a
source tweet, was viewed as either a three-
way (NileTMRG, ECNU, IITP) or two-way
(IKM, DFKI-DKT) single tweet classification
task. Results are given in Table 3 for the open
variant, where external resources may be used,2

and Table 4 for the closed variant – with no
external resource use permitted. The systems used
mostly similar features and classifiers to those in
Subtask A, though some added features more spe-
cific to the distribution of SDQC labels in replies
to the source tweet (e.g. the best performing
system in this task, NileTMRG, considered the
percentage of reply tweets classified as either S,
D or Q).

5 Conclusion

Detecting and verifying rumours is a critical task
and in the current media landscape, vital to pop-
ulations so they can make decisions based on the
truth. This shared task brought together many ap-
proaches to fixing veracity in real media, working
through community interactions and claims made
on the web. Many systems were able to achieve
good results on unravelling the argument around
various claims, finding out whether a discussion
supports, denies, questions or comments on ru-
mours.

The commentary around a story often helps de-
termine how true that story is, so this advance is
a great positive. However, finding out accurately

2Namely, the 20160901 English Wikipedia dump.
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whether a story is false or true remains really
tough. Systems did not reach the most-common-
class baseline, despite the data not being excep-
tionally skewed. even the best systems could have
the wrong level of confidence in a true/false judg-
ment, weakly verifying stories that are true and so
on. This tells us that we are making progress, but
that the problem is so far very hard.

RumourEval leaves behind competitive results,
a large number of approaches to be dissected by
future researchers, and a benchmark dataset of
thousands of documents and novel news stories.
This sets a good baseline for the next steps in the
area of fake news detection, as well as the mate-
rial anyone needs to get started on the problem and
evaluate and improve their systems.
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Abstract

This paper presents three systems
for semantic textual similarity (STS)
evaluation at SemEval-2017 STS task.
One is an unsupervised system and the
other two are supervised systems which
simply employ the unsupervised one.
All our systems mainly depend on the
semantic information space (SIS), which
is constructed based on the semantic
hierarchical taxonomy in WordNet, to
compute non-overlapping information
content (IC) of sentences. Our team
ranked 2nd among 31 participating
teams by the primary score of Pearson
correlation coefficient (PCC) mean of 7
tracks and achieved the best performance
on Track 1 (AR-AR) dataset.

1 Introduction

Given two snippets of text, semantic textual simi-
larity (STS) measures the degree of equivalence in
the underlying semantics. STS is a basic but im-
portant issue with multitude of application areas in
natural language processing (NLP) such as exam-
ple based machine translation (EBMT), machine
translation evaluation, information retrieval (IR),
question answering (QA), text summarization and
so on.

The SemEval STS task has become the most
famous activity for STS evaluation in recent years
and the STS shared task has been held annual-
ly since 2012 (Agirre et al., 2012, 2013, 2014,
2015, 2016; Cer et al., 2017), as part of the
SemEval/*SEM family of workshops. The orga-
nizers have set up publicly available datasets of
sentence pairs with similarity scores from human
annotators, which are up to more than 16,000

∗Corresponding author

sentence pairs for training and evaluation, and
attracted a large number of teams with a variety
of systems to participate the competitions.

Generally, STS systems could be divided into
two categories: One kind is unsupervised sys-
tems (Li et al., 2006; Mihalcea et al., 2006; Is-
lam and Inkpen, 2008; Han et al., 2013; Sultan
et al., 2014b; Wu and Huang, 2016), some of
which are appeared for a long time when there
wasn’t enough training data; The other kind is
supervised systems (Bär et al., 2012; Šarić et al.,
2012; Sultan et al., 2015; Rychalska et al., 2016;
Brychcı́n and Svoboda, 2016) applying machine
learning algorithms, including deep learning, after
adequate training data has been constructed. Each
kind of methods has its advantages and application
areas. In this paper, we present three systems, one
unsupervised system and two supervised systems
which simply make use of the unsupervised one.

2 Preliminaries

Following the standard argumentation of informa-
tion theory, Resnik (1995) proposed the definition
of the information content (IC) of a concept as
follows:

IC (c) = − log P(c), (1)

where P(c) refers to statistical frequency of con-
cept c.

Since information content (IC) for multiple
words, which sums the non-overlapping
concepts IC, is a computational difficulties
for knowledge based methods. For a long time,
IC related methods were usually used as word
similarity (Resnik, 1995; Jiang and Conrath,
1997; Lin, 1997) or word weight (Li et al., 2006;
Han et al., 2013) rather than the core evaluation
modules of sentence similarity methods (Wu and
Huang, 2016).
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2.1 STS evaluation using SIS

To apply non-overlapping IC of sentences in STS
evaluation, we construct the semantic information
space (SIS), which employs the super-subordinate
(is-a) relation from the hierarchical taxonomy of
WordNet (Wu and Huang, 2016). The space size
of a concept is the information content of the
concept. SIS is not a traditional orthogonality
multidimensional space, while it is the space with
inclusion relation among concepts. Sentences in
SIS are represented as a real physical space instead
of a point in vector space.

We have the intuitions about similarity: The
similarity between A and B is related to their com-
monality and differences, the more commonality
and the less differences they have, the more similar
they are; The maximum similarity is reached when
A and B are identical, no matter how much com-
monality they share(Lin, 1998). The principle of
Jaccard coefficient (Jaccard, 1908) is accordance
with the intuitions about similarity and we define
the similarity of two sentences S a and S b based on
it:

sim (sa, sb) =
IC (sa ∩ sb)
IC (sa ∪ sb)

. (2)

The quantity of the intersection of the informa-
tion provided by the two sentences can be obtained
through that of the union of them:

IC (sa ∩ sb) = IC (sa)+IC (sb)−IC (sa ∪ sb) . (3)

So the remaining problem is how to compute the
quantity of the union of non-overlapping informa-
tion of sentences. We calculate it by employing the
inclusion-exclusion principle from combinatorics
for the total IC of sentence sa and the same way is
used for sentence sb and both sentences:

IC (sa) = IC
(

n⋃
i=1

ca
i

)
=

n∑
k=1

(−1)k−1 ∑
1≤i1<···<ik≤n

IC
(
ca

i1
∩ · · · ∩ ca

ik

)
.

(4)

For the IC of n-concepts intersection in Equa-
tion (4), we use the following equation1:

1For the sake of high computational complexity in-
troduced by Equation (4), we simplify the calculation of
common IC of n-concepts and use the approximate formula
in Equation (6). The accurate formula of common IC is:

commonIC (c1,· · ·, cn)= IC
(

n⋂
i=1

ci

)
= IC

(
m⋃

j=1
c j

)
, (5)

Algorithm 1: getInExTotalIC(S )
Input: S : {ci|i = 1, 2, . . . , n; n = |S |}
Output: tIC: Total IC of input S

1 if S = ∅ then
2 return 0

3 Initialize: tIC ← 0
4 for i = 1; i ≤ n; i + + do
5 foreach comb in C(n, i)-combinations do
6 cIC ← commonIC (comb)
7 tIC+ = (−1)i−1 · cIC

8 return tIC

commonIC (c1, · · · , cn) = IC
(

n⋂
i=1

ci

)
≈ max

c∈subsum(c1,···,cn)
[− log P(c)],

(6)

where, subsum (c1, · · · , cn) is the set of concepts
that subsume all the concepts of c1, · · · , cn in SIS.

Algorithm 1 is according to Equation (4)
and (6), here C (n, i) is the number of combinations
of i-concepts from n-concepts, commonIC(comb)
is calculated through Equation (6).

For more details about this section, please see
the paper (Wu and Huang, 2016) for reference.

2.2 The Efficient Algorithm for Sentence IC

According to the Binomial Theorem, the amount
of combinations for commonIC(comb) calculation
from Equation (4) is:

C (n, 1) + · · · + C (n, n) = 2n − 1. (7)

Searching subsumers in the hierarchical taxono-
my of WordNet is the most time-consuming opera-
tion. Define one time searching between concepts
be the minimum computational unit. Considering
searching subsumers among multiple concepts,
the real computational complexity is more than
0 ∗C(n, 1) + 1 ∗C (n, 2) + · · · + (n − 1) ∗C (n, n).

Note that the computational complexity through
the inclusion-exclusion principle is more than
O(2n). To decrease the computational complexity,
we exploit the efficient algorithm for precise
non-overlapping IC computing of sentences by
making use of the thinking of the different
set in hierarchical network (Wu and Huang,

where c j ∈ subsum (c1, · · · , cn), m is the total number of c j.
We could see Equation.(4) and (5) are indirect recursion.
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Algorithm 2: getTotalIC(S )
Input: S : {ci|i = 1, 2, . . . , n; n = |S |}
Output: tIC: Total IC of input S

1 if S = ∅ then
2 return 0

3 Initialize: tIC ← 0, Root(0)← ∅
4 for i = 1; i ≤ n; i + + do
5 Intersect(i|i − 1),Root(i)←

getIntersect(ci,Root(i − 1))
6 ICG ←

IC(ci) − getTotalIC(Intersect(i|i − 1))
7 tIC+ = ICG

8 return tIC

2017): We add the words into the SIS one by
one each time and sum the gain IC of ICG(ci)
from the newly added concept ci. For sentence
S = {ci|i = 1, 2, . . . , n; n = |S |}, where ci is the
concept of the i-th concept in S , |S | is concept
count of S , the formula of ICG(ci) is as follows:

IC(S ) =
n∑

i=1
ICG(ci) (8)

For convenience in the expression of ICG(ci),
we define some functions: Root(ci) indicates the
set of paths, each path is the node list from
ci to the root in the nominal hierarchical tax-
onomy of WordNet. Root(n) is the short form
of Root (c1, · · · , cn). Formally, let S et(p) be the
set of nodes in path p, Root (n) = {pk|∀pk ∈
Root(ci),@pt ∈ Root(c j), S et(pk) ⊆ S et(pt).i =

1, 2, . . . , n; j = 1, 2, . . . , n}. |Root(ci)| means the
number of paths in Root(ci). HS N(ci) expresses
the set of nodes in any of path in Root(ci). HS N(n)
is the short form of HS N (c1, · · · , cn), formally,
HS N (n) = {ck|ck ∈ HS N(ci).i = 1, 2, . . . , n}.

Let depth(c) be the max depth from concept c
to the root. We define Intersect(n + 1|n) =

{ci|∀ci ∈ {S et(pt) ∧ HS N(n)},@c j ∈
{S et(pt) ∧ HS N(n)}, depth(ci) ≤ depth(c j).pt ∈
Root(cn+1); t = 1, · · · , |Root(cn+1)|} and
totalIC (c1, · · · , cn) is the quantity of total
information of n-concepts. We have

ICG(Ci)= IC(ci)−totalIC(Intersect(i|i−1)).
(9)

Algorithm 2 and 3 are according to Equation (8)
and (9). Algorithm 3 is approximately equal to one
time subsumer searching between concepts, thus

Algorithm 3: getIntersect(ci,Root(i − 1))
Input: ci, Root(i − 1)
Output: Intersect(i|i − 1), Root(i)

1 Initialize: get Root(ci) from WordNet
Intersect(i|i − 1)← ∅; Root(i)← Root(i − 1)

2 if Root(i) = ∅ then /* i = 1 */
3 Root(i)← Root(ci)
4 return Intersect(i|i − 1),Root(i)

5 foreach ri ∈ Root(ci) do
6 pos← depth(ri)− 1 /* pos⇔ root */
7 foreach ri−1 ∈ Root(i − 1) do
8 (p, q)← deepest common node

position: p in ri, q in ri−1
9 if p = 0 then /* ri in ri−1 */

10 add ci to Intersect(i|i − 1)
11 break the outer foreach loop

12 if q = 0 then /* ri−1 in ri */

13 remove ri−1 from Root(i)

14 if p < pos then /* ri−1 intersect

at deeper node in ri */

15 pos← p

16 add ri to Root(i)
17 add cpos ∈ ri to Intersect(i|i − 1)

18 return Intersect(i|i − 1),Root(i)

the computational complexity of Algorithm 2 is
O(n). This indicates SIS methods could be applied
to any length of sentences even short paragraphs.
The open source implementations of Algorithm 2
and 3 with related library are also available at
GitHub2.

Theoretical system with lemmas and theorems
has been established for supporting the correctness
of Equation (8) and (9). For more details about
this section, please see the paper (Wu and Huang,
2017) for reference.

2.3 Increasing Word Recall Rate for SIS

We made three aspects improvements in our an-
other previous work:

First, we utilize WordNet to directly obtain the
nominal forms of a content word which is not
a noun mainly through derivational pointers in
WordNet. The word formation helps enhance the
recall rate of known content words in sentence-to-
SIS mappings. Second, name entity (NE) recogni-
tion tool (Manning et al., 2014) and the alignment

2https://github.com/hao123wu/STS
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tool (Sultan et al., 2014a) are employed to obtain
non-overlapping unknown NEs, which are used
for simulating non-overlapping IC in SIS. The
alignment tool is mainly used for finding actually
same NEs with different string forms and incon-
sistent NE annotations by the NE recognition tool.
Through the statistic values of known NEs of the
same kinds from previous datasets, we simulate
the IC of out-of-vocabulary NEs in SIS. Finally,
sentence IC is augmented by word weights which
could deem as the importance of words.

The above contents of this subsection is mainly
based on the work which is currently under review.

3 System Overview

We submitted three systems: One is the unsu-
pervised system of exploiting non-overlapping IC
in SIS, the other two are supervised systems of
making use of the methods of sentence alignment
and word embedding respectively.

3.1 Preprocessing

First of all, we translated all the other languages
into English by employing Google machine trans-
lation system3 and preprocessed the test datasets
with tokenizer.perl and truecase.perl, which are
the tools from Moses machine translation toolk-
it (Koehn et al., 2007), then utilized the prepro-
cessed datasets to do POS obtaining and lemmati-
zation by utilizing NLTK (Bird, 2006), and finally
made use of lemma to do sentence alignmen-
t (Sultan et al., 2014a) and name entity recogni-
tion (Manning et al., 2014). We use the lemma
instead of the original word in all the situations
where need words to participate for the considera-
tion of simplicity.

We also developed a word spelling correction
module based on Levenshtein distance which is
special for the spelling mistakes in STS datasets.
It proved important for the eventual performances
in previous years, however, it was not so critical
this year.

3.2 Run 1: Unsupervised SIS

Run 1 is from the unsupervised system constructed
using the framework described in Section 2 and
the implementation is as follows:

Word IC calculation employs Equation (1) and

3http://translate.google.com

the probability of a concept c is:

P (c) =

∑
n∈words(c) count(n)

N
(10)

where words (c) is the set of all the words con-
tained in concept c and its sub-concepts in Word-
Net, N is the sum of frequencies of words con-
tained in all the concepts in the hierarchy of
semantic net. The word statistics are from British
National Corpus (BNC) obtained by NLTK (Bird,
2006). Sentence IC computation applies Equa-
tion (9).

For the simplification, we choose the concept
of a word with the minimal IC, which denotes
the most common sense of a word, in all the
circumstances of conversion of word-to-concept
and the selection between two aligned words,
instead of word sense disambiguation (WSD).

3.3 Run 2: Supervised IC and Alignment
As the aligner of Sultan et al. (2014a) is suc-
cessfully applied in STS evaluation, we should
leverage its advantage of finding potential word
aligned pairs from both sentences, especially for
different surface forms. However, we did not
obtain the global inverse document frequency (ID-
F) data on time, thus we did not employ the
aligner of Brychcı́n and Svoboda (2016), which
is the improved version of Sultan et al. (2014a),
that introduces IDF information of words in the
similarity formula.

In this run, we use support vector
machines (Chang and Lin, 2011) (SVM) for
regression, more specifically sequential minimal
optimization (Shevade et al., 2000) (SMO). There
two features: One is the output of SIS, the other
is that of unsupervised method of Sultan et al.
(2015).

Actually, we tested some other regression meth-
ods. We found that LR and SVM always outper-
form the others. The tool for regression methods
are implemented in WEKA (Hall et al., 2009).

3.4 Run 3: Supervised IC and Embeddings
Deep learning has become a hot topic in recent
years and many supervised methods of STS in-
corporate deep learning models. At SemEval
2016 STS task, at least top 5 teams included
deep learning modules according to incomplete
statistics (Agirre et al., 2016).

In this run, we take advantage of the embed-
dings that obtained information from large scale
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Track Dataset Total GS Pairs
Track 1 Arabic-Arabic 250 250
Track 2 Arabic-English 250 250
Track 3 Spanish-Spanish 250 250
Track 4a Spanish-English 250 250
Track 4b Spanish-English-WMT 250 250
Track 5 English-English 250 250
Track 6 English-Turkish 500 250
Sum 2000 1750

Table 1: Test sets at SemEval 2017 STS task.

corpora and train the linear regression (LR) model.
There two features: One is the outputs of SIS, the
other is from a modified version of basic sentence
embedding which is the simply combination of
word embeddings.

The word embedding vectors are generated
from word2vec (Mikolov et al., 2013) over the 5th
edition of the Gigaword (LDC2011T07) (Parker
et al., 2011). We also preprocess the Gigaword
data with tokenizer.perl and truecase.perl.
We modify this basic sentence embedding by
importing domain IDF information. The domain
IDFs of words could be obtained from the current
test dataset by deeming each sentence as a
document. We did not directly use the domain
IDFs d as the weight of a word embedding. On
previous datasets, we found d0.8 as its weight
performed nearly the best.

4 Data

SemEval 2017 STS task assesses the ability of
systems to determine the degree of semantic simi-
larity between monolingual and cross-lingual sen-
tences in Arabic, English, Spanish and a surprise
language of Turkish. The shared task is organized
into a set of secondary sub-tracks and a single
combined primary track. Each secondary sub-
track involves providing STS scores for monolin-
gual sentence pairs in a particular language or for
cross-lingual sentence pairs from the combination
of two particular languages. Participation in the
primary track is achieved by submitting results for
all of the secondary sub-tracks (Cer et al., 2017).

As shown in Table 1, the SemEval 2017 STS
shared task contains 1750 pairs with gold standard
(GS) out of total 2000 pairs from 7 different tracks.
Systems were required to annotate all the pairs and
performance was evaluated on all pairs or a subset
with GS in the datasets. The GS for each pair
ranges from 0 to 5, with the values indicating the
corresponding interpretations:

5 indicates completely equivalence; 4 expresses
mostly equivalent with differences only in some
unimportant details; 3 means roughly equivalent
but with differences in some important details; 2
means non-equivalence but sharing some details;
1 means the pairs only share the same topic; and 0
represents no overlap in similarity.

5 Evaluation

The evaluation metric is the Pearson product-
moment correlation coefficient (PCC) between se-
mantic similarity scores of machine assigned and
human judgements. PCC is used for each individ-
ual test set, and the primary evaluation is measured
by weighted mean of PCC on all datasets (Cer
et al., 2017).

Performances of our three runs on each of
SemEval 2017 STS test set are shown in Table 2.
Bold numbers represents the best scores from
any our system on each test set, including the
primary scores. Cosine Baseline utilizes basic
sentence embedding method for monolingual sim-
ilarity (Track 1, 3 and 5) provided officially by
STS organizers; Best system denotes all the scores
are from the state-of-the-art system; All Systems
Best means the best scores from all the systems
participated in each track, regardless of whether
they come from the same system; Differences
indicates the differences between the best scores
from our three systems and All Single Best in
each track, primary difference is between our
best system and state-of-the-art system. Team
Rankings show the rankings of our best scores
from that of other teams. Team Rankings of
Primary could be the most important ranking for
participants who submitted scores for all tracks.

Our team ranked 2nd for the primary score and
achieved the best performance in Track 1 (Arabic-
Arabic). Track 1 is the only track that totally
employed new languages which has no references
from the past (cross-lingual evaluation contains
English sentences).

The very failing performance is in Track 4b.
We guess the reasons could be the followings and
further research is needed on this issue:

1) Our methods, especially for unsupervised
SIS, ignore some important information as the
embedding methods and are currently not suit for
complicated post-editing sentences. We tested
basic sentence embedding method in isolation
which could achieve the score of more than 0.16,
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Primary Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6
Run 1 0.6703 0.7535 0.7007 0.8323 0.7813 0.0758 0.8161 0.7327
Run 2 0.6662 0.7543 0.6953 0.8289 0.7761 0.0584 0.8222 0.7280
Run 3 0.6789 0.7417 0.6965 0.8499 0.7828 0.1107 0.8400 0.7305

Cosine Baseline 0.5370 0.6045 0.5155 0.7117 0.6220 0.0320 0.7278 0.5456
Best System 0.7316 0.7440 0.7493 0.8559 0.8131 0.3363 0.8518 0.7706

All Single Best - 0.7543 0.7493 0.8559 0.8302 0.3407 0.8547 0.7706
Differences 5.3% -0.8% 4.9% 0.6% 4.7% 23.0% 1.5% 3.8%

Team Rankings 2 1 2 2 3 14 4 2

Table 2: Performances on SemEval 2017 STS evaluation datasets.

much better than our IC based systems of Run 1
(0.0758) and Run 2 (0.0584),which are without
embedding modules.

2) The translation quantity for long sentences
by machine translation may be not good enough
as that for short sentences. The translation results
may lose some information in the original sen-
tences for SIS and introduce more noise.

6 STS benchmark

In order to provide a standard benchmark to com-
pare among the state-of-the-art in Semantic Tex-
tual Similarity for English, the organizers of Se-
mEval STS tasks are already setting a leaderboard
this year which includes results of some selected
systems. The benchmark comprises a selection
of the English datasets used in the STS tasks in
the context of SemEval from 2012 to 2017 and it
is organized into train, development and test (Cer
et al., 2017).

Our systems are selected by the organizers to
submit the results for STS benchmark. We employ
the models that described above, but a small
difference is in Run 3: d0.9 was used as the weights
of word embeddings, which could achieve the best
performance of cosine similarity from the summed
word embeddings in isolation. As our models need
not tune hyperparameters, the train part is used
for tuning parameters and training models while
the development part and the test part are used for
the testing of the final systems. Table 3 shows the
performances of our systems.

From the table we could see Run 3 provides
the best performance in benchmark, which is in
accordance with the results in SemEval 2017 STS
task. Our best system ranks 2nd at present. More
details about STS benchmark and the real-time
leaderboard could be find in the official website4.

4http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

Set Size Run 1 Run 2 Run 3
Development 1500 0.8194 0.8240 0.8291

Test 1379 0.7942 0.7962 0.8085

Table 3: Performances of runs on STS benchmark.

7 Conclusions

At SemEval 2017 STS task, we introduced a un-
supervised knowledge based method, SIS, which
could be new at SemEval. SIS is the extension
of information content for STS evaluation. The
performance of SIS is pretty good on STS test
sets for it’s just a new unsupervised method with
room to improve. Currently, our main concern
is how to gain the information contained in word
embeddings, which may be lost in knowledge
based SIS, and combine it with SIS to improve
STS performance.

Acknowledgments

The work described in this paper is mainly sup-
ported by National Programs for Fundamental Re-
search and Development of China (973 Program)
under Grant 2013CB329303.

The authors would like to thank Daniel Cer
and Eneko Agirre for their insightful comments to
the improvement in technical contents and paper
presentation.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 Task 2: Semantic
Textual Similarity, English, Spanish and Pilot on
Interpretability. In Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation (SemEval
2015). Association for Computational Linguistics,
pages 252–263. https://doi.org/10.18653/v1/S15-
2045.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

82



Cer, Mona Diab, Aitor Gonzalez-Agirre, Wei-
wei Guo, Rada Mihalcea, German Rigau, and
Janyce Wiebe. 2014. SemEval-2014 Task 10:
Multilingual Semantic Textual Similarity. In
Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014). Associ-
ation for Computational Linguistics, pages 81–91.
https://doi.org/10.3115/v1/S14-2010.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
Task 1: Semantic Textual Similarity, Monolin-
gual and Cross-Lingual Evaluation. In Pro-
ceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016). Association
for Computational Linguistics, pages 497–511.
https://doi.org/10.18653/v1/S16-1081.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 Task 6: A
Pilot on Semantic Textual Similarity. In *SEM
2012: The First Joint Conference on Lexical and
Computational Semantics – Volume 1: Proceedings
of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012).
Association for Computational Linguistics, pages
385–393. http://aclweb.org/anthology/S12-1051.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic Textual Similarity. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual
Similarity. Association for Computational Linguis-
tics, pages 32–43. http://aclweb.org/anthology/S13-
1004.

Daniel Bär, Chris Biemann, Iryna Gurevych, and
Torsten Zesch. 2012. Ukp: Computing semantic
textual similarity by combining multiple content
similarity measures. In *SEM 2012: The First
Joint Conference on Lexical and Computational
Semantics – Volume 1: Proceedings of the main
conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on
Semantic Evaluation (SemEval 2012). Association
for Computational Linguistics, pages 435–440.
http://aclweb.org/anthology/S12-1059.

Steven Bird. 2006. NLTK: The Natural Language
Toolkit. In Proceedings of the COLING/ACL
2006 Interactive Presentation Sessions. Associa-
tion for Computational Linguistics, pages 69–72.
http://aclweb.org/anthology/P06-4018.
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Abstract

This paper describes Luminoso’s partici-
pation in SemEval 2017 Task 2, “Multi-
lingual and Cross-lingual Semantic Word
Similarity”, with a system based on Con-
ceptNet. ConceptNet is an open, multilin-
gual knowledge graph that focuses on gen-
eral knowledge that relates the meanings
of words and phrases. Our submission to
SemEval was an update of previous work
that builds high-quality, multilingual word
embeddings from a combination of Con-
ceptNet and distributional semantics. Our
system took first place in both subtasks. It
ranked first in 4 out of 5 of the separate
languages, and also ranked first in all 10
of the cross-lingual language pairs.

1 Introduction

ConceptNet 5 (Speer and Havasi, 2013) is a mul-
tilingual, domain-general knowledge graph that
connects words and phrases of natural language
(terms) with labeled, weighted edges. Compared
to other knowledge graphs, it avoids trying to
be a large gazetteer of named entities. It aims
most of all to cover the frequently-used words
and phrases of every language, and to represent
generally-known relationships between the mean-
ings of these terms.

The paper describing ConceptNet 5.5 (Speer
et al., 2017) showed that it could be used in com-
bination with sources of distributional semantics,
particularly the word2vec Google News skip-gram
embeddings (Mikolov et al., 2013) and GloVe 1.2
(Pennington et al., 2014), to produce new em-
beddings with state-of-the-art performance across
many word-relatedness evaluations. The three
data sources are combined using an extension of
the technique known as retrofitting (Faruqui et al.,

2015). The result is a system of pre-computed
word embeddings we call “ConceptNet Number-
batch”.

The system we submitted to SemEval-2017
Task 2, “Multilingual and Cross-lingual Semantic
Word Similarity”, is an update of that system, co-
inciding with the release of version 5.5.3 of Con-
ceptNet1. We added multiple fallback methods for
assigning vectors to out-of-vocabulary words. We
also experimented with, but did not submit, sys-
tems that used additional sources of word embed-
dings in the five languages of this SemEval task.

This task (Camacho-Collados et al., 2017) eval-
uated systems at their ability to rank pairs of words
by their semantic similarity or relatedness. The
words are in five languages: English, German,
Italian, Spanish, and Farsi. Subtask 1 compares
pairs of words within each of the five languages;
subtask 2 compares pairs of words that are in dif-
ferent languages, for each of the ten pairs of dis-
tinct languages.

Our system took first place in both subtasks.
Detailed results for our system appear in Sec-
tion 3.4.

2 Implementation

The way we built our embeddings is based on
retrofitting (Faruqui et al., 2015), and in par-
ticular, the elaboration of it we call “expanded
retrofitting” (Speer et al., 2017). Retrofitting, as
originally described, adjusts the values of exist-
ing word embeddings based on a new objective
function that also takes a knowledge graph into ac-
count. Its output has the same vocabulary as its
input. In expanded retrofitting, on the other hand,
terms that are only present in the knowledge graph
are added to the vocabulary and are also assigned

1Data and code are available at http://
conceptnet.io.
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vectors.

2.1 Combining Multiple Sources of Vectors

As described in the ConceptNet 5.5 paper (Speer
et al., 2017), we apply expanded retrofitting sepa-
rately to multiple sources of embeddings (such as
pre-trained word2vec and GloVe), then align the
results on a unified vocabulary and reduce its di-
mensionality.

First, we make a unified matrix of embeddings,
M1, as follows:

• Take the subgraph of ConceptNet consisting
of nodes whose degree is at least 3. Re-
move edges corresponding to negative rela-
tions (such as NotUsedFor and Antonym).
Remove phrases with 4 or more words.

• Standardize the sources of embeddings by
case-folding their terms and L1-normalizing
their columns.

• For each source of embeddings, apply ex-
panded retrofitting over that source with the
subgraph of ConceptNet. In each case, this
provides vectors for a vocabulary of terms
that includes the ConceptNet vocabulary.

• Choose a unified vocabulary (described be-
low), and look up the vectors for each term
in this vocabulary in the expanded retrofitting
outputs. If a vector is missing from the vo-
cabulary of a retrofitted output, fill in zeroes
for those components.

• Concatenate the outputs of expanded
retrofitting over this unified vocabulary to
give M1.

2.2 Vocabulary Selection

Expanded retrofitting produces vectors for all the
terms in its knowledge graph and all the terms in
the input embeddings. Some terms from outside
the ConceptNet graph have useful embeddings,
representing knowledge we would like to keep, but
using all such terms would be noisy and wasteful.

To select the vocabulary of our term vectors, we
used a heuristic that takes advantage of the fact
that the pre-computed word2vec and GloVe em-
beddings we used have their rows (representing
terms) sorted by term frequency.

To find appropriate terms, we take all the terms
that appear in the first 500,000 rows of both the

word2vec and GloVe inputs, and appear in the first
200,000 rows of at least one of them. We take the
union of these with the terms in the ConceptNet
subgraph described above. The resulting vocabu-
lary, of 1,884,688 ConceptNet terms plus 99,869
additional terms, is the vocabulary we use in the
system we submitted and its variants.

2.3 Dimensionality Reduction
The concatenated matrix M1 has k columns repre-
senting features that may be redundant with each
other. Our next step is to reduce its dimensional-
ity to a smaller number k′, which we set to 300,
the dimensionality of the largest input matrix. Our
goal is to learn a projection from k dimensions to
k′ dimensions that removes the redundancy that
comes from concatenating multiple sources of em-
beddings.

We sample 5% of the rows of M1 to get M2,
which we will use to find the projection more effi-
ciently, assuming that its vectors represent approx-
imately the same distribution as M1.

M2 can be approximated with a truncated SVD:
M2 ≈ UΣ1/2V T , where Σ is truncated to a k′×k′

diagonal matrix of the k′ largest singular values,
and U and V are correspondingly truncated to
have only these k′ columns.

U is a matrix mapping the same vocabulary to
a smaller set of features. Because V is orthonor-
mal, UΣ is a rotation and truncation of the origi-
nal data, where each feature contributes the same
amount of variance as it did in the original data.
UΣ1/2 is a version that removes some of the vari-
ance that came from redundant features, and also
is analogous to the decomposition used by Levy
et al. (2015) in their SVD process.

We can solve for the operator that projects M2

into UΣ1/2:

UΣ1/2 ≈M2V Σ−1/2

V Σ−1/2 is therefore a k × k′ operator that,
when applied on the right, projects vectors from
our larger space of features to our smaller space
of features. It can be applied to any vector in
the space of M1, not just the ones we sampled.
M3 = M1V Σ−1/2 is the projection of the selected
vocabulary into k′ dimensions, which is the matrix
of term vectors that we output and evaluate.

2.4 Don’t Take “OOV” for an Answer
Published evaluations of word embeddings can
be inconsistent about what to do with out-of-
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vocabulary (OOV) words, those words that the
system has learned no representation for. Some
evaluators, such as Bojanowski et al. (2016), dis-
card all pairs containing an OOV word. This
makes different systems with different vocabular-
ies difficult to compare. It enables gaming the
evaluation by limiting the system’s vocabulary,
and gives no incentive to expand the vocabulary.

This SemEval task took a more objective po-
sition: no word pairs may be discarded. Every
system must submit a similarity value for every
word pair, and “OOV” is no excuse. The organiz-
ers recommended using the midpoint of the simi-
larity scale as a default.

In our previous work with ConceptNet, we
eliminated one possible cause of OOV terms. A
term that is outside of the selected vocabulary,
perhaps because its degree in ConceptNet is too
low, can still be assigned a vector. When we en-
counter a word with no computed vector, we look
it up in ConceptNet, find its neighbors, and take
the average of whatever vectors those neighboring
terms have. This approximates the vector the term
would have been assigned if it had participated in
retrofitting. If the term has no neighbors with vec-
tors, it remains OOV.

For this SemEval task, we recognized the im-
portance of minimizing OOV terms, and imple-
mented two additional fallback strategies for the
terms that are still OOV.

It is unavoidable that training data in non-
English languages will be harder to come by and
sparser than data in English. It is also true that
some words in non-English languages are bor-
rowed directly from English, and are therefore ex-
act cognates for English words.

As such, we used a simple strategy to further
increase the coverage of our non-English vocabu-
laries: if a term is not associated with a vector in
matrix M3, we first look up the vector for the term
that is spelled identically in English. If that vector
is present, we use it.

This method is in theory vulnerable to false cog-
nates, such as the German word Gift (meaning
“poison”). However, false cognates tend to appear
among common words, not rare ones, so they are
unlikely to use this fallback strategy. Our German
embeddings do contain a vector for “Gift”, and it
is similar to English “poison”, not English “gift”.

As a second fallback strategy, when a term can-
not be found in its given language or in English,

we look for terms in the vocabulary that have the
given term as a prefix. If we find none of those,
we drop a letter from the end of the unknown term,
and look for that as a prefix. We continue dropping
letters from the end until a result is found. When
a prefix yields results, we use the mean of all the
resulting vectors as the word’s vector.

3 Results

In this task, systems were scored by the harmonic
mean of their Pearson and Spearman correlation
with the test set for each language (or language
pair in Subtask 2). Systems were assigned ag-
gregate scores, averaging their top 4 languages on
Subtask 1 and their top 6 pairs on Subtask 2.

3.1 The Submitted System: ConceptNet +
word2vec + GloVe

The system we submitted applied the retrofitting-
and-merging process described above, with Con-
ceptNet 5.5.3 as the knowledge graph and two
well-regarded sources of English word embed-
dings. The first source is the word2vec Google
News embeddings2, and the second is the GloVe
1.2 embeddings that were trained on 840 billion
tokens of the Common Crawl3.

Because the input embeddings are only in En-
glish, the vectors in other languages depended en-
tirely on propagating these English embeddings
via the multilingual links in ConceptNet.

This system appears in the results as
“Luminoso-run2”. Run 1 was similar, but it
was looking up neighbors in an unreleased ver-
sion of the ConceptNet graph with fewer edges
from DBPedia in it.

This system’s aggregate score on subtask 1 was
0.743. Its combined score on subtask 2 (averaged
over its six best language pairs) was 0.754.

3.2 Variant A: Adding Polyglot Embeddings
Instead of relying entirely on English knowledge
propagated through ConceptNet, it seemed rea-
sonable to also include pre-calculated word em-
beddings in other languages as inputs. In Vari-
ant A, we added inputs from the Polyglot embed-
dings (Al-Rfou et al., 2013) in German, Spanish,
Italian, and Farsi as four additional inputs to the
retrofitting-and-merging process.

2https://code.google.com/archive/p/
word2vec/

3http://nlp.stanford.edu/projects/
glove/
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The results of this variant on the trial data were
noticeably lower, and when we evaluate it on the
test data in retrospect, its test results are lower as
well. Its aggregate scores are .720 on subtask 1
and .736 on subtask 2.

3.3 Variant B: Adding Parallel Text from
OpenSubtitles

In Variant B, we calculated our own multilin-
gual distributional embeddings from word co-
occurrences in the OpenSubtitles2016 parallel cor-
pus (Lison and Tiedemann, 2016), and used this as
a third input alongside word2vec and GloVe.

For each pair of aligned subtitles among the
five languages, we combined the language-tagged
words into a single set of n words, then added
1/n to the co-occurrence frequency of each pair
of words, yielding a sparse matrix of word co-
occurrences within and across languages. We
then used the SVD-of-PPMI process described by
Levy et al. (2015) to convert these sparse co-
occurrences into 300-dimensional vectors.

On the trial data, this variant compared incon-
clusively to Run 2. We submitted Run 2 instead of
Variant B because Run 2 was simpler and seemed
to perform slightly better on average.

However, when we run variant B on the released
test data, we note that it would have scored better
than the system we submitted. Its aggregate scores
are .759 on subtask 1 and .767 on subtask 2.

3.4 Comparison of Results

The released results4 show that our system, listed
as Luminoso-Run2, got the highest aggregate
score on both subtasks, and the highest score on
each test set except the monolingual Farsi set.

Table 1 compares the results per language of
the system we submitted, the same system without
our OOV-handling strategies, variants A and B,
and the baseline Nasari (Camacho-Collados et al.,
2016) system.

Variant B performed the best in the end, so we
will incorporate parallel text from OpenSubtitles
in the next release of the ConceptNet Number-
batch system.

4 Discussion

The idea of producing word embeddings from
a combination of distributional and relational

4http://alt.qcri.org/semeval2017/
task2/index.php?id=results

Eval. Base Ours −OOV Var. A Var. B
en .683 .789 .747 .778 .796
de .513 .700 .599 .673 .722
es .602 .743 .611 .716 .761
it .597 .741 .606 .711 .756
fa .412 .503 .363 .506 .541
Score 1 .598 .743 .641 .720 .759
en-de .603 .763 .696 .749 .767
en-es .636 .761 .675 .752 .778
en-it .650 .776 .677 .759 .786
en-fa .519 .598 .502 .590 .634
de-es .550 .728 .620 .704 .747
de-it .565 .741 .612 .722 .757
de-fa .464 .587 .501 .586 .610
es-it .598 .753 .613 .732 .765
es-fa .493 .627 .482 .623 .646
it-fa .497 .604 .474 .599 .635
Score 2 .598 .754 .649 .736 .767

Table 1: Evaluation scores by language. “Score
1” and “Score 2” are the combined subtask
scores. “Base” is the Nasari baseline, “Ours” is
Luminoso-Run2 as submitted, “−OOV” removes
our OOV strategy, and “Var. A” and “Var. B” are
the variants we describe in this paper.

knowldedge has been implemented by many oth-
ers, including Iacobacci et al. (2015) and vari-
ous implementations of retrofitting (Faruqui et al.,
2015). ConceptNet is distinguished by the large
improvement in evaluation scores that occurs
when it is used as the source of relational knowl-
edge. This indicates that ConceptNet’s particu-
lar blend of crowd-sourced, gamified, and expert
knowledge is providing valuable information that
is not learned from distributional semantics alone.

The results transfer well to other languages,
showing ConceptNet’s usefulness as “multilingual
glue” that can combine knowledge in multiple lan-
guages into a single representation.

Our submitted system relies heavily on inter-
language links in ConceptNet that represent direct
translations, as well as exact cognates. We sus-
pect that this makes it perform particularly well
at directly-translated English. It would have more
difficulty determining the similarity of words that
lack direct translations into English that are known
or accurate. This is a weak point of many cur-
rent word-similarity evaluations: The words that
are vague when translated, or that have language-
specific connotations, tend not to appear.

On a task with harder-to-translate words, we
may have to rely more on observing the distribu-
tional semantics of corpus text in each language,
as we did in the unsubmitted variants.
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Abstract

In this paper we present the system for An-
swer Selection and Ranking in Commu-
nity Question Answering, which we build
as part of our participation in SemEval-
2017 Task 3. We develop a Support Vector
Machine (SVM) based system that makes
use of textual, domain-specific, word-
embedding and topic-modeling features.
In addition, we propose a novel method
for dialogue chain identification in com-
ment threads. Our primary submission
won subtask C, outperforming other sys-
tems in all the primary evaluation met-
rics. We performed well in other English
subtasks, ranking third in subtask A and
eighth in subtask B. We also developed
open source toolkits for all the three En-
glish subtasks by the name cQARank1.

1 Introduction

This paper presents the system built for partic-
ipation in the SemEval-2017 Shared Task 3 on
Community Question Answering (CQA). The task
aims to classify and rank a candidate text c in
relevance to a target text t. Based on the na-
ture of the candidate and target texts, the main
task is subdivided into three subtasks in which
the teams are expected to solve the problem of
Question-Comment similarity, Question-Question
similarity and Question-External Comment simi-
larity (Nakov et al., 2017).
In this work, we propose a rich feature-based sys-
tem for solving these problems. We create an ar-
chitecture which integrates textual, semantic and
domain-specific features to achieve good results in
the proposed task. Due to the extremely noisy na-
ture of the social forum data, we also develop a

1https://github.com/TitasNandi/cQARank

customized preprocessing pipeline, rather than us-
ing the standard tools. We use Support Vector Ma-
chine (SVM) (Cortes and Vapnik, 1995) for clas-
sification, and its confidence score for ranking.
We initially define a generic set of features to de-
velop a robust system for all three subtasks, then
include additional features based on the nature of
the subtasks. To adapt the system to subtasks
B and C, we include features extracted from the
scores of the other subtasks, propagating mean-
ingful information essential in an incremental set-
ting. We propose a novel method for identifica-
tion of dialogue groups in the comment thread by
constructing a user interaction graph and also in-
corporate features from this graph in our system.
Our algorithm outputs mutually disjoint groups of
users who are involved in conversation with each
other in the comment thread.
The rest of the paper is organized as follows: Sec-
tion 2 describes the related work. Sections 3, 4,
and 5 elucidate the system architecture, features
used and algorithms developed. Section 6 pro-
vides experimentation details and reports the of-
ficial results.

2 Related Work

In Question Answering, answer selection and
ranking has been a major research concern in Nat-
ural Language Processing (NLP) during the past
few years. The problem becomes more interest-
ing for Community Question Answering due to
the highly unstructured and noisy nature of the
data. Also, domain knowledge plays a major role
in such an environment, where meta data of users
and context based learning can capture trends well.
The task on Community Question Answering in
SemEval began in 2015, where the objective was
to classify comments in a thread as Good, Bad or
PotentiallyUseful. In subsequent years, the task
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was extended and modified to focus on ranking
and duplicate question detection in a cross domain
setting.

In their 2015 system, Belinkov (2015) used
word vectors of the question and of the comment,
various text-based similarities and meta data fea-
tures. Nicosia (2015) derived features from a com-
ment in the context of the entire thread. They
also modelled potential dialogues by identifying
interlacing comments between users. Establishing
similarity between Questions and External com-
ments (subtask C) is quite challenging, which can
be tackled by propagating useful context and in-
formation from other subtasks. Filice (2016) in-
troduced an interesting approach of stacking clas-
sifiers across subtasks and Wu & Lan (2016) pro-
posed a method of reducing the errors that propa-
gated as a result of this stacking.

3 System Description

3.1 System Pipeline

The system architecture of our submission to sub-
task A is depicted in Figure 1. We explain the
pre-processing pipeline in the next subsection.
The cleaned data is fed into our supervised ma-
chine learning framework. We train our word-
embedding model on the unannotated and train-
ing data2 provided by the organizers, and train a
probabilistic topic model on the training data. The
detailed description of features is provided in the
following section. After obtaining the feature vec-
tors, we perform feature selection using wrapper
methods to maximize the accuracy on the devel-
opment set. We Z-score normalize the feature vec-
tors and feed them to a SVM. We tune the hyper-
parameters of SVM and and generate classifica-
tion labels and probabilities, the latter being used
for computing the MAP score.

3.2 Preprocessing Pipeline

Due to the highly unstructured, spelling and gram-
matical error-prone nature of the data, adaptation
of any standard tokenization pipeline was not well
motivated. We customized the preprocessing ac-
cording to the nature of the data. We unescaped
HTML special characters and removed URLs, e-
mails, HTML tags, image description tags, punc-
tuations and slang words (from a defined dictio-
nary). Finally, we expanded apostrophe words and

2http://alt.qcri.org/semeval2017/
task3/index.php?id=data-and-tools

removed stopwords.
The cleaned data is then used in all further experi-
ments.

4 Features

We use a rich set of features to capture the textual
and semantic relevance between two snippets of
text. These features are categorized into several
broad classes:

4.1 String Similarity Features

This set of features makes use of a number of
string matching algorithms to compute the string
similarity between the question and comment.
This generates a continuous set of values for ev-
ery comment, and is apt for a baseline system.
The bag of algorithms used is a careful combina-
tion of various string similarity, metric distances
and normalized string distance methods, capturing
the overall profiling of texts. The string similar-
ity functions used include Longest Common Sub-
sequence (LCS), Q-Gram (q = 1,2,3), Weighted
Levenshtein and Optimal String Alignment. The
normalized similarity algorithms used are Jaro-
Winkler, Normalized Levenshtein, n-gram (n =
1,2,3), cosine-similarity (n = 1,2,3), Jaccard Index
(n = 1,2,3), and Sorensen-Dice coefficient (n =
1,2,3). The metric distance methods implemented
are Levenshtein, Damerau, and Metric LCS.

4.2 Word Embedding Features

Semantic features constitute the core of our fea-
ture engineering pipeline. These try to capture the
proximity between the meanings encoded in the
word sequences of question and comments. We
train word embeddings using Word2Vec (Mikolov
et al., 2013) on the unannotated and given train-
ing data. The unannotated data is in the same
format as the training data, except that the com-
ments are not annotated. We performed experi-
ments with different vector sizes (N = 100, 200,
300), and finally settled on using 100 dimensional
word vectors. We also used a pre-trained model
on Google News dataset in order to compare the
performance of the two models. Interestingly, the
domain-specific model trained on the unannotated
and training data proved to be better than the one
trained on Google News dataset, hence we used
the former in building our final system.
Since we wanted a feature vector corresponding to
each comment in the thread, we had to transform
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these trained word vectors into sentence vectors.
Two approaches were considered for this:

• Construct the sentence vector by taking an
average of the vectors of all words that con-
stitute the sentence.
• Construct the sentence vector as a weighted

average of all the word vectors constituting
that sentence. Here the weight corresponds to
the Inverse Document Frequency (IDF) value
of the word in the thread.

Although the first approach has an evident disad-
vantage of not assigning importance to the key-
words in the sentence (which is why we resorted
to the IDF-based weighted averaging), it yielded
better results, which is why we included it in our
final system.
We extract two sets of features from these sentence
vectors:

• The vector subtraction of the comment vector
from the vector of the question at the head of
the thread is used as the scoring vector for
that comment.
• We calculate the cosine similarity, Euclidean

and Manhattan distances between question
and comment vectors.

4.3 Topic Modeling Features
To capture the thematic similarity between the
question and comment texts, we train a LDA topic

model on the training data using Mallet (McCal-
lum, 2002). We perform different experiments by
varying the number of topics (n = 10, 20, 50, 100)
and obtain the best performance with 20 topics.
We generate a topic vocabulary of 50 words for
each topic class. The following features were en-
tailed from these topic distributions and words:

• The vector subtraction of question and com-
ment topic vectors, measuring the topical dis-
tance between the two snippets of text.
• Cosine, Euclidean and Manhattan distance

between the topic vectors.
• We generate a vocabulary for each text by

taking the union of topic words of its first 10
most probable topic classes.

Vocabulary(T ) =
10⋃
i=1

topic words(ti)

where each ti represents one of the top 10
topic classes for comment or question T .
We then determine the word overlap of the
topic vocabulary of the question with (i) the
entire comment string and (ii) the topic vo-
cabulary of the comment.

4.4 Domain Specific Features

In CQA sites, comments in a thread typically re-
flect an underlying discussion about a question,
and there is usually a strong correlation among
the nearby comments in the thread. Users reply
to each other, ask for further details, can acknowl-
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edge others’ answers or can tease other users.
Therefore, as discussed in (Barrón-Cedeño et al.,
2015), comments in a common thread are strongly
interconnected.
We extract various features from the meta data of
the thread and from our surface observation of the
thread’s structure and properties. We extract if the
comment is written by the asker of the question.
In the case of repeated comments by the asker,
we monitor if the comment is an acknowledge-
ment (thanks, thank you, appreciate) or a further
question. With the likely assumption that the com-
ments at the beginning of a thread will be more
relevant to the question, we have a feature captur-
ing the position of comment in the thread. We also
compute the coverage (the ratio of the number of
tokens) of question by the comment and comment
by the question.
We further try to model explicit conversations
among users in the thread. We do it in two ways:

• Repeated and interlacing comments by a user
in the same thread
• Explicitly mentioning the name of some pre-

vious user in the comment

The case of implicit dialogues (where the intent of
the conversation has to be inferred solely from the
context of the comment by a user) is discussed in a
separate section later. These domain-specific fea-
tures proved to be quite effective in classification,
and thus form an integral part of our system.

4.5 Keyword and Named Entity Features

Finding the focus of the question and comment
is important in measuring if the comment specifi-
cally covers the aspects of the question. We extract
keywords from the texts using the RAKE keyword
extraction algorithm (Rose et al., 2010), and derive
features from the keyword match between ques-
tion and comment. We also use the relative impor-
tance of common keywords as feature values.
In case of factoid questions, or especially in sub-
task B, Named Entity Recognition becomes an
important tool for computing the relevance of a
text. We extract named entities using the Stanford
Named Entity Recognizer (Finkel et al., 2005)
and classify words into seven entity categories
including PERSON, LOCATION, ORGANIZA-
TION, DATE, MONEY, PERCENT, and TIME.
We compute if both question and comment have
named entities, and if these belong to the same

classes, if the named entity is an answer to a Wh-
type question or not.

4.6 Implicit Dialogue Identification

Data driven error analysis on the Qatar Living
Data indicated the presence of implicit dialogue
chains. Users were almost always engaging in
conversations with each other but this could only
be captured by the content of their comment. Here
we propose a novel algorithm based on construc-
tion of a user interaction graph to model these
potential dialogues. The components of our con-
struction are as follows:

• Vertices - Users in the comment thread and
the Question
• Edges - Directed edges showing interaction
• Edge Weights - Numerical estimate of the in-

teraction

Algorithm 1 Dialogue Group Detection
1: Initialize:

U → User Graph . Initially Empty
D → Dialogue Graph . Initially Empty
Q→ Question node . Node indexed 0

2: procedure DIALOGUE IDENTIFICATION
3: V (U)← V (U) ∪ {Q} . Add Q to vertex set of U
4: for each comment cx in thread do
5: ui commented cx

6: if ui is a new user then
7: V (U)← V (U) ∪ {ui}
8: V (D)← V (D) ∪ {ui}
9: end if

10: for Q and each previous comment cy do
11: uj commented cy

12: if i 6= j and eij doesn’t exist in E(U) then
13: Add eij in E(U) . Add eij in edge set

of U
14: end if
15: w(eij)← Compute Weight(cx, cy , i, j)
16: end for
17: e← maxj w(eij) . Pick max outgoing edge
18: if j 6= 0 and e does not exist in E(D) then
19: Add e in E(D)
20: end if
21: end for
22: Find weakly connected components in D
23: end procedure

The algorithm to construct this dynamic graph
is given in Algorithm 1. We simultaneously
construct two graphs, a user graph and a dialogue
graph. Initially, the user graph has the question
node and the dialogue graph is empty. We add
new users to the graphs according to the time-
stamp of their occurrence in the thread. For each
new comment, we add edges to each previous user
and the question, in the user graph for the user
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who commented. Then we pick the maximum
outgoing edge to some previous user from the
user who commented, and add that edge in the
dialogue graph. Finally, we find the weakly con-
nected components (WCCs) in the dialogue graph
and the users in each such WCC are in mutual
dialogue. Note that the user graph at the end of
each iteration depicts the current conversational
interaction of the user who commented, with
respect to all other users in the thread.

Algorithm 2 Compute Weight Function
1: procedure COMPUTE WEIGHT(cx, cy, i, j)
2: ui commented cx

3: uj commented cy

4: eij ← 0.0
5: if user ui explicitly mentions user uj in comment

then
6: eij ← eij + 1.0 . Explicit dialogue
7: end if
8: cx → {w1, w2, ..., wk} . wi is the ith word in cx

9: cy → {w′
1, w

′
2, ..., w

′
l}

10: tr score ← (
∑

1≤m≤k

max
1≤n≤l

cos( ~vwm , ~vw
′
n
))/k

11: ~tx ← topic vector for cx

12: ~ty ← topic vector for cy

13: to score← cos(~tx, ~ty) . Topic similarity score
14: eij ← eij + tr score + to score . Edge weight
15: return eij

16: end procedure

The main part of the algorithm is where we
compute the edge weights between a pair of users
after some comment, see Algorithm 2 for de-
tails. We have three components that constitute
the weight:

• if the user mentions the other user explicitly
• we calculate the score of reformulating one

comment from the other by closest word
match based on cosine scores of word vectors
(tr score)
• cosine of the topic vectors of a pair of com-

ments (to score)

In addition to identifying latent dialogue groups,
we also extract features from this graph and these
features prove to be very helpful in classification.

4.7 Classifier
We use an SVM classifier as implemented in Lib-
SVM (Chang and Lin, 2011) for classification.
We experiment with different kernels (Hsu et al.,
2003), and achieve the best results with the RBF
kernel, which we use to train the model for our pri-
mary submission. We also achieve comparable re-

sults with the linear kernel and L2-regularized lo-
gistic regression. The ranking score for a question-
comment pair in subtask A is the calculated prob-
ability of the pair to be classified as Good.
The ranking score for subtask B is the SVM prob-
ability score for the original question-related ques-
tion pair multiplied by the reciprocal search engine
rank provided in the data.
For subtask C, the scoring value is the sum of the
log probabilities of the SVM scores of all subtasks
final score = log (svm A) + log (svm B) +
log (svm C)

5 Stacking features for other subtasks

We implemented a generic system for tackling se-
mantic similarity for any two snippets of text. We
further fine tuned it with domain specific features
for subtask A. For subtasks B and C, we again
adopted this generic system with slight modifica-
tions. But, the strong interconnectivity and incre-
mental nature of the subtasks motivated the devel-
opment of a stacking strategy where we propagate
useful information from other subtasks as features
for the present subtask and re-run the classifier.
Filice (2016) developed a stacking strategy that we
adopt with modifications.
For subtask B, we consider the scores for subtasks
A and C as probability distributions and calcu-
late various features and correlation coefficients
(Spearmann, Kendall, Pearson) over these distri-
butions.
For subtask C, we calculate feature values from the
SVM scores of all three subtasks, and re-run our
system with these stacking features. These fea-
tures include average, minimum and maximum of
subtask A and B scores, and binary features cap-
turing if these probability scores are above 0.5.

6 Experimentation and Results

We extensively experimented with a lot of feature
engineering. Notable features that were discarded
in the feature ablation process are:

• Statistical Paraphrasing: We found the top
10 semantically related words corresponding
to every word in the comment, based on word
vectors and did an n-gram matching (n =
1,2,3) on the extended wordlist.

• Doc2Vec: We also used Doc2Vec (Le and
Mikolov, 2014) to generate sentence vectors
directly, but these degraded the results.
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Features Development Set 2017
Subtask A MAP AvgRec MRR P R F1 Accuracy
All Features 65.50 84.86 71.96 58.43 62.71 60.50 72.54
All — string features 65.53 84.90 72.19 57.84 62.71 60.18 72.17
All — embedding features 62.11 81.23 69.00 53.03 53.42 53.23 68.52
All — domain features 61.85 81.06 69.80 54.46 54.52 54.49 69.47
All — topic features 65.15 84.79 72.37 59.02 61.98 60.47 72.83
All — keyword features 65.73 84.65 71.94 57.98 62.59 60.20 72.25
IR Baseline 53.84 72.78 63.13 - - - -
Subtask B
All Features 73.03 88.77 78.33 72.39 45.33 55.75 69.20
All — string features 73.46 88.83 78.95 72.87 43.93 54.81 69.00
All — embedding features 73.91 89.11 79.33 71.53 45.79 55.84 69.00
All — domain features 73.07 88.77 78.33 71.77 41.59 52.66 68.00
All — topic features 72.95 88.07 78.17 67.86 44.39 53.67 67.20
All — keyword features 73.55 88.99 79.33 72.93 45.33 55.91 69.40
All — stacking features 72.95 88.64 78.67 71.90 40.65 51.94 67.80
IR Baseline 71.35 86.11 76.67 - - - -
Subtask C
All Features 36.09 41.13 39.89 18.42 37.10 24.62 84.32
All — string features 36.85 40.27 39.72 16.81 35.07 22.72 83.54
All — embedding features 39.39 45.09 45.01 17.48 47.83 25.60 80.82
All — domain features 36.83 40.68 39.69 17.21 35.07 23.09 83.88
All — topic features 35.89 41.18 40.50 16.98 38.84 23.63 82.68
All — keyword features 35.39 41.17 38.57 18.58 37.97 24.95 84.24
All — stacking features 36.57 41.85 40.80 16.80 36.81 23.07 83.06
IR Baseline 30.65 34.55 35.97 - - - -
Runs Test Set 2017
Subtask A MAP AvgRec MRR P R F1 Accuracy
Primary 86.88 92.04 91.20 73.37 74.52 73.94 72.70
Contrastive 1 86.35 91.74 91.40 79.42 51.94 62.80 68.02
Contrastive 2 85.24 91.37 90.38 81.22 57.65 67.43 71.06
IR Baseline 72.61 79.32 82.37 - - - -
Subtask B
Primary 43.12 79.23 47.25 26.85 71.17 38.99 58.75
Contrastive 1 42.29 78.41 46.40 32.66 59.51 42.17 69.77
Contrastive 2 42.38 78.59 46.82 32.99 59.51 42.45 70.11
IR Baseline 41.85 77.59 46.42 - - - -
Subtask C
Primary 15.46 33.42 18.14 08.41 51.22 14.44 83.03
Contrastive 1 15.43 33.78 17.52 09.45 54.07 16.08 84.23
Contrastive 2 14.00 30.53 14.65 05.98 85.37 11.17 62.06
IR Baseline 09.18 21.72 10.11 - - - -

Table 1: Feature Ablation Results on Development Set and Runs on Test Set

Our primary submission for subtasks A and B uses
SVM with an RBF kernel for classification as this
yielded the best results on the dev set. We also
achieved similar results with the linear and L2-
regularized logistic regression classifiers and we
use these for our contrastive submissions. All the
submissions comprised of same number of fea-
tures. For subtask C, we oversample the training
data using the SMOTE (Chawla et al., 2002) tech-
nique in the ImbalancedLearn3 toolkit, due to the
highly skewed distribution of labels. We use reg-
ular SMOTE for our primary and SMOTE SVM
for our first contrastive submission. For the sec-

3https://github.com/
scikit-learn-contrib/imbalanced-learn

ond contrastive submission, we integrate the fea-
ture sets of subtasks A and B directly in the feature
set of subtask C.
The feature ablation results on the development
set and the results of different runs on the test set
are presented in Table 1. It reports the system
performance on all evaluation metrics including
Mean Average Precision (MAP), Average Recall
(AvgRec), Mean Reciprocal Rank (MRR), Preci-
sion (P), Recall (R), F1-score (F1) and Accuracy.

7 Conclusion

We establish the importance of domain specific
and dialogue identification features in tackling the
given task. In future work, we would like to fo-
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cus on extracting more information from inter-
comment dependencies. This should improve our
algorithm for dialogue group detection and model
conversational activity better. We also wish to
work on a Deep Learning architecture for handling
this, as in (Wu and Lan, 2016) and (Guzmán et al.,
2016). The problem can be modeled as a semi-
supervised classification task, where the unanno-
tated data can help supervised classification. Sub-
task C still presents a challenging research prob-
lem and we will investigate novel methods to in-
tegrate results from other subtasks to tackle this
subtask better.
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Abstract

This paper describes the winning system
for SemEval-2017 Task 6: #HashtagWars:
Learning a Sense of Humor. Humor de-
tection has up until now been predomi-
nantly addressed using feature-based ap-
proaches. Our system utilizes recurrent
deep learning methods with dense embed-
dings to predict humorous tweets from the
@midnight show #HashtagWars. In or-
der to include both meaning and sound in
the analysis, GloVe embeddings are com-
bined with a novel phonetic representa-
tion to serve as input to an LSTM com-
ponent. The output is combined with a
character-based CNN model, and an XG-
Boost component in an ensemble model
which achieved 0.675 accuracy in the of-
ficial task evaluation.

1 Introduction

Computational approaches to how humour is ex-
pressed in language have received relatively lim-
ited attention up until very recently. With few
exceptions, they have used feature-based machine
learning techniques (Zhang and Liu, 2014; Radev
et al., 2015) drawing on hand-engineered features
such as sentence length, the number of nouns,
number of adjectives, and tf-idf-based LexRank
(Erkan and Radev, 2004). Among the recent
proposals, puns have been emphasized as a cru-
cial component of humor expression (Jaech et al.,
2016). Others have proposed that text is per-
ceived as humorous when it deviates in some
way from what is expected (Radev et al., 2015).
One of the reasons for such dominant position of
the feature-based approaches is the fact that the
datasets have been relatively small, rendering deep
learning methods ineffective. Furthermore, exist-

ing humour detection datasets tended to treat hu-
mor as a classification task in which text has to
be labeled as funny or not funny, with nothing
in between, which makes the task considerably
simpler. In contrast, the #HashtagWars dataset
(Potash et al., 2016b) provided for SemEval-2016
Task 6 assumes that humor can be evaluated on
a scale, reflecting the reality that humor is non-
binary and some things may be seen as funnier
than others. It is also large in size, making it bet-
ter suited to the application of deep learning tech-
niques.

SemEval 2017 Task 6 used the tweets posted
by the viewers of the Comedy Central’s @mid-
night show, the #HashtagWars segment. Our team
participated in subtask A, which was as follows:
given a pair of tweets supplied for a given hashtag
by the viewers, the goal was to identify the tweet
that the show judged to be funnier (Potash et al.,
2017). This paper describes the winning submis-
sion, and specifically, our systems that took first
and second place in the official rankings for the
task.

Our goal was to create a model that could repre-
sent both meaning and sound, thus covering differ-
ent aspects of the tweet that might make it funny.
Word embeddings have been used in a variety of
applications, but phonetic information can pro-
vide new insights into the punchline of humor not
present in traditional embeddings. The pronuncia-
tion of a sentence is important to the delivery of a
punchline, and can connect sound-alike words.

In our first submission for Subtask A, seman-
tic information for each word is provided to the
model in the form of a GloVe embedding. We
then provide the model with a novel phonetic
representation of each word, in the form of a
learned phonetic embedding taken as an interme-
diate state from an encoder-decoder character-to-
phoneme model. With access to both meaning and

98



sound embeddings, the model learns to read each
tweet using a Long Short-Term Memory (LSTM)
Recurrent Neural Network (RNN) encoder. The
encoded state of each tweet passes into dense lay-
ers, where a prediction is made as to which tweet
is funnier.

In addition to the embedding model described
above, we construct a Convolutional Neural Net-
work (CNN) to process each tweet character by
character. This character-level model was used by
Potash et al. (2016b), and serves as a baseline. The
output of the CNN feeds into the same final dense
layers as the embedding LSTM tweet encoders.
This model achieved 63.7% accuracy in the offi-
cial task evaluation, placing it second in the offi-
cial task rankings.

To boost prediction performance further, we
built an ensemble model over different model con-
figurations. In addition to the model above, we
provided an embedding-LSTM-only model and
a character-CNN-only model as input to the en-
semble. Inspired by previous work in NLP, we
added an XGBoost feature-based model as input
to the ensemble. This system was our second sub-
mission. The predictions of the ensemble model
achieved 67.5% accuracy, placing it first in the of-
ficial rankings for the task.

We also report experiments we conducted after
the release of the test data, in which a few of the
bugs present in the original submissions were ad-
dressed, and in which the best model achieves the
accuracy of 68.3%.

2 Previous Work

Considerable research has gone into understand-
ing the properties of humor in text. Radev et al.
(2015) used a feature-bucket approach to ana-
lyze captions from the New Yorker Caption Con-
test. They noted that negative sentiment, human-
centeredness and lexical centrality were their most
important model features. Zhang and Liu (2014)
trained a classifier using tweets that use the hash-
tag #Humor for positive examples. They con-
cluded that tweet part-of-speech ratios are a major
factor in humor detection. They also showed that
sexuality and politics are popular topics in Twitter
jokes that can boost humor perception. Jaech et al.
(2016) and Miller and Turković (2016) explored
the complicated nature of puns and their role in
humor. Barbieri and Saggion (2014) explored the
concept of irony in humor and used a large va-

riety of syntactic and semantic features to detect
irony in tweets. To summarize, negative senti-
ment, human-centeredness, lexical centrality, syn-
tax, puns, and irony represent just a few of many
aspects that characterize humor in text.

The majority of attempts at humor detec-
tion, including those listed above, rely on hand-
engineered features to distinguish humor from
non-humor. However, recently deep learning
strategies have also been employed. Chen and Lee
(2017) used convolutional networks to make pre-
dictions on humorous/non-humorous sentences in
a TED talk corpus. Bertero and Fung (2016) pre-
dicted punchlines using textual and audio features
from the popular sitcom The Big Bang Theory.
While feature-based solutions use linguistic prop-
erties of text to detect humour, our hope in exper-
imenting with deep learning models for this task
was that they could capture such properties in a
more unstructured form, without pre-determined
hand-engineered indicators.

3 System Description

In order to identify the funnier tweet in each pair,
as required by the task setup, we build the follow-
ing models:

• Character-to-Phoneme Model (C2P)
• Embedding Humor Model (EHM)
• Character Humor Model (CHM)
• Embedding/Character Joint Model (ECJM)
• XGBoost Feature-Based Model (XGBM)
• Ensemble Model (ENSEMBLE)

3.1 Character-to-Phoneme Model
In addition to understanding the meaning of each
word in the sentence and how those meanings fit
together, some words sound funnier to the ear than
others. The sound of a sentence might also reveal
the power of its punchline.

To give the model a representation of sound
(i.e., pronunciation) for each word, we train an
encoder-decoder LSTM model to convert a se-
quence of characters (via learned character em-
beddings) into a sequence of phonemes. Much like
other sequence-to-sequence models, our model
learns how to convert an English word into a se-
quence of phonemes that determine how that word
is pronounced (see Figure 1).

We train and evaluate this model on the CMU
Pronouncing Dictionary corpus (Lenzo, 2017),
which contains mappings from each word to its
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Figure 1: Character-to-Phoneme Model

corresponding phonemes. We use a 0.6/0.4 train-
test split. Once the model is trained, we extract the
intermediate embedding state (200 dim) between
the encoder and decoder; this acts as a phonetic
embedding, containing all information needed to
pronounce the word. The resulting phonetic em-
bedding for each word is concatenated with a se-
mantic embedding to serve as the input for the
embedding humor model (see below). Table 3.1
shows sample output of the model.

3.2 Embedding Humor Model

For both tweets in a tweet pair, a concatenation of
a GloVe word embedding (Pennington et al., 2014)
and phonetic embedding is processed by an LSTM
encoder at each time-step (per word). We use word
embeddings pre-trained on a Twitter corpus, avail-
able on the GloVe website1. Zero padding is added
to the end of each tweet for a maximum length
of 20 words/tweet. The output of each LSTM en-
coder (800 dim) is inserted into dense layers, and
a binary classification decision is generated.

3.3 Character Humor Model

The character-based humor model processes each
tweet as a sequence of characters with a CNN
(Koushik, 2016). 30-dimensional embeddings are
learned per character as input. The output of the
CNN for both tweets in the pair are inserted into
dense layers.

3.4 XGBoost Feature-Based Model

In order to approach the problem from a differ-
ent prospective, in addition to the neural network-
based systems described above, we constructed a
feature-based model using XGBoost (Chen and
Guestrin, 2016). In line with previous work
(Radev et al., 2015; Zhang and Liu, 2014), we
used the following features as input to the model:

1https://nlp.stanford.edu/projects/
glove/

1. Sentiment of each tweet in a pair, obtained
with TwitterHawk, a state-of-the-art senti-
ment analysis system for Twitter (Boag et al.,
2015).

2. Sentiment of the tokenized hashtag.
3. Length of each tweet in both tokens and char-

acters (a very long tweet might not be funny)
4. Distance of the average GloVe embeddings of

the tokens of the tweets to the global centroid
of the embeddings of all tweets for the given
hashtag.

5. Minimum, maximum and average distance
from each token in a tweet to the hashtag.

6. Number of tokens belonging to the top-10
most frequent POS tags on the training data.

3.5 Embedding/Character Joint Model
The output of the embedding model LSTM en-
coders and the character model CNN encoders are
fed into dense layers. For encoder input N , the
three dense layers are of size (3/4)N , (1/2)N ,
and 1. Each layer gradually reduces dimension-
ality to final binary decision.

3.6 Ensemble Model
Inspired by the success of ensemble models in
other tasks (Potash et al., 2016a; Rychalska et al.,
2016) we built an ensemble model that com-
bines the predictions of the character-based model,
embedding-based model, the character/embedding
joint humor model, and the feature-based XG-
Boost model to make the final prediction which
incorporates different views of the input data. For
the ensemble model itself, we use an XGBoost
model again. Input predictions are obtained by us-
ing 5-fold cross-validation on the training data.

4 Results

Accuracies are calculated over three run aver-
age. Embedding/character models trained for five
epochs with a learning rate of 1e-5 using the Adam
optimizer (Kingma and Ba, 2014). Parameters are

100



Word Model Output CMU Dictionary
rupard R UW0 P ER0 D D R UW1 P ER0 D

disabling D AY1 S EY1 B L IH0 NG D IH0 S EY1 B AH0 L IH0 NG
clipping K L IH1 P IH0 NG K L IH1 P IH0 NG

enfranchised IH0 N F R AE1 N SH AY2 D D EH0 N F R AE1 N CH AY2 Z D
eimer AY1 M ER0 AY1 M ER0
dowel D AW1 AH0 L D AW1 AH0 L
vasilly V AE1 S IH0 L IY0 V AH0 S IH1 L IY0

Table 1: Sample character-to-phoneme model output.

Model Configuration/Features Trial Acc Evaluation Acc Official Evaluation Acc
ENSEMBLE 64.02% 65.99 % 67.5% (Run #2)
ECJM 59.31% 68.30% 63.7% (Run #1)
ECJM (GloVe-only) 64.42% 65.95%
EHM 58.09% 67.56%
EHM (GloVe-only) 64.76% 67.44%
EHM (Phonetic-only) 54.55% 65.93%
CHM 59.59% 63.52%
XGBM 57.02% 60.35%

Table 2: Model performance (accuracy). Official results reported for joint and ensemble models.

tuned to the trial set, which contained five hash-
tags. Train, trial and evaluation datasets were pro-
vided by task organizers, with the evaluation data
containing six hashtags. Table 2 shows the re-
sults obtained by different models on the evalua-
tion data. Note that the reported figures were ob-
tained in additional experiments after a few of the
bugs present in the original submission were ad-
dressed. For completeness, we also report the of-
ficial results obtained by our system submissions
(runs #1 and #2).

5 Discussion

The ensemble model performed the best during the
official evaluation, placing it 1st among 10 runs,
submitted by the 7 participating teams. Note that
accuracies on evaluation hashtags are on average
5.36% higher than on trial hashtags (see Table 2).
This suggests each dataset contains different hash-
tag types, and that the evaluation set more closely
matches the training set. For example, phonetic
embeddings reduce performance in the trial set
and improve performance in the evaluation set.
We hypothesize that phonetic embeddings are not
important for some hashtags, and that the evalua-
tion set contains more such hashtags .

While adding phonetic embeddings and/or the
character model yields inconsistent results across

the trial and evaluation sets, adding the GloVe
representation produced the best scores for both
datasets. From these results, token-based semantic
knowledge appears to be the most important fac-
tor in humor recognition for this dataset. These re-
sults differ from that of Potash et al. (2016b), who
report that a CNN-based character model achieves
the highest accuracy on leave-one-out evaluation.

The character-to-phoneme model yields very
interesting results upon testing. The model cor-
rectly classifies 75% of phonemes in the test set.
As shown in Table 3.1, the model often guesses a
similar-sounding phoneme in cases when the cor-
rect phoneme is not guessed. For example, in
’vasilly’, AE1 is guessed instead of AH0.

6 Conclusion

The learned character embeddings achieved rea-
sonable results on both trial and evaluation data.
The incorporation of phonetic embeddings in hu-
mor prediction, on the other hand, appears to yield
inconsistent performance across different hash-
tags. The ensemble model improved performance
on the official data. Overall, GloVe embeddings
consistently improved performance, highlighting
the importance of lexical semantic information for
this humour classification task.
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Abstract

This paper describes our system, entitled
Idiom Savant, for the 7th Task of the Se-
meval 2017 workshop, “Detection and in-
terpretation of English Puns”. Our system
consists of two probabilistic models for
each type of puns using Google n-grams
and Word2Vec. Our system achieved f-
score of 0.84, 0.663, and 0.07 in ho-
mographic puns and 0.8439, 0.6631, and
0.0806 in heterographic puns in task 1,
task 2, and task 3 respectively.

1 Introduction

A pun is a form of wordplay, which is often pro-
filed by exploiting polysemy of a word or by
replacing a phonetically similar sounding word
for an intended humorous effect. From Shake-
speare’s works to modern advertisement catch-
phrases (Tanaka, 1992), puns have been widely
used as a humorous and rhetorical device. For
a polysemous word, the non-literal meaning is
addressed when contextual information has low
accordance with it’s primary or most prominent
meaning (Giora, 1997). A pun can be seen as a
democratic form of literal and non-literal meaning.
In using puns, the author alternates an idiomatic
expression to a certain extent or provides enough
context for a polysemous word to evoke non-literal
meaning without attenuating literal meaning com-
pletely (Giora, 2002).

Task 7 of the 2017 SemEval workshop (Miller
et al., 2017) involves three subtasks. The first sub-
task requires the system to classify a given context
into two binary categories: puns and non-puns.
The second subtask concerns itself with finding
the word producing the punning effect in a given
context. The third and final subtask involves an-
notating puns with the dual senses with which the

punning effect is being driven.
In a written context, puns are classified into 2

categories. Homographic puns shown in exam-
ple 1, exploits polysemy of the language by us-
ing a word or phrase which has multiple coher-
ent meanings given its context; And heterographic
puns shown in example 2, humorous effect is often
induced by adding incongruity by replacing a pho-
netically similar word which is semantically dis-
tant from the context.

(1) Tires are fixed for a flat rate.

(2) A dentist hates having a bad day at the
orifice.

The rest of the paper is organized as fol-
lows. Section 2 give a general description of
our approach. Section 3 and 4 illustrate the de-
tailed methodologies used for detecting and locat-
ing Heterographic and Homographic puns respec-
tively. In section 5, we provided an analysis of the
system along with experimental results and finally
section 6 contains some closing remarks and con-
clusion.

2 General Approach

We argue that the detection of heterographic puns
rests on two assumptions. Firstly, the word be-
ing used to introduce the punning effect is pho-
netically similar to the intended word, so that the
reader can infer the desired meaning behind the
pun. Secondly, the context in which the pun takes
place is a subversion of frequent or idiomatic lan-
guage, once again so that the inference appropri-
ately facilitated. This introduces two computa-
tional tasks - designing a model which ranks pairs
of words based on their phonetic similarity, and in-
troducing a means by which we can determine the
normativeness of the context in question. The sys-
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tem is attempting to recreate how a human mind
might recognize a pun. Take this example:

(3) “Acupuncture is a jab well done”

It is immediately noticeable that this sentence is
not a normative use of language. However, we
can easily recognize the familiar idiom “a job well
done”, and it is easy to make this substitution due
to the phonetic overlap between the words “job”
and “jab”. Our system is therefore trying to mimic
two things: the detection of an infrequent (or even
semantically incoherent) use of language, and the
detection of the intended idiom by means of pho-
netic substitution. To model the detection of sub-
verted uses of idioms, we use the Google n-gram
corpus (Brants and Franz, 2006). We assume that
the normativeness of a context is represented by
the n-gram frequency provided by this corpus. The
system then replaces phonetically similar words in
the non-normative context in an attempt to pro-
duce an idiomatic use of language. We determine
an idiomatic use of language to be one that has an
adequately high frequency in the Google n-gram
corpus. We argue that if, by replacing a word
in an infrequent use of language with a phonet-
ically similar word, we arrive at a very frequent
use of language, we have derived an indicator for
the usage of puns. For example, the quadgram
“a jab well done” occurs 890 times in the cor-
pus. By replacing the word “jab” with “job”, the
new quadgram occurs 203575 times. This increase
in frequency suggests that a pun is taking place.
The system uses several methods to examine such
changes in frequency, and outputs a “score”, or the
estimated likelihood that a pun is being used. The
way in which these scores are computed is detailed
below.

Homographic puns are generally figurative in
nature. Due to identical spelling, interpretation of
literal and non-literal meaning is solely dependent
on the context information. Literal and non-literal
meaning of a polysemous word are referred by dif-
ferent slices of context, which is termed as “double
grounding” by Feyaerts and Brône (2002). Con-
sidering example 1, it is easily noticeable that two
coherent meanings of ‘flat’, ‘a deflated pneumatic
tire’ and ‘commercially inactive’, have been re-
ferred by ‘Tires’ and ‘rate’ respectively. Thus de-
tection of homographic puns involves establish-
ing links between concepts present in context with
meanings of polysemous word.

From the general description of different types
of puns, it is evident that detection of pun is com-
plex and challenging. To keep the complexity at
its minimum, Idiom Savant contains two distinct
models to handle homographic and heterographic
pun tasks.

3 Heterographic Puns

Idiom Savant calculates scores for all possible
ngram pairs for a given context. To generate pairs,
the system first separates the context into n-grams.
For each of these original n-grams, the corpus is
searched for n-grams that are at most one word
different. The pairs are then scored using the met-
ric described below. The scores for these pairs are
then used to tackle each subtask, which is covered
below. Since heterographic puns are fabricated by
replacing phonetically similar words, classifica-
tion and identification requires a phonetic knowl-
edge of the language. To obtain phonetic represen-
tation of a word, CMU pronouncing dictionary1

was used. We have ignored the lexical stresses in
the pronunciation, as experimentation showed that
coarser definitions led to better results. To mea-
sure the phonetic distance between a phoneme rep-
resentation of a pair of words, we have employed
three different strategies which use Levenshtein
distances. The first distance formula, dph, calcu-
lates Levenshtein distance between two words by
considering each CMU phoneme of a word as a
single unit. Take the pun word and intended word
from example 2:

dph({AO, F, AH, S}, {AO, R, AH, F, AH, S}) = 2

Our second strategy treats the phonetic repre-
sentation as a concatenated string and calculates
Levenshtein distance dphs.

dphs(“AOFAHS”, “AORAHFAHS”) = 3

With this metric, the distance reflects the simi-
larity between phonemes such as “AH” and “AA”,
which begin with the same vowel sounds. The fall-
back method for out-of-vocabulary words uses the
original Levenshtein string distance.

dch(“office”, “orifice”) = 2
1http://www.speech.cs.cmu.edu/cgi-bin/

cmudict
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The system normalizes these distances with re-
spect to the length of the phonetic representation
of the target words to reduce the penalty caused
by word length. By converting distance measures
into similarity ratios, longer words remain candi-
dates for possible puns, even though Levenshtein
distances will be greater than the shorter counter-
parts. The system chooses the maximum positive
ratio from all possible phonetic representations.
If no positive ratio exists, the target word is dis-
carded as a possible candidate.

ratiof (w1, w2) =
min

w∈w1,w2
||w||f−df (w1,w2)

min
w∈w1,w2

||w||f
wheref ∈ {ph, phs, ch}

ratio = max(ratioph, ratiophs, ratioch)

We choose the maximum ratio in order to min-
imize the drawbacks inherent in each metric. The
assumption is that the maximum ratio between all
three methods is the most reflective of the real pho-
netic similarity between a pair of words. The final
score is calculated as the inverted ratio subtracted
from the difference between the ngram pair’s fre-
quency.

score = (freqngram′ − freqngram)− 1
ration

Deducting the original n-gram’s frequency from
the new frequency effectively ignores normal uses
of language which do not relate to pun language.
The value of the exponent introduces a trade off
between phonetic similarity and frequency. The
frequencies of certain n-grams are so high that if
n is too low, even words with very little phonetic
similarity will score high using this method. In our
experiments, an optimal value of 10 was found for
this trade off.

3.1 Binary Classification
Tto classify a context as a pun or non pun, Idiom
Savant finds the maximum score from all possi-
ble n-gram pairs. If the maximum score found ex-
ceeds a threshold value, the context is classified as
a pun.

Finding the correct threshold value to accurately
classify contexts is discussed below in the Experi-
ments and Results section.

3.2 Locating Pun Word
By maximizing the score when replacing all po-
tential lexical units, the system also produces a
candidate word. Whichever replacement word
used to produce the top n-gram pair is returned as
the candidate word. The system only examines the
last two ngrams. Those grams, the system anno-
tates the POS tag and only the content words —
nouns, verbs, adverbs and adjectives— are con-
sidered as candidate words. The system uses a fall
back by choosing the last word in the context when
no adequate substitution is found.

3.3 Annotating senses for pun meanings
Subtask 3 introduces an added difficulty with re-
gards to heterographic puns. The system needs to
correctly identify the two senses involved of pun,
which is based on the accuracy of selecting tar-
get words. The system produce a ranked list of
n-gram pairs using single word substitution. The
highest ranked pair then contains the new or re-
placed word with which we search for a sense
in WordNet (Fellbaum, 1998). For this particular
task, the pun word are already given, so the sys-
tem chooses only the n-grams which contain this
word, and only needs to replace this word in order
to produce pairs.

Once both words are found, we apply the se-
mantic similarity measure akin to the one used in
our systems approach to homographic puns de-
scribed in Section 4. Both the original and target
word is compared to a list of wordnet glosses cor-
responding to the senses available for each word.
Idiom Savant uses Word2Vec cosine similarity be-
tween the words and their sense glosses to choose
the best sense key.

3.4 Tom Swifties
“Tom Swifty” (Lessard and Levison, 1992) is one
type of pun often found in the test data set. An
example found is “ It’s March 14th, Tom said
piously”. Such puns frequently use adverbs to
introduce the contextual ties inherent in hetero-
graphic puns. Despite that, most of these adverbs
occurred in the test data set show little connec-
tion with their contexts, rather they are specifi-
cally used for ironic purpose. As such, our system
did not adequately recognize these instances, so
we designed a separate procedure for these cases.
To flag whether a pun might be of a Tom Swifty
type, the system uses a Part of Speech tagger from
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NLTK (Bird, 2006) and also analyses the suffixes
of the last word in the context (for example, words
ending in “ly”).

With relation to tasks 1, an amalgamation of
this approach and the original is performed. If the
highest score does not exceed the threshold, we
check to see if the pun is of type Tom Swifty. If
this is the case, then we mark the context as a pun.
Task 2 operates similarly - if the pun is flagged as
a Tom Swifty, then the last adverb is returned as a
candidate. For task 3 however, we need to trans-
form the adverb into the intended word in order to
get the appropriate sense entry in WordNet.

To do so we build two prefix trees: one is a pho-
netic prefix tree based on CMU pronunciation dic-
tionary; the other is a string prefix tree, to cover
the exception cases where the adverb is not present
in the CMU. If the word is in the phonetic prefix
tree, the program returns all words which share at
least two common prefix phonemes. For example,
given the adverb “punctually”, the words “punc-
ture”, “punk”, “pun” and so on will be returned as
candidates. If the string prefix tree is used, the pro-
gram returns words which share at least the first
three characters found in th input word. For the
word “dogmatically”, “dogmatic”, “dogma”, and
“dog” will be returned as candidates. The list of
such candidates is then used to replace the ngrams
in which they occur, and the new ngram pairs are
ranked according to the metric described at the be-
ginning of 3. The highest scoring prefix is then
used to search the appropriate WordNet sense tags.

4 Homographic Puns

Since polysemous words have identical spelling
but different meanings, detecting homographic
puns is solely dependent on context information.
Following double grounding theory, if the ith word
of input sentence W = w1:n, has a higher possi-
bility to be the punning word, two senses of wi

should infer a higher similarity score with two dif-
ferent components in its context ci = w1:i−1,i+1:n.
In the baseline model we design, the pun potential
score of a word wi is computed as the sum of co-
sine similarities between the word wi and every
word in context wj ∈ ci, using distributed repre-
sentation Word2Vec (Mikolov et al., 2013). The
word with highest score is returned as the punning
word.

Furthermore, as additional context information,
wi were replaced with set of gloss information ex-

tracted from its different senses, noted as gi, ob-
tained from WordNet. While calculating similar-
ity between gi and ci, two different strategies were
employed. In the first strategy, the system com-
putes similarities between every combination of gi

and ci, and sum of similarity scores is the score for
wi. In the second strategy, similarity score were
calculated between gi and gj , the gloss of wj ∈ ci.
In most of the cases, pun words and their ground-
ing words in the context do not share the same
part-of-speech (POS) tags. In the latter strategy,
we added a POS damping factor, noted as pij of
0.2 if the POS tags of wi and wj are equal. Follow-
ing Optimal Innovation hypothesis, the similarity
of a punning word and its grounding word should
neither be too high or too low in order to evoke the
non-literal meaning. We applied following correc-
tion on computed similarities.

fws(x) =

{
0 x < 0.01
1− x x >= 0.01

In puns, punning words and grounding words in
context are often not adjacent. Thus the system
does not consider the adjacent words of the candi-
date word. The system also ignored stopwords of-
fered by NLTK. We noticed that words with high
frequency other than stopwords overshadow low
frequency words since every word with high fre-
quency poses certain similarity score with every
other phrases. Thus we added a frequency damp-
ing factor(fij) of 0.1 to the score for whose words
have frequencies more than 100 in Brown Cor-
pus (Francis and Kucera, 1979). The final scoring
function is shown as follows.

score(W, i) =
n∑

j=1

pijfij

l∑
k=1

q∑
m=1

fws(
gkgm

|gk||gm|)

n is the number of words in ci and l and q is num-
ber of senses of wi and wj . gk and gm are gloss of
the kth sense and mth sense of wi and wj respec-
tively.

For task 3, in order to obtain the sense keys
of intended meaning from Wordnet, we chose the
top two glosses of the pun word based on similar-
ity score between gloss and word in context. For
adding more context, instead of comparing only
with words in context, we performed similarity
measurement among the glosses.

For subtask 1, for each word we calculated sim-
ilarity with other words and we averaged the top
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two similarity score. We have considered a word
as a pun if the average score is more than threshold
of 0.6, which we chose empirically after observing
a number of examples. For subtask 3, we chose
the top two senses of the word ranked by the gloss
similarity as candidate senses of punned word.

5 Experiment results and analysis

5.1 Heterographic Puns Processing

ID Method P R F

1
Infrequent Quadgram 0.90 0.71 0.79

Trigram Score 0.82 0.87 0.84

2
Last Word 0.55 0.55 0.55

BestQuadGramPairs 0.68 0.68 0.68

3
TopSenses 0.14 0.11 0.12
GlossSim 0.08 0.07 0.07

Table 1: The precision, recall, and F-score value
of heterographic pun subtasks

The experiment results for the heterographic
pun subtasks are shown in Table 5.1. For subtask
1, the baseline infrequent quadgram is created: if
a pun contains no infrequent quadgrams, which
have a frequency less than 150 in Ngram corpus,
then it is labeled as a non pun. The system uses
trigram in subtask 1 because it is computationally
feasible to search the ngram space, whilst still be-
ing representative of typical uses of language. We
set a balanced threshold value of −14 by observ-
ing the first 200 samples in the test set.

The high precision score indicates the underly-
ing mechanism behind such puns: a mutation of a
typical use of language needs to take place. How-
ever the recall for this baseline is poor. A large
portion of puns de facto use frequent language us-
ages as targets for linguistic perversion, which this
baseline method fails.

Our system outperforms the baseline about five
percentage of F-score. The largest factor regard-
ing improper classifications of our model is false
positives. Not all infrequent uses of language
are heterographic puns. Idiom Savant’s technique
would sometimes misread a context, modify an
infrequent trigram that was not the source of a
pun to produce a much more frequent trigram.
These false positives are the result of the enormous
amount of possible uses in the English language.
Infrequent yet “normal” trigrams are an important
caveat when using frequency based techniques
such as Idiom Savant. Hence we see the differ-

ence between our model and the simple baseline:
although the puns that were detected were very
precise, the baseline failed to detect more subtle
puns, where normal uses of language are still us-
ing phonetic translations to introduce ambiguity.

For subtask 2, Idiom Savant uses quadgrams to
produce the scores. This is possible because the
system employs a number of methods to reduce
the search space created when attempting to re-
place quadgrams. Firstly, the system won’t search
the Tom Swifty puns in ngrams corpus. Analysing
the first 200 samples in the test data, which is not
Tom Swifty puns, we found that roughly half all
pun words are the last words in the context. Us-
ing this method on the whole corpus produced the
LastWord baseline seen above. When expanding
that to quadgrams and thus enlarging the window,
an even greater ratio presents itself. Of the same
200 samples, three fourth of punning words are
present in the last quadgram. In the gold stan-
dard, ninety percent of pun words appear in the
last quadgram. We apply the same scoring tech-
nique as described above and achieved the per-
formance presented in the table. We find an in-
crease of 13% as compared to the last word base-
line across the board.

To create a baseline for subtask 3, we followed
the approach described in (Miller and Gurevych,
2015). and choose the top WordNet senses for
each word selected as pun word. As WordNet
ranks each sense with their associated frequency
of usage, the baseline simply selects the most fre-
quent sense for the pun word and replaced word
respectively. As the replaced word are produced
by the system, the possibility of error even with
the baseline approach is affected by the accuracy
of previous steps. When an incorrect word is pro-
duced, the sense key attached is by default incor-
rect and thus the precision, recall, and F scores
suffer. The baseline outperforms our system to
choose the best sense keys by approximately 6 per-
centage points. Our method involves Word2Vec is
insufficient for solving this subtask, which is evi-
dently much more difficult than the previous sub-
tasks.

5.2 Homographic Pun Processing
For homographic pun processing, we participated
in subtask 2 and 3. We calculated scores of sub-
task 1 on test data after task. For subtask 1, our
system achieves 0.84 F-score, which outperforms
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the all positive baseline. For subtask 2, our sys-
tem achieves 0.66 F-score. We observed that our
system performed well on long sentences. How-
ever, for short sentences, most frequent word in
the sentence were selected as pun word. This may
be caused by lack of context.

Our system does not perform well on subtask 3
as it could not pick the apt sense intended in the
pun. We noticed that the system can not pinpoint
the apt senses whose glosses are not long enough.

Task Method P R F-score

Task 1
AllPositive 0.71 1.00 0.83
WordPairSim 0.73 0.98 0.84

Task 2
WordSim 0.57 0.54 0.55
WordGlossSim 0.66 0.66 0.66

Task 3 GlossSim 0.08 0.08 0.08

Table 2: The precision, recall, and F-score value
of homographic pun processing subtasks

6 Concluding Remarks

We introduced Idiom Savant, a computational sys-
tem that capable of classifying and analyzing het-
erographic and homographic puns. We show that
using n-grams in combination with the CMU dic-
tionary can accurately model heterographic pun.

There are however a number of drawbacks to
this approach. We hypothesize that using a larger
corpus would increase the performance of hetero-
grahic pun processing. And we may combine dif-
ferent length grams to search for these idiomatic
uses of language, which would more accurately
model how human recognizes heterographic puns.
Furthermore, the system has no means of checking
whether the candidate words offered up by Idiom
Savant are correlated to the rest of the context. Our
system suffers intensely for short sentences and
short gloss information, since Word2Vec doesn’t
offer context information.
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Abstract

We present our submitted systems for Se-
mantic Textual Similarity (STS) Track 4 at
SemEval-2017. Given a pair of Spanish-
English sentences, each system must esti-
mate their semantic similarity by a score
between 0 and 5. In our submission,
we use syntax-based, dictionary-based,
context-based, and MT-based methods.
We also combine these methods in unsu-
pervised and supervised way. Our best run
ranked 1st on track 4a with a correlation
of 83.02% with human annotations.

1 Introduction

CompiLIG is a collaboration between Compilatio1

- a company particularly interested in cross-
language plagiarism detection - and LIG research
group on natural language processing (GETALP).
Cross-language semantic textual similarity detec-
tion is an important step for cross-language plagia-
rism detection, and evaluation campaigns in this
new domain are rare. For the first time, SemEval
STS task (Agirre et al., 2016) was extended with
a Spanish-English cross-lingual sub-task in 2016.
This year, sub-task was renewed under track 4 (di-
vided in two sub-corpora: track 4a and track 4b).

Given a sentence in Spanish and a sentence in
English, the objective is to compute their seman-
tic textual similarity according to a score from 0

1www.compilatio.net

to 5, where 0 means no similarity and 5 means
full semantic similarity. The evaluation metric is
a Pearson correlation coefficient between the sub-
mitted scores and the gold standard scores from
human annotators. Last year, among 26 submis-
sions from 10 teams, the method that achieved the
best performance (Brychcin and Svoboda, 2016)
was a supervised system (SVM regression with
RBF kernel) based on word alignment algorithm
presented in Sultan et al. (2015).

Our submission in 2017 is based on cross-
language plagiarism detection methods combined
with the best performing STS detection method
published in 2016. CompiLIG team participated to
SemEval STS for the first time in 2017. The meth-
ods proposed are syntax-based, dictionary-based,
context-based, and MT-based. They show addi-
tive value when combined. The submitted runs
consist in (1) our best single unsupervised ap-
proach (2) an unsupervised combination of best
approaches (3) a fine-tuned combination of best
approaches. The best of our three runs ranked 1st

with a correlation of 83.02% with human annota-
tions on track 4a among all submitted systems (51
submissions from 20 teams for this track). Cor-
relation results of all participants (including ours)
on track 4b were much lower and we try to explain
why (and question the validity of track 4b) in the
last part of this paper.
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2 Cross-Language Textual Similarity
Detection Methods

2.1 Cross-Language Character N-Gram
(CL-CnG)

CL-CnG aims to measure the syntactical similar-
ity between two texts. It is based on Mcnamee
and Mayfield (2004) work used in information re-
trieval. It compares two texts under their n-grams
vectors representation. The main advantage of this
kind of method is that it does not require any trans-
lation between source and target text.

After some tests on previous year’s dataset to
find the best n, we decide to use the Potthast et al.
(2011)’s CL-C3G implementation. Let Sx and Sy
two sentences in two different languages. First,
the alphabet of these sentences is normalized to
the ensemble

∑
= {a − z, 0 − 9, }, so only

spaces and alphanumeric characters are kept. Any
other diacritic or symbol is deleted and the whole
text is lower-cased. The texts are then segmented
into 3-grams (sequences of 3 contiguous charac-
ters) and transformed into tf.idf vectors of charac-
ter 3-grams. We directly build our idf model on
the evaluation data. We use a double normaliza-
tion K (with K = 0.5) as tf (Manning et al., 2008)
and a inverse document frequency smooth as idf.
Finally, a cosine similarity is computed between
the vectors of source and target sentences.

2.2 Cross-Language Conceptual
Thesaurus-based Similarity (CL-CTS)

CL-CTS (Gupta et al., 2012; Pataki, 2012) aims to
measure the semantic similarity between two vec-
tors of concepts. The model consists in represent-
ing texts as bag-of-words (or concepts) to compare
them. The method also does not require explicit
translation since the matching is performed using
internal connections in the used “ontology”.

Let S a sentence of length n, the n words of the
sentence are represented by wi as:

S = {w1, w2, w3, ..., wn} (1)

Sx and Sy are two sentences in two different
languages. A bag-of-words S′ from each sen-
tence S is built, by filtering stop words and by
using a function that returns for a given word all
its possible translations. These translations are
jointly given by a linked lexical resource, DBNary
(Sérasset, 2015), and by cross-lingual word em-
beddings. More precisely, we use the top 10 clos-
est words in the embeddings model and all the

available translations from DBNary to build the
bag-of-words of a word. We use the MultiVec
(Berard et al., 2016) toolkit for computing and
managing word embeddings. The corpora used to
build the embeddings are Europarl and Wikipedia
sub-corpus, part of the dataset of Ferrero et al.
(2016)2. For training our embeddings, we use
CBOW model with a vector size of 100, a win-
dow size of 5, a negative sampling parameter of 5,
and an alpha of 0.02.

So, the sets of words S′x and S′y are the con-
ceptual representations in the same language of Sx
and Sy respectively. To calculate the similarity be-
tween Sx and Sy, we use a syntactically and fre-
quentially weighted augmentation of the Jaccard
distance, defined as:

J(Sx, Sy) =
Ω(S′x) + Ω(S′y)
Ω(Sx) + Ω(Sy)

(2)

where Sx and Sy are the input sentences (also
represented as sets of words), and Ω is the sum of
the weights of the words of a set, defined as:

Ω(S) =
n∑

i=1 , wi∈S
ϕ(wi) (3)

where wi is the ith word of the bag S, and ϕ is
the weight of word in the Jaccard distance:

ϕ(w) = pos weight(w)1−α . idf(w)α (4)

where pos weight is the function which gives
the weight for each universal part-of-speech tag
of a word, idf is the function which gives the
inverse document frequency of a word, and . is
the scalar product. Equation (4) is a way to
syntactically (pos weight) and frequentially (idf )
weight the contribution of a word to the Jaccard
distance (both contributions being controlled with
the α parameter). We assume that for one word,
we have its part-of-speech within its original sen-
tence, and its inverse document frequency. We use
TreeTagger (Schmid, 1994) for POS tagging, and
we normalize the tags with Universal Tagset of
Petrov et al. (2012). Then, we assign a weight
for each of the 12 universal POS tags. The 12
POS weights and the value α are optimized with
Condor (Berghen and Bersini, 2005) in the same
way as in Ferrero et al. (2017). Condor applies
a Newton's method with a trust region algorithm

2https://github.com/FerreroJeremy/
Cross-Language-Dataset
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to determinate the weights that optimize a de-
sired output score. No re-tuning of these hyper-
parameters for SemEval task was performed.

2.3 Cross-Language Word Embedding-based
Similarity

CL-WES (Ferrero et al., 2017) consists in a cosine
similarity on distributed representations of sen-
tences, which are obtained by the weighted sum
of each word vector in a sentence. As in previ-
ous section, each word vector is syntactically and
frequentially weighted.

If Sx and Sy are two sentences in two differ-
ent languages, then CL-WES builds their (bilin-
gual) common representation vectors Vx and Vy
and applies a cosine similarity between them. A
distributed representation V of a sentence S is cal-
culated as follows:

V =
n∑

i=1 , wi∈S
(vector(wi) . ϕ(wi)) (5)

where wi is the ith word of the sentence S,
vector is the function which gives the word em-
bedding vector of a word, ϕ is the same that in
formula (4), and . is the scalar product. We make
this method publicly available through MultiVec3

(Berard et al., 2016) toolkit.

2.4 Translation + Monolingual Word
Alignment (T+WA)

The last method used is a two-step process. First,
we translate the Spanish sentence into English
with Google Translate (i.e. we are bringing the
two sentences in the same language). Then, we
align both utterances. We reuse the monolingual
aligner4 of Sultan et al. (2015) with the improve-
ment of Brychcin and Svoboda (2016), who won
the cross-lingual sub-task in 2016 (Agirre et al.,
2016). Because this improvement has not been re-
leased by the initial authors, we propose to share
our re-implementation on GitHub5.

If Sx and Sy are two sentences in the same lan-
guage, then we try to measure their similarity with
the following formula:

J(Sx, Sy) =
ω(Ax) + ω(Ay)
ω(Sx) + ω(Sy)

(6)

3https://github.com/eske/multivec
4https://github.com/ma-sultan/

monolingual-word-aligner
5https://github.com/FerreroJeremy/

monolingual-word-aligner

where Sx and Sy are the input sentences (repre-
sented as sets of words), Ax and Ay are the sets of
aligned words for Sx and Sy respectively, and ω is
a frequency weight of a set of words, defined as:

ω(A) =
n∑

i=1 , wi∈A
idf(wi) (7)

where idf is the function which gives the in-
verse document frequency of a word.

2.5 System Combination

These methods are syntax-, dictionary-, context-
and MT- based, and are thus potentially comple-
mentary. That is why we also combine them in
unsupervised and supervised fashion. Our unsu-
pervised fusion is an average of the outputs of each
method. For supervised fusion, we recast fusion as
a regression problem and we experiment all avail-
able methods in Weka 3.8.0 (Hall et al., 2009).

3 Results on SemEval-2016 Dataset

Table 1 reports the results of the proposed systems
on SemEval-2016 STS cross-lingual evaluation
dataset. The dataset, the annotation and the eval-
uation systems were presented in the SemEval-
2016 STS task description paper (Agirre et al.,
2016), so we do not re-detail them here. The
lines in bold represent the methods that obtain
the best mean score in each category of system
(best method alone, unsupervised and supervised
fusion). The scores for the supervised systems are
obtained with 10-folds cross-validation.

4 Runs Submitted to SemEval-2017

First, it is important to mention that our outputs
are linearly re-scaled to a real-valued space [0 ; 5].

Run 1: Best Method Alone. Our first run is
only based on the best method alone during our
tests (see Table 1), i.e. Cross-Language Concep-
tual Thesaurus-based Similarity (CL-CTS) model,
as described in section 2.2.

Run 2: Fusion by Average. Our second run is
a fusion by average on three methods: CL-C3G,
CL-CTS and T+WA, all described in section 2.

Run 3: M5′Model Tree. Unlike the two prece-
dent runs, the third run is a supervised system.
We have selected the system that obtained the best
score during our tests on SemEval-2016 evalua-
tion dataset (see Table 1), which is the M5′ model
tree (Wang and Witten, 1997) (called M5P in
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Methods News Multi Mean
Unsupervised systems

CL-C3G (1) 0.7522 0.6550 0.7042
CL-CTS (2) 0.9072 0.8283 0.8682
CL-WES (3) 0.7028 0.6312 0.6674
T+WA (4) 0.9060 0.8144 0.8607
Average (1-2-3-4) 0.8589 0.7824 0.8211
Average (1-2-4) 0.9051 0.8347 0.8703
Average (2-3-4) 0.8923 0.8239 0.8585
Average (2-4) 0.9082 0.8299 0.8695

Supervised systems (fine-tuned fusion)
GaussianProcesses 0.8712 0.7884 0.8303
LinearRegression 0.9099 0.8414 0.8761
MultilayerPerceptron 0.8966 0.7999 0.8488
SimpleLinearRegression 0.9048 0.8144 0.8601
SMOreg 0.9071 0.8375 0.8727
Ibk 0.8396 0.7330 0.7869
Kstar 0.8545 0.8173 0.8361
LWL 0.8572 0.7589 0.8086
DecisionTable 0.9139 0.8047 0.8599
M5Rules 0.9146 0.8406 0.8780
DecisionStump 0.8329 0.7380 0.7860
M5P 0.9154 0.8442 0.8802
RandomForest 0.9109 0.8418 0.8768
RandomTree 0.8364 0.7262 0.7819
REPTree 0.8972 0.7992 0.8488

Table 1: Results of the methods on SemEval-2016
STS cross-lingual evaluation dataset.

Weka 3.8.0 (Hall et al., 2009)). Model trees have
a conventional decision tree structure but use lin-
ear regression functions at the leaves instead of
discrete class labels. The first implementation of
model trees, M5, was proposed by Quinlan (1992)
and the approach was refined and improved in a
system called M5′ by Wang and Witten (1997). To
learn the model, we use all the methods described
in section 2 as features.

5 Results of the 2017 evaluation and
Discussion

Dataset, annotation and evaluation systems are
presented in SemEval-2017 STS task description
paper (Cer et al., 2017). We can see in Table 2
that our systems work well on SNLI6 (Bowman
et al., 2015) (track 4a), on which we ranked 1st

with more than 83% of correlation with human an-
notations. Conversely, correlations on the WMT
corpus (track 4b) are strangely low. This differ-
ence is notable on the scores of all participating
teams (Cer et al., 2017)7. This might be explained
by the fact that WMT was annotated by only one

6http://nlp.stanford.edu/projects/
snli/

7The best score for this track is 34%, while for the other
tracks it is around 85%.

annotator, while the SNLI corpus was annotated
by many.

Methods SNLI (4a) WMT (4b) Mean
CL-CTS 0.7684 0.1464 0.4574
Average 0.7910 0.1494 0.4702
M5P 0.8302 0.1550 0.4926

Table 2: Official results of our submitted systems
on SemEval-2017 STS track 4 evaluation dataset.

Methods SNLI (4a) WMT (4b) Mean
Our Annotations

CL-CTS 0.7981 0.5248 0.6614
Average 0.8105 0.4031 0.6068
M5P 0.8622 0.5374 0.6998

SemEval Gold Standard
CL-CTS 0.8123 0.1739 0.4931
Average 0.8277 0.2209 0.5243
M5P 0.8536 0.1706 0.5121

Table 3: Results of our submitted systems scored
on our 120 annotated pairs and on the same 120
SemEval annotated pairs.

To investigate deeper on this issue, we manu-
ally annotated 60 random pairs of each sub-corpus
(120 annotated pairs among 500). These annota-
tions provide a second annotator reference. We
can see in Table 3 that, on SNLI corpus (4a), our
methods behave the same way for both annotations
(a difference of about 1.3%). However, the dif-
ference in correlation is huge between our anno-
tations and SemEval gold standard on the WMT
corpus (4b): 30% on average. The Pearson corre-
lation between our annotated pairs and the related
gold standard is 85.76% for the SNLI corpus and
29.16% for the WMT corpus. These results ques-
tion the validity of the WMT corpus (4b) for se-
mantic textual similarity detection.

6 Conclusion

We described our submission to SemEval-2017
Semantic Textual Similarity task on track 4 (Sp-
En cross-lingual sub-task). Our best results were
achieved by a M5′ model tree combination of var-
ious textual similarity detection techniques. This
approach worked well on the SNLI corpus (4a -
finishes 1st with more than 83% of correlation with
human annotations), which corresponds to a real
cross-language plagiarism detection scenario. We
also questioned WMT corpus (4b) validity provid-
ing our own manual annotations and showing low
correlations with those of SemEval.
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Abstract

This paper describes the model UdL we
proposed to solve the semantic textual
similarity task of SemEval 2017 work-
shop. The track we participated in was
estimating the semantics relatedness of a
given set of sentence pairs in English.
The best run out of three submitted runs
of our model achieved a Pearson correla-
tion score of 0.8004 compared to a hid-
den human annotation of 250 pairs. We
used random forest ensemble learning to
map an expandable set of extracted pair-
wise features into a semantic similarity es-
timated value bounded between 0 and 5.
Most of these features were calculated us-
ing word embedding vectors similarity to
align Part of Speech (PoS) and Name En-
tities (NE) tagged tokens of each sentence
pair. Among other pairwise features, we
experimented a classical tf–idf weighted
Bag of Words (BoW) vector model but
with character-based range of n-grams in-
stead of words. This sentence vector
BoW-based feature gave a relatively high
importance value percentage in the fea-
ture importances analysis of the ensemble
learning.

1 Introduction

Semantic Textual Similarity (STS) is a shared task
that have been running every year by SemEval
workshop since 2012. Each year, the participat-
ing teams are encouraged to utilize the previous
years data sets as a training set for their models.
The teams are then ranked by their test score on
a hidden human annotated pairs of sentences. Af-
ter the end of the competition, the organizers pub-
lish the gold standards and ask the teams of the

coming year task to use it as a training set and so
on. The description of STS2017 task is reported in
(Cer et al., 2017). In STS2017 , the primary task
consisted in 6 tracks covering both monolingual
and cross-lingual sentence pairs for the languages
Spanish, English, Arabic, and Turkish. Our team,
UdL, only participated in the English monolingual
track (Track 5).

The data consist in thousands of pairs of sen-
tences from various resources like (Twitter news,
image captions, news headline, questions, an-
swers, paraphrasing, post-editing...). For each
pair, a human annotated score (from 0 to 5) is as-
signed and indicates the semantic similarity values
of the two sentences. The challenge is then to esti-
mate the semantic similarity of 250 sentence pairs
with hidden similarity values. The quality of the
proposed models would then be evaluated by the
Pearson correlation between the estimated and the
human annotated hidden values.

In section 2, we link to some related work to this
problem. The data preparation method followed
by a full description of the model pipeline and its
implementation are then presented in sections 3, 4,
and 5. Results of the model selection experiments
and the final task results are shown in section 6.

2 Related Work

The general description of the methodologies pro-
posed by the task previous year winners are dis-
cussed in Agirre et al. (2016). However, there
were many other related work to solve the issue
of encoding semantics of short text, i.e., sentences
or paragraphs. Many of them tend to reuse word
embeddings (Pennington et al., 2014) as an in-
put for sentence embedding, while others (Shen
et al., 2014; Le and Mikolov, 2014) propose to di-
rectly learn the sentence semantics features. Most
of these embedding techniques are based on large
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text corpus where each word or short text dense
vector representations (i.e., word embedding) are
learned from the co-occurrence frequencies with
other words in the context. Other methodologies
are based on matrix decomposition of the Bag of
Word (BoW) matrix using Latent Semantic Anal-
ysis (LSA) techniques like Singular Value Decom-
position (SVD) or Non-Negative Matrix Factor-
ization (NMF). According to a comparable trans-
fer learning strategy (Bottou, 2014), if we are able
to build a model consisting in (1) a pairwise trans-
former (i.e., feature extractor), and (2) a compara-
tor that can well-predict if the two elements of
the input are of the same class or not, then the
learned transformer could be reused to easily train
a classifier to label a single element. A good ex-
ample to understand such system is face recogni-
tion, e.g., it is considered impossible to have all
human faces images to train the best features set
of a face, however, a learned model that can tell if
two given face-images are of the same person or
not, could guide us to define a set of good repre-
sentative features to recognize a person given one
face image. We can generate 2n

2 comparative pairs
from n examples. Similarly, we cannot have all
possible sentences to identify the sentence seman-
tics, but we can generate a lot of comparative sen-
tence pairs to learn the best semantics features set,
i.e., sentence dense vector representation. Thus
we consider our pairwise feature-based model as
an initial step to build a sentence dense vector se-
mantics representation that can perform very well
in many applications like semantics highlighter,
question answering system and semantics-based
information retrieval system.

3 Data Set Preparation

The data set provided for the STS task consists in
a set of tab-separated values data files from differ-
ent text types accommodated year-after-year since
2012. Each year, the task organizers provide ad-
ditional data files from different text sources. The
text sources vary between classical narrative sen-
tences, news headlines, image captions or forum
questions or even chat Twitter news. The source
types used in the task are listed in Table 1.

Each files pair consists of a first file containing,
at each line, the two sentences to be compared and
some information about the sources of these sen-
tences if any. The second file contains, at each
line, the similarity score of the corresponding pair

of sentences that is presented in the first file. In
addition, for the data extracted from the previous
years, we have one directory for the training set
and another one for tests. We noticed that the
separator format for the data file is not optimized
since using a tabulator can make things confused
because it is also a character used in some cases
inside the text. This could be solved only by hand,
after a first automatic preprocessing. After that,
we can read the file by line, looking for the good
characters and line format. We are also grate-
ful that our predecessors, e.g., Tan et al. (2015),
who shared some of their aggregated data that we
could also add to our training set. In the end, we
used the set of data of all the previous years since
2012. An additional step we considered was the
spell-checker correction using Enchant software.
We assume that such preprocessing step could en-
hance the results. However, this step was not used
in our submitted system. Finally, we also consider
a version of the data set where we filtered out the
hash-tag symbol from the Twitter news sentence
pairs.

4 Model Description

Our approach is based on the comparable trans-
fer learning systems discussed in section 2. Ac-
cordingly, our model pipeline mainly consists in
2 phases: (1) pairwise feature extraction, i.e.,
feature transformer, and (2) regression estimator.
While many related work either use words em-
bedding as an input for learning the sentence se-
mantics representation or learning such semantics
features directly, our model is able to reuse both
types as input for the pairwise feature transformer.
For example, as listed in Table 2, we used features
that is based on word vectors similarity of aligned
words while we also have a feature that consider
the whole sentence vector, i.e., sparse BoW. The
model can also use, but not yet used in this pa-
per, unsupervised learned sentence representation
out of methods like BoW matrix decomposition,
paragraph vector, or sent2vec methods as input to
our pairwise features transformer.

4.1 Pairwise Feature Extraction

We used different feature types as in Table 2. The
first two types are based on aligning PoS and NE
tagged words and then compute the average word
vectors cosine similarity (CS) of the paired tags.
The process of extracting these type of pairwise
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Source Types (as named in the source file) Manually Assigned Domain Class
FNWN, OnWN, surprise.OnWN Definition

MSRpar, belief, plagiarism, postediting Paraphrasing
MSRvid, images Image-captions

SMT, SMTeuroparl, deft-news, headlines,
surprise.SMTnews, tweet-news News

answer-answer, answers-forums, answers-students,
deft-forum, question-question Question-answer

Table 1: Sentence pairs data source types and its manually annotated domain class.

Algorithm 1: The pairwise features extraction
process of aligned PoS and NE tagged tokens.
Input: Sentence pair

1 Extract a PoS type or a NE type word tokens
from both sentences

2 Pair each tagged word-token in one sentence
to all same tagged tokens in the other
sentence

3 Get the word vector representations of both
tokens of each paired tokens

4 Compute the vector representations of both
tokens of each paired tokens

5 Align words if the cosine similarity (CS) is
above a threshold value

6 Solve alignment conflicts, if any, based on the
higher CS value

7 Compute the average CS of the aligned tokens
and use it as the pairwised feature value

features are resumed in the algorithm 1.
The third feature is extracted by transforming

each sentence to its BoW vector representation.
This sparse vector representation is weighted by
tf–idf. The vocabulary of the BoW is the character
grams range between 2 and 3. This BoW vocab-
ulary source is only the data set of the task itself
and not a general large text corpus like the ones
usually used for word embedding. We are plan-
ning to try out a similar feature, but unsupervised,
where we consider a corpus like Wikipedia dump
as a source for the BoW. Another feature we plan
to consider as a future work is the dense decom-
posed BoW using SVD or NMF. Finally, we can
also consider unsupervised sentence vectors using
paragraph vectors or sent2vec methods.

Features number 4 is extracted by computing
the absolute difference of the summation of all
numbers in each sentence. To achieve that, we
transferred any spelled number, e.g., “sixty-five”,
to its numerical value, e.g., 65. The fifth pairwise

feature we used was simply based on the sentence
length. The last feature is extracted by mapping
each sentence pair source to a manually annotated
domain class as in Table 1. However, in order to
use this feature, we would need to specify the do-
main class of the sentence pairs of the test data set.
Manually checking the test data and also based on
some replies found from the task organizers about
the source of the test data, we classified them all
as “Image-captions”.

4.2 Regression

We have mainly evaluated two regression estima-
tors for this task. The first estimator was random
forests (RF) and the other was Lasso (least abso-
lute shrinkage and selection operator). Based on
a 10-fold cross-validation (CV), we set the num-
ber of estimators of 1024 for RF and a maximum
depth of 8. For Lasso CV, we finally set the num-
ber of iterations to 512.

5 Implementation

Our Python model implementation is available for
reproducing the results on GitHub1. For PoS and
RE tagging, we utilized both polyglot (Al-Rfou
et al., 2013) and spaCy. We used a pre-trained
GloVe (Pennington et al., 2014) word vectors of
a size 300. The pipeline of the transformer and
the regression estimator was built on scikit-learn
API. Finally, we used pair-wise feature combiners
similar to the ones used in Louppe et al. (2016).

6 Results

6.1 Regression Estimator Selection

First, we run few experiments to decide on using
RF or Lasso CV. The experimental results of these
runs are listed in Table 3. The feature-importances
analysis are shown in the right column of Table 2.

1https://github.com/natsheh/sensim
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Feature Pair Combiner Importance
1 Aligned PoS tags (17 tags) Average of w2v CS of all PoS tag pairs 0.113
2 Aligned NE tags (10 tags) Average of w2v CS of all NE tag pairs 0.003
3 TFIDF char ngrams BoW Cosine similarity of the sentence BoW vector pair 0.847
4 Numbers Absolute difference of the number summation 0.006
5 Sentence length Absolute difference of the number of characters 0.032
6 Domain class of the pair N/A N/A

Table 2: Pairwise features set.

Regressor PoS word vectors images answers students headlines 2016 Mean
Lasso CV polyglot GloVe 0.82 0.74 0.80 0.79
Lasso CV spaCy spaCy 0.82 0.74 0.79 0.79

RF spaCy spaCy 0.85 0.78 0.80 0.81
RF polyglot spaCy 0.85 0.77 0.80 0.81

Table 3: Regression estimator selection based on experimental evaluation score over a few data sets.

6.2 System Configuration Selection

We experimented different settings varying the
feature transformation design parameters and try-
ing out three different training set versions for RF.
We show the 3 selected settings for submission
and the test score of a few evaluation data-sets
from previous years in Table 4.

6.3 Final Results

We finally submitted three runs of our model UdL
for the task official evaluation. The settings of
these three runs are shown in Table 4. The sum-
mary of the evaluation score with the baseline
(0.7278), the best score run model (0.8547), the
least (0.0069), the median (0.7775) and the mean
(0.7082) are shown in Figure 1. Run1 was our best
run with Pearson correlation score of (0.8004), At
this run, we used RF for regression estimator on
our all extracted pairwise features except the do-
main class feature. Run2 (0.7805) was same as
Run1 except that we used the domain class fea-
ture. Finally, Run3, submission correction phase
(0.7901), used a different data set were we filtered-
out hash-tag symbol from Twitter-news sentence
pairs.

7 Conclusion and Future Work

We proposed UdL, a model for estimating sen-
tence pair semantic similarity. The model mainly
utilizes two types of pairwise features which are
(1) the aligned part-of-speech and named-entities
tags and (2) the tf–idf weighted BoW vector model
of character-based n-gram range instead of words.
The evaluation results shows that Random Forest
regression estimator on our extracted pairwise fea-

Figure 1: Track 5 results summary in comparison
to UdL three runs;*: submission correction.

tures provided 80% of Pearson correlation with
hidden human annotation values. The model was
implemented in a scalable pipeline architecture
and is now made available to the public where the
user can add and experiment any additional fea-
tures or even any other regression models. Since
the sentence vector BoW-based pairwise feature
showed high percentage in the feature importances
analysis of the Random Forest estimator, we are
going to try other, but dense, sentence vector rep-
resentation, e.g., in Shen et al. (2014); Le and
Mikolov (2014). We are also planning to use and
evaluate the model in some related applications in-
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Submission data set DF PoS vectors images AS H16 AA QQ plagiarism mean
- small no polyglot spaCy 0.85 0.77 0.80 0.47 0.54 0.82 0.71
- small yes polyglot spaCy 0.82 0.75 0.79 0.53 0.56 0.84 0.72

Run2 settings big yes spaCy spaCy 0.82 0.74 0.79 0.54 0.61 0.84 0.72
- big yes polyglot spaCy 0.82 0.75 0.79 0.52 0.55 0.84 0.71
- big no spaCy spaCy 0.82 0.78 0.80 0.46 0.60 0.82 0.71
- big no polyglot spaCy 0.85 0.77 0.80 0.51 0.56 0.82 0.72

Run1 settings big no polyglot spaCy 0.85 0.77 0.80 0.46 0.54 0.82 0.71
Run3 settings BH no polyglot spaCy 0.85 0.77 0.80 0.51 0.58 0.82 0.72

- BH no polyglot GloVe 0.85 0.77 0.80 0.46 0.57 0.81 0.71

Table 4: Evaluation 2-decimal-rounded score on some testsets. DF: domain feature, AA:answer-answer,
AS:answers students, H16:headlines 2016, QQ:question-question, BH:bigger data set size where hash-
tags are filtered

cluding a semantic sentences highlighter, a topic-
diversified document recommender system as well
as a question-answering system.

Acknowledgments

We would like to thank ARC6 Auvergne-Rhône-
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and Grégoire Mesnil. 2014. A latent semantic model
with convolutional-pooling structure for information
retrieval. In Jianzhong Li, Xiaoyang Sean Wang,
Minos N. Garofalakis, Ian Soboroff, Torsten Suel,
and Min Wang, editors, Proceedings of the 23rd
ACM International Conference on Conference on
Information and Knowledge Management, CIKM
2014, Shanghai, China, November 3-7, 2014. ACM,
pages 101–110.

Liling Tan, Carolina Scarton, Lucia Specia, and Josef
van Genabith. 2015. USAAR-SHEFFIELD: seman-
tic textual similarity with deep regression and ma-
chine translation evaluation metrics. In Proceedings
of the 9th International Workshop on Semantic Eval-
uation, SemEval@NAACL-HLT 2015, Denver, Col-
orado, USA, June 4-5, 2015. The Association for
Computer Linguistics, pages 85–89.

119



Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 120–124,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

DT Team at SemEval-2017 Task 1: Semantic Similarity Using Alignments,
Sentence-Level Embeddings and Gaussian Mixture Model Output

Nabin Maharjan, Rajendra Banjade, Dipesh Gautam, Lasang J. Tamang and Vasile Rus
Department of Computer Science / Institute for Intelligent Systems

The University of Memphis
Memphis, TN, USA

{nmharjan,rbanjade,dgautam,ljtamang,vrus}@memphis.edu

Abstract

We describe our system (DT Team) sub-
mitted at SemEval-2017 Task 1, Seman-
tic Textual Similarity (STS) challenge for
English (Track 5). We developed three dif-
ferent models with various features includ-
ing similarity scores calculated using word
and chunk alignments, word/sentence em-
beddings, and Gaussian Mixture Model
(GMM). The correlation between our sys-
tem’s output and the human judgments
were up to 0.8536, which is more than
10% above baseline, and almost as good
as the best performing system which was
at 0.8547 correlation (the difference is just
about 0.1%). Also, our system produced
leading results when evaluated with a sep-
arate STS benchmark dataset. The word
alignment and sentence embeddings based
features were found to be very effective.

1 Introduction

Measuring the Semantic Textual Similarity (STS)
is to quantify the semantic equivalence between
given pair of texts (Banjade et al., 2015; Agirre
et al., 2015). For example, a similarity score of
0 means that the texts are not similar at all while
a score of 5 means that they have same meaning.
In this paper, we describe our system DT Team
and the three different runs that we submitted to
this year’s SemEval shared task on STS English
track (Track 5; Agirre et al. (2017)). We ap-
plied Support Vector Regression (SVR), Linear
Regression (LR) and Gradient Boosting Regressor
(GBR) with various features (see § 3.4) in order to
predict the semantic similarity of texts in a given
pair. We also report the results of our models when
evaluated with a separate STS benchmark dataset
created recently by the STS task organizers.

2 Preprocessing

The preprocessing step involved tokenization,
lemmatization, POS-tagging, name-entity recog-
nition and normalization (e.g. pc, pct, % are nor-
malized to pc). The preprocessing steps were same
as our DTSim system (Banjade et al., 2016).

3 Feature Generation

We generated various features including similar-
ity scores generated using different methods. We
describe next the word-to-word and sentence-to-
sentence similarity methods used in our system.

3.1 Word-to-Word Similarity

We used the word2vec (Mikolov et al., 2013)1

vectorial word representation, PPDB database
(Pavlick et al., 2015)2, and WordNet (Miller,
1995) to compute similarity between words.
Please see DTSim system description (Banjade
et al., 2016) for additional details.

3.2 Sentence-to-Sentence Similarity

3.2.1 Word Alignment Method
We lemmatized all content words and aligned
them optimally using the Hungarian algorithm
(Kuhn, 1955) implemented in the SEMILAR
Toolkit (Rus et al., 2013). The process is the
same as finding the maximum weight matching in
a weighted bi-partite graph. The nodes are words
and the weights are the similarity scores between
the word pairs computed as described in § 3.1. In
order to avoid noisy alignments, we reset the sim-
ilarity score below 0.5 (empirically set threshold)
to 0. The similarity score was computed as the
sum of the scores for all aligned word-pairs di-
vided by the total length of the given sentence pair.

1http://code.google.com/p/word2vec/
2http://www.cis.upenn.edu/ ccb/ppdb/
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In some cases, we also applied a penalty for un-
aligned words which we describe in § 3.3

3.2.2 Interpretable Similarity Method
We aligned chunks across sentence-pairs and la-
beled the alignments, such as Equivalent or Spe-
cific as described in Maharjan et al. (2016). Then,
we computed the interpretable semantic score as
in the DTSim system (Banjade et al., 2016).

3.2.3 Gaussian Mixture Model Method
Similar to the GMM model we have proposed
for assessing open-ended student answers (Ma-
harjan et al., 2017), we represented the sentence
pair as a feature vector consisting of feature sets
{7, 8, 9, 10, 14} from § 3.4 and modeled the se-
mantic equivalence levels [0 5] as multivariate
Gaussian densities of feature vectors. We then
used GMM to compute membership weights to
each of these semantic levels for a given sentence
pair. Finally, the GMM score is computed as:

mem wti = wiN(x|µi,
∑
i

), i ∈ [0, 5]

gmm score =
5∑
i=0

mem wti ∗ i

3.2.4 Compositional Sentence Vector Method
We used both Deep Structured Semantic Model
(DSSM; Huang et al. (2013)) and DSSM
with convolutional-pooling (CDSSM; Shen et al.
(2014); Gao et al. (2014)) in the Sent2vec tool3 to
generate the continuous vector representations for
given texts. We then computed the similarity score
as the cosine similarity of their representations.

3.2.5 Tuned Sentence Representation Based
Method

We first obtained the continuous vector represen-
tations VA and VB for sentence pair A and B us-
ing the Sent2Vec DSSM or CDSSM models or
skip-thought model4 (Zhu et al., 2015; Kiros et al.,
2015). Inspired by Tai et al. (2015), we then rep-
resented the sentence pairs by the features formed
by concatenating element-wise dot product VA.VB
and absolute difference |VA − VB|. We used these
features in our logistic regression model which
produces the output p̂θ. Then, we predicted the
similarity between the texts in the target pair as

3https://www.microsoft.com/en-
us/download/details.aspx?id=52365

4https://github.com/ryankiros/skip-thoughts

ŷ = rT p̂θ, where rT = {1, 2, 3, 4, 5} is the ordi-
nal scale of similarity. To enforce that ŷ is close to
the gold rating y, we encoded y as a sparse target
distribution p such that y = rT p as:

pi =


y − byc, i = byc+ 1
byc − y + 1, i = byc
0, otherwise

where 1 ≤ i ≤ 5 and, byc is floor operation.
For instance, given y = 3.2, it would give sparse p
= [0 0 0.8 0.2 0]. For building logistic model, we
used training data set from our previous DTSim
system (Banjade et al., 2016) and used image test
data from STS-2014 and STS-2015 as validation
data set.

3.2.6 Similarity Vector Method
We generated a vocabulary V of unique words
from the given sentence pair (A,B). Then,
we generated sentence vectors as in the fol-
lowings: VA = (w1a, w2a, ..wna) and VB =
(w1b, w2b, ...wnb), where n = |V | and wia = 1, if
wordi at position i in V has a synonym in sentence
A. Otherwise, wia is the maximum similarity be-
tween wordi and any of the words in A, com-
puted as: wia = max

j=|A|
j=1 sim(wj , wordi). The

sim(wj , wordi) is cosine similarity score com-
puted using the word2vec model. Similarly, we
compute VB from sentence B.

3.2.7 Weighted Resultant Vector Method
We combined word2vec word representations to
obtain sentence level representations through vec-
tor algebra. We weighted the word vectors corre-
sponding to content words. We generated resultant
vector for A as RA =

∑i=|A|
i=1 θi ∗ wordi, where

the weight θi for wordi was chosen as wordi ∈
{noun = 1.0, verb = 1.0, adj = 0.2, adv = 0.4, oth-
ers (e.g. number) = 1.0}. Similarly, we computed
resultant vector RB for text B. The weights were
set empirically from training data. We then com-
puted a similarity score as the cosine of RA and
RB . Finally, we penalized the similarity score by
the unalignment score (see § 3.3).

3.3 Penalty
We applied the following two penalization strate-
gies to adjust the sentence-to-sentence similarity
score. It should be noted that only certain sim-
ilarity scores used as features of our regression
models were penalized but we did not penalize
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the scores obtained from our final models. Unless
specified, similarity scores were not penalized.

3.3.1 Crossing Score
Crossing measures the spread of the distance be-
tween the aligned words in a given sentence pair.
In most cases, sentence pairs with higher degree
of similarity have aligned words in same position
or its neighborhood. We define crossing crs as:

crs =

∑
wi∈A, wj∈B, aligned(wi,wj)

|i− j|
max(|A|, |B|) ∗ (#alignments)

where aligned(wi, wj) refers to word wi at in-
dex i in A and wj at index j in B are aligned.
Then, the similarity score was reset to 0.3 if crs >
0.7. The threshold 0.7 was empirically set based
on evaluations using the training data.

3.3.2 Unalignment Score
We define unalignment score similar to alignment
score (see § 3.2.1) but this time the score is calcu-
lated using unaligned words in both A and B as:
unalign score = |A|+|B|−2∗(#alignments)

|A|+|B| . Then,
the similarity score was penalized as in the follow-
ings:

score∗ = (1− 0.4 ∗ unalign score) ∗ score
where the weight 0.4 was empirically chosen.

3.4 Feature Selection
We generated and experimented with many fea-
tures. We describe here only those features used
directly or indirectly by our three submitted runs
which we describe in § 4. We used word2vec rep-
resentation and WordNet antonym and synonym
for word similarity unless anything else is men-
tioned specifically.

1. {w2v wa, ppdb wa, ppdb wa pen ua}:
similarity scores generated using word
alignment based methods (pen ua for scores
penalized by unalignment score).

2. {gmm}: output of Gaussian Mixture Model.

3. {dssm, cdssm}: similarity scores using
DSSM and CDSSM models (see § 3.2.4).

4. {dssm lr, skipthought lr}: similarity
scores using logistic model with sentence
representations from DSSM and skip-thought
models (see § 3.2.5).

5. {sim vec}: score using similarity vector
method (see § 3.2.6).

6. {res vec}: score using the weighted resul-
tant vector method (see § 3.2.7).

7. {interpretable}: score calculated using in-
terpretable similarity method ( § 3.2.2).

8. {noun wa, verb wa, adj wa, adv wa}:
Noun-Noun, Adjective-Adjective, Adverb-
Adverb, and Verb-Verb alignment scores us-
ing word2vec for word similarity.

9. {noun verb mult}: multiplication of Noun-
Noun similarity scores and Verb-Verb simi-
larity scores.

10. {abs diff t}: absolute difference as
|Cta−Ctb|
Cta+Ctb

where Cta and Cta are the counts
of tokens of type t ∈ {all tokens, adjectives,
adverbs, nouns, and verbs} in sentence A
and B respectively.

11. {overlap pen}: unigram overlap between
text A and B with synonym check given by:
score = 2∗overlap count

|A|+|B| . Then penalized by
crossing followed by unalignment score.

12. {noali}: number of NOALI relations in
aligning chunks between texts relative to the
total number of alignments (see § 3.2.2).

13. {align, unalign}: fraction of aligned/non-
aligned words in the sentence pair.

14. {mmr t}: min to max ratio as Ct1
Ct2

whereCt1
and Ct2 are the counts of type t ∈ {all, adjec-
tives, adverbs, nouns, and verbs} for shorter
text 1 and longer text 2 respectively.

4 Model Development

Training Data. We used data released in previous
shared tasks (see Table 1) for the model develop-
ment (see § 5 for STS benchmarking).
Models and Runs. Using the combination of
features described in § 3.4, we built three different
models corresponding to the three runs (R1-3)
submitted.
R1. Linear SVM Regression model (SVR;
ε = 0.1, C = 1.0) with a set of 7 features:
overlap pen, ppdb wa pen ua, dssm, dssm lr,
noali, abs diff all tkns, mmr all tkns.
R2. Linear regression model (LR; default weka
settings) with a set of 8 features: dssm, cdssm,
gmm, res vec, skipthought lr, sim vec,
aligned, noun wa.
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Data set Count Release time
Deft-news 299 STS2014-Test
Images 749 STS2014-Test
Images 750 STS2015-Test
Headlines 742 STS2015-Test
Answer-forums 375 STS2015-Test
Answer-students 750 STS2015-Test
Belief 375 STS2015-Test
Headlines 244 STS2016-Test
Plagiarism 230 STS2016-Test
Total 4514

Table 1: Summary of training data.

R1 R2 R3 Baseline 1st

0.8536 0.8360 0.8329 0.7278 0.8547

Table 2: Results of our submitted runs on test data
(1st is the best result among the participants).

R3. Gradient boosted regression model (GBR;
estimators = 1000, max depth = 3) which
includes 3 additional features: w2v wa, ppdb wa,
overlap to feature set used in Run 2.

We used SVR and and LR models in Weka
3.6.8. We used GBR model using sklearn python
library. We evaluated our models on training data
using 10-fold cross validation. The correlation
scores in the training data were 0.797, 0.816 and
0.845 for R1, R2, and R3, respectively.

5 Results

Table 2 presents the correlation (r) of our sys-
tem outputs with human ratings in the evaluation
data (250 sentence pairs from Stanford Natural
Language Inference data (Bowman et al., 2015)).
The correlation scores of all three runs are 0.83
or above, on par with top performing systems.
All of our systems outperform the baseline by a
large margin of above 10%. Interestingly, R1 sys-
tem is at par with the 1st ranked system differing
by a very small margin of 0.009 (<0.2%). Fig-
ure 1 presents the graph showing R1 system out-
put against human judgments (gold scores). It
shows that our system predicts relatively better for
similarity scores between 3 to 5 while the system
slightly overshoots the prediction for the gold rat-
ings in the range of 0 to 2. In general, it can be
seen that our system works well across all similar-
ity levels.

Our 11 features had a correlation of 0.75 or

dssm (0.8254), ppdb wa pen ua (0.8273),
ppdb wa (0.8139), cdssm (0.8013),
dssm lr (0.8135), overlap (0.8048)

Table 3: A set of highly correlated features with
gold scores in test data.

Figure 1: R1 system output in evaluation data plot-
ted against human judgments (in ascending order).

above when compared with gold scores in test
data. In Table 3, we list only those features
having correlations of 0.8 or above. Similarity
scores computed using word alignment and com-
positional sentence vector methods were the best
predictive features.

STS Benchmark (Agirre et al., 2017). We
also evaluated our models on a benchmark dataset
which consists of 1379 pairs and was created by
the task organizers. We trained our three runs with
the benchmark training data under identical set-
tings. We used benchmark development data only
for generating features from § 3.2.5 (as validation
dataset). The correlation scores for R1, R2 and
R3 systems were:

In Dev: 0.800, 0.822, 0.830 and
In Test: 0.755, 0.787, 0.792
All of our systems outperformed best baseline

benchmark system (Dev = 0.77, Test = 0.72). In-
terestingly, R3 was the best performing while R1
was the least performing among the three. As
such, generalization was found to improve with in-
creasing number of features (#features: 7, 8 and 11
for R1, R2 and R3 respectively).

6 Conclusion
We presented our DT Team system submitted in
SemEval-2017 Task 1. We developed three differ-
ent models using SVM regression, Linear regres-
sion and Gradient Boosted regression for predict-
ing textual semantic similarity. Overall, the out-
puts of our models highly correlate (correlation up
to 0.85 in STS 2017 test data and up to 0.792 on
benchmark data) with human ratings. Indeed, our
methods yielded highly competitive results.
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Abstract 

This paper describes FCICU team systems 

that participated in SemEval-2017 Seman-

tic Textual Similarity task (Task1) for 

monolingual and cross-lingual sentence 

pairs. A sense-based language independent 

textual similarity approach is presented, in 

which a proposed alignment similarity 

method coupled with new usage of a se-

mantic network (BabelNet) is used. Addi-

tionally, a previously proposed integration 

between sense-based and surface-based 

semantic textual similarity approach is ap-

plied together with our proposed approach. 

For all the tracks in Task1, Run1 is a string 

kernel with alignments metric and Run2 is 

a sense-based alignment similarity meth-

od. The first run is ranked 10th, and the 

second is ranked 12th in the primary track, 

with correlation 0.619 and 0.617 respec-

tively.  

1 Introduction 

Semantic Textual Similarity (STS) is the task of 

measuring the similarity between two short texts 

semantically. STS is very important because a 

wide range of Natural Language Processing 

(NLP) applications rely heavily on such task. 

This paper describes our participation in the 

STS task (Task1) at SemEval 2017 in all the six 

monolingual and cross-lingual tracks (Cer et al., 

2017). The STS task seeks to calculate a graded 

similarity score from 0 to 5 between two sentenc-

es according to their meaning, i.e. semantically. 

The monolingual tracks are Arabic, English, and 

Spanish sentence-pairs (track1, track3, and track5 

respectively), while the cross-lingual tracks are 

Arabic, Spanish, and Turkish sentences paired 

with English sentences (track2, track4a-4b, and 

track6 respectively). An additional Primary track 

is provided that presents the mean score of the re-

sults of all the other tracks. 

The similarity between two natural language 

sentences can be inferred from the quanti-

ty/quality of aligned constituents in both sentenc-

es. Such alignments provide valuable information 

regarding how and to what extent the two sen-

tences are related or semantically similar, where 

semantically equivalent text pairs are likely to 

have a successful alignment between their words. 

Our proposed sense-based approach employs this 

aspect to calculate the similarity between sen-

tence-pairs regardless of their language. This is 

achieved through a proposed word-sense aligner 

that relies mainly on a new usage of the semantic 

network BabelNet. BabelNet utilization compen-

sates the need of a machine translation module 

that is most commonly used to transfer cross-

lingual STS to monolingual. Besides, the pro-

posed sense-based similarity score is combined 

with a surface-based similarity score.  

The paper is organized as follows. Section 2 

explains our main multilingual sense-based align-

er. Section 3 describes our system that participated 

in all tracks. Section 4 shows the experiments 

conducted and analyzes the results achieved. Sec-

tion 5 concludes the paper and mentions some fu-

ture directions. 

2 Multilingual Sense-Based Aligner 

Highly semantically similar sentences should also 

have a high degree of conceptual alignment be-

tween their semantic units: words, tokens, 
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phrases, etc. Several STS methods that use align-

ments in their calculations have been proposed in 

literature. Many of those methods were very suc-

cessful and were among the top performing meth-

ods during the last years of SemEval 2013-2016 

(Han et al., 2013; Han et al., 2015; Hänig et al., 

2015; Sultan et al., 2014a; Sultan et al., 2014b; 

Sultan et al., 2015). 

From this point, we present a sense-based STS 

approach that produces a similarity score between 

texts by means of a multilingual word-sense 

aligner. The following subsections describe in de-

tail the main resource utilized in our STS ap-

proach, namely BabelNet (details in subsection 

2.1), and our proposed word-sense aligner that our 

sense-based similarity method relies on (subsec-

tion 2.2). 

2.1 BabelNet 

BabelNet1 is a rich semantic knowledge resource 

that covers a wide range of concepts and named 

entities connected with large numbers of semantic 

relations (Navigli and Ponzetto, 2010). Concepts 

and relations are gathered from different lexical 

resources such as: WordNet, Wikipedia, Wikidata, 

Wiktionary, FrameNet, ImageNet, and others.  

BabelNet is made up of about 14 million en-

tries called Babel synsets. Each Babel synset is a 

set of multilingual lexicalizations (each being a 

Babel Sense) that represents a given meaning, ei-

ther concept or named entity, and contains all the 

synonyms which express that meaning in a range 

of different languages. For example, the concept 

‘A motor vehicle with four wheels’ is represented 

by the synset {caren, autoen, automobileen, automo-

bilefr, voiturefr, autofr, automóviles, autoes, cochees, 

otomobiltr, arabatr, سيارةar , مركبةar , عربةar}2, this syn-

set contains synonyms in English (EN), French 

(FR), Spanish (ES), Turkish (TR), and Arabic 

(AR) languages. 

BabelNet semantic knowledge is encoded as a 

labeled directed graph, where vertices are Babel 

synset (concepts or named entities), and edges 

connect pairs of synsets with a label indicating the 

type of the semantic relation between them.  

2.2 Word-Sense Aligner 

Alignment is the task of discovering and aligning 

similar semantic units in a pair of sentences ex-

pressed in a natural language. 
                                                      
1http://babelnet.org/ 
2 Each word is a Babel sense in the subscripted language.  

 

Figure 1: Token alignments using our aligner 

between monolingual English - English sen-

tence pair example. 

 

Figure 2: Token alignments using our aligner 

between cross-lingual English - Arabic sen-

tence pair from SemEval 2017-Track2 dataset. 

Our proposed multilingual aligner aligns tokens 

across two sentences based on the similarity of 

their corresponding Babel synsets. A token can be 

in the form of a single word or a multi-words to-

ken. When alignment of a single word token fails, 

its multi-words synonyms are retrieved from 

BabelNet. The proposed aligner aligns only a to-

ken that is neither a stop word nor a punctuation 

mark. 

Figure 1 shows an example of alignments be-

tween English monolingual sentence-pairs using 

our aligner. In this figure the idiom “kicked the 

bucket” is considered as a single token of multiple 

words, and it was successfully aligned with the 

token “died” in the other sentence because both 

tokens are synonyms to each other in BabelNet. 

Figure 2 illustrates an example of direct token 

alignments between English-Arabic cross-lingual 

sentence pairs without using any machine transla-

tion module for translating one sentence language 

to the other.   

Token-pairs are aligned one-to-one in decreas-

ing order of their Babel synsets similarity score (s) 

using Equation (1). The most commonly used Ba-

bel synset of each token is selected.  

AlS1,S2 = {(t, t’, s) : t  T1, t’  T2, and  s >  }; 

where Ti is a set of tokens of sentence i, and  is a 

threshold parameter for alignment score ( = 0.5)3 

2.3 Synset Similarity Measure 

Finding similarity between synsets is a fundamen-

tal part of our aligner. Hence, we proposed a syn-

set similarity measure based on the hypothesis 
                                                      
3 According to experimental results conducted, we found 

that the best value for this threshold is 0.5. 
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that highly semantically similar concepts have 

high degree of common neighbor synsets. From 

this standpoint, this measure calculates the simi-

larity between Babel synset pairs (bsi, bsj) based 

on the overlap between their directly connected 

synsets. The overlap-coefficient is used, which is 

defined as the size of the intersection divided by 

the smaller of the size of the two sets. That is:  

|)||,min(|
),(

ji

ji

jisynset
NSNS

NSNS
bsbssim


          (1) 

where NSi and NSj are the sets of all neighbor 

Babel synsets having a connected edge with bsi 

and bsj in the BabelNet network respectively. 

Since synonyms are belong to the same synset, 

their similarity score is equal to 1. 

3 System Description 

Our systems are based on the past successful inte-

grated architecture of sense-based and surface-

based similarity functions presented in SemEval-

2015 system (Hassan et al., 2015). We use the in-

tegration in the latter system unchanged (Equation 

2),  where the current results are provided by tak-

ing the arithmetic mean of: 1) simproposed : a pro-

posed sentence-pair semantic similarity score (dif-

fers in each Run, details in subsection 3.2), and 2) 

simSC : the surface-based similarity function pro-

posed by Jimenez et al. (2012). Hence, 

 

2

),(),(
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SSsimSSsim
SSsim
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The approach presented in (Jimenez et al., 

2012) represents sentence words as sets of q-

grams and measures semantic similarity based on 

soft cardinality computed from sentence q-grams 

similarity. Our system employs this approach, 

with the following parameters setup: p=2, bias=0, 

and =0.5.  

In this section, the text preprocessing details is 

firstly explained in subsection 3.1, and then each 

submitted Run is described in subsection 3.2.  

3.1 Text Preprocessing 

The given multilingual input sentences are pre-

processed beforehand to map the raw natural lan-

guage text into structured representation that can 

be processed. This process is including only four 

different tasks: (1) tokenization, (2) stopwords 

removal, (3) lemmatization, and (4) sense tagging.  

Tokenization: is carried out using Stanford 

CoreNLP4 (Manning et al., 2014), in which the 

input raw sentence text, in any language, is broken 

down into a set of tokens.  

Stopwords removal: is the task of removing 

all tokens that are either a stop word or a punctua-

tion mark.  

Lemmatization: is a language-dependent task, 

in which each token is annotated with its lemma. 

English tokens are lemmatized using Stanford 

CoreNLP (Manning et al., 2014). Spanish tokens 

are lemmatized using a freely available lemma-

token pairs dataset5. Arabic tokens are lemmatized 

using Madamira6 (Pasha et al., 2014). For Turkish 

tokens, lemmatization is not carried out. 

Sense tagging: is the task of attaching the Ba-

bel synsets (bs) to each sentence token (t). It is 

achieved by retrieving all the Babel synsets of to-

ken’s lemma. 

On completion of the text preprocessing phase, 

each sentence is represented by a set of tokens (T), 

in which each token (t) is annotated by its original 

word (tword), lemma (tlemma), and a set of Babel 

synsets (bst). This structured representation is then 

used as an input to our proposed aligner (subsec-

tion 2.3), and from which a set of aligned tokens 

across two sentences S1 and S2 is formed (AlS1,S2).  

3.2 Submitted Runs 

We made two system submissions to participate in 

all the provided monolingual and cross-lingual 

tracks, named Run1 and Run2. Each run proposes 

a new different sense-based similarity method be-

tween sentence-pairs. The proposed similarity 

score is then applied in Equation (2), simproposed, 

resulting in the final similarity score between two 

sentences in each run. In the following, each of 

the two runs is described. 

Run1: String Kernel with Alignments 

A kernel can be interpreted as a similarity measure 

between two sentences, it is a simple way of com-

puting the inner product of two data points in a 

feature space directly as a function of their origi-

nal space variables (Liang et al., 2011). At 

SemEval 2015, a string kernel was presented, 

which relied on the hypothesis that the greater the 

                                                      
4http://nlp.stanford.edu/software/corenl

p.shtml 
5http://www.lexiconista.com/datasets/lem

matization/ 
6http://camel.abudhabi.nyu.edu/madamira/ 
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similarity of word senses between two texts, the 

higher their semantic equivalence will be (Hassan 

et al., 2015). Accordingly, this run employs the 

string kernel presented in (Hassan et al., 2015) in 

which the alignments obtained from our proposed 

aligner is used in mapping a sentence to feature 

space. The changed kernel mapping function is 

given by: 

 ),(max)(
1

i
ni

t ttsimS


               (3) 

where sim(t, ti) is the alignment score s of the 

two tokens if (t, ti, s)  AlS1,S2 , and is equal to 0 

otherwise, and n is the number of tokens con-

tained in sentence S, i.e. | T  |. 

The normalized string kernel between two sen-

tences S1 and S2 is calculated as follows (Shawe-

Taylor and Cristianini, 2004): 
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where T is the set of all tokens in both S1 and S2. 

Given two sentences, S1 and S2, our similarity 

score between S1 and S2 proposed by this run is 

the value of the normalized string kernel function 

between the two sentences (Equation 4). That is: 

 ),(),( 2121 SSSSsim NSproposed                (5) 

Run2: Alignment-Based Similarity Metric 

Alignment-based semantic similarity approaches 

presented in (Sultan et al., 2014a; Sultan et al., 

2014b; Sultan et al., 2015) relied only on the pro-

portions of the aligned content words on the two 

sentences. We hypothesized that alignments are 

not of the same importance, an alignment of syn-

onym tokens with alignment score 1 is not the 

same as an alignment of two semantically related 

tokens with score 0.5. Hence, the proposed simi-

larity score between S1 and S2 proposed for this 

run is based on the alignment scores as well as 

their proportion to the number of tokens in both 

sentences. It is given by:   
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where Ti is a set of tokens in sentence i, and al.s is 

the score calculated for the alignment al. 

Track Run1 Run2 Baseline 
Best 

Score 

1 : AR-AR .7158 .7158 .6045 .7543 

2 : AR-EN .6782 .6781  .7493 

3 : SP-SP .8484 .8489 .7117 .8559 

4a: SP-EN  .6926 .6854  .8302 

4b: SP-EN  .0254 .0214  .3407 

5 : EN-EN .8272 .8280 .7278 .8547 

6 : TR-EN .5452 .5390  .7706 

Primary .6190 .6166  .7316 

Table 1: System performance on SemEval-2107 da-

tasets. 

4 Experimental Results 

The main evaluation measure selected by the task 

organizers was the Pearson correlation between 

the system scores and the gold standard scores. 

Table 1 presents the official results of our submis-

sions in SemEval2017-Task1 for both Run1 and 

Run2 in the six tracks as well as the primary track. 

The best performing score obtained in each track 

is included as well alongside with the baseline 

system results announced by the task organizers. 

Our best system (Run1) achieved 0.619 correla-

tion and ranked the 10th run and the 5th team out of 

84 runs and 31 teams respectively.  

Although the performance of the two Runs dif-

fers slightly, it is noticeable from the table that 

Run1 (Kernel) performs better with cross-lingual 

sentence-pairs, while Run2 (Alignments) per-

forms better with monolingual sentence-pairs. 

Hence, relying on aligned tokens only in cross-

lingual sentences is insufficient.  

5 Conclusions and Future work 

Experimental results proved that, in spite of the 

fact that our proposed simple unsupervised ap-

proach relies only on BabelNet and token align-

ments, it is capable of assessing the semantic simi-

larity between two sentences in different lan-

guages with good performance, 10th run rank and 

5th team rank. Also, the proposed approach 

demonstrates the effectiveness and usefulness of 

using the BabelNet semantic network in solving 

the STS task. Some potential future work includes 

enhancing our proposed synset similarity method, 

and exploiting the extraction of promising content 

words in the given sentences. 
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Abstract

This paper describes our convolutional
neural network (CNN) system for the Se-
mantic Textual Similarity (STS) task. We
calculated semantic similarity score be-
tween two sentences by comparing their
semantic vectors. We generated a seman-
tic vector by max pooling over every di-
mension of all word vectors in a sentence.
There are two key design tricks used by
our system. One is that we trained a
CNN to transfer GloVe word vectors to
a more proper form for the STS task be-
fore pooling. Another is that we trained
a fully-connected neural network (FCNN)
to transfer the difference of two seman-
tic vectors to the probability distribution
over similarity scores. All hyperparame-
ters were empirically tuned. In spite of the
simplicity of our neural network system,
we achieved a good accuracy and ranked
3rd on primary track of SemEval 2017.

1 Introduction

Semantic Textual Similarity (STS) is the task
of determining the degree of semantic similarity
between two sentences. STS task is a building
block of many natural language processing (NLP)
applications. Therefore, it has received a signif-
icant amount of attention in recent years. STS
tasks in SemEval have been held from 2012 to
2017 (Cer et al., 2017). Successfully estimat-
ing the degree of semantic similarity between two
sentences requires a very deep understanding of
both sentences. Well performing STS methods
can be applied to many other natural language un-
derstanding tasks including paraphrasing, entail-
ment detection, answer selection, hypothesis evi-
dencing, machine translation (MT) evaluation and

quality estimation, summarization, question an-
swering (QA) and short answer grading.

Measuring sentence similarity is challenging for
two reasons. One is the variability of linguistic
expression and the other is the limited amount of
annotated training data. Therefore, conventional
NLP approaches, such as sparse, hand-crafted fea-
tures are difficult to use. However, neural network
systems (He et al., 2015a; He and Lin, 2016) can
alleviate data sparseness with pre-training and dis-
tributed representations. We propose a convolu-
tional neural network system with 5 components:

1) Enhance GloVe word vectors by adding hand-
crafted features.

2) Transfer the enhanced word vectors to a more
proper form by a convolutional neural network.

3) Max pooling over every dimension of all word
vectors to generate semantic vector.

4) Generate semantic difference vector by con-
catenating the element-wise absolute differ-
ence and the element-wise multiplication of
two semantic vectors.

5) Transfer the semantic difference vector to the
probability distribution over similarity scores
by fully-connected neural network.

2 System Description

Figure 1 provides an overview of our system.
The two sentences to be semantically compared
are first pre-processed as described in subsection
2.1. Then the CNN described in subsection 2.2
combines the word vectors from each sentence
into an appropriate sentence level embedding. Af-
ter that, the methods described in subsection 2.3
are used to compute representations that compare
paired sentence level embeddings. Then, a fully-
connected neural network (FCNN) described in
subsection 2.4 transfers the semantic difference
vector to a probability distribution over similarity
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scores. All hyperparameters in our system were
empirically tuned for the STS task and shown in
Table 1. We implemented our neural network sys-
tem by using Keras1 (Chollet, 2015) and Tensor-
Flow2 (Abadi et al., 2016).

2.1 Pre-process

Several text preprocessing operations were per-
formed before feature engineering:

1) All punctuations are removed.

2) All words are lower-cased.

3) All sentences are tokenized by Natural Lan-
guage Toolkit (NLTK) (Bird et al., 2009).

4) All words are replaced by pre-trained GloVe
word vectors (Common Crawl, 840B tokens)
(Pennington et al., 2014). Words that do not
exist in the pre-trained embeddings are set to
the zero vector.

5) All sentences are padded to a static length l =
30 with zero vectors (He et al., 2015a).

Several hand-crafted features are added to enhance
the GloVe word vectors:

1) If a word appears in both sentences, add a
TRUE flag to the word vector, otherwise, add
a FALSE flag.

2) If a word is a number, and the same number
appears in the other sentence, add a TRUE flag
to the word vector of the matching number in
each sentence, otherwise, add a FALSE flag.

3) The part-of-speech (POS) tag of every word ac-
cording to NLTK is added as a one-hot vector.

2.2 Convolutional neural network (CNN)

Our CNN consists of n = 300 one dimensional
filters. The length of the filters is set to be the
same as the dimension of the enhanced word vec-
tors. The activation function of the CNN is set
to be relu (Nair and Hinton, 2010). We did not
use any regularization or drop out. Early stopping
triggered by model performance on validation data
was used to avoid overfitting. The number of
layers is set to be 1. We used the same model
weights to transfer each of the words in a sentence.
Sentence level embeddings are calculated by max
pooling (Scherer et al., 2010) over every dimen-
sion of the transformed word level embedding.

1http://github.com/fchollet/keras
2http://github.com/tensorflow/tensorflow

Figure 1: Overview of system

2.3 Comparison of semantic vectors
To calculate the semantic similarity score of

two sentences, we generate a semantic difference
vector by concatenating the element-wise absolute
difference and the element-wise multiplication of
the corresponding paired sentence level embed-
dings. The calculation equation is

~SDV = (| ~SV 1− ~SV 2|, ~SV 1 ◦ ~SV 2) (1)

Here, ~SDV is the semantic difference vector,
~SV 1 and ~SV 2 are the semantic vectors of the two

sentences, and ◦ is Hadamard product which gen-
erate the element-wise multiplication of two se-
mantic vectors.

2.4 Fully-connected neural network (FCNN)
An FCNN is used to transfer the semantic dif-

ference vector (600 dimension) to a probability
distribution over the six similarity labels used by
STS. The number of layers is set to be 2. The
first layer uses 300 units with a tanh activation
function. The second layer produces the similar-
ity label probability distribution with 6 units com-
bined with a softmax activation function. We
train without using regularization or drop out.

3 Experiments and Results
We randomly split all dataset files of SemEval-

2012–2015 (Agirre et al., 2012, 2013, 2014, 2015)
into ten. We used the preparation of the data from
(Baudis et al., 2016). We used 90% of the pairs
in each individual dataset file for training and the
other 10% for validation. We tested our model
in the English dataset of SemEval-2016 (Agirre
et al., 2016). Our objective function is the Pearson
correlation coefficient computed over each batch.
ADAM was used as the gradient descent optimiza-
tion method. All parameters are set to the values
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Table 1: Hyperparameters

Sentence pad length 30
Dimension of GloVe vectors 300
Number of CNN layers 1
Dimension of CNN filters 1
Number of CNN filters 300
Activation function of CNN relu
Initial function of CNN he uniform
Number of FCNN layers 2
Dimension of input layer 600
Dimension of first layer 300
Dimension of second layer 6
Activation of first layer tanh
Activation of second layer softmax
Initial function of layers he uniform
Optimizer ADAM
Batch size 339
Max epoch 6
Run times 8

suggested by (P.Kingma and Ba, 2015): learning
rate is 0.001, β1 is 0.9, β2 is 0.999, ε is 1e-08.
he uniform (He et al., 2015b) was used as the
initial function of layers. We did the experiment 8
times and choose the model that achieved the best
performance on the validation dataset. Our sys-
tem got a Pearson correlation coefficient result of
0.7192±0.0062.

We also used the same model design to take
part in all tracks of SemEval-2017. We submitted
two runs. One with machine translation (MT) and
another without (non-MT). In MT run, we trans-
lated all the other languages in the test dataset into
English by Google Translate3 and used the En-
glish model to evaluate all similarity scores. For
the monolingual tracks, we also tried non-MT run,
which means we trained the models directly from
the English, Spanish and Arabic data. Here, we
independently trained another English model for
each run. The difference between English-English
performance from MT and non-MT is caused by
the random shuffling of data during training.

We also trained another English model with
same design to evaluate the STS benchmark
dataset (Cer et al., 2017)4. We used only the Train
part for training and the Dev. part to fine tune. We
also run our system without any hand-crafted fea-
tures. The purely sentence representation system

3http://translate.google.com
4http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

Table 2: Pearson correlation coefficient with the
golden standard of 2017 test dataset

Tracks CNN Best Diff.(Rank)
STS 2016 0.7192 0.7781 0.0589(14th)

±0.0062
STS 2017 (MT)
Primary 0.6598 0.7316 0.0718(3rd)
1 AR-AR 0.7130 0.7543 0.0413(6th)
2 AR-EN 0.6836 0.7493 0.0657(3rd)
3 SP-SP 0.8263 0.8559 0.0296(4th)
4a SP-EN 0.7621 0.8302 0.0681(5th)
4b SP-EN 0.1483 0.3407 0.1924(7th)
5 EN-EN 0.8113 0.8547 0.0434(8th)
6 EN-TR 0.6741 0.7706 0.0965(3rd)
STS 2017 (non-MT)
1 AR-AR 0.4373 0.7543 0.3170(15th)
3 SP-SP 0.6709 0.8559 0.1850(15th)
5 EN-EN 0.8156 0.8547 0.0391(7th)
STS benchmark (hand-craft)
Dev. 0.8343 0.8470 0.0127(4th)
Test 0.7842 0.8100 0.0258(4th)
STS benchmark (no hand-craft)
Dev. 0.8236 0.8470 0.0234(4th)
Test 0.7833 0.8100 0.0267(4th)

also got a good accuracy. The results are shown in
Table 2. Our model achieves 4th place on the STS
benchmark5.

4 Discussion
The difference between our model’s perfor-

mance and that of the best participating system are
relative small for all tracks except track 4b and 6.
We note that the sentences in track 4b are signif-
icantly longer than the sentences in other tracks.
We speculate that the results of our system in track
4b were pulled down by the decision to use static
padding of length 30 within our model.

Another trend that could be observed is that
the results of non-MT were likely harmed by the
smaller amounts of available training data. We had
over 10,000 training pairs for English, but only
1634 pairs in Spanish and 1104 in Arabic. Corre-
spondingly, for our non-MT models, we achieved
our best Pearson correlation scores on English
with diminished results on Spanish and our worst
results on Arabic. Notably, the results obtained
by combining our English model with MT to han-
dle Spanish and Arabic were not affected by the

5As of April 17, 2017
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limited amount of training data for these two lan-
guages and provided better performance.

5 Conclusion

We proposed a simple convolutional neural net-
work system for the STS task. First, it uses a con-
volutional neural network to transfer hand-crafted
feature enhanced GloVe word vectors. Then, it
calculates a semantic vector representation of each
sentence by max pooling every dimension of their
transformed word vectors. After that, it generates
a semantic difference vector between two paired
sentences by concatenating their element-wise ab-
solute difference and the element-wise multiplica-
tion of their semantic vectors. Next, it uses a fully-
connected neural network to transfer the semantic
difference vector to a probability distribution over
similarity scores.

In spite of the simplicity of our neural network
system, the difference in performance between our
proposed model and the best performing systems
that participated in the STS shared task are less
than 0.1 absolute in almost all STS tracks and re-
sult in our model being ranked 3rd on primary
track of SemEval STS 2017.
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Abstract

This article describes our proposed sys-
tem named LIM-LIG. This system is de-
signed for SemEval 2017 Task1: Seman-
tic Textual Similarity (Track1). LIM-LIG
proposes an innovative enhancement to
word embedding-based model devoted to
measure the semantic similarity in Ara-
bic sentences. The main idea is to exploit
the word representations as vectors in a
multidimensional space to capture the se-
mantic and syntactic properties of words.
IDF weighting and Part-of-Speech tagging
are applied on the examined sentences to
support the identification of words that
are highly descriptive in each sentence.
LIM-LIG system achieves a Pearsons cor-
relation of 0.74633, ranking 2nd among
all participants in the Arabic monolingual
pairs STS task organized within the Se-
mEval 2017 evaluation campaign.

1 Introduction

Semantic Textual Similarity (STS) is an important
task in several application fields, such as infor-
mation retrieval, machine translation, plagiarism
detection and others. STS measures the degree
of similarity between the meanings of two text
sequences (Agirre et al., 2015). Since SemEval
2013, STS has been one of the official shared
tasks.

This is the first year in which SemEval has orga-
nized an Arabic monolingual pairs STS. The chal-
lenge in this task lies in the interpretation of the
semantic similarity of two given Arabic sentences,
with a continuous valued score ranging from 0 to
5. The Arabic STS measurement could be very
useful for several areas, including: disguised pla-
giarism detection, word-sense disambiguation, la-

tent semantic analysis (LSA) or paraphrase identi-
fication. A very important advantage of SemEval
evaluation campaign, is enabling the evaluation of
several different systems on a common datasets.
Which makes it possible to produce a novel an-
notated datasets that can be used in future NLP
research.

In this article we present our LIM-LIG sys-
tem devoted to enhancing the semantic similarity
between Arabic sentences. In STS task (Arabic
monolingual pairs) SemEval 2017, the LIM-LIG
system propose three methods to measure this sim-
ilarity: No weighting, IDF weighting and Part-
of-speech weighting Method. The best submit-
ted method (Part-of-speech weighting) achieves a
Pearsons correlation of 0.7463, ranking 2nd in the
Arabic monolingual STS task. In addition, we
have proposed another method (after the compe-
tition) named Mixed method, with this method,
the correlation rate reached 0.7667, which repre-
sent the best score among the different submitted
methods involved in the Arabic monolingual STS
task.

2 Word Embedding Models

In the literature, several techniques are proposed
to build word-embedding model.

For instance, Collobert and Weston (2008) have
proposed a unified system based on a deep neu-
ral network architecture. Their word embed-
ding model is stored in a matrix M ∈ Rd∗|D|,
where D is a dictionary of all unique words
in the training data, and each word is embed-
ded into a d-dimensional vector. Mnih and
Hinton (2009) have proposed the Hierarchical
Log-Bilinear Model (HLBL). The HLBL Model
concatenates the n − 1 first embedding words
(w1..wn−1) and learns a neural linear model to
predicate the last word wn.

Mikolov et al. (2013a, 2013b) have proposed
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two other approaches to build a words represen-
tations in vector space. The first one named the
continuous bag of word model CBOW (Mikolov
et al., 2013a), predicts a pivot word according
to the context by using a window of contextual
words around it. Given a sequence of words
S = w1, w2, ..., wi, the CBOW model learns
to predict all words wk from their surrounding
words (wk−l, ..., wk−1, wk+1, ..., wk+l). The sec-
ond model SKIP-G, predicts surrounding words of
the current pivot word wk (Mikolov et al., 2013b).

Pennington et al.(2014) proposed a Global Vec-
tors (GloVe) to build a words representations
model, GloVe uses the global statistics of word-
word co-occurrence to calculate the probability of
word wi to appear in the context of another word
wj , this probability P (i/j) represents the relation-
ship between words.

3 System Description
3.1 Model Used

In Mikolov et al. (2013a), all the methods
(Collobert and Weston, 2008), (Turian et al.,
2010), (Mnih and Hinton, 2009), (Mikolov et al.,
2013c) have been evaluated and compared, and
they show that CBOW and SKIP-G are signifi-
cantly faster to train with better accuracy com-
pared to these techniques. For this reason, we have
used the CBOW word representations for Arabic
model1 proposed by Zahran et al. (2015). To
train this model, they have used a large collection
from different sources counting more than 5.8 bil-
lion words including: Arabic Wikipedia (WikiAr,
2006), BBC and CNN Arabic corpus (Saad and
Ashour, 2010), Open parallel corpus (Tiedemann,
2012), Arabase Corpus (Raafat et al., 2013), Osac
corpus (Saad and Ashour, 2010), MultiUN cor-
pus (Chen and Eisele, 2012), KSU corpus (ksu-
corpus, 2012), Meedan Arabic corpus (Meedan,
2012) and other (see Zahran et al. 2015).

3.2 Words Similarity

We used CBOW model in order to identify the
near matches between two words wi and wj . The
similarity between wi and wj is obtained by com-
paring their vector representations vi and vj re-
spectively. The similarity between vi and vj can
be evaluated using the cosine similarity, euclidean
distance, manhattan distance or any other similar-
ity measure functions. For example, let ” �éªÓAm.Ì'@”

1https://sites.google.com/site/mohazahran/data

(university), ”ZA�ÖÏ @” (evening) and ” �éJ
Ê¾Ë@” (faculty)
be three words. The similarity between them is
measured by computing the cosine similarity be-
tween their vectors as follows:

sim(ZA�ÖÏ @, �éªÓAm.Ì'@) = cos(V (ZA�ÖÏ @), V (
�éªÓAm.Ì'@)) = 0.13

sim(
�éJ
Ê¾Ë@, �éªÓAm.Ì'@) = cos(V (

�éªÓAm.Ì'@), V (
�éJ
Ê¾Ë@)) = 0.72

That means that, the words ” �éJ
Ê¾Ë@” (faculty) and
” �éªÓAm.Ì'@” (university) are semantically closer than
”ZA�ÖÏ @ ” (evening) and ” �éªÓAm.Ì'@” (university).

3.3 Sentences similarity

Let S1 = w1, w2, ..., wi and S2 = w′1, w′2, ..., w′j
be two sentences, their words vectors representa-
tions are (v1, v2, ..., vi) and (v′1, v′2, ..., v′j) respec-
tively. There exist several ways to compare two
sentences. For this purpose, we have used four
methods to measure the similarity between sen-
tences. Figure 1 illustrates an overview of the pro-
cedure for computing the similarity between two
candidate sentences in our system.

Figure 1: Architecture of the proposed system.

In the following, we explain our proposed meth-
ods to compute the semantic similarity among sen-
tences.

3.3.1 No Weighting Method
A simple way to compare two sentences, is to sum
their words vectors. In addition, this method can
be applied to any size of sentences. The similarity
between S1 and S2 is obtained by calculating the
cosine similarity between V1 and V2, where:{

V1 =
∑i

k=1 vk

V2 =
∑j

k=1 v′k
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For example, let S1 and S2 be two sentences:
S1 = ”

�éJ
Ê¾Ë@ úÍ@
	�ñK
 I. ë 	X” (Joseph went to college).

S2 = ”
�éªÓAj. ÊË A«Qå�Ó úæ	�Öß
 	�ñK
” (Joseph goes quickly to

university).

The similarity between S1 and S2 is obtained as
follows:
Step 1: Sum of the word vectors

V1 = V (
�éJ
Ê¾Ë@) + V (

	�ñK
) + V (I. ë 	X)
V2 = V (

�éªÓAj. ÊË) + V ( A«Qå�Ó) + V (úæ	�Öß
) + V (
	�ñK
)

Step 2: Calculate the similarity
The similarity between S1 and S2 is obtained by
calculating the cosine similarity between V1 and
V2: sim(S1, S2) = cos(V1, V2) = 0.71

In order to improve the similarity results, we
have used two weighting functions based on
the Inverse Document Frequency IDF (Salton
and Buckley, 1988) and the Part-Of-Speech tag-
ging (POS tagging) (Schwab, 2005) (Lioma and
Blanco, 2009).

3.3.2 IDF Weighting Method
In this variant, the Inverse Document Frequency
IDF concept is used to produce a composite
weight for each word in each sentence. The idf
weight serves as a measure of how much informa-
tion the word provides, that is, whether the term
that occurs infrequently is good for discriminat-
ing between documents (in our case sentences).
This technique uses a large collection of document
(background corpus), generally the same genre as
the input corpus that is to be semantically veri-
fied. In order to compute the idf weight for each
word, we have used the BBC and CNN Arabic
corpus2 (Saad and Ashour, 2010) as a background
corpus. In fact, the idf of each word is determined
by using the formula: idf(w) = log( S

WS ), where
S is the total number of sentences in the corpus
and WS is the number of sentences containing the
word w. The similarity between S1 and S2 is ob-
tained by calculating the cosine similarity between
V1 and V2, cos(V1, V2) where:{

V1 =
∑i

k=1 idf(wk) ∗ vk

V2 =
∑j

k=1 idf(w′k) ∗ v′k

and idf(wk) is the weight of the word wk in the
background corpus.
Example: let us continue with the sentences
of the previous example, and suppose that IDF
weights of their words are:

2https://sourceforge.net/projects/ar-text-mining/files
/Arabic-Corpora/

I. ë 	X 	�ñK
 �éJ
Ê¾Ë@ úæ	�Öß
 A«Qå�Ó �éªÓAm.Ì'@
0.27 0.37 0.31 0.29 0.22 0.34

Step 1: Sum of vectors with IDF weights
V1 = V (

�éJ
Ê¾Ë@) ∗ 0.31 + V (
	�ñK
) ∗ 0.37 +V (I. ë 	X) ∗ 0.27

V2 = V (
�éªÓAm.Ì'@)∗0.34+V ( A«Qå�Ó)∗0.22+V (úæ	�Öß
)∗0.29

+V (
	�ñK
) ∗ 0.37

Step 2: Calculate the similarity
The cosine similarity is applied to computed a
similarity score between V1 and V2.

sim(S1, S2) = cos(V1, V2) = 0.78
We note that the similarity result between the two
sentences is better than the previous method.
3.3.3 Part-of-speech weighting Method
An alternative technique is the application of the
Part-of-Speech tagging (POS tag) for identifica-
tion of words that are highly descriptive in each
input sentence (Lioma and Blanco, 2009). For this
purpose, we have used the POS tagger for Arabic
language proposed by G. Braham et al. (2012) to
estimate the part-of-speech of each word in sen-
tence. Then, a weight is assigned for each type
of tag in the sentence. For example, verb = 0.4,
noun = 0.5, adjective = 0.3, preposition =
0.1, etc.

The similarity between S1 and S2 is obtained in
three steps (Ferrero et al., 2017) as follows:
Step 1: POS tagging
In this step the POS tagger of G. Braham et al.
(2012) is used to estimate the POS of each word
in sentence.{

Pos tag(S1) = Posw1 , Posw2 , ..., Poswi

Pos tag(S2) = Posw′
1
, Posw′

2
, ..., Posw′

j

The function Pos tag(Si) returns for each word
wk in Si its estimated part of speech Poswk

.
Step 2: POS weighting
At this point we should mention that, the weight
of each part of speech can be fixed empirically.
Indeed, we based on the training data of SemEval-
2017 (Task 1)3 to fix the POS weights.{

V1 =
∑i

k=1 Pos weight(Poswk
) ∗ vk

V2 =
∑j

k=1 Pos weight(Posw′
k
) ∗ v′k

where Pos weight(Poswk
) is the function which

return the weight of POS tagging of wk.
Step 3: Calculate the similarity
Finally, the similarity between S1 and S2 is ob-
tained by calculating the cosine similarity between
V1 and V2 as follows: sim(S1, S2) = cos(V1, V2).

3http://alt.qcri.org/semeval2017/task1/data/uploads/
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Example:
Let us continue with the same example, and sup-
pose that POS weights are:

verb noun noun prop adj prep
0.4 0.5 0.7 0.3 0.1

Step 1: Pos tagging
The function Pos tag(Si) is applied to each sen-
tence.{

Pos tag(S1) = verb noun prop noun
Pos tag(S2) = noun prop verb adj noun

Step 2: Sum of vectors with POS weighting
V1 = V (

�éJ
Ê¾Ë@) ∗ 0.5 + V (
	�ñK
) ∗ 0.7 + V (I. ë 	X) ∗ 0.4

V2 = V (
�éªÓAm.Ì'@) ∗ 0.5 + V ( A«Qå�Ó) ∗ 0.3 + V (úæ	�Öß
) ∗ 0.4 +

V (
	�ñK
) ∗ 0.7

Step 3: Calculate the similarity
sim(S1, S2) = cos(V1, V2) = 0.82

3.3.4 Mixed weighting
We have proposed another method (after the com-
petition), this method propose to use both IDF and
the POS weightings simultaneously. The similar-
ity between S1 and S2 is obtained as follows:{

V1 =
∑i

k=1 idf(wk) ∗ Pos weight(Poswk ) ∗ vk

V2 =
∑j

k=1 idf(w′
k) ∗ Pos weight(Posw′

k
) ∗ v′

k

If we apply this method to the previous example,
using the same weights in Section 3.2 and 3.3, we
will have: Sim(S1, S2) = Cos(V1, V2) = 0, 87.

4 Experiments And Results
4.1 Preprocessing
In order to normalize the sentences for the seman-
tic similarity step, a set of preprocessing are per-
formed on the data set. All sentences went through
by the following steps:

1. Remove Stop-word, punctuation marks, dia-
critics and non letters.

2. We normalized

@ , @ ,

�
@ to @ and �è to è.

3. Replace final ø followed by Z with ø.
4. Normalizing numerical digits to Num.

4.2 Tests and Results
To evaluate the performance of our system, our
four approaches were assessed based on their ac-
curacy on the 250 sentences in the STS 2017
Monolingual Arabic Evaluation Sets v1.14. We
calculate the Pearson correlation between our
assigned semantic similarity scores and human
judgements. The results are presented in Table 1.

4http://alt.qcri.org/semeval2017/task1/data/uploads
/sts2017.eval.v1.1.zip

Approach Correlation
Basic method (run 1) 0.5957

IDF-weighting method (run 2) 0.7309
POS tagging method (run 3) 0.7463

Mixed method 0.7667

Table 1: Correlation results

These results indicate that when the no weight-
ing method is used the correlation rate reached
59.57%. Both IDF-weighting and POS tagging
approaches significantly outperformed the corre-
lation to more than 73% (respectively 73.09%
and 74.63%). We noted that, the Mixed method
achieve the best correlation (76.67%) of the differ-
ent techniques involved in the Arabic monolingual
pairs STS task.

5 Conclusion and Future Work

In this article, we presented an innovative word
embedding-based system to measure semantic re-
lations between Arabic sentences. This system
is based on the semantic properties of words in-
cluded in the word-embedding model. In order
to make further progress in the analysis of the se-
mantic sentence similarity, this article showed how
the IDF weighting and Part-of-Speech tagging are
used to support the identification of words that are
highly descriptive in each sentence. In the exper-
iments we have shown how these techniques im-
prove the correlation results. The performance
of our proposed system was confirmed through
the Pearson correlation between our assigned se-
mantic similarity scores and human judgements.
As future work, we are going to combine these
methods with those of other classical techniques
in NLP field such as: n-gram, fingerprint and lin-
guistic resources.
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Martyna Śpiewak, Piotr Sobecki and Daniel Karaś
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Abstract

Semantic Textual Similarity (STS) evalua-
tion assesses the degree to which two parts
of texts are similar, based on their semantic
evaluation. In this paper, we describe three
models submitted to STS SemEval 2017.
Given two English parts of a text, each of
proposed methods outputs the assessment
of their semantic similarity.

We propose an approach for computing
monolingual semantic textual similarity
based on an ensemble of three distinct
methods. Our model consists of recursive
neural network (RNN) text auto-encoders
ensemble with supervised a model of vec-
torized sentences using reduced part of
speech (PoS) weighted word embeddings
as well as unsupervised a method based
on word coverage (TakeLab). Addition-
ally, we enrich our model with additional
features that allow disambiguation of en-
semble methods based on their efficiency.
We have used Multi-Layer Perceptron as an
ensemble classifier basing on estimations
of trained Gradient Boosting Regressors.

Results of our research proves that us-
ing such ensemble leads to a higher ac-
curacy due to a fact that each member-
algorithm tends to specialize in particular
type of sentences. Simple model based
on PoS weighted Word2Vec word embed-
dings seem to improve performance of
more complex RNN based auto-encoders in
the ensemble. In the monolingual English-
English STS subtask our Ensemble based
model achieved mean Pearson correlation
of .785 compared with human annotators.

1 Introduction

The objective of a system for evaluating seman-
tic textual similarity, is to produce a value which
serves as a rating of semantic similarity between
pair of text samples. Such task certainly could not
be regarded as toy problem, the results could be
used to solve multiple real-world problems, e.g.
plagiarism detection. We used described meth-
ods in STS task in the SemEval 2017 competition
(Bethard et al., 2017).

2 Methods

2.1 Data

For the purpose of this research we have used
datasets provided by the SemEval challenge or-
ganizers containing English sentence pairs coming
from several sources. STS Task objective is to
produce a value in the range between 0.0 and 5.0,
which assessing semantic similarity of a given pair
of sentences. Intermediate levels are correspond-
ing to partial similarity such as rough or topical
equivalence but with differing details. In this study,
we have used all English datasets provided by the
challenge organizers until this year to train our su-
pervised models.

2.2 Models

The core of the system is based on widely used
Gradient Boosting algorithm. The main novelty
of described system lies in the formulation of its
feature vectors.

Each feature vector can be divided into two main
parts: similarity scores and sentences’ descriptors.
The process of feature extraction compiles simi-
larity scores of three distinct methods (described
later in detail) — effectively forming an ensemble.
Additionally, for every pair of sentences, follow-
ing descriptors are also attached to feature vector:
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lengths of the evaluated sentences, Word2Vec cov-
erage as well as two boolean predicates — one of
them indicates if a sentence is a question and an-
other one indicating if sentence contains numbers.
Word2Vec coverage is defined as follows:

Glv(Si) =
|Si ∩G|
|Si|

where Si denotes set of all words present in ith
sentence and G is a set of all words available in
Word2Vec.

The logic behind introduction of these descrip-
tors is based on observations made during evalu-
ation of each separate method. Overall they all
achieved a similar Pearson score, but accuracy of
every method in context of particular instances of
sentence pairs was different. For example, model
based on cosine similarity of Word2Vec vectors
performed worse in case of long sentences and
when the sentences contained words not present in
Word2Vec. Ideally introduction of sentences’ de-
scriptors to feature vectors would let the regressor
”pick” the right method for each case by learning
the correlations between features exhibited by sen-
tences and performance of particular method. This
hypothesis has been proven true, which is further
backed by achieved results.

We used the implementation of Gradient Boost-
ing and Multi-layer Perceptron (MLP) from scikit-
learn library (Pedregosa et al., 2011). Facilities
present in mentioned library were also used for
evaluation using 3-fold crossvalidation and hyper-
parameters optimization using grid search method.
We have used low number of folds in Cross Valida-
tion to prevent over-fitting.

2.2.1 TakeLab
This method contributes three components for fea-
ture vector used by the meta-regressor. These
components correspond to three word similarity
measures defined by (Šarić et al., 2012) — ngram
overlap, weighted word overlap and WordNet-
augmented word overlap. Authors of (Šarić et al.,
2012) use Google Books Ngrams for computing in-
formation content used in the weighted word over-
lap measure — we, in comparison, use the fre-
quency list from British National Corpus (Leech,
2016).

Mentioned overlaps were implemented in Java
programming language. The WS4J library was
used for computing the WordNet path lengths
between words with Wu-Palmer method. The

OpenNLP library was used for both lemmatiza-
tion and PoS-tagging. For complete overview of
TakeLab measures see (Šarić et al., 2012).

2.2.2 Run 1: Part of Speech weighted
Word2Vec Similarity (PoS-Word2Vec)

Described model is based on a well-documented
Word2Vec (Mikolov et al., 2013) method of textual
information encoding that allows vectorized repre-
sentation of words, enforces vector space proximity
for semantically similar words.

Given sentence pairs (x, y) of words length
(ni, nj), part of speech (PoS) weights of words
wxn and wyn and vector representation of words
vxn and vyn coming from given sentences x and y,
respectively.To evaluate vector similarity we have
used cosine similarity between vectors x and y:

cos(x, y) =
x · y

||x|| · ||y||
We have extracted following features for each

sentence pair, to produce resulting vector r:

• cosine similarity of the mean of word vectors
in each sentence

r(0) = cos

(∑ni
k=1 vxk

ni
,

∑nj

k=1 vyk

nj

)

• cosine similarity of the mean of word vectors
in each sentence weighted by the PoS of the
word

r(1) = cos

(∑ni
k=1 wxk

· vxk∑ni
k=1 wxk

,

∑nj

k=1 wyk
· vyk∑nj

k=1 wyk

)

Furthermore, we have analyzed cross sentence
word-wise cosine similarity:

M(i, j) = cos(vxi , vyj ),

and obtained maximum, PoS weighted, cross sen-
tence word similarity vector v:

v(k) = max
j=1,...,nj

M(k, j) · wx,

for k = 1, . . . , ni, and

v(k) = max
i=1,...,ni

M(i, k − ni) · wy,

for k = ni, . . . , ni + nj .

140



We have extracted following statistical features
from the resulting vector v and added to the result-
ing vector r:, Mean , Kurtosis, Skewness, Standard
deviation, Maximum value, Minimum value, Per-
centiles (5th, 25th, 75th and 95th).

r(3) = mean(v)
r(4) = kurtosis(v)
r(5) = skewness(v)
r(6) = sd(v)
r(7) = max(v)
r(8) = min(v)
r(9) = percentile(v, 5)
r(10) = percentile(v, 25)
r(11) = percentile(v, 75)
r(12) = percentile(v, 95)

We have used precomputed Word2Vec vectors
from GloVe dataset (300 dimensions) (Pennington
et al., 2014) for words in sentence pairs and British
National Corpus dataset (Leech, 2016) to obtain
information about PoS of given word. PoS weights
have been experimentally assigned using results
from random walk evaluated using Spearman cor-
relation. Statistical moments and percentiles have
been experimentally selected during manual trial
and error optimization. We trained Gradient Boost-
ing Regressor on the extracted features and eval-
uated it using 3 fold cross validation to prevent
over-fitting.

2.2.3 Run 2: Skip Thoughts Vectors
Skip-thought vectors is an encoder-decoder model
(Kiros et al., 2015), which is based on an RNN
encoder with GRU acivations and an RNN decoder
with a conditional GRU. Instead, in our approach,
we only used skip-thought vectors’ encoder pre-
trained on the BookCorpus dataset (Zhu et al.,
2015), which maps words to a sentence vector. We
determined skip-thought vectors as generic features
for all sentences.

Next, we computed component-wise features
for given pair of sentences. Denoting a and b
as two skip-thought vectors, we computed their
component-wise features: product a · b, absolute
difference |a− b|, and the other statistics between
sentence pairs used by (Socher et al., 2011). For
two compared sentenced the used statistics are as
follows:

• 1 if sentences contain exactly the same num-
bers or no numbers and 0 otherwise,

• 1 if both sentences contain the same numbers,
• 1 if the set of numbers in one sentence is a

strict subset of the numbers in the second sen-
tence,
• the percentage of words in one sentence which

are in the second sentence and vice-versa,
• the mean of the ratios the number of words in

one sentence by the numbers of words in the
other sentence.

Finally, we concatenated all aforementioned fea-
tures together as a final features vector. Again
Gradient Boosting Regressor was trained on the
obtained features.

2.2.4 Run 3: Ensemble
Using all English pair of sentences from previous
years of this task with the available gold scores
we computed TakeLab score and trained Gradient
Boosting algorithm on PoS weighted Word2Vec
features (Run 1) and skip thoughts vectors (Run 2).
We used GridSearchCV function with 3 fold cross
validation from scikit-learn library to determine
the best parameters of Gradient Boosting algorithm
according to Pearson measure, separately for each
run. Next, we obtained three values as features
of Multi-layer Perceptron to determined the final
predicted gold scores for each pair of sentences.

3 Results

The purpose of the STS task is to assess the se-
mantic similarity of two sentences. Sentences are
scored using the continuous interval [0, 5], where
0 denotes a complete dissimilarity and 5 implies
a complete semantic equivalence between the sen-
tences. The final result is the Pearson score be-
tween the fixed gold scores and the predicted values
from the user system (Agirre et al., 2016).

Table 1: The official results on the test dataset for
Subtask 5 (english-english).

Method Pearson score
Run 3: Ensemble 0.7850
Run 2: Skip Thoughts Vectors 0.7342
STS Baseline 0.7278
Run 1: PoS-Word2Vec 0.6796

As mentioned above, our intention was to cre-
ate a system to measure the level of paraphrasing,
which may be applied to Polish pair of sentences
in a relatively easy way in the future. It is worth
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noticing that the Run 1 and the Run 2 strongly de-
pend on particular language tools, e.g. Word2Vec
or a corpus using to train Skip Thoughts Vectors.
Furthermore, we did not have appropriate datasets
to train these tools for other languages, so we de-
cided to only take part in the Subtask 5 for English
pair of sentences. In Table 1 we present the official
results only for this subtask.

As was expected the best score was obtained
for the ensemble approach. Due to the fact that
used pair of sentences had a different format, the
final regressor chose which method is better for a
particular type of sentence (see Table 2).

Analysis of PoS-Word2Vec method clearly
shows that overestimation occurs when subject
in compared sentences differs. However cases of
underestimation display lack of representation of
idioms and use of informal speech. Overall the
method seems to be too focused on the meaning of
particular words. On the other hand, TakeLab ex-
hibits poor performance in case of nearly-duplicate
pairs of sentences. This doesn’t come as much of
surprise due to the way all TakeLab measures es-
timate similarity between sentences. This in turn
translates to overestimation in cases when two sen-
tences have high word coverage, but effectively
differ in semantic meaning (see first example in
Table 2). Skip thoughts vectors approach has the
biggest problem with significant differences be-
tween the length of compared sentences, then there
are also over and underestimation error. Also, this
method does not handle near-duplicated sentences
that sentences differ in only one or two words, and
the different words are not synonyms.

4 Conclusion

In this paper, we have presented the OPI-JSA sys-
tem submitted by our team for SemEval 2017, Task
1, Subtask 5. The proposed system uses a lot of
different tools to encode a sentence to a features
vector. We used machine learning algorithms to
predict the gold score for given pairs of sentences
which measure their similarity. Additionally, we
showed that an ensemble method improved the per-
formance of our system. The best results we have
obtained is equal to 0.785 according to a Pearson’s
correlation while placing OPI - JSA as 36 of all
reported solutions (77) and 16 of 32 teams in the
Subtask 5.

Table 2: Examples of maximum over and underes-
timation of STS evaluation for proposed methods
and sentence pairs. Error corresponds to difference
between assessed STS and gold scores.

TakeLab Overestimation Error
What kind of socket is
this?

What kind of bug is
this?

4,54

The act of annoying
someone or something

The act of liber-
ating someone or
something.

4,36

What is the difference
between shawarma and
gyros?

What is the dif-
ference between
portamento and
glissando?

4,26

TakeLab Underestimation Error
The lady peeled the
potatoe.

A woman is peeling
a potato.

-4,05

Utter fucking nonsense. That doesn’t make
any sense.

-3,96

Eurozone backs Greek
bailout

Eurozone agrees
Greece bail-out

-3,87

PoS-Word2Vec Overestimation Error
The activity of examin-
ing or assessing some-
thing

The activity of
protecting someone
or something.

3,88

What is the significance
of the cat?

What is the sig-
nificance of the
artwork?

3,72

Live Blog: Ukraine In
Crisis

Live Blog: Iraq In
Turmoil

3,71

PoS-Word2Vec Underestimation Error
Murray ends 77-year
wait for British win

Murray wins Wim-
bledon title ends
Britains 77year
agony

-3,94

The process must hap-
pen in the blink of an
eye.

The process must
be held in a heart-
beat.

-3,87

What the what?! ?:
Voice of Charlie Brown
arrested, charged. ?

Good grief! Char-
lie Brown actor
charged

-3,45

Skip Thoughts Vectors Overestimation Error
Vietnamese citizens need
a visa to visit the USA.

Nepalese citizens
require a visa to
visit the UK.

2,52

The PCA (format used
by the company and its
Apple iPods taken from
them), meanwhile, is
less course.

AAC (the format
used by Apple
and its iPods),
meanwhile, is less
current.

2,18

The act of purchasing
back something previ-
ously sold.

The act of explain-
ing

2,08

Skip Thoughts Vectors Underestimation Error
This frame covers words
that name locations as
defined politically, or
administratively.

The territory occu-
pied by a nation

-2,57

Someone or something
that is the agent of fulfill-
ing desired expectations

Someone (or some-
thing) on which
expectations are
centered.

-1,88

The quality of being
important, worthy of
attention

The quality of
being important and
worthy of note.

-1,76
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Abstract

This is the Lump team participation at Se-
mEval 2017 Task 1 on Semantic Textual
Similarity. Our supervised model relies on
features which are multilingual or interlin-
gual in nature. We include lexical sim-
ilarities, cross-language explicit semantic
analysis, internal representations of mul-
tilingual neural networks and interlingual
word embeddings. Our representations al-
low to use large datasets in language pairs
with many instances to better classify in-
stances in smaller language pairs avoid-
ing the necessity of translating into a sin-
gle language. Hence we can deal with all
the languages in the task: Arabic, English,
Spanish, and Turkish.

1 Introduction

The Semantic Textual Similarity (STS) task poses
the following challenge. Let s and t be two text
snippets. Determine the degree of equivalence
α(s, t) | α ∈ [0, 5]. Whereas 0 represents com-
plete independence, 5 reflects semantic equiva-
lence. The current edition (Cer et al., 2017) in-
cludes the monolingual ar–ar, en–en, and es–
es, as well as the cross-language ar–en, es–
en, and tr–enlanguage pairs. We use the two-
letter ISO 639-1 codes: ar=Arabic, en=English,
es=Spanish, and tr=Turkish.

Multilinguality is the premise of the Lump ap-
proach: we use representations which lie towards
language-independence as we aim to be able to
approach similar tasks on other languages, pay-
ing the least possible effort. Our regression model
relies on different kinds of features, from simple
length-based and lexical similarities to more so-
phisticated embeddings and deep neural net inter-
nal representations.

2 Features Description

The main algorithm used in this work is the sup-
port vector regressor from LibSVM (Chang and
Lin, 2011). We use an RBF kernel and greed-
ily select the best parameters by 5-fold cross-
validation. In addition, we experiment with a dif-
ferent machine learning component built with gra-
dient boosting algorithms as implemented by the
XGBoost package.1

We describe the features in growing level of
complexity: from language flags up to embed-
dings derived from neural machine translation.

2.1 Language-Identification Flags (6 feats.)

The novelty of the cross-language tasks causes a
noticeable language imbalance in the amount of
data (cf. Table 1). To deal with this issue, one of
our systems learns on the instances in all the lan-
guage pairs jointly. In order to reduce the clutter of
the different data distributions, we devised six bi-
nary features that mark the languages of each pair.
lang1, lang2 and lang3 are set to 1 if s is written
in either ar, en, or es, respectively. The other
three features, lang4, lang5, and lang6, provide
the same information for t. For instance, the value
for the six features for a pair en–ar would be 0
1 0 1 0 0.

2.2 Lengths (3 feats.)

Intuitively, if s and t have a similar length, being
semantically similar is more plausible. Hence, we
consider two integer features tok s and tok t: the
number of tokens in s and t. We also use a length
model (Pouliquen et al., 2003) len, defined as

%(s, t) = e

−0.5

(
|t|
|s|−µ
σ

)2

, (1)

1http://xgboost.readthedocs.io
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where µ and σ are the mean and standard devia-
tion of the character lengths ratios between trans-
lations of documents from L into L′; | · | represents
the length of · in characters. If the ratio of lengths
of s and t is far from the mean for related snippets,
%(s, t) is rather low. This has shown useful in sim-
ilar cross-language tasks (Barrón-Cedeño et al.,
2010; Potthast et al., 2011). The parameters for the
different language pairs are µen−ar = 1.23±0.60,
µen−es = 1.13± 0.41, µen−tr = 1.04± 0.56, and
µx−x = 1.00± 0.32 for monolingual pairs.

2.3 Lexical Similarities (5 feats.)

We compute cosine similarities between character
n-gram representations of s and t, with n = [2, 5]
(2grm,. . .,5grm). The pre-processing in this case
is casefolding and diacritics removal. The fifth
feature cog is the cosine similarity computed over
“pseudo-cognate” representations. From an NLP
point of view, cognates are “words that are similar
across languages” (Manning and Schütze, 1999).
We relax this concept and consider as pseudo-
cognates any words in two languages that share
prefixes. To do so, we discard tokens shorter
than four characters, unless they contain non-
alphabetical characters, and cut off the resulting
tokens to four characters (Simard et al., 1992).

This kind of representations is used on Euro-
pean languages with similar alphabets (McNamee
and Mayfield, 2004; Simard et al., 1992). We ap-
ply Buckwalter transliteration to texts in ar and
remove vowels from the snippets written in latin
alphabets. For the pseudo-cognates computations,
we use three characters instead of four.

2.4 Explicit Semantic Analysis (1 feat.)

We compute the similarity between s and
t by means of explicit semantic analysis
(ESA) (Gabrilovich and Markovitch, 2007).
ESA is a distributional-semantics model in which
texts are represented by means of their similarity
against a large reference collection. CL-ESA —its
cross-language extension (Potthast et al., 2008)—
relies on a comparable collection. We compute
a standard cosine similarity of the resulting
vectorial representations of s and t. Our reference
collection consists of 12k comparable Wikipedia
articles from the ar, en, and es 2015 editions.
We did not compile a reference collection for tr.

2.5 Context Vectors in a Neural Machine
Translation Engine (2 feats.)

Hidden units in neural networks learn to interpret
the input and generate a new representation of it.
We take advantage of this characteristic and train
a multilingual neural machine translation (NMT)
system to obtain a representation in a common
space for sentences in all the languages. We build
the NMT system in the same philosophy of John-
son et al. (2016) using and adapting the Nematus
engine (Sennrich et al., 2016). The multilingual
system is able to translate between any combina-
tion of languages ar, en, and es. It was trained
on 60 k parallel sentences (20 k per language pair)
using 512-dimensional word embeddings, 1024
hidden units, a minibatch of 200 samples, and ap-
plying Adadelta optimisation. The parallel corpus
includes data from United Nations (Rafalovitch
and Dale, 2009), Common Crawl2, News Com-
mentary3 and IWSLT.4

We are not interested in the translations but
in the context vectors output of the hidden lay-
ers of the encoder, as these are supposed to have
learnt an interlingua representation of the input.
We compute the cosine similarity between 2048-
dimensional context vectors from the internal rep-
resentation when the encoder is fed with s and t.
Two independent systems, one trained with words
and another one trained with lemmas5 provide our
two features lNMT and wNMT .

2.6 Embeddings for Babel Synsets (2 feats.)

BabelNet is a multilingual semantic network con-
necting concepts via Babel synsets (Navigli and
Ponzetto, 2012). Each concept, or word, is identi-
fied by its ID irrespective of its language, making
these IDs interlingua. For this feature, we gather
corpora in the three languages, convert them into
sequences of BabelNet IDs, and estimate 300-
dimensional word embeddings using the CBOW
algorithm, as implemented in the Word2Vec

2http://commoncrawl.org/
3http://www.casmacat.eu/corpus/

news-commentary.html
4https://sites.google.com/site/

iwsltevaluation2016/mt-track/
5We built a version of the lemma translator with an extra

language: Babel synsets (cf. Section 2.6), representing sen-
tences with BabelNet IDs instead of words. The purpose was
to extract also this feature for the tr surprise language, since
it could be used for every language once the input sentences
are converted into BabelNet IDs. However, the training was
not advanced enough before the deadline and we could not
include the results.
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2017 Track L–L′ Instances Pctge.
1 ar–ar 1, 081 5.11
2 ar–en 2, 162 10.21
3 es–es 1, 555 7.34
4 es–en 1, 595 7.53
5 en–en 14, 778 69.80
6 tr–en 0∗ 0.00

total 21, 171 100

Table 1: Instances provided in the history of STS. (∗No
training data exists for this pair.)

package (Mikolov et al., 2013), with a 5-token
window. We use the same corpora described be-
fore for training the NMT system with the addition
of parts of Wikipedia and Gigaword to estimate the
embeddings. For these experiments we annotated
1.7G tokens for ar, 1.1G for en, and 0.9G for
es. As we are not interested in all the words of a
sentence to represent its semantics, we restrict the
extraction of Babel synsets to adjectives, adverbs,
nouns, and verbs. Negations are considered tag-
ging them with a special label. The global embed-
dings are then estimated from 1.9G synsets (0.9G
ar, 0.5G en, and 0.4G es).

Our two features consist of the cosine similar-
ity between the embeddings of the two snippets.
The full embedding of a snippet is obtained as
the sum of the embeddings if its tokens. The dif-
ference between the two features lies in the cor-
pus from which we estimate the embeddings. For
BNall we used the full collection of corpora in
the three languages. For BNsub we only used the
subcollection of data coming from the languages
involved in the pair. Significant differences in the
performance of these two features will allow us to
discern weather the interlinguality of these embed-
dings is a fair assumption or not (even if synsets
are interlingua, its embeddings do not need to be).

2.7 Additional Features

We produced variations of the described fea-
tures. We used other similarity measures than co-
sine: modified versions of the weighted Jaccard
similarity, and the Kullback–Leibler and Jensen–
Shannon divergences). We replicated the features
described in Sections 2.3 to 2.6 with their mono-
lingual counterpart. We obtained the counterpart
translating ar and es snippets into en for Tracks
1-4 and 6, and en snippets into es for Track
5 with the multilingual NMT system (cf. Sec-
tion 2.5). We used Google Translate for tr.

3 Experiments

For training, we used all the annotated datasets
released both in the current and in previous edi-
tions.6 Table 1 shows the size of the different lan-
guage collections. Note the important imbalance:
there are more than ten times more instances avail-
able in en only than in the rest of languages. We
used the test set from the 2016 edition (only in En-
glish) (Agirre et al., 2016) as our internal test set.

Using the features in Sections 2.1 to 2.6, we
train two regressors by:
Sys1 learning one SVM per each language pair
Sys2 learning one single SVM for all the lan-

guage pairs together.
We experiment with a third system using all the

extensions of Section 2.7 on XGBoost. The pur-
pose of this system is to analyse and compare dif-
ferent assumptions made for Sys1 and Sys2:
Sys3 learning one single XGB for all the lan-

guage pairs with an extended set of features.

Table 2 shows the results of the three set-
tings; including the average Pearson correlation
for mono- and cross-language tracks. Compar-
ing Sys1 and Sys2, we see that in the case of en–
en the best performance is obtained when training
on en only. Adding instances in other languages
slightly confuses our regressor, but differences are
small; the number of examples added is only a
30%. Nevertheless, considering together differ-
ent language pairs does help when dealing with
less-represented pairs. This is the case of ar–ar,
es–es, and es–en where the inclusion of more
than ten times more instances in other languages
boosts the performance. We did not observe this
behaviour in the rest of language pairs. The worst
case is that of the surprise pair tr–en. The reason
could be that we could not compute all the features
for these instances and instead, we used equiva-
lents for en. Regarding the performance of our
models on mono- and cross-language pairs, con-
sidering one single classifier versus one per lan-
guage pair makes no difference when dealing with
monolingual instances. This reflects the nature of
the data: 82% of the training set is monolingual.
The story is different when dealing with cross-
language instances. Further experiments are nec-
essary using one classifier with cross-language in-
stances only.

6In order to combine all the datasets we had to do some
cleaning and adaptation. For instance, the similarity values in
some of the subsets ranged [0, 4] rather than [0, 5].
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Track L–L′ Sys1 Sys2 Sys3
Primary all 0.4725 0.4438 0.4704

1 ar–ar 0.6052 0.6287 0.5508
2 ar–en 0.1829 0.1805 0.1357
3 es–es 0.7574 0.7380 0.7676
4a es–en 0.4327 0.4447 0.4825
4b es–en 0.0116 0.0151 0.1112
5 en–en 0.7376 0.7347 0.7269
6 tr–en 0.5800 0.3652 0.5179

avgmono 0.7001 0.7005 0.6818
avgcross 0.3359 0.2899 0.3435

Table 2: Official Pearson correlation performance for our
three submissions. Average correlations for mono- and
cross-language tracks at the bottom.

Regarding Sys3, we observe a lost in perfor-
mance with respect to Sys1 and Sys2, except for
the tracks involving es. The system introduces
three variations with respect to Sys2: the learning
model, the addition of several similarity measures
for each representation, and the addition of new
representations obtained after translating the input
into en (es). A deeper analysis shows that the
performance drop is due to the learning algorithm.
XGBoost is performing better than SVM in our
cross-validation. However, the loss function we
use is a mean squared error and the evaluation is
done via Pearson correlation. We attribute the dis-
crepancy to this fact. Still, except for en–en, the
inclusion of the two families of features improves
the results of the basic features set.

Gradient boosting methods allow to estimate the
importance of each feature in a very natural way:
the more a feature is used to take the decisions in
the construction of the boosted trees, the more im-
portant it is (Hastie, 2013). The complete anal-
ysis is out of the scope of this paper, but some
comments and remarks can be made in the light
of their relative importance. Figure 1 shows the
relative importance of the features given by three
XGBoost regressors: one trained only with en
monolingual data, one for en–es cross-language
data, and one for all the languages trained together.
The concrete distribution of features depends on
the specific language pair, but the set {len, 2grm,
(CL)ESA, lNMT , wNMT , BNsub, BNall}
stands out among the full set. Notice that language
identifiers are not relevant at all for the joint model
and the regressor practically neglects them.

In general, the internal representation of the
neural network is more important for cross-
language pairs and Babel embeddings are more
relevant for monolingual pairs. In the latter, we
observe almost no difference between the relative

importance ofBNsub andBNall, confirming the
assumption of the interlinguality of the embed-
dings. (CL-)ESA is always among the most in-
formative features. Finally, the high contribution
of two simple scores is worth noting: len and
2grm. This comes at no surprise for len (Barrón-
Cedeño et al., 2014). Regarding the n-grams sim-
ilarity, in general {3, 4}-grams perform better in
similar tasks (e.g., comparable corpora parallelisa-
tion (Barrón-Cedeño et al., 2015)), but no impor-
tant difference exist with respect to using 2-grams.

4 Conclusions and Future Work

Our approach to the SemEval 2017 task on se-
mantic textual similarity focused on designing text
representations which could be equivalent across
languages. For example, instead of using stan-
dard monolingual or bilingual word embeddings,
we build embeddings for the interlingua Babel
synsets or let an autoencoder learn representations
in the multilingual space. In internal experiments,
monolingual word embeddings performed better
than BabelNet embeddings for the monolingual
tracks, but the advantage of the latter is that the
same embeddings can be used for the seven tracks.
This is useful for less-resourced languages and for
easy porting of the system to new languages. That
was true for the tr–en track but, at the moment,
the huge difference between the performance of
our systems across tracks does not allow us to go
further with this conclusion.

In the future we want to take advantage of the
amount of information that BabelNet has and we
aim at including synsets for multiword expressions
and exploiting translations to be able to extract the
same sense in all the languages. We are also study-
ing the behaviour of the internal representation of
NMT systems in order to determine the appropri-
ate configuration of the translation system to be
used for this purpose. To the best of our knowl-
edge, the internal representation and the impor-
tance of its dimensionality has not been studied as
an interlingual space.
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Figure 1: Relative importance of the features in the XGBoost regressors for the monolingual en–en Track 5, the cross-
language en–es Track 4, and the all joint training.
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Abstract 

This paper reports the details of our sub-

missions in the task 1 of SemEval 2017. 

This task aims at assessing the semantic 

textual similarity of two sentences or texts. 

We submit three unsupervised systems 

based on word embeddings. The differ-

ences between these runs are the various 

preprocessing on evaluation data. The best 

performance of these systems on the eval-

uation of Pearson correlation is 0.6887. 

Unsurprisingly, results of our runs demon-

strate that data preprocessing, such as to-

kenization, lemmatization, extraction of 

content words and removing stop words, is 

helpful and plays a significant role in im-

proving the performance of models. 

1 Introduction 

Semantic Textual Similarity (STS) has been held 

in SemEval since 2012 (Agirre et al., 2012; Agirre 

et al., 2013; Agirre et al., 2014; Agirre et al., 

2015; Agirre et al., 2016), which is a basic task in 

natural language processing (NLP) field. It aims at 

computing the semantic similarity of two short 

texts or sentences, and the result will be evaluated 

on a gold standard set, which is made by several 

official annotators (Cer et al., 2017). In recent 

years, as an unsupervised method, word embed-

ding (Mikolov et al., 2013a) becomes more and 

more popular in SemEval (Jimenez, 2016; Wu et 

al., 2016). 

The paper describes the submission of our sys-

tems to STS 2017, which utilize word embedding 

method. Different from some teams who have  

_______________________ 
*Corresponding author  
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Tokenization

Extraction of 

content words
Lemmatization

Wikipedia Word embeddings
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Figure 1: Framework of system. 

used word embedding described above, what we 

pay attention to is the point of preprocessing eval-

uation data. With this consideration, we process 

the evaluation data with different method in order 

to verify whether it works or not. 

The framework of our systems is showed in 

Figure 1. Its simple description is as follows: 

Tokenization: This is to tokenize the two sen-

tences of the system’s input. Though the English 

sentence is tokenized naturally, the punctuations 

are not. For instance, the sentence “A person is on 

a baseball team.” will be tokenized to “A person is 

on a baseball team .”. 

Extraction of content words: In this process, 

content words of the tokenized sentence will be 

extracted. For example, the tokenized sentence 
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“A person is on a baseball team .” turns into “per-

son is baseball team”. In this paper, content words 

include nouns, verbs, adverbs or adjectives. 

Lemmatization: It is known that words in 

English sentences have a variety of forms. This 

operation will lemmatize these words to their 

basic forms, for example, word “made” and “mak-

ing” will be changed to “make”. In addition, this 

process also convert the uppercase to lowercase, 

for instance, “Make” will be changed to “make”. 

Word embeddings: This process utilizes the 

word2vec toolkit1 to train on the Wikipedia cor-

pus, then the word embeddings can be obtained. 

Sentence similarity: The similarity of two sen-

tences is computed as the cosine of their sentence 

embeddings, which can be gotten easily (see 2.3). 

Normalization: Due to the different range of 

the results of runs, similarity scores are normal-

ized to meet the official standard. 

2 System Overview 

In STS 2017, we submit three system runs, all of 

which are unsupervised and utilize word embed-

ding method after preprocessing. 

2.1 Data Set 

Test Set: The test set of the Track 5 (English 

monolingual pairs) consists of 250 sentence pairs. 

Each of these sentence pairs is in a line, split by 

tab. 

Gold Standard Set: This set is the gold stand-

ard similarity score of 250 sentence pairs in the 

test set. The range of the score is from 0 to 5. 

More specially, 0 denotes that the two sentences 

are completely dissimilar; 1 means that the two 

sentences only have the same topic; 2 represents 

that the two sentences only have some details in 

common; 3 shows that the two sentences are ap-

proximately equivalent but they have some differ-

ences in the important details; 4 implies that the 

two sentences are roughly equivalent and some 

differences they have are not important; 5 indi-

cates that the two sentences are completely equiv-

alent. 

2.2 Wikipedia Corpus 

We use the unlabeled corpus, i.e., the English 

Wikipedia corpus, which have been processed by 

Rami Al-Rfou’2. The processed Wikipedia dumps 

                                                      
1 https://code.google.com/p/word2vec/ 
2 https://sites.google.com/site/rmyeid/projects/polyglot 

have been tokenized in text format for all the lan-

guages which are considered in the evaluation. 

What we use in the system run is the English Wik-

ipedia dump, after unzipped, a text file can be got-

ten and its size is 15.8 GB. 

2.3 Method 

In this competition, we use the word2vec toolkit 

on the Wikipedia corpus described above to train 

word embeddings. Before training word embed-

dings, we preprocess the text file in the corpus to 

transform its charset from Unicode to UTF-8, be-

cause UTF-8 is the default charset for us to run 

the word2vec toolkit. We set the training window 

size to 5 and default dimensions to 200, and 

choose the Skip-gram model. After trained on the 

corpus, the word2vec can generate a word em-

beddings file, in which each word in the corpus 

can be mapped to a word embedding of 200 di-

mensions. Each dimension of the word embedding 

is of floating point type double. 

Mikolov has explained that the word embed-

ding has semantic meaning (Mikolov et al., 

2013a). Therefore, given two words, the semantic 

similarity of words can be easily obtained by the 

cosine of their word embeddings. Moreover, we 

can extend this to the semantic sentence similarity. 

Inspired by (Mikolov et al., 2013b; Wu et al., 

2016), the sentence embedding of a sentence can 

be gained by accumulating the word embedding 

of all the words in it. Then by computing the co-

sine of two sentence embeddings, the semantic 

sentence similarity can be gotten as follows: 

 𝑠𝑖𝑚𝑣𝑒𝑐(𝑠1, 𝑠2) =
∑ 𝑣𝑒𝑐(𝑤𝑖)

|𝑠1|
𝑖=1

∑ 𝑣𝑒𝑐(𝑤𝑗)
|𝑠2|
𝑗=1     

|∑ 𝑣𝑒𝑐(𝑤𝑖)
|𝑠1|
𝑖=1

||∑ 𝑣𝑒𝑐(𝑤𝑗)
|𝑠2|

𝑗=1
|
 ,    (1)  

where |𝑠1|  and |𝑠2|  are the number of tokens, 

which sentence s1 and s2 include, respectively. 

Word 𝑤𝑖 represents the word, which belongs to s1. 

2.4 Runs 

All of our runs utilize the same method described 

above, i.e., word emdeddings method. The only 

difference among them lies that each of these runs 

have different details in preprocessing the evalua-

tion data. Here we clearly show their prepro-

cessing operations in details.  

Run1: We firstly use the Stanford CoreNLP 

toolkit3 (Manning et al., 2014) to split each token 

for the sentence pairs in the evaluation data. Then 

                                                      
3 http://stanfordnlp.github.io/CoreNLP/ 
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we tokenize all words with the help of the Stan-

ford CoreNLP toolkit, then extract content words 

of the sentence pairs in the evaluation data. 

Run2: As the operations of Run1, we tokenize 

the sentence pairs and extract content words for 

the sentence pairs in the evaluation data. Beyond 

that, we get the lemmas of these content words 

with the Stanford CoreNLP toolkit.  

Run3: The only operation we do is to tokenize 

the sentence pairs of the evaluation data. Com-

pared with Run1, all words are reserved in this 

run. 

At last, in order to carry on the following eval-

uation, we normalize the output of these systems 

from [0, 1] to [0, 5].  

The three runs are submitted to official evalua-

tion, which are compared in Table 1. 

In order to further consider the influence of 

stop words, we perform another group of experi-

ences. Based on the runs in Table 1, we remove 

stop words which is from NLTK package. The 

corresponding results are shown in Table 2. 

3 Evaluation  

In the task, the official evaluation tool is based on 

Pearson correlation. A system run in each test set 

is evaluated by its Pearson correlation with the of-

ficial provided gold standard set. 

The results in Table 1 above shows that the sys-

tem Run2 get the best performance of 0.6433. 

Compared with Run1, Run2 achieves a 2.78% 

improvement, which implies that to lemmatize 

content words can be helpful. The difference of 

12.31% between Run1 and Run3 indicates that the 

extraction of content words can make a larger im-

provement for the similarity computation of the 

sentence pairs.  

In order to further know the effect of lemmati-

zation with Run3, we make the system Run3’. The 

only difference between them is that in the opera-

tion of preprocessing the data, Run3’ makes the 

lemmatization of the sentence pairs in the data, on 

the contrary, Run3 do not do it. The contrast of 

Run3 and Run3’ again confirms that lemmatiza-

tion for computing the similarity of the sentence 

pairs can be effective. 

As is shown in Table 2, the relative perfor-

mance of each run is similar with Table 1. Run2- 

get the best performance of 0.6887, which demon-

strate the effectiveness of content words extrac-

tion and lemmatization. Each run in Table 2 

achieves a better performance than that in Table 1, 

which demonstrates that it is necessary to remove 

stop words.  

4 Conclusions and Future Work 

The best Pearson correlation of our runs is 0.6887. 

Although our runs do not get the state-of-the-art 

performance, the result of these runs is acceptable. 

And it shows that word embeddings method is ef-

fective. Besides, in the competition, we can con-

clude that the appropriate preprocessing operation 

(such as tokenization, lemmatization, extraction of 

content words and removing stop words) for the 

data is helpful and necessary. In the future, with 

the help of word embeddings, we will explore 

some improved method to get a better perfor-

mance. 
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Abstract

Shared Task 1 at SemEval-2017 deals with
assessing the semantic similarity between
sentences, either in the same or in differ-
ent languages. In our system submission,
we employ multilingual word representa-
tions, in which similar words in different
languages are close to one another. Us-
ing such representations is advantageous,
since the increasing amount of available
parallel data allows for the application of
such methods to many of the languages in
the world. Hence, semantic similarity can
be inferred even for languages for which
no annotated data exists. Our system is
trained and evaluated on all language pairs
included in the shared task (English, Span-
ish, Arabic, and Turkish). Although de-
velopment results are promising, our sys-
tem does not yield high performance on
the shared task test sets.

1 Introduction

Semantic Textual Similarity (STS) is the task of
assessing the degree to which two sentences are
semantically similar. Within the SemEval STS
shared tasks, this is measured on a scale ranging
from 0 (no semantic similarity) to 5 (complete se-
mantic similarity) (Cer et al., 2017). Monolingual
STS is an important task, for instance for evalua-
tion of machine translation (MT) systems, where
estimating the semantic similarity between a sys-
tem’s translation and the gold translation can aid
both system evaluation and development. The task
is already a challenging one in a monolingual set-
ting, e.g., when estimating the similarity between
two English sentences. In this paper, we tackle the
more difficult case of cross-lingual STS, e.g., es-
timating the similarity between an English and an

Arabic sentence.
Previous approaches to this problem have fo-

cussed on two main approaches. On the one hand,
MT approaches have been attempted (e.g. Lo et al.
(2016)), which allow for monolingual similarity
assessment, but suffer from the fact that involv-
ing a fully-fledged MT system severely increases
system complexity. Applying bilingual word rep-
resentations, on the other hand, bypasses this issue
without inducing such complexity (e.g. Aldarmaki
and Diab (2016)). However, bilingual approaches
do not allow for taking advantage of the increas-
ing amount of STS data available for more than
one language pair.

Currently, there are several methods available
for obtaining high quality multilingual word rep-
resentations. It is therefore interesting to investi-
gate whether language can be ignored entirely in
an STS system after mapping words to their re-
spective representations. We investigate the utility
of multilingual word representations in a cross-
lingual STS setting. We approach this by com-
bining multilingual word representations with a
deep neural network, in which all parameters are
shared, regardless of language combinations.

The contributions of this paper can be summed
as follows: i) we show that multilingual input rep-
resentations in some cases can be used to train an
STS system without access to training data for a
given language; ii) we show that access to data
from other languages in some cases improves sys-
tem performance for a given language.

2 Multilingual Word Representations

2.1 Multilingual Skip-gram

The skip-gram model has become one of the most
popular manners of learning word representations
in NLP (Mikolov et al., 2013). This is in part
owed to its speed and simplicity, as well as the per-
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formance gains observed when incorporating the
resulting word embeddings into almost any NLP
system. The model takes a word w as its input,
and predicts the surrounding context c. Formally,
the probability distribution of c given w is defined
as

p(c|w;θ) =
exp(~cT~w)

Σc∈V exp(~cT~w)
, (1)

where V is the vocabulary, and θ the parameters of
word emeddings (~w) and context embeddings (~c).
The parameters of this model can then be learned
by maximising the log-likelihood over (w,c) pairs
in the dataset D,

J(θ) = ∑
(w,c)∈D

log p(c|w;θ). (2)

Guo et al. (2016) provide a multilingual exten-
sion for the skip-gram model, by requiring the
model to not only learn to predict English con-
texts, but also multilingual ones. This can be seen
as a simple adaptation of Firth (1957, p.11), i.e.,
you shall judge a word by the multilingual com-
pany it keeps. Hence, the vectors for, e.g., dog
and perro ought to be close to each other in such
a model. This assumes access to multilingual par-
allel data, as word alignments are used in order
to determine which words comprise the multilin-
gual context of a word. Whereas Guo et al. (2016)
only evaluate their approach on the relatively simi-
lar languages English, French and Spanish, we ex-
plore a more typological diverse case, as we ap-
ply this method to English, Spanish and Arabic.
We use the same parameter settings as Guo et al.
(2016).

2.2 Learning embeddings
We train 100-dimensional multilingual embed-
dings on the Europarl (Koehn, 2005) and UN
corpora (Ziemski et al., 2016). Word align-
ment, which is required for the training of mul-
tilingual embeddings, is performed using the Ef-
maral word-alignment tool (Östling and Tiede-
mann, 2016). This allows us to extract a large
amount of multilingual (w,c) pairs. We then use
these pairs in order to learn multilingual embed-
dings, by applying the word2vecf tool (Levy and
Goldberg, 2014).

3 Method

3.1 System architecture
We use a relatively simple neural network ar-
chitecture, consisting of an input layer with pre-

trained word embeddings and a network of fully
connected layers. Given word representations for
each word in our sentence, we take the simplis-
tic approach of averaging the vectors across each
sentence. The resulting sentence-level represen-
tations are then concatenated and passed through
a single fully connected layer, prior to the output
layer. In order to prevent any shift from occur-
ring in the embeddings, we do not update these
during training. The intuition here, is that we do
not want the representation for, e.g., dog to be up-
dated, which might push it further away from that
of perro. We expect this to be especially important
in cases where we train on a single language, and
evaluate on another.

We apply dropout (p = 0.5) between each layer
(Srivastava et al., 2014). All weights are ini-
tialised using the approach in Glorot and Bengio
(2010). We use the Adam optimisation algorithm
(Kingma and Ba, 2014), monitoring the categori-
cal cross entropy of a one-hot representation of the
(rounded) sentence similarity score, while sanity-
checking against the scores obtained as measured
with Pearson correlation. All systems are trained
using a batch size of 40 sentence pairs, over a max-
imum of 50 epochs, using early stopping. Hyper-
parameters are kept constant in all conditions.

3.2 Data

We use all available data from previous editions of
the SemEval shared tasks on (cross-lingual) STS.
An overview of the available data is shown in Ta-
ble 1.

Language pair N sentences

English / English 3750
English / Spanish 1000
English / Arabic 2162
Spanish / Spanish 1620
Arabic / Arabic 1081

Table 1: Available data for (cross-lingual) STS
from the SemEval shared task series.

4 Experiments and Results

We aim to investigate whether using a multilin-
gual input representation and shared weights al-
low us to ignore languages in STS. We first train
and evaluate single-source trained systems (i.e. on
a single language pair), and evaluate this both us-
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ing the same language pair as target, and on all
other target language pairs.1 Secondly, we inves-
tigate the effect of bundling training data together,
investigating which language pairings are helpful
for each other. We measure performance between
gold similarities and system output using the Pear-
son correlation measure, as this is standard in the
SemEval STS shared tasks. We first present re-
sults on the development sets, and finally the offi-
cial shared task evaluation results.

4.1 Single-source training

Results when training on a single source cor-
pus are shown in Table 2. Training on the tar-
get language pair generally yields the highest
results, except for one case. When evaluating
on Arabic/Arabic sentence pairs, training on En-
glish/Arabic texts yields comparable, or slightly
better, performance than when training on Ara-
bic/Arabic.

HHHHHHTest
Train en/en en/es en/ar es/es ar/ar

en/en 0.69 0.07 -0.04 0.64 0.54
en/es 0.19 0.27 0.00 0.18 -0.04
en/ar -0.44 0.37 0.73 -0.10 0.62
es/es 0.61 0.07 0.12 0.65 0.50
ar/ar 0.59 0.52 0.73 0.59 0.71

Table 2: Single-source training results (Pearson
correlations). Columns indicate training language
pairs, and rows indicate testing language pairs.
Bold numbers indicate best results per row.

4.2 Multi-source training

We combine training corpora in order to investi-
gate how this affects evaluation performance on
the language pairs in question. In the first con-
dition, we copy the single-source setup, except
for that we also add in the data belonging to the
source-pair at hand, e.g., training on both En-
glish/Arabic and Arabic/Arabic when evaluating
on Arabic/Arabic (see Table 3).

We observe that the monolingual language pair-
ings (en/en, es/es, ar/ar) appear to be beneficial for
one another. We therefore run an ablation exper-
iment, in which we train on two out of three of
these language pairs, and evaluate on all three. Not

1This setting can be seen as a sort of model transfer.

HHHHHHTest
Train en/en en/es en/ar es/es ar/ar

en/en 0.69 0.68 0.67 0.69 0.71
en/es 0.22 0.27 0.30 0.22 0.24
en/ar 0.72 0.72 0.73 0.71 0.72
es/es 0.63 0.60 0.63 0.65 0.66
ar/ar 0.71 0.72 0.75 0.70 0.71

Table 3: Training results with one source in ad-
dition to in-language data (Pearson correlations).
Columns indicate added training language pairs,
and rows indicate testing language pairs. Bold
numbers indicate best results per row.

including any Spanish training data yields compa-
rable performance to including it (Table 4).

PPPPPPPPPTest
Ablated en/en es/es ar/ar none

en/en 0.60 0.69 0.69 0.65
es/es 0.64 0.64 0.67 0.60
ar/ar 0.68 0.66 0.58 0.72

Table 4: Ablation results (Pearson correlations).
Columns indicate ablated language pairs, and rows
indicate testing language pairs. The none column
indicates no ablation, i.e., training on all three
monolingual pairs. Bold indicates results when
not training on the language pair evaluated on.

4.3 Shared Task Test Results

The results from the official SemEval-2017 eval-
uation are shown in Table 5. Although our re-
sults for Spanish/Spanish and English/English are
in line with our development results, the results
for all other language pairs are far lower than ex-
pected. This might be explained by overfitting to
the training/dev sets we use. After the official eval-
uation period ended, we also attempted to perform
a sanity check. We allowed our model to tune on
the gold data, which surprisingly did not increase
performance particularly much. We therefore sus-
pect that the poor system performance we observe,
may be partially owed to two factors: i) overfitting
on the tracks involving Arabic, as we did not ap-
ply any type of pre-processing, and our vector set
was tuned on relatively little Arabic data; ii) dis-
crepancies between the mix of training-data (and
possibly annotators) from previous editions of the
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Primary ar/ar ar/en es/es es/en es/en (wmt) en/en en/tr

Single-source 0.3148 0.2892 0.1045 0.6613 0.2389 0.0305 0.6906 0.1884
Multi-source 0.2938 0.3120 0.1288 0.6920 0.1002 0.0162 0.6877 0.1195
Ablation 0.2145 0.0033 0.1098 0.5465 0.2262 0.0199 0.5057 0.0902

Table 5: Results on SemEval-2017 Shared Task Test sets.

shared task, and test data in this year’s edition.
An interesting option to attempt to solve part of

this problem, would be to frame this as a multi-
task learning problem. This could be done by as-
signing each year’s data set a separate output layer.
Should annotator conventions differ, e.g., if a score
of 2.5 in 2015 is equivalent to a score of 3.5 in
2016, the network should be able to learn this and
compensate for such effects.

5 Discussion

In all cases, training on the target language pair is
beneficial. We also observe that using multilingual
embeddings is crucial for multilingual approaches,
as monolingual embeddings naturally only yield
on-par results in monolingual settings. This is due
to the fact that using the shared language-agnostic
input representation allows us to take advantage
of linguistic regularities across languages, which
we obtain solely from observing distributions be-
tween languages in parallel text. Using monolin-
gual word representations, however, there is no
similarity between, e.g., dog and perro to rely on
to guide learning.

For the single-source training, we in one case
observe somewhat better performance using other
training sets than the in-language one: training
on English/Arabic outperforms training on Ara-
bic/Arabic, when evaluating on Arabic/Arabic.
We expected this to be due to differing data set
sizes (English/Arabic is about twice as big). Con-
trolling for this does, indeed, bring the perfor-
mance of training on English/Arabic close to train-
ing on Arabic/Arabic. However, combining these
datasets increases performance further (Table 3).

In single-source training, we also observe that
certain source languages do not offer any gener-
alisation over certain target languages. Interest-
ingly, certain combinations of training/testing lan-
guage pairs yield very poor results. For instance,
training on English/English yields very poor re-
sults when evaluating on English/Arabic, and vice
versa. The same is observed for the combination

Spanish/Spanish and English/Arabic. This may be
explained by domain differences in training and
evaluation data. A general trend appears to be
that either monolingual training pairs and evalua-
tion pairs, or cross-lingual pairs with some overlap
(e.g. English/Arabic, Arabic/Arabic) is beneficial.

The positive results on pairings without any lan-
guage overlap are particularly promising. Train-
ing on English/English yields results not too
far from training on the source language pairs,
for Spanish/Spanish and Arabic/Arabic. Simi-
lar results are observed when training on Span-
ish/Spanish and evaluating on English/English and
Arabic/Arabic, as well as when training on Ara-
bic/Arabic and evaluating on English/English and
Spanish/Spanish. This indicates that we can esti-
mate STS relatively reliably, even without assum-
ing any existing STS data for a given language.

6 Conclusions and Future Work

Multilingual word representations allow us to
leverage more available data for multilingual
learning of semantic textual similarity. We have
shown that relatively high STS performance can
be achieved for languages without assuming exist-
ing STS annotation, and relying solely on paral-
lel texts. An interesting direction for future work
is to investigate how multilingual character-level
representations can be included, perhaps learn-
ing morpheme-level representations and mappings
between these across languages. Leveraging ap-
proaches to learning multilingual word represen-
tations from smaller data sets would also be in-
teresting. For instance, learning such representa-
tions from only the New Testament, would allow
for STS estimation for more than 1,000 languages.
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Abstract

Semantic Textual Similarity (STS) devotes
to measuring the degree of equivalence in
the underlying semantic of the sentence
pair. We proposed a new system, ITNLP-
AiKF, which applies in the SemEval 2017
Task1 Semantic Textual Similarity track 5
English monolingual pairs. In our system,
rich features are involved, including On-
tology based, word embedding based, Cor-
pus based, Alignment based and Literal
based feature. We leveraged the features to
predict sentence pair similarity by a Sup-
port Vector Regression (SVR) model. In
the result, a Pearson Correlation of 0.8231
is achieved by our system, which is a com-
petitive result in the contest of this track.

1 Introduction

Semantic Evaluation (SemEval) contest devotes to
pushing the research of semantic analysis, which
attracts many participants and promote a lot of
groundbreaking achievements in natural language
processing (NLP) field. Semantic textual simi-
larity (STS) task works for computing word and
text semantics, which has made extensive attrac-
tion to the researchers and NLP community since
SemEval 2012 (Agirre et al., 2012).

In STS 2017, The organizers added monolin-
gual Arabic and Cross-lingual Arabic-English se-
mantic calculation in order to increase the diffi-
culty in the contest. The task definition is given
two sentences participating systems are asked to
predict a continuous similarity score on a scale
from 0 to 5 of the sentence pair, with 0 indicating
that the semantics of the sentences completely in-
dependent and 5 semantic equivalence. The eval-
uation criterion uses Pearson Correlation Coeffi-
cient, which computing the correlation between

golden standard scores and semantic system pre-
dicted scores.

In our system, in order to predict similarity
score of two sentences, we trained a Support Vec-
tor Regression (SVR) model with abundant fea-
tures including Ontology based features, Word
Embedding based features, Corpus based features,
Alignment based features and Literal based fea-
tures. All the English training, trial and evalua-
tion data set released by previous STS tasks in Se-
mEval were used to construct our system. Our best
system achieved 0.8231 Pearson Correlation coef-
ficient in the SemEval 2017 evaluation data set,
and the winner achieved 0.8547.

2 Feature Engineering

In our system, many features are tried to promote
the performance of our system. Five kinds of fea-
tures are used: Ontology based features, Word
Embedding based features, Corpus based features,
Alignment based features and Literal based fea-
tures.The following is a detailed description of the
five kinds features.

2.1 Ontology Based Features

WordNet (Miller, 1995) is used to exploit On-
tology based features. WordNet is a large
lexical database of English. In WordNet,
nouns, verbs, adjectives and adverbs are di-
vided into sets of cognitive synonyms called
synsets. Each synonym expresses a distinct
concept. WordNet measures two words sim-
ilarity based on Path similarity, Res similarity,
Lin similarity, Wup similarity, Lch similarity and
so on. In our system, we directly use WordNet
APIs provided by NLTK toolkit (Bird, 2006) to
calculate the similarity of two words.

Path similarity measure is based on the shortest
path similarity measure. The Path similarity for-
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mula is defined as Eq 1:

Simpath(c1, c2) = 2 ∗ deep max− len(c1, c2)
(1)

where c1 and c2 are concepts, deep max is a
fixed value of the WordNet and len(c1,c2) is the
shortest path of concepts c1 an c2 in WordNet.

Lch similarity (Leacock et al., 1998) mea-
sure two words similarity by using the depth of
concepts in the WordNet hierarchy tree. The
Lch similarity formula is as Eq 2:

Simlch(c1, c2) = −log(
len(c1, c2)

2 ∗ deep max
) (2)

Res similarity (Resniks Measure) calculates
similarity based on two concepts common in-
formation content in the taxonomy. The
Res similarity formula is defined as Eq 3:

Simres(c1, c2) = − log P (lso(c1, c2))
= IC(lso(c1, c2))

(3)

where lso(c1, c2) is the lowest subsumer of con-
cepts c1 and c2 in the taxonomy. The value of
Lch similarity and Res similarity is not in [0, 1],
so we need to scale features into [0, 1].

Lin similarity (Lin, 1998) considers the similar-
ity depending on the commonality and differences
of the information contained in the different mean-
ing concepts. The Lin similarity formula is de-
fined as Eq 4:

Simlin(c1, c2) =
2 ∗ IC(lso(c1, c2))
IC(c1) + IC(c2)

(4)

Wup similarity (Wu and Palmer, 1994) mea-
sures similarity based on the path of conception
node, shared parent node and root node. The
Wup similarity formula is defined as Eq 5:

simwup(c1, c2) =
2 ∗ depth(lso(c1, c2))

len(c1, c2) + 2 ∗ depth(lso(c1, c2))
(5)

We can use two vectors S1 and S2 to represent
two sentences. For each word in S1 or S2, search
for the most similar word in another sentence by
above methods. For S1, add all elements together,
which are divided by the length of S1, and then get

the value of V1. Do the same calculation for S2,
and then get the value of V2. Computing the har-
monic mean (denoted by harmonic mean) of V1

and V2, and the result is the similarity of the two
sentences. The harmonic mean is defined as Eq 6:

harmonic mean =
2

1
V1

+ 1
V2

(6)

2.2 Word Embedding Based Features

Word Embedding maps words or phrases from de-
fined vocabulary with dense vectors of real val-
ues, which have been applied as features in doc-
ument classification (Sebastiani, 2002), question
answering (Tellex et al., 2003), and named entity
recognition (Turian et al., 2010) tasks. In our sys-
tem, we obtained word vectors using two kinds of
unsupervised models: Word2Vec (Mikolov et al.,
2013) and Global Vectors (GloVe) (Penning-
ton et al., 2014), which can produce high-quality
word vectors from millions of corpus data. With
the obtained word vectors, the following sen-
tences similarities are calculated: W2V similarity,
IDFV similarity, S2V similarity, Text similarity,
WFSV similarity.

In order to get a better word vector, we used
full Wikipedia English corpus to train Word2Vec
vectors (400 dimensions) and the Global vector of
twitter (200 dimensions) provided by GloVe.

W2V similarity measures two sentences simi-
larity by using word vectors. The W2V similarity
formula is defined as Eq 7:

W2V Sim(S1, S2) = Cos Dis(

∑
w∈S1

W2V (w)
len(S1)

,

∑
w∈S2

W2V (w)
(len(S2)

)

(7)
where W2V (w) is the word embedding vector,
and len(S1), len(S2) is the length of sentence.

The cosine similarity is defined as Eq 8:

Cos Dis(V1, V2) =
V1 · V2

‖V1‖ · ‖V2‖ (8)

S2V similarity is another method that measures
two sentences similarity directly, by using the fol-
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lowing formula as Eq 9:

S2V Sim(S1, S2) =
1

len(S1)∑
w∈S1

maxSim(w,S2) + len(S2)∑
w∈S2

maxSim(w,S1)

(9)
maxSim(w,S) is to find the maximum similar-

ity value between one word in one sentence and
all words in another sentence, which is defined as
Eq 10.

maxSim(w, S) =
Max{Cos Dis(W2V (w), W2V (ws)), ws ∈ S}

(10)
Text similarity uses maxSim method and the

weight of tf-idf to calculate the pair of sentence.
Text similarity measures (Mihalcea et al., 2006)
two sentences similarity uses the following for-
mula as Eq 11:

Text sim(S1, S2)

=
1
2
(

∑
w∈S1

(maxSim(w, S2) ∗ idf(w))∑
w∈S1

idf(w)

+

∑
w∈S2

(maxSim(w, S1) ∗ idf(w))∑
w∈S2

idf(w)
)

(11)

IDF W2V similarity and Freq W2V similarity
represent sentence vector with word embedding,
word frequency and word tf-idf. IDF W2V sim-
ilarity and Freq W2V similarity formula are as
Eq 12 and Eq 13:

IDFV (S) =
∑
w∈S

IDF (w) ∗ W2V (w)
norm(W2V (w))

(12)

WFSV (S) =
∑
w∈S

WF (w) ∗ W2V (w)
norm(W2V (w))

(13)
where IDF(w) and WF(w) are the word tf-idf and
frequency based on all Wikipedia english corpus.

After getting the sentence vectors, comput co-
sine distance between two vectors and the value is
a feature of two sentences.

2.3 Corpus Based Features
Latent semantic analysis (LSA) is a technique of
global matrix factorization methods, to analyse the

relationships between a set of documents and the
words. Based on optimal vector space structure,
LSA method can leverage statistical information
efficiently, and be always used to measure word-
to-word similarity.

There are several publicly available tools to
construct LSA models, such as SemanticVec-
tors Package (Widdows and Ferraro, 2008) and
S-Space Package (Jurgens and Stevens, 2010)
can be used to generate LSA space vectors. For
this part, we directly use the word vectors pro-
vided by SEMILAR1 (Stefanescu et al., 2014) to
calculate the features: W2V LSI similarity,
S2V LSI similarity, Text LSI similarity,
IDF LSI similarity, WFSV LSI similarity.

2.4 Alignment Based Features

Alignment similarity based on monolingual align-
ment measures sentences similarity. Alignment
try to discover similar meaning word pairs by
exploiting the semantic and contextual similari-
ties. In our work, we directly use the monolingual
word aligner provided by (Sultan et al., 2014a,b).
Alignment similarity uses the following formula
Eq 14:

sts(S1, S2) =
na

c (S1) + na
c (S2)

nc(S1) + nc(S2)
(14)

where na
c (S1) and na

c (S2) is the amount of
word alignment in two sentences, and nc(S1) and
nc(S2) is the length of sentence.

2.5 Literal Based Features

For literal similarity, we use the edit distance and
jaccard distance to calculate sentences similarity.
Edit distance also known as Levenshtein Distance,
is the minimum step of editing operations from
one sentence to another.

Firstly, for jaccard distance, we extracted part-
of-speech tagging of each word from a sentence.
Then calculate jaccard distance by using the for-
mula defined by Eq 15:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2| (15)

where S1 and S2 are the tag of each word in a sen-
tence, which ignores the order. We use the NLTK
toolkit part-of-speech tagging.

1http://www.semanticsimilarity.org/
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Ans-Ans Qus-Qus HDL Postediting Plagiarism
Ontology Based 0.5926 0.6041 0.7192 0.8136 0.7349
Word2vec Based 0.5838 0.6012 0.7395 0.8233 0.8053

GloVe Based 0.5360 0.5827 0.7172 0.7508 0.7478
Corpus Based 0.3737 0.4378 0.6157 0.7334 0.7356

Alignment Based 0.4842 0.5827 0.7172 0.7508 0.7478
Literal Based 0.4860 0.5232 0.6715 0.8108 0.7339

All 0.6248 0.6315 0.8106 0.8307 0.8132

Table 1: The Pearson Correlation on SemEval 2016 evaluation data sets.

3 Experiments and Results

In our system, We build our data set by collecting
all off-the-shelf English data sets which released
by prior STS evaluations (except the evaluation
data set of STS 2016). After that, 80% data set
are used as train data set and 20% as valid data
set. In our system, we trained SVR model, and the
SVR parameters are set as Table 2.

parameter kernel C gamma epsilon
value rbf 0.1 auto 0.0

Table 2: parameter setting in SVR.

Ontology based, Word embedding based, Cor-
pus based, Alignment based and Literal based fea-
tures are used in SVR model respectively, in order
to explore the effect of each kind of features. We
used SemEval 2016 evaluation data set to test the
performance of different feature set, and the re-
sults of Pearson Correlation coefficients are shown
in Table 1.

The Table 1 indicates Word2Vec performed bet-
ter in HDL, Postediting, Plagiarism data set, and
WordNet performed better in Ans-Ans, Qus-Qus
data set. The reason maybe that training Word2vec
uses all the English corpus of Wikipedia, and it can
learn better word vectors. WordNet can make full
uses of lexical information to match the synonyms
between two sentences.

We also used SemEval 2017 evaluation data to
test our system, and adding each kind of feature
one by one. The result of Pearson Correlation co-
efficients are shown in Table 3.

From Table 3, we can see Ontology based fea-
tures, Corpus based features and Literal based fea-
tures outperformed others in SemEval 2017 evalu-
ation data set.

Feature Pearson correlation
Alignment Based 0.7527
Ontology Based 0.7816
Word2vec Based 0.7823

GloVe Based 0.7836
Corpus Based 0.8104
Literal Based 0.8231

All 0.8231

Table 3: The Pearson Correlation on SemEval
2017 evaluation data sets.

4 Conclusion and Future Works

In this paper, we describe our system in the Se-
mantic Textual Similarity task1 subtask 5 English
monolingual similarity in SenEval 2017. We used
5 kinds of features and SVR model to build the
ultimate system. We find that Ontology based fea-
ture, Word Embedding based feature and Align-
ment based feature performed better in some as-
pects of semantic similarity calculation. With the
limitation of time, we do not try other methods. In
our future work, we are going to attempt LSTM
tree method to calculate sentences similarity.
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Abstract

This paper describes a neural-network
model which performed competitively
(top 6) at the SemEval 2017 cross-lingual
Semantic Textual Similarity (STS) task.
Our system employs an attention-based
recurrent neural network model that op-
timizes the sentence similarity. In this
paper, we describe our participation in
the multilingual STS task which measures
similarity across English, Spanish, and
Arabic.

1 Introduction

Semantic textual similarity (STS) measures the
degree of equivalence between the meanings of
two text sequences (Agirre et al., 2016). The
similarity of the text pair can be represented as
discrete or continuous values ranging from irrel-
evance (1) to exact semantic equivalence (5). It
is widely applicable to many NLP tasks includ-
ing summarization (Wong et al., 2008; Nenkova
et al., 2011), generation and question answering
(Vo et al., 2015), paraphrase detection (Fernando
and Stevenson, 2008), and machine translation
(Corley and Mihalcea, 2005).

In this paper, we describe a system that is able
to learn context-sensitive features within the sen-
tences. Further, we encode the sequential informa-
tion with Recurrent Neural Network (RNN) and
perform attention mechanism (Bahdanau et al.,
2015) on RNN outputs for both sentences. Atten-
tion mechanism was performed to increase sen-
sitivity of the system to words of similarity sig-
nificance. We also optimize directly on the Pear-
son correlation score as part of our neural-based
approach. Moreover, we include a pair feature

∗The author is currently serving in his Alternative Mili-
tary Service of Education.

adapter module that could be used to include more
features to further improve performance. How-
ever, for this competition we include merely the
TakeLab features (Šarić et al., 2012). 1

2 Related Works

Most proposed approaches in the past adopted
a hybrid of varying text unit sizes ranging from
character-based, token-based, to knowledge-based
similarity measure (Gomaa and Fahmy, 2013).
The linguistic depths of these measures often vary
between lexical, syntactic, and semantic levels.

Most solutions include an ensemble of modules
that employs features coming from different unit
sizes and depths. More recent approaches gen-
erally include the word embedding-based similar-
ity (Liebeck et al., 2016; Brychcı́n and Svoboda,
2016) as a component of the final ensemble. The
top performing team in 2016 (Rychalska et al.,
2016) uses an ensemble of multiple modules in-
cluding recursive autoencoders with WordNet and
monolingual aligner (Sultan et al., 2016). UMD-
TTIC-UW (He et al., 2016) proposes the MPCNN
model that requires no feature engineering and
managed to perform competitively at the 6th place.
MPCNN is able to extract the hidden information
using the Convolutional Neural Network (CNN)
and adds an attention layer to extract the vital sim-
ilarity information.

3 Methods

3.1 Model

Given two sentences I1 = {w1
1, w

1
2, ..., w

1
n1} and

I2 = {w2
1, w

2
2, ..., w

2
n2}, where wij denote the jth

token of the ith sentence, embedded using a func-
tion φ that maps each token to a D-dimension
trainable vector. Two sentences are encoded with

1Our system and data is available at
github.com/iamalbert/semval2017task1.
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Figure 1: Illustration of model architecture

an attentitve RNN to obtain sentence embeddings
u1, u2, respectively.

Sentence Encoder For each sentence, the RNN
firstly converts wi

j into xi
j ∈ R2H , using an bidi-

rectional Gated Recurrent Unit (GRU) (Cho et al.,
2014) 2 by sequentially feeding wi

j into the unit,
in both forward and backward directions. The su-
perscripts of w, x, a, u, n are omitted for clear no-
tation.

xi = [xF
i ;xB

i ]

xF
i = GRU(xF

i−1, wi)

xB
i = GRU(xB

i+1, wi)

(1)

Then, we attend each word xj for different
salience aj and blend the memories x1;n into sen-
tence embedding u:

aj ∝ exp(rT tanh(Wxi))

u =
n∑

j=1

ajxj
(2)

where W ∈ R2H×2H and r ∈ R2H are trainable
parameters.

Surface Features Inspired by the simple system
described in (Šarić et al., 2012), We also extract
surface features from the sentence pair as follow-
ing:

•Ngram Overlap Similarity: These are features
drawn from external knowledge like Word-
Net (Miller, 1995) and Wikipedia. We
use both PathLen similarity (Leacock and
Chodorow, 1998) and Lin similarity (Lin
et al., 1998) to compute similarity between
pairs of words w1

i and w2
j in I1 and I2, re-

spectively. We employ the suggested pre-
processing step (Šarić et al., 2012), and add

2 We also explored Longer Short-Term Memory (LSTM),
but find it more overfitting than GRU.

both WordNet and corpus-based information
to ngram overlap scores, which is obtained
with the harmonic mean of the degree of
overlap between the sentences.

•Semantic Sentence Similarity: We also com-
pute token-based alignment overlap and vec-
tor space sentence similarity (Šarić et al.,
2012). Semantic alignment similarity is com-
puted greedily between all pairs of tokens
using both the knowledge-based and corpus-
based similarity. Scores are further enhanced
with the aligned pair information. We obtain
the weighted form of latent semantic analy-
sis vectors (Turney and Pantel, 2010) for each
word w, before computing the cosine similar-
ity. As such, sentence similarity scores are
enhanced with corpus-based information for
tokens. The features are concatenated into a
vector, denoted as m.

Scoring Let S be a descrete random variable
over {0, 1, ..., 4, 5} describing the similarity of the
given sentence pair {I1, I2}. The representation of
the given pair is the concatenation of u1, u2, and
m, which is fed into an MLP with one hidden layer
to calculate the estimated distribution of S.

p =


P (S = 0)
P (S = 1)

...
P (S = 5)


= softmax(V tanh(U

 u1

u2

m

)) (3)

Therefore, the score y is the expected value of
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S:

y = E[S] =
5∑

i=0

iP (S = i) = vT p (4)

, where v = [0, 1, 2, 3, 4, 5]T . The entire system is
shown in Figure 1.

3.2 Word Embedding
We explore initializing word embeddings ran-
domly or with pre-trained word2vec (Mikolov
et al., 2013) of dimension 50, 100, 300, respec-
tively. We found that the system works the best
with 300-dimension word2vec embeddings.

3.3 Optimization
Let pn, yn be the predicted probability density and
expected score and ŷn be the annotated gold score
of the n-th sample. Most of the previous learning-
based models are trained to minimize the follow-
ing objectives on a batch of N samples:

• Negative Log-likelihood (NLL) of p and p̂
(Aker et al., 2016). The task is viewed as a
classification problem for 6 classes.

LNLL =
N∑

n=1

− log pn
tn

, where tn is ŷn rounded to the nearest inte-
ger.

• Mean square error (MSE) between yn and ŷn

(Brychcı́n and Svoboda, 2016).

LMSE =
1
N

N∑
n=1

(yn − ŷn)2

• Kullback-Leibler divergence (KLD) of pn

and gold distribution p̂n estimated by ŷn:

LKLD =
N∑

n=1

(
6∑

i=1

p̂n
i log

p̂n
i

pn
i

)

where

p̂n
i =


ŷn − bŷnc, if i = bŷnc+ 1
bŷnc+ 1− ŷn, if i = bŷnc
0, otherwise

(Li and Huang, 2016; Tai et al., 2015). For
each n, there exists some k such that p̂n

k = 1
and ∀h 6= k, p̂n

h = 0, KLD is identical to
NLL.

However, the evaluation metric of this task is
Pearson Correlation Coefficient (PCC), which is
invariant to changes in location and scale of yn but
none of the above objectives can reflect it. Here we
use an example to illustrate that MSE and KLD
can even report an inverse tendency. In Table 1,
group A has lower MSE and KLD loss than group
B, but its PCC is also lower.

To solve this problem, we train the model to
maximize PCC directly. Hence, the loss function
is given by:

LPCC = −
∑N

n=1(yn − ȳ)(ŷn − ¯̂y)√∑N
n=1(yn − ȳ)2

√∑N
n=1(ŷn − ¯̂y)2

(5)
where ȳ = 1

N

∑N
n=1 y

n and ¯̂y = 1
N

∑N
n=1 ŷ

n.
Since N is fixed for every batch, LPCC is differ-
entiable with respect to yn, which means we can
apply back propagation to train the network. To
the best of our knowledge, we are the first team to
adopt this training objective.

Group A B
Gold Score 3 4 5 3 4 5
P (S = 0) 0.05 0.05 0.05 0.15 0.05 0.1
P (S = 1) 0.05 0.05 0.05 0.3 0.2 0.1
P (S = 2) 0.15 0.1 0.05 0.25 0.3 0.2
P (S = 3) 0.5 0.35 0.0 0.1 0.25 0.3
P (S = 4) 0.15 0.4 0.1 0.1 0.1 0.2
P (S = 5) 0.1 0.05 0.7 0.1 0.1 0.1
E[S] 2.95 3.15 4.2 2.0 2.45 2.7

MSE KLD PCC MSE KLD PCC
0.455 1.966 0.931 2.90 6.91 0.987

Table 1: Example of lower MSE and KLD not
indicating higher PCC.

4 Evaluation

4.1 Data

Dataset Pairs
Training 22,401

Validation 5,601

Table 2: Training and validation Data sets (STS
2012-2016 and SICK).

We gather dataset from SICK (Marelli et al.,
2014) and past STS across years 2012, 2013,
2014, 2015, and 2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016) for both cross-lingual and
monolingual subtasks. We shuffle and split them
according to the ratio 80:20 into training set and
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validation set, respectively. Table 2 indicates the
size of training set and validation set. All non-
English sentence appearing in training, validation,
and test set are translated into English with Google
Cloud Translation API.

4.2 Experiments
In the experiment, the size of output of GRU is
set to be H = 200. We use ADAM algorithm to
optimize the parameters with mini-batches of 125.
The learning rate is set to 10−4 at the beginning
and reduced by half for every 5 epochs. We trained
the network for 15 epochs.

Word embeddings In Table 3, we demonstrate
that the system performs better with pretrained
word vectors (WI) than randomly initialized (RI).

D PCC on validation set

RI
50 0.7904
300 0.8091

WI
50 0.7974
300 0.8174

Table 3: System performance with different di-
mensions of word embeddings, using either ran-
domly initialized or pre-trained word embedding.

Loss function We display performances with
systems optimized with KLD, MSE, and PCC. It
shows that when using LPCC as the training ob-
jective, our system not only performs the best but
also converges the fastest. As shown in Table 4
and Figure 2.

Loss function PCC
LKLD 0.6839
LMSE 0.7863
LPCC 0.8174

Table 4: Influence of different loss objectives on
the system performance measured using PCC on
our validation set.

4.3 Final System Results
We tune the model on validation set, and select the
set of hyper-parameters that yields the best perfor-
mance to obtain the scores of test data. We report
the official provisional results in Table 5. There
is an obvious performance drop in track4b, which
happens to all teams. We hypothesize that the sen-
tences in track4b (en es) are collected from a spe-
cial domain, due to the fact that the number of

Figure 2: Performance of different loss functions

out-of-vocabulary words in track 4b is many times
more than that in other tracks.

Track PCC mean median max
Primary 0.6171 0.66 0 28

1 0.6821 0.53 0 3
2 0.6459 0.50 0 3
3 0.7928 0.35 0 4
4a 0.7169 0.35 0 4
4b 0.0200 2.54 2 28
5 0.7927 0.36 0 4
6 0.6696 0.33 0 5

Table 5: Final system results and statistics of the
number of OOV words within a pair

5 Conclusion

We propose a simple neural-based system with a
novel means of optimization. We adopt a simple
neural network with surface features which leads
to a promising performance. We also revise sev-
eral popular training objectives and empirically
show that optimizing directly on Pearson’s corre-
lation coefficient achieved the best scores and per-
form competitively on STS-2017.
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Abstract

This paper describes our unsupervised
knowledge-free approach to the SemEval-
2017 Task 1 Competition. The proposed
method makes use of Paragraph Vector for
assessing the semantic similarity between
pairs of sentences. We experimented with
various dimensions of the vector and three
state-of-the-art similarity metrics. Given a
cross-lingual task, we trained models cor-
responding to its two languages and com-
bined the models by averaging the simi-
larity scores. The results of our submitted
runs are above the median scores for five
out of seven test sets by means of Pear-
son Correlation. Moreover, one of our sys-
tem runs performed best on the Spanish-
English-WMT test set ranking first out of
53 runs submitted in total by all partici-
pants.

1 Introduction

Semantic Textual Similarity (STS) aims to assess
the degree to which two snippets of text are re-
lated in meaning to each other. The SemEval an-
nual competition offers a track on STS (Cer et al.,
2017) where submitted STS systems are evaluated
in terms of the Pearson correlation between ma-
chine assigned semantic similarity scores and hu-
man judgments.

We participated in both monolingual sub-tracks
and cross-lingual sub-tracks. Given a sentence
pair in the same language, the SemEval STS task
is to assign a similarity score to it ranging from 0
to 5, with 0 implying that the semantics of the sen-
tences are completely independent and 5 denoting
semantic equivalence (Cer et al., 2017). The cross-
lingual side of STS is similar to the initial task,

but differs in the input sentences which come from
two languages.

This year’s shared task features six sub-tasks:
Arabic-Arabic, Arabic-English, Spanish-Spanish,
Spanish-English (two test sets), English-English
and a surprise task (Turkish-English) for which no
annotated data is offered.

For example, for the English monolingual STS
track, the pair of sentences below had a score of
3 assigned by human annotators, meaning that the
two sentences are roughly equivalent, but some es-
sential information differs or is missing (Cer et al.,
2017).

Bayes’ theorem was named after Rev Thomas
Bayes and is a method used in probability theory.

As an official theorem, Bayes’ theorem is valid
in all universal interpretations of probability.

We present an unsupervised, knowledge-free
approach that utilizes Paragraph Vector (Le
and Mikolov, 2014) to represent sentences by
means of continuous distributed vectors. In
addition to experimenting with feature spaces
of different dimensionality, we also compare
three state-of-the-art similarity metrics (Cosine,
Bray-Curtis and Correlation) for calculating the
STS scores. We do not make use of any lexical
or semantic resources, nor hand-annotated labeled
corpora in addition to the distributed representa-
tions trained on non-annotated text. The approach
gives promising results on all sub-tasks, with our
submitted systems ranking first out of 53 for one
Spanish-English sub-track and above the median
scores for five out of seven test sets.

We first shortly summarize related work in STS
and describe Paragraph Vector in Section 2. Then
we present our method in Section 3 along with
the corpora we used in training the Paragraph Vec-
tor models. Section 4 contains an overview of the
evaluation and the results.
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2 Related Work

2.1 Semantic Textual Similarity

We present in this subsection the state-of-the-art in
STS-Task 1 using Paragraph Vector since it is the
most relevant to our work. King et al. (2016), for
instance make use of Paragraph Vectors as one ap-
proach in the English monolingual sub-task. Re-
sults are reported for a single vector size and the
Cosine metric which is employed in obtaining the
similarity score between sentences. Brychcı́n and
Svoboda (2016) follow a similar approach but ap-
ply it also to the cross-lingual task.

We raise three research questions regarding the
usage of Paragraph Vector in STS:

• To which degree does the vector size matter?

• What could be a better alternative to the tra-
ditional Cosine metric for measuring the sim-
ilarity between two vectors (obtained with
Doc2Vec1)?

• Given a cross-lingual task, does averaging the
similarity scores obtained using the Doc2Vec
models trained on both language corpora re-
sult in an improvement over using only the
scores from one model?

2.2 Paragraph Vector

In order to assess the semantic textual similarity of
two sentences, methods of representing them are
crucial. Le and Mikolov (2014) propose a contin-
uous, distributed vector representation of phrases,
sentences and documents, Paragraph Vectors. It
is a continuation of the work in Mikolov et al.
(2013a) where word vectors (embeddings) are in-
troduced in order to semantically represent words.

The strength of capturing the semantics of
words via word embeddings is visible not only
when considering words with similar meaning
like ”strong” and ”powerful” (Le and Mikolov,
2014), but also in learning relationships such as
male/female where the vector representation for
King - Man + Woman results in a vector very close
to Queen (Mikolov et al., 2013b).

In the Paragraph Vector framework, the para-
graph vectors are concatenated with the word vec-
tors to form one vector. The paragraph vector acts

1The terms Paragraph Vector and Doc2Vec are used inter-
changeably as follows.

as a memory of what is missing in the current con-
text. The word vectors are shared across all para-
graphs, while the paragraph vector is shared across
all contexts generated from the same paragraph.
The vectors are trained using stochastic gradient
descent with backpropagation (Le and Mikolov,
2014).

Since the STS task requires assigning a similar-
ity score between two sentences, we apply Para-
graph Vector at the sentence level. The models are
trained using the Gensim library (Řehůřek and So-
jka, 2010).

3 Semantic Textual Similarity via
Paragraph Vector

3.1 Corpora

For training the Doc2Vec models we used vari-
ous corpora available for the different language
pairs. Following the rationale from Lau and Bald-
win (2016), we concatenated to the corpora the
test set too as the Doc2Vec training is purely un-
supervised. The corpora we used are made avail-
able by Opus (Tiedemann, 2012) (except Com-
moncrawl2 and SNLI (Bowman et al., 2015)):
Wikipedia (Wolk and Marasek, 2014), TED3,
MultiUN (Eisele and Chen, 2010), EUBookshop
(Skadiņš et al., 2014), SETIMES4, Tatoeba5,
WMT6 and News Commentary7. The follow-
ing table presents which corpora were used and
how many sentences they consist of. The corpora
marked with * were used only for the third run.

Track / Corpora AR-AR AR-EN ES-ES ES-EN EN-EN TR-EN
Commoncrawl - - 1.84M - 2.39M -
Wikipedia 151K 151K - 1.81M - 160K
TED 152K 152K - 157K - 137K
MultiUN 1M 1M - - - -
EUBookshop - - - - - 23K
SETIMES - - - - - 207K
Tatoeba - - - - - 156K
SNLI* - 150K - 150K 150K 150K
WMT* - 16K - 16K 16K 16K
News Commentary* - 238K - 238K 238K 238K

Table 1: Corpora used in training Doc2Vec models

The SNLI, WMT and News Commentary cor-
pora were used for run 3 in some sub-tasks where
we aimed to assess whether using more data makes

2http://commoncrawl.org/
3http://www.casmacat.eu/corpus/ted2013.html
4http://nlp.ffzg.hr/resources/corpora/setimes/
5http://tatoeba.org/
6http://www.statmt.org/wmt14/
7http://www.casmacat.eu/corpus/news-commentary
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a difference. For training the English models only
the EN side of the ES-EN language pair was used.

3.2 Preprocessing
For the sub-tasks that included the Arabic lan-
guage we utilized the Stanford Arabic Segmenter
(Monroe et al., 2014) in order to reduce lexical
sparsity. For all the other sub-tasks, we performed
text normalization, tokenization and lowercasing
using the scripts available in the Moses Machine
Translation Toolkit (Koehn et al., 2007).

3.3 Methods
We assess the semantic similarity between two
sentences based on their continuous vector repre-
sentations obtained by means of various Paragraph
Vector models. A similarity metric is applied af-
terwards in order to determine the proximity be-
tween the two vectors. This measure is directly
used as the similarity score of the two sentences.

For all sub-tasks we experiment with the
PV-DBOW training algorithm, various vector
sizes (200, 300 and 400) and with vari-
ous state-of-the-art similarity metrics (Cosine,
Bray-Curtis, Correlation) defined as:

Cosine: 1− u·v
||u||2||v||2

Bray-Curtis:
∑ |ui−vi|∑ |ui+vi|

Correlation: 1− (u−ū)·(v−v̄)
||(u−ū)||2||(v−v̄)||2

where u and v are the vector representations of
the two sentences, ū and v̄ denote the mean value
of the elements of u and and v, and x · y is the dot
product of x and y.

The Cosine metric is directly available from
the Gensim library, while the Bray-Curtis and
Correlation metrics are part of the spatial library
from scipy8. We need to invert the score produced
by the spatial library as it provides dissimilarity
scores instead of the required similarity measures.

Given a monolingual sub-task L1−L1 and mul-
tiple bilingual corpora, the L1 side of the corpora
is used to train Doc2Vec models. For all cross-
lingual sub-tasks L1 − L2 we used Google Trans-
late to obtain the test set translation from L1 to
L2 and vice versa. Then we trained the Doc2Vec
models for the two languages separately and com-
bined the similarity scores obtained by the two
models by averaging. Since the scores are in the

8https://docs.scipy.org/doc/scipy-
0.18.1/reference/spatial.html

range (0, 1] we multiply them by 5 in order to re-
turn a continuous valued similarity score on a scale
from 0 to 5, as the competition requires.

We submitted three runs to the competition:

run1

Model(size=200), Cosine similarity
EN-ES: Model ES
AR-EN: Model AR
TR-EN: Model TR

run2

Model(size=400), Cosine similarity
EN-ES: Model ES
AR-EN: Model AR
TR-EN: Model TR

run3

Model(size=200), Bray-Curtis similarity,
more training data
EN-ES: Model EN
AR-EN: Model EN
TR-EN: Model EN

Table 2: Submitted runs settings

4 Evaluation and Results

The similarity scores are evaluated by computing
the Pearson Correlation between them and human
judgments for the same sentence pairs. This sec-
tion presents our results for all sub-tasks of the
2017 test sets and also for the STS Benchmark9

(Cer et al., 2017).

4.1 STS 2017 Test Sets

When considering all 85 submitted runs (including
the monolingual runs and the baseline), our best
runs ranked 26 out of 49 for AR-AR, 21 out of 45
for AR-EN, 22 out of 48 for ES-ES, 28 out of 53
for ES-EN-a, 1 out of 53 for ES-EN-b, 35 out of
77 for EN-EN and 16 out of 48 for TR-EN (Cer
et al., 2017).

Several experiments were conducted with size
200, 300 and 400 for the Doc2Vec vectors, train-
ing on both sides of the corpora for the cross-
lingual tasks and applying Cosine, Bray-Curtis
and Correlation similarity metrics. We detail in
Table 3 the Pearson Correlation scores obtained.

The results indicate that the Bray-Curtis met-
ric performs better than the other two in five out
of seven test sets, with a tie on the EN-EN test
set. Regarding the dimension of the Doc2Vec vec-
tors, a conclusion cannot be simply drawn from
these results, since size 200 leads to best results
for ES-ES, ES-EN-a and EN-EN, size 300 gives
best results for AR-AR, size 400 for AR-EN and
ES-EN-b and a tie for TR-EN when using sizes
300 and 400. It is also important to note that the

9http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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Task Cosine Bray-Curtis Correlation
AR-AR

200 0.5587 0.5790 0.5579
300 0.5825 0.5984 0.58
400 0.5773 0.5943 0.5767

AR-EN AR EN Mean AR EN Mean AR EN Mean
200 0.4789 0.4971 0.5221 0.755 0.503 0.5268 0.4779 0.4997 0.5227
300 0.4963 0.5141 0.5429 0.502 0.5085 0.5432 0.4963 0.5154 0.5437
400 0.4813 0.5266 0.5381 0.4949 0.5288 0.5469 0.4796 0.5275 0.5372

ES-ES
200 0.7455 0.7423 0.7434
300 0.7002 0.7054 0.6991
400 0.6979 0.7072 0.6982

ES-EN-a ES EN Mean ES EN Mean ES EN Mean
200 0.5738 0.6021 0.6212 0.5852 0.6208 0.6353 0.5748 0.6041 0.6227
300 0.5676 0.6162 0.6219 0.5793 0.6253 0.6299 0.566 0.6171 0.6213
400 0.566 0.6092 0.6187 0.5767 0.6162 0.6253 0.5643 0.606 0.6163

ES-EN-b ES EN Mean ES EN Mean ES EN Mean
200 0.3069 0.1933 0.3111 0.306 0.1686 0.2953 0.307 0.1919 0.31
300 0.3234 0.1784 0.3193 0.3187 0.1685 0.3099 0.323 0.1826 0.3222
400 0.3407 0.1873 0.3303 0.3436 0.1575 0.3113 0.342 0.1854 0.3284

EN-EN
200 0.7880 0.7880 0.7871
300 0.7237 0.7396 0.7249
400 0.7185 0.7264 0.7178

TR-EN TR EN Mean TR EN Mean TR EN Mean
200 0.4990 0.5554 0.5804 0.5080 0.5577 0.5846 0.5052 0.5540 0.5837
300 0.4919 0.5718 0.5792 0.4869 0.6001 0.5879 0.4909 0.5705 0.5770
400 0.4878 0.5832 0.5775 0.5024 0.6000 0.5930 0.4857 0.5836 0.5772

Table 3: Pearson Correlation results for various parameters

Pearson correlation scores range from 0.1575 to
0.3436 for the ES-EN-b test set and from 0.7178
to 0.788 for the EN-EN test set which suggests that
experimenting with various sizes of Doc2Vec vec-
tors is worth investigating, contrary to the com-
mon practice of experimenting with just a single
vector size.

Averaging the similarity scores for the source
and the target language also seems to be a promis-
ing approach. This combination led to best Pear-
son correlation scores for two of the four cross-
lingual test sets (AR-EN and ES-EN-a).

We report in Table 4 the Pearson correlation re-
sults of the runs we submitted to the competition.
For the first two runs we used Cosine for comput-
ing the similarity between the sentence pairs and
for the third run we used Bray-Curtis.

average AR-AR AR-EN ES-ES ES-EN-a ES-EN-b EN-EN TR-EN
run 1 0.5644 0.5588 0.4789 0.7456 0.5739 0.3069 0.7880 0.4990
run 2 0.5528 0.5774 0.4813 0.6979 0.5660 0.3407 0.7186 0.4878
run 3 0.5676 0.5790 0.5384 0.7423 0.5866 0.1802 0.7256 0.6211

Table 4: Results for the submitted runs

The non-English language side of the corpora
was used for training the Doc2Vec models for the
cross-lingual tasks in the first two runs, while for
the third run we trained the Doc2Vec models on
the English side of the corpora. In the third run we
also included additional data (except for AR-AR
and ES-ES) in order to assess how the size of the
training corpus for the Doc2Vec models influences
the results. For the AR-EN, ES-EN-b and TR-EN
sub-tasks the scores improved when using more

training data, but the differences were small.

4.2 STS Benchmark

The Semeval STS organizers made available the
STS Benchmark for the EN-EN task with the pur-
pose of creating state-of-the-art approaches and
collecting their results on standard data sets. The
benchmark data consist of a selection of previous
data sets used in the competition between 2012
and 2017.

Since the methods we presented are unsuper-
vised and knowledge-free, we did not make use
of the annotated training data when computing the
similarity scores for the development and test sets.
We tested two approaches for obtaining similar-
ity scores on the EN-EN sub-task: the first in-
fers the vectors for the development and test set
sentences from the already trained Doc2Vec mod-
els (Post-training inference) and the other one
retrains from scratch new models by adding the
development and test sets to the initial Doc2Vec
training data (New-Model).

As it can be noted in Table 4, the best Pearson
correlation result for EN-EN was obtained using
the settings from our submitted run 1. These set-
tings also gave the best results for the STS Bench-
mark test data (Table 5).

Approach Development set Test set
Post-training inference 0.6670 0.5915

New-Model 0.6158 0.5922

Table 5: Results for the STS Benchmark
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5 Conclusions

We presented in this paper our unsupervised
knowledge-free approach to the STS task. A wide
range of experiments were carried out in order to
assess the impact of the similarity metric if Para-
graph Vector is used to represent sentences. Our
results indicate that Bray-Curtis might be a good
choice, because it outperformed the commonly
used Cosine metric on five out of seven test sets.
Moreover, training the Doc2Vec models on both
sides of the language corpora and averaging their
similarity scores seems to be a promising approach
for the cross-lingual STS task.

The proposed method achieved encouraging re-
sults as we ranked first on the EN-ES-b sub-task
and obtained Pearson correlation scores above the
median score for five out of seven test sets.
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Abstract

This paper reports the STS-UHH par-
ticipation in the SemEval 2017 shared
Task 1 of Semantic Textual Similarity
(STS). Overall, we submitted 3 runs cov-
ering monolingual and cross-lingual STS
tracks. Our participation involves two ap-
proaches: unsupervised approach, which
estimates a word alignment-based sim-
ilarity score, and supervised approach,
which combines dependency graph sim-
ilarity and coverage features with lexi-
cal similarity measures using regression
methods. We also present a way on ensem-
bling both models. Out of 84 submitted
runs, our team best multi-lingual run has
been ranked 12th in overall performance
with correlation of 0.61, 7th among 31 par-
ticipating teams.

1 Introduction

Semantic Textual Similarity (STS) measures the
degree of semantic equivalence between a pair of
sentences. Accurate estimation of semantic simi-
larity would benefit many Natural Language Pro-
cessing (NLP) applications such as textual entail-
ment, information retrieval, paraphrase identifica-
tion and plagiarism detection (Agirre et al., 2016).
In an attempt to support the research efforts in
STS, the SemEval STS shared Task (Agirre et al.,
2017) offers an opportunity for developing cre-
ative new sentence-level semantic similarity ap-
proaches and to evaluate them on benchmark
datasets. Given a pair of sentences, the task is to
provide a similarity score on a scale of 0..5 ac-
cording to the extent to which the two sentences
are considered semantically similar, with 0 in-
dicating that the semantics of the sentences are

∗*These authors contributed equally to this work

completely unrelated and 5 signifying semantic
equivalence. Final performance is measured by
computing the Pearson’s correlation (ρ) between
machine-assigned semantic similarity scores and
gold standard scores provided by human annota-
tors. Since last year, the STS task have been ex-
tended to involve additional subtasks for cross-
lingual STS. Similar to the monolingual STS task,
the cross-lingual task requires the semantic sim-
ilarity measurement for two snippets of text that
are written in different languages. In contrast
to last year’s edition (Agirre et al., 2016), the
task is organized into 6 sub-tracks and a primary
track, which is the average of all of the secondary
sub-tracks results. Secondary sub-tracks involve
scoring similarity for monolingual sentence pairs
in one language (Arabic, English, Spanish), and
cross-lingual sentence pairs from the combina-
tion of two different languages (Arabic-English,
Spanish-English, Turkish-English).
Our paper proposes both supervised and unsuper-
vised systems to automatically scoring semantic
similarity between monolingual and cross-lingual
short sentences. The two systems are then com-
bined with an average ensemble to strengthen the
similarity scoring performance. Out of 84 submis-
sions, our system is placed 12th with an overall
primary score of 0.61.

2 Related Work

Since 2012 (Agirre et al., 2012), the STS shared
task has been one of the official shared tasks in
SemEval and has attracted many researchers from
the computational linguistics community (Agirre
et al., 2017). Most of the state-of-the-art ap-
proaches often focus on training regression mod-
els on traditional lexical surface overlap features.
Recently, deep learning models have achieved
very promising results in semantic textual sim-
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ilarity. The top three best performing systems
from STS 2016 used sophisticated deep learning
based models (Rychalska et al., 2016; Brychcı́n
and Svoboda, 2016; Afzal et al., 2016). The high-
est correlation score was obtained by Rychalska
et al. (2016). They proposed a textual similar-
ity model that combines recursive auto-encoders
(RAE) from deep learning with WordNet award
penalty, which helps to adjusts the Euclidean dis-
tance between word vectors.

3 System Description

Our contribution in the STS shared task includes
three different systems: supervised, unsupervised
and supervised-unsupervised ensemble. Our mod-
els are mainly developed to measure semantic
similarity between monolingual sentences in En-
glish. For the cross-lingual tracks, we leverage
the Google translate API to automatically translate
other languages into English. In the following sub-
sections, we describe our data preprocessing and
present our three systems.

3.1 Data Preprocessing

We use all the previously released datasets since
2012 to train and evaluate our models. The fi-
nal total number of training examples is 14 619.
We use StanfordCoreNLP1 pipeline to tokenize,
lemmatize, dependency parse, and annotate the
dataset for lemmas, part-of-speech (POS) tags,
and named entities (NE). Stopwords are removed
for the purpose of topic modeling and TfIdf com-
putation.

3.2 Unsupervised Model

Inspired by (Sultan et al., 2015; Brychcı́n and Svo-
boda, 2016), our unsupervised solution calculates
a similarity score based on the alignment of the
input pair of sentences. As presented in Figure
1, given a pair of sentences S1, S2, the align-
ment task builds a set of matched pair of words
match(wi, wj) wherewi is a word in sentence S1,
and wj is a word in sentence S2. Each matched
pair has a score on the scale [0-1]. This matching
score indicates the strength of the semantic sim-
ilarity between the aligned pair of words, with 1
representing the highest similarity match.

As shown in Figure 2, after preprocessing, the
system starts with matching exact similar words

1http://stanfordnlp.github.io/CoreNLP/

Figure 1: Unsupervised sentence alignment

Figure 2: Unsupervised solution overview

(lemmas), and words that share similar Word-
Net hierarchy (synonyms, hyponyms, and hyper-
nyms). We consider these two types of aligning as
exact match with score 1.
As a last step of the alignment process, we handle

the words that have not been matched in the pre-
ceding steps. The solution uses Glove word em-
beddings (Pennington et al., 2014) to calculate the
matching score. Glove (840B tokens, 2.2M vo-
cab) represent the word embeddings in 300d vec-
tor. We calculate the cosine distance between the
unmatched words and all the words in the other
sentence. Using a greedy strategy, we pick up the
best match of each word.
The global similarity is calculated using a
weighted matches scores as shown in equation (1).

Score =
∑
TfIdf(wi) ∗match(wi, wj)∑

TfIdf(S1, S2)
(1)

For all wi in S1 or S2, and match(wi, wj) is the
best match score for Wi with word Wj from the
other sentence. TfIdf(S1, S2) is the sum of the
term frequency inverse document frequency of the
words in S1, S2. The final alignment score is [0-
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1], so we scale it into the [0-5] range.

3.3 Supervised Model

To generate our supervised model, we extract the
following features:

I Bag-of-Words: for each sentence a |V|-
dimension vector is generated, where V in-
cludes the unique vocabulary from both sen-
tences. Entries in single vectors correspond
to the frequency of the word in the respective
sentence. Cosine similarity between these
vectors serves as a feature.

II Distributional Thesaurus (DTs) Expansion
Feature: Each non-stopword is expanded to
its most similar top 10 words using the API
for the Distributional Thesaurus (DTs) by
Biemann and Riedl (2013).

III POS Tags Longest Common Subsequence:
We measure the length of the longest com-
mon subsequence of POS tags between sen-
tence pairs. Additionally, we also average this
length by dividing it by the total number of to-
kens in each sentence separately.

IV Topic Similarity Feature: To model the topi-
cal similarity between two documents, we use
Latent Dirichlet Allocation (LDA, (Blei et al.,
2003))2 model trained on a recent Wikipedia
dump. To guarantee topic distribution stabil-
ity, we run LDA for 100 repeated inferences.
Then for each token, we assign the most fre-
quent topic ID (Riedl and Biemann, 2012).

V Dependency-Graph Features: Following
Kohail (2015), each sentence S is converted
into a graph using dependency relations ob-
tained from the parser. We define the de-
pendency graph GS = {VS , ES}, where the
graph vertices VS = {w1, w2, . . . , wn} repre-
sent the tokens in a sentence, and ES is a set
of edges. Each edge eiy represents a directed
dependency relation between wi and wy. We
calculate TfIdf on three levels and weight our
dependency graph using the following condi-
tions:
Word TfIdf: Considering only those words
that satisfy the condition: TfIdf (wi) > α1

Pair TfIdf: Word pair are filtered based on
2The implementation was used in this work is available

at: http://gibbslda.sourceforge.net/

the condition: TfIdf (wi, wy) > α2

Triplet TfIdf: Considering only those triples
(word, pair and relation), which satisfies the
condition: TfIdf (wi, wy, eiy) > α3

Similarities are then measured on three lev-
els by representing each sentence as a vec-
tor of words, pairs and triples, where each
entry in one vector is weighted using TfIdf.
We used New York Times articles within the
years 2004-2006, as a background corpus for
TfIdf calculation.

VI Coverage Features: As a text gets longer,
term frequency factors increase, and thus hav-
ing a high similarity score is likelier for
longer than for shorter texts. Coverage fea-
tures measures the number of one-to-one to-
kens, edges and relations correspondence be-
tween the dependency graphs of a pair sen-
tences as described in (Kohail and Biemann,
2017).

VII NE Similarity: We measure similarity based
on the shared named entities between the pair
of text.

VIII Unsupervised Dependency Alignment
score: Using a Glove word embedding, we
include the score of the cosine similarity
between the syntactic heads of the matched
words aligned in the unsupervised model
(Sec. 3.2), as presented in equation (2).

score =
∑
TfIdf(ŵi) ∗ Cos sim(ŵi, ŵj)∑

TfIdf(S1, S2)
(2)

For all wi in S1 or S2, we calculate the
weighted cosine similarity between its syn-
tactic dependency head: ŵi and the syntactic
head of the matched word: ŵj .

These features are fed into three different regres-
sion methods3: Multilayer Perceptron (MLP)4

neural network, Linear Regression (LR) and Re-
gression Support Vector Machine (RegSVM). To
evaluate our preliminary pre-testing models, we
perform 10-fold cross-validation.

3We used the WEKA (Witten et al., 2016) implementation
with default parameters, if not mentioned otherwise

4Hidden layers = 2, Learning rate = 0.4, momentum = 0.2
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System Primary
Track 1
AR-AR

Track 2
AR-EN

Track 3
SP-SP

Track 4a
SP-EN

Track 4b
SP-EN

Track 5
EN-EN

Track 6
EN-TR

Run1 0.57 0.61 0.59 0.72 0.63 0.12 0.73 0.60
Run2 0.61 0.68 0.63 0.77 0.72 0.05 0.80 0.59
Run3 - - - - - - 0.81 -
Ens.* 0.63 0.68 0.66 0.80 0.73 0.11 0.82 0.63
Basel. - 0.60 - 0.71 - - 0.73 -
Top 0.73 0.75 0.75 0.85 0.83 0.34 0.85 0.77

Table 1: Results obtained in terms of Pearson correlation over three runs for all the six sub-tracks in
comparison with the baseline and the top obtained correlation in each track. The primary score represents
the weighted mean correlation. Ens.* represents the results after adding the expansion and topic modeling
features.

3.4 Ensembling Supervised and
Unsupervised models

We create an ensemble model by by averaging the
supervised and unsupervised models predictions.

4 Experimental Results

We report our results in Table 1. Overall we sub-
mitted 3 runs: Run1 uses the unsupervised ap-
proach discussed earlier in Sec. 3.2, Run2 uses
a supervised MLP neural network trained as de-
scribed in Sec. 3.3, and Run3 uses the ensem-
ble average system described in Sec. 3.4. Due to
time constraints and technical issues, only evalua-
tion for English monolingual track was given. Ad-
ditionally, we were not able to compute the topic
modeling and expansion features. We included the
missing features later after the task deadline. Final
ensemble results are given under Ens.*. Accord-
ing to the results, we can make following observa-
tions:

• Our results significantly outperform the base-
line provided by the task organizers for
monolingual tracks by a large margin.

• The ensemble outperforms the individual en-
semble members.

• Results obtained in monolingual, especially
English, are markedly higher than in cross-
lingual tracks. This might be due to noise in-
troduced by the automatic translation.

• Results of track 4b appears to be significantly
worse compared to other tracks results. In
addition to the machine translation accuracy
challenge, the difficulty of this track lies in

providing longer sentences with less infor-
mative surface overlap between the sentences
compared to other tracks.

5 Conclusion

We have presented and discussed our results on
the task of Semantic Textual Similarity (STS). We
have shown that combining supervised and un-
supervised models in an ensemble provides bet-
ter results than when each is used in isolation.
31 teams participated in the task with 84 runs.
Our best system achieves an overall mean Pear-
son’s correlation of 0.61, ranking 7th among all
teams, 12th among all submissions. Future work
includes building a real multi-lingual model by
projecting phrases from different languages into
the same embedding space. In the current solution,
we consider hyponyms/hypernyms as synonyms.
The system gives an exact match score for these
word pairs. In the future, we tackle finding a way
to give calculated dynamic scores for such kind
of alignment to do not equalize them with exact
matches.

Acknowledgment

This research was supported by the Deutscher
Akademischer Austauschdienst (DAAD).

References

Naveed Afzal, Yanshan Wang, and Hongfang Liu.
2016. MayoNLP at SemEval-2016 Task 1: Seman-
tic Textual Similarity based on Lexical Semantic Net
and Deep Learning Semantic Model. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016). San Diego, California,
pages 674–679.

178



Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. Semeval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of Se-
mEval. San Diego, California, pages 497–511.

Eneko Agirre, Daniel Cer, Mona Diab, Iigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
Task 1: Semantic Textual Similarity Multilingual
and Crosslingual Focused Evaluation. In Proceed-
ings of SemEval. Vancouver, Canada.

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 Task 6: A
Pilot on Semantic Textual Similarity. In Proceed-
ings of the First Joint Conference on Lexical and
Computational Semantics - Volume 1: Proceed-
ings of the Main Conference and the Shared Task,
and Volume 2: Proceedings of the Sixth Interna-
tional Workshop on Semantic Evaluation. Montreal,
Canada, SemEval ’12, pages 385–393.

Chris Biemann and Martin Riedl. 2013. Text: Now
in 2D! a framework for lexical expansion with con-
textual similarity. Journal of Language Modelling
1(1):55–95.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. J. Mach. Learn.
Res. 3:993–1022.
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Abstract

We describe a modified shared-LSTM net-
work for the Semantic Textual Similar-
ity (STS) task at SemEval-2017. The
network builds on previously explored
Siamese network architectures. We treat
max sentence length as an additional hy-
perparameter to be tuned (beyond learn-
ing rate, regularization, and dropout). Our
results demonstrate that hand-tuning max
sentence training length significantly im-
proves final accuracy. After optimiz-
ing hyperparameters, we train the net-
work on the multilingual semantic similar-
ity task using pre-translated sentences. We
achieved a correlation of 0.4792 for all the
subtasks. We achieved the fourth highest
team correlation for Task 4b, which was
our best relative placement.

1 Introduction

Semantic Textual Similarity (STS) has been a sta-
ple of the SemEval competition and requires sys-
tems that automatically identify the semantic re-
latedness of two sentences. The resulting sys-
tem could be used down-stream in many impor-
tant NLP tasks, such as scoring the output of a
machine translation system or finding related doc-
ument/query pairs in web search.

The data available for this competition has been
updated annually and contains gold-label, human-
evaluated scores based on sentence pairs across
multiple languages ((Agirre et al., 2012), (Agirre
et al., 2013), (Agirre et al., 2014), (Agirre et al.,
2015)). The gold label for each sentence pair is
in the range [0, 5], with 0 being the sentences are
completely dissimilar to 5 being the sentences are
completely equivalent. (Agirre et al., 2016)

The task is not restricted to English or mono-
lingual similarity scoring. The 2017 SemEval
task consists of seven different tracks, each
with a different language pair: Arabic-Arabic,
Arabic-English, Spanish-Spanish, Spanish-
English, an additional Spanish-English track,
English-English, and English-Turkish. We avoid
language-specific feature engineering and take
a representation learning approach to STS. This
requires constructing directly-comprable sentence
representations that can be induced from the
limited amounts of annotated STS training data.

We present a modified version of the Siamese
Long Short-Term Memory (LSTM) network to
solve this problem. (Mueller and Thyagarajan,
2016) A Siamese network is one in which parame-
ters between layers are shared, and are updated in
parallel during the learning phase. For the seman-
tic relatedness task, this allows two sentences to be
encoded into the same space using a single shared
recurrent neural network. The dual-encoding en-
ables the use of end-to-end supervised deep learn-
ing, using only the surface forms of the sentences
and the gold labels.

We extend the Siamese LSTM in two ways.
First, we consider the semantic relatedness as a
classification, rather than a regression problem.
Initially, semantic relatedness appears to be a con-
tinuous one-dimensional measure suitable for re-
gression. However, there are many subtleties
within the bands of scores, as sentences can differ
along more than a single dimension. Thus, rather
than regressing over the label, our model gener-
ates a distribution over possible labels. Second,
we use a different concatenative dense layer on
top of the dual LSTMs to better model the classi-
fication problem (Tai et al., 2015), and train using
KL-Divergence as the loss function for training.

Our results did not achieve the state-of-the-art
performance possible with a Siamese LSTM ar-
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chitecture. Despite this set-back, we are able to
demonstrate the effect of sentence training length
on a LSTM. Additionally, all foreign languages
were translated through Google Translate and the
same model was used for the seven tracks. This
standardization provides insight into the quality of
Google Translate and the negative effect of ma-
chine translation on correlation.

The following section provides detail on our
system and the training process. As our submis-
sion is focused on the use of end-to-end deep
learning in semantic relatedness, we do not use
hand-crafted features from external data, except
for pre-trained word embeddings to speed up train-
ing. A visual overview of the shared LSTM model
can be seen in Figure 1.

Sentence 2Sentence 1

EmbeddingsEmbeddings

LSTMLSTM

|X1 −X2|X1 �X2

Dense

Y

Figure 1: The end-to-end shared-LSTM model.
Note that the shaded boxes represent shared pa-
rameters that are updated in parallel when the error
is backpropagated. In this model, both the embed-
dings and the LSTM weights are shared, mean-
ing the sentences are encoded into the same space.
The model was implemented in Lasagne. (Diele-
man et al., 2015)

2 End-to-End Shared LSTM

We use a shared-parameter LSTM model, also
known as a Siamese LSTM model, as a completely
end-to-end deep learning model. (Mueller and
Thyagarajan, 2016; Tai et al., 2015)
Shared Parameters. In the siamese LSTM, the
embedding layers share weights with each other,

as do the LSTM layers. These weights are shared
throughout the entire training process, so updates
applied to one are applied to both. Each sentence
was transformed into a sequence of embeddings
and then encoded into a sentence vector by the
LSTM, and since the embedding and LSTM layers
were the same for both sentences, both sentences
were encoded into the same space. The sentence
embeddings were the final vector in the LSTM.
Word Embeddings. The model was initial-
ized with GloVe word embeddings. (Pennington
et al., 2014) Our experiments with both GloVe and
the Paragram (Wieting et al., 2015) embeddings
showed only a negligible difference in the final
performance of the model. This difference disap-
peared when embeddings were made trainable.

Should one include all the embeddings or sim-
ply the subset seen in the training data? If all the
embeddings are included, then the model should
theoretically generalize better, as there are fewer
UNKNOWN’s in the validation and testing data.
However, if all the embeddings are included and
the embeddings are trainable, then only the seen
portion of the embedding space is updated, which
could hurt model generalization.

Our model uses the whole embedding space,
but also updates the embeddings after each batch.
Although updating only part of the space could
risk damaging model generalizability, our experi-
ments found that we actually saw an improvement
in generalizability with both the whole embedding
space and trainable embeddings.
Dense Concatenative Layer. The original equa-
tion for the dense layer is: exp(−||X1 − X2||1).
(Mueller and Thyagarajan, 2016) However, as
shown in Figure 1, our dense layer takes the con-
catenation of two different transformations: |X1−
X2| and X1�X2. This is used to capture both the
difference in the angle and the absolute difference
of the two sentences. (Tai et al., 2015)
Training Objective. In order to use Kullback-
Leiber divergence (KL divergence) as the objec-
tive function, we had to convert the gold labels into
probability distributions: (Tai et al., 2015)

pi =


y − byc , i = byc+ 1
byc − y + 1, i = byc
0 otherwise

Thus, a label of 4.7 would distribute 70% of
its probability mass to the category 5, and 30%
of its probability mass to the category 4. To con-
vert from a probability distribution to a prediction,
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simply take the dot product of the ordered vector
< 0, 1, 2, 3, 4, 5 > and the distribution.

Then, the loss for each example was com-
puted using the standard KL divergence formula,
with some minor smoothing to disallow zeros:
DKL(P ||Q) =

∑
i P (i)log P (i)

Q(i) .

3 Experiments and Results

We opted for minimal preprocessing in our final
model: merely tokenizing and lower-casing the
input. Lemmatizing the words did not lead to
a notable improvement, and hence was omitted.
Additionally, experimenting with targeted Part of
Speech exclusion (removing all articles, increas-
ing weight of proper nouns, etc.) did not produce
dramatically higher results. Therefore, we decided
to let the LSTM learn for itself.

Our final results on the 2017 data are shown
in Table 1. Retrospectively, we saw that the
2016 postediting data (65.13% accuracy when
2016 data was held out from training) would have
served as a close proxy for 2017 En-En perfor-
mance. Our three submissions to the 2017 Se-
meval task were trained treating maximum train-
ing sentence length as a hyperparameter. Our re-
sults show that this parameter can have a large im-
pact on the final outcome of the model.

The cosine baseline provided by SemEval orga-
nizers achieved a 0.72 correlation for the English-
English sentences, which was roughly 0.07 higher
than our best performance on the same dataset. Al-
though disheartening, a Siamese LSTM model is
capable of performing dramatically better with cu-
rated training data, whereas the baseline approach
cannot be significantly modified.

Network Architecture and Parameters. Our fi-
nal model used length 300 GloVe embeddings,
100 LSTM cells, 50 neurons in the final dense
layer, and 6 output neurons, one for each class.
We used the Kullback-Leibler Divergence of the
output distribution and the gold label distribution
as the objective function.

Data. We used all available past STS Task 1
datasets and no external data. In order to partic-
ipate in the non-English tracks, we used Google
Translate to translate all the sentence pairs into
English. We then used the model trained on the
English-English pairs on the translated-English
data.

4 Discussion

Length. As shown in Table 1, the best identi-
fied length was 20. Meanwhile, the median length
for the labeled sentences was below 11. Train-
ing on the max length saw an improvement on the
English-English dataset, but an overall decrease in
performance on the other datasets, in particular the
SP-EN-WMT dataset, which contained very long
English-Spanish sentence pairs. This is likely due
to the network capturing long-term dependencies
present in the native English sentence pairs that
weren’t present in the translated sentence pairs.
Translations. Our results demonstrate that the in-
troduction of machine translation into the pipeline
damages performance. The drop for non-English
monolingual tasks exceeds that for English cross-
lingual tasks, as translation is only applied to one
side in the latter.

• Spanish - On the translated Spanish-Spanish
sentence pairs, our correlation went down
from 0.62 to 0.52. However, the drop was
only to 0.56 on the English-Spanish sentence
pairs, likely because half of the data was the
native English used in training.

• Arabic - We saw a larger drop in accu-
racy on the Arabic-Arabic sentence pairs,
from 0.62 to 0.48. This likely demonstrates
that the translation quality of Google Trans-
late is higher for Spanish than for Arabic.
As was the case with Spanish, the Arabic-
English pairs did better than the Arabic-
Arabic pairs, achieving a correlation of 0.49
with the length 20 model, and 0.52 with the
max length model.

• Turkish - Although there was no Turkish-
Turkish track this year, our system performed
roughly as expected on the Turkish-English
track, given its performance on the Spanish-
English and Arabic-English tracks. Uniquely
in Turkish, accuracy spikes between the
length 20 and max length models: from .53
to over .57 respectively.

Overall, we found the superior translation of
Spanish unsurprising given the similarity of the
languages and the large corpora available for
Spanish-English translations.
Investigating the Results. Table 2 shows a selec-
tion of sentence pairs, their gold labels, and our
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2017 Language Pairs Number of Pairs Length 11 (ρ) Length 20 (ρ) Max Length (ρ)
AR-AR 250 0.3905 0.4753 0.4587
AR-EN 250 0.3713 0.4939 0.5199
SP-SP 250 0.4588 0.5165 0.5148
SP-EN 250 0.3482 0.5615 0.5232
SP-EN-WMT 250 0.0586 0.1609 0.1300
EN-EN 250 0.4727 0.6174 0.6222
EN-TR 250 0.3644 0.5293 0.5725
Weighted Mean - 0.3521 0.4792 0.4773

Table 1: Results in the different tracks of SemEval-2017. The lengths refer to the maximum lengths of
the sentences used for training the model.

Sentence 1 Sentence 2 Gold Pred.
A man is performing labor. A man is performing today. 2.8 1.5
A kid sits on a soccer ball outside. A kid sitting on a soccer ball at the park. 4.2 4.2
The player shoots the winning points. The basketball player is about to score

points for his team.
2.8 2.7

The yard has a dog. The dog is running after another dog. 1.6 4.1
the people are running a marathon People are running a marathon 5.0 0.9

Table 2: A selection of results showing the successes and failures of our shared-LSTM architecture.
These sentences were selected to show areas in which our system excels or under-performs.

system’s predicted score. There were many cases
in which our system achieved very precise scoring,
as included in the table. The examples on which
the end-to-end model failed prove more interest-
ing.

There were many simple examples that fooled
our system. The most notable one is the pair (”the
people are running a marathon”, ”People are run-
ning a marathon”). In this case, the only differ-
ence is the inclusion of the determiner ”the” at
the start of the sentence, as the capitalization of
people would have been removed during prepro-
cessing. Yet our system predicts the relatedness
to be 0.9, rather than 5.0. This example shows
that, although the sentences are theoretically en-
coded into the same space, the series of transfor-
mations that the sentence undergoes is complex
and imperfect. Another such example is the pair
(”The yard has a dog.”, ”The dog is running af-
ter another dog.”) The fact that a dog exists in
both sentences should not merit such a high score
alone. This trend of attributing similarity to sen-
tences with similar subjects percolates throughout
our results.

The sentence pair (”A man is performing la-
bor.”, ”A man is performing today.) demonstrates

the learning potential of our model’s predictions.
These sentences are identical in length and the sur-
face forms are 80% similar as only the final word
differs. However, the different sense of perform
make these sentences mostly unrelated. The dif-
ference is subtle, and unlikely to be picked up by
a more naive system. Some basic ability to disam-
biguate different word senses is suggested by the
shared weight LSTM’s 1.5 assignment.

5 Conclusion and Future Work

A Siamese LSTM architecture has the potential
for generating sophisticated predictions, but re-
lies heavily on selecting appropriate training data.
Our results show that hand-tweaking the maxi-
mum length of training sentences can significantly
affect model output. Additionally, we show that
the LSTM model performs worse on machine-
translated data than on native English sentences.

There are several possible extensions of the pro-
posed shared LSTM framework, such as a tree-
structured, rather than linear LSTM. This uses the
sentence parse as a ”feature” for structuring the
model, and can provide significant improvements
over a purely linear LSTM for semantic related-
ness. (Tai et al., 2015)
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Abstract

This paper describes MITRE’s participa-
tion in the Semantic Textual Similarity
task (SemEval-2017 Task 1), which eval-
uated machine learning approaches to the
identification of similar meaning among
text snippets in English, Arabic, Spanish,
and Turkish. We detail the techniques
we explored, ranging from simple bag-of-
ngrams classifiers to neural architectures
with varied attention and alignment mech-
anisms. Linear regression is used to tie the
systems together into an ensemble submit-
ted for evaluation. The resulting system is
capable of matching human similarity rat-
ings of image captions with correlations of
0.73 to 0.83 in monolingual settings and
0.68 to 0.78 in cross-lingual conditions.

1 Introduction

Semantic Textual Similarity (STS) measures the
degree to which two snippets of text convey the
same meaning. Cross-lingual STS measures the
same for sentence pairs written in two different
languages. Automatic identification of semanti-
cally similar text has practical applications in do-
mains such as evaluation of machine translation
outputs, discovery of parallel sentences in com-
parable corpora, essay grading, and news summa-
rization. It serves as an easily explained assay for
systems modeling semantics.

SemEval-2017 marked the sixth consecutive
year of a shared task measuring progress in STS.
Current machine learning approaches to measur-
ing semantic similarity vary widely. One de-
sign decision for STS systems is whether to ex-
plicitly align words between paired sentences.
Wieting et al. (2016) demonstrate that sentence
embeddings without explicit alignment or atten-

tion can often provide reasonable performance
on STS tasks. Related work in textual entail-
ment offers evidence that neural models with
soft alignment outperform embeddings-only ap-
proaches Chen et al. (2016); Parikh et al. (2016).
However these results were obtained on a dataset
multiple orders of magnitude larger than existing
STS datasets. In absence of large datasets, word
alignments similar to those used in statistical ma-
chine translation have proven to be useful (Zarrella
et al., 2015; Itoh, 2016).

In this effort we explored diverse methods for
aligning words in pairs of candidate sentences:
translation-inspired hard word alignments as well
as soft alignments learned by deep neural net-
works with attention. We also examined a variety
of approaches for comparing aligned words, rang-
ing from bag-of-ngrams features leveraging hand-
engineered lexical databases, to recurrent and con-
volutional neural networks operating over dis-
tributed representations. Although an ideal cross-
lingual STS system might operate directly on input
sentences in their original language, we used ma-
chine translation to convert all the inputs into En-
glish. The paucity of in-domain training data and
the simplicity of the image caption genre made
the translation approach reasonable. Our contri-
bution builds on approaches developed for En-
glish STS but points a way forward for progress
on knowledge-lean, fully-supervised methods for
semantic comparison across different languages.

2 Task, Data and Evaluation

Semantic Textual Similarity was a shared task
organized within SemEval-2017 (Agirre et al.,
2017). The task organizers released 1,750 sen-
tence pairs of evaluation data organized into six
tracks: Arabic, Spanish, and English monolingual,
as well as Arabic-English, Spanish-English, and
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Turkish-English cross-lingual.
Most of this evaluation data was sourced from

the Stanford Natural Language Inference cor-
pus (Bowman et al., 2015). The sentences are
English-language image captions, grouped into
pairs and human-annotated on a scale of 0 to 5
for semantic similarity. In the monolingual En-
glish task, the average sentence length was 8.7
words, and the average rating was 2.3 (e.g. The
woman had brown hair. and The woman has gray
hair.) There was a roughly balanced distribution of
highly rated pairs (e.g. A woman is bungee jump-
ing. and A girl is bungee jumping.) and poorly
rated pairs (e.g. The yard has a dog. and The dog
is running after another dog.) Annotated sentence
pairs were manually translated from English into
other languages to create additional tracks.

For each pair, task participants predicted a sim-
ilarity score. Systems were evaluated by Pearson
correlation with the human ratings.

3 System Overview

We created an ensemble of five systems which
each independently predicted a similarity score.
Some features were reused among many compo-
nents, including word embeddings, machine trans-
lations, alignments, and dependency parses.

3.1 English Word Embeddings

We used word2vec (Mikolov et al., 2013) to
learn distributed representations of words from
the text of the English Wikipedia. We applied
word2phrase twice to identify phrases of up to four
words, and trained a skip-gram model of size 256
for the 630,902 vocabulary items which appeared
at least 100 times, using a context window of 10
words and 15 negative samples per example.

3.2 Machine Translation

Sentences in the image caption genre tend to be
short and use a simple vocabulary. To test the ex-
tent to which this is true of SNLI data, we trained a
small unregularized neural language model which
achieved a perplexity of 18.9 on a held-out test
set. The same parameterization achieved a per-
plexity of 114.5 in experiments on the Penn Tree-
bank (Zaremba et al., 2014). We proceeded to
translate all non-English sentences to English, rec-
ognizing that modern MT systems are sufficient to
provide high quality translations for simple sen-
tences. We used the Google Translate API in mid-

January 2017.

3.3 Dependency Parses
The dependency parse arcs were used as features
to assist in aligning and comparing pairs of words.
The Stanford Parser library produced these typed
dependency representations (Chen and Manning,
2014). The English PCFG model with basic de-
pendencies was used rather than the default col-
lapsed dependencies to ensure that the parser gave
us exactly one parse arc for each token.

3.4 Alignment
Comparing sentences can be a tallying process.
One can find all associated atomic pairs in the
left hand and right hand sides, cross them off,
and judge the dissimilarity based on the remain-
ing residuals. This process is reminiscent of find-
ing translation equivalences for training machine
translation systems (Al-Onaizan et al., 1999).

To this end, we built an alignment system on
top of word embeddings. First, the min alignment
is produced to maximize the sum of cosine simi-
larities (sim(wi, wj) = 1 + cos(wi, wj)) of word
vectors corresponding to aligned word pairs under
the constraint that no word is aligned more than
once. The max alignment is constrained such that
each word must be paired with at least one other,
and the total number of edges in the alignment can
be no more than word count of the longer string.
In both cases, LPSOLVE was employed to find the
assignment maximizing these criteria (Berkelaar
et al., 2004).

Dependency parses constructed in Section 3.3
were aligned in a similar way. Consider de-
pendency arcs ai : head → dep In-
stead of the sum of cosine similarities as
atoms in the linear program, however, we used
sim(a1, a2) = sim(head(a1), head(a2)) +
10sim(dep(a1), dep(a2)) to give preference to
matching dependency arcs a1 and a2 with similar
heads.

3.5 Ensemble Components
TakeLab The open source TakeLab Semantic
Text Similarity System was incorporated as a
baseline (Šarić et al., 2012). Specifically we
use LIBSVM to train a support vector regres-
sion model with an RBF kernel, cost parameter
of 20, gamma of 0.2, and epsilon of 0.5. Input
features were comprised of TakeLab-computed n-
gram overlap and word similarity metrics.
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Recurrent Convolutional Neural Network We
recreate the recurrent neural network (RNN)
model described in Zarrella et al. (2015) and
train it using the embeddings and parse-aware
alignments described above. Briefly, this 16-
dimensional RNN operates over a sequence of
aligned word pairs, comparing each pair accord-
ing to features that encode embedding similarity,
word position, and unsupervised string similarity.

We extended this model with four new feature
categories. The first was a binary variable that in-
dicates whether both words in the pair were deter-
mined to have the same dependency type in their
respective parses. We also added three convolu-
tional recurrent neural networks (CRNNs), each
of which receive as input a sequence of word
embeddings, and which learn STS features via
256 1D convolutional filters connected (with 50%
dropout) to a 128-dimensional LSTM. For each
aligned word pair, the first CRNN operates on
the embeddings of the aligned words, the sec-
ond CRNN operates on the squared difference of
the embeddings of the aligned words, and the fi-
nal CRNN operates on the embeddings of the
parent words selected by the dependency parse.
All above RNN outputs were concatenated to
form a sequence of 400-dimensional (16+128*3)
timesteps, which fed a 128-dimensional LSTM
connected to a single sigmoidal output unit.

We unrolled this network to a zero-padded se-
quence length of 60 and trained it to convergence
using Adam with a mean average error loss func-
tion (Kingma and Ba, 2014). The embeddings
were not updated during training. We ensembled
eight instances of this network trained from differ-
ent random initializations.

Paris: String Similarity More than a decade
ago, MITRE entered a system based on string
similarity metrics in the 2004 Pascal RTE com-
petition (Bayer et al., 2005). The libparis
code base implements eight different string sim-
ilarity and machine translation evaluation algo-
rithms; measures include an implementation of
the MT evaluation BLEU (Papineni et al., 2002);
WER, a common speech recognition word error
rate based on Levenshtein distance (Levenshtein,
1966); WER-g (Foster et al., 2003); ROUGE (Lin
and Och, 2004); a simple position-independent
error rate similar to PER (Leusch et al., 2003);
both global and local similarity metrics often used
for biological string comparison (Gusfield, 1997).

Finally, there are precision and recall measures
based on bags of all substrings (or n-grams in
word tokenization).

In total, the package computes 22 metrics for a
pair of strings. The metrics were run on both case-
folded and original versions as well as on word
tokens and characters, yielding 88 string similar-
ity features. Some of the metrics are not symmet-
ric, so they were run both forward and reversed
based on presentation in the dataset yielding 176
features. Finally, for each feature value x, log(x)
was added as a feature, producing a final count of
352 string similarity features. LIBLINEAR used
these features to build a L1-regularized logistic re-
gression model. This system was unchanged, ex-
cept for retraining, from the system described in
Zarrella et al. (2015)

Simple Alignment Measures Section 3.4 de-
scribes methods we used for aligning two strings.
L2-regularized logistic regression was used to
combine 16 simple features calculated as side-
effects of alignment. Details are described in
Zarrella et al. (2015).

Enhanced BiLSTM Inference Model (EBIM)
We recreated the neural model described in Chen
et al. (2016) which reports state-of-the-art perfor-
mance on the task of finding entailment in the
SNLI corpus. The model encodes each sentence
with a bidirectional LSTM over word embeddings,
uses a parameter-less attention mechanism to pro-
duce a soft alignment matrix for the two sentences,
and then does inference over each timestep and
its alignment using another LSTM. Two fully-
connected layers complete the prediction. Chen
et al. (2016) improves performance by concate-
nating the final LSTM representation from EBIM
with that of a similar model where a modified
LSTM operates over a syntax tree; we did not in-
clude this extension in our submission.

Our implementation kept most hyperparameters
described in the paper. However, we used the
word2vec embeddings described above and found
that freezing the embeddings produced better per-
formance for this small dataset. We also found our
models worked better without dropout on the em-
bedding layer. Where the original model chooses a
class via softmax, we output a semantic similarity
score trained to minimize mean squared error.
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Primary Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6
AR-AR AR-EN ES-ES ES-EN ES-EN news EN-EN TR-EN

Official Score 0.6590 0.7294 0.6753 0.8202 0.7802 0.1598 0.8053 0.6430
Corrected Score 0.6687 0.7294 0.6753 0.8202 0.7802 0.1598 0.8329 0.6831

Table 1: Pearson correlations on official test set. Corrected ensemble effects in bold.

Factored Ablated
Component dev test dev test
TakeLab .8724 .6503 .8739 .6454
CRNNs-8 .8621 .6379 .8846 .6551
Paris .8074 .5524 .8891 .6666
EBIM .7742 .4760 .8886 .6687
Align .7607 .5037 .8910 .6722
All In .8900 .6687

Table 2: Factored and ablated system components
evaluated on our dev set and the official test set.

3.6 Ensemble

The semantic similarity estimates of the predictors
described above contributed to the final prediction
with a weighting determined by L2-regularized lo-
gistic regression.

4 Experiment Details

We used as training data a selection of English
monolingual sentence pairs released during prior
SemEval STS evaluations. Specifically, we trained
on 6,898 pairs of news and caption genre data from
the 2012-2014 and 2016 evaluations. We used an
additional 400 and 350 captions from the 2015
evaluation as development and tuning sets, respec-
tively. We did not use out-of-genre data (e.g. dic-
tionary definitions, Europarl, web forums, student
essays) or the newly-released multilingual 2017
training data. The dev set was used to select hyper-
parameters for individual components, while the
tuning set was used to select the hyperparameters
for the final ensemble.

5 Results

The evaluation of our components on the competi-
tion test set is shown in Table 1. The official sim-
ilarity score produced by this approach achieved
0.6590 correlation with expert judgment averaged
across all tracks. A misfiling during construction
of the ensemble submission for tracks 5 and 6 re-
duced the official score from 0.6687.

The dev columns of Table 2 show the ability
of each individual system in isolation on the dev
data (”Factored”) as well as the performance of
the ensemble when the individual system was re-
moved (”Ablated”). Note that the Align system

should have been ablated from the final system to
achieve a higher score. Presumably its capability
was strictly dominated by the CRNNs that used
many of the same features.

The test scores for individual CRNN mod-
els ranged from 0.605 to 0.636, highlighting the
volatility inherent in the process. The CRNN-
ensemble improved slightly over the best single
model, with a score of 0.638.

6 Conclusion

Five models of semantic similarity constructed
from 2004 to 2016 were combined for paraphrase
detection in image captions. The TakeLab bag-
of-features SVM developed and open-sourced in
2012, when trained on our selection of in-genre
data and evaluated on a machine translated ver-
sion of the test set, performed well enough in
isolation to place fourth out of seventeen in the
Primary Track of the Semantic Textual Similarity
competition organized within SemEval-2017 Task
1, which had submissions from 31 teams in total.

Inclusion of explicit word alignments, a neu-
ral attention model, and recurrent networks ac-
counting for sequences of syntactic dependencies
yielded an improvement in Pearson correlation
from 0.650 to 0.672, a modest improvement which
increased the corrected system’s ranking to third.
This surprising result is perhaps an indication that
image captions have few of the complex linguis-
tic dependencies that typically make estimating
semantic similarity a difficult task. Future work
could focus on testing whether this result holds
when performing crosslingual STS without ex-
plicit machine translation.

Acknowledgments

This work was funded under the MITRE Innova-
tion Program. Approved for Public Release; Dis-
tribution Unlimited: 17-0970.

References
Eneko Agirre, Daniel Cer, Mona Diab, Iigo Lopez-

Gazpio, and Lucia Specia. 2017. SemEval-2017

188



task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval 2017).

Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Lafferty,
I. D. Melamed, F-J. Och, D. Purdy, N. A. Smith, and
D. Yarowsky. 1999. Statistical machine translation:
Final report. Technical report, JHU Center for Lan-
guage and Speech Processing.

Samuel Bayer, John Burger, Lisa Ferro, John Hender-
son, and Alexander Yeh. 2005. MITRE’s submis-
sions to the EU Pascal RTE challenge. In Proceed-
ings of the Pattern Analysis, Statistical Modelling,
and Computational Learning (PASCAL) Challenges
Workshop on Recognising Textual Entailment.

Michel Berkelaar, Kjell Eikland, and Peter Note-
baert. 2004. lp solve 5.5, open source (mixed-
integer) linear programming system. Software.
http://lpsolve.sourceforge.net/5.5/.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics. http://www.anthology.aclweb.org/D/D15/D15-
1075.pdf.

Danqi Chen and Christopher D Manning. 2014.
A fast and accurate dependency parser using
neural networks. In Proceedings of EMNLP.
http://www.aclweb.org/anthology/D14-1082.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Enhancing and combining sequen-
tial and tree LSTM for natural language inference.
arXiv preprint arXiv:1609.06038 .

George Foster, Simona Gandrabur, Cyril Goutte, Erin
Fitzgerald, Alberto Sanchis, Nicola Ueffing, John
Blatz, and Alex Kulesza. 2003. Confidence estima-
tion for machine translation. Technical report, JHU
Center for Language and Speech Processing.

Dan Gusfield. 1997. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press.

Hideo Itoh. 2016. RICOH at SemEval-2016
task 1: IR-based semantic textual similar-
ity estimation. Proceedings of SemEval
https://www.aclweb.org/anthology/S/S16/S16-
1106.pdf.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

G. Leusch, N. Ueffing, and H. Ney. 2003. A novel
string-to-string distance measure with applications
to machine translation evaluation. In Proc. of the
Ninth MT Summit.

V. I. Levenshtein. 1966. Binary codes capable of cor-
recting deletions, insertions and reversals. Soviet
Physics Doklady 10(8):707–710.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
a method for evaluating automatic evaluation met-
rics for machine translation. In Proceedings of
the 20th International Conference on Computational
Linguistics (COLING 2004). Geneva, Switzerland.
http://www.aclweb.org/anthology/C04-1072.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics. ACL ’02.
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Šnajder, and Bojana Dalbelo Bašić. 2012. Take-
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A Supplemental Material

These min alignment examples all come from
Track 5.

Example 1: Similarity 5.0.
th

e

bo
y

is ta
ki

ng

a te
st

at sc
ho

ol

a 1.69 1.32 1.56 1.36 2.00 1.26 1.47 1.31
boy 1.30 2.00 1.22 1.30 1.32 1.21 1.23 1.41

is 1.58 1.22 2.00 1.28 1.56 1.24 1.48 1.30
at 1.56 1.23 1.48 1.35 1.47 1.25 2.00 1.34

school 1.28 1.41 1.30 1.21 1.31 1.24 1.34 2.00
taking 1.39 1.30 1.28 2.00 1.36 1.34 1.35 1.21

a 1.69 1.32 1.56 1.36 2.00 1.26 1.47 1.31
test 1.23 1.21 1.24 1.34 1.26 2.00 1.25 1.24

Example 2: Similarity 2.6.

tw
o

m
en

st
an

di
ng

in th
e

su
rf

on a be
ac

h

a 1.41 1.29 1.36 1.64 1.69 1.20 1.52 2.00 1.28
pair 1.54 1.33 1.38 1.35 1.40 1.21 1.34 1.37 1.28

of 1.42 1.34 1.35 1.66 1.79 1.18 1.53 1.60 1.30
men 1.29 2.00 1.40 1.35 1.36 1.25 1.27 1.29 1.33

walk along 1.26 1.25 1.43 1.25 1.30 1.44 1.39 1.29 1.60
the 1.47 1.36 1.42 1.73 2.00 1.25 1.57 1.69 1.30

beach 1.31 1.33 1.36 1.30 1.30 1.66 1.33 1.28 2.00

Example 3: Similarity 0.0.

m
en

ar
e

tr
yi

ng

to re
m

ov
e

oi
l

fr
om

a
bo

dy

of w
at

er

adding 1.12 1.21 1.29 1.21 1.40 1.07 1.18 1.15 1.16 1.18
aspirin 1.16 1.15 1.17 1.17 1.23 1.32 1.15 1.11 1.17 1.27

to 1.33 1.44 1.31 2.00 1.34 1.25 1.62 1.06 1.59 1.35
the 1.36 1.49 1.26 1.64 1.23 1.31 1.58 1.10 1.79 1.37

water 1.21 1.32 1.10 1.35 1.21 1.50 1.34 1.10 1.36 2.00
could 1.31 1.34 1.51 1.48 1.36 1.20 1.30 1.13 1.31 1.18

kill 1.30 1.26 1.41 1.35 1.44 1.18 1.27 1.19 1.32 1.19
the 1.36 1.49 1.26 1.64 1.23 1.31 1.58 1.10 1.79 1.37

plant 1.19 1.30 1.18 1.33 1.26 1.47 1.29 1.07 1.32 1.41
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Abstract

To model semantic similarity for multilin-
gual and cross-lingual sentence pairs, we
first translate foreign languages into En-
glish, and then build an efficient mono-
lingual English system with multiple NLP
features. Our system is further support-
ed by deep learning models and our best
run achieves the mean Pearson correlation
73.16% in primary track.

1 Introduction

Sentence semantic similarity is the building block
of natural language understanding. Previous Se-
mantic Textual Similarity (STS) tasks in SemEval
focused on judging sentence pairs in English and
achieved great success. In SemEval-2017 STS
shared task concentrates on the evaluation of
sentence semantic similarity in multilingual and
cross-lingual (Agirre et al., 2017). There are t-
wo challenges in modeling multilingual and cross-
lingual sentence similarity. On the one hand, this
task requires human linguistic expertise to design
specific features due to the different characteristic-
s of languages. On the other hand, lack of enough
training data for a particular language would lead
to a poor performance.

The SemEval-2017 STS shared task assesses
the ability of participant systems to estimate the
degree of semantic similarity between monolin-
gual and cross-lingual sentences in Arabic, En-
glish and Spanish, which is organized into a set of
six secondary sub-tracks (Track 1 to Track 6) and
a single combined primary track (Primary Track)
achieved by submitting results for all of the sec-
ondary sub-tracks. Specifically, track 1, 3 and
5 are to determine STS scores for monolingual
sentence pairs in Arabic, Spain and English, re-
spectively. Track 2, 4, and 6 involve estimat-

ing STS scores for cross-lingual sentence pairs
from the combination of two particular languages,
i.e., Arabic-English, Spanish-English and surprise
language (here is Turkish)-English cross-lingual
pairs. Given two sentences, a continuous val-
ued similarity score on a scale from 0 to 5 is re-
turned, with 0 indicating that the semantics of the
sentences are completely independent and 5 sig-
nifying semantic equivalence. The system is as-
sessed by computing the Pearson correlation be-
tween system returned semantic similarity scores
and human judgements.

To address this task, we first translate all sen-
tences into English through the state-of-the-art
machine translation (MT) system, i.e., Google
Translator1. Then we adopt a combination method
to build a universal model to estimate seman-
tic similarity, which consists of traditional natu-
ral language processing (NLP) methods and deep
learning methods. For traditional NLP methods,
we design multiple effective NLP features to de-
pict the semantic matching degree and then su-
pervised machine learning-based regressors are
trained to make prediction. For neural network-
s methods, we first obtain distributed representa-
tions for each sentence in sentence pairs and then
feed these representations into end-to-end neural
networks to output similarity scores. Finally, the
scores returned by the regressors with traditional
NLP methods and by the neural network models
are equally averaged to get a final score to estimate
semantic similarity.

2 System Description

Figure 1 shows the overall architecture of our sys-
tem, which consists of the following three mod-
ules:

1https://cloud.google.com/translate/
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Figure 1: The system architecture

Traditional NLP Module is to extracts two
kinds of NLP features. The sentence pair match-
ing features are to directly calculate the similarity
of two sentences from several aspects and the s-
ingle sentence features are to first represent each
sentence in NLP method and then to adopt kernel-
based method to calculate the similarity of two
sentences. All these NLP-based similarity scores
act as features to build regressors to make predic-
tion.

Deep Learning Module is to encode input sen-
tence pairs into distributed vector representations
and then to train end-to-end neural networks to ob-
tain similarity scores.

Ensemble Module is to equally average the
above two modules to get a final score.

Next, we will describe the system in detail.

2.1 Traditional NLP Module

In this section, we give the details of feature engi-
neering and learning algorithms.

2.1.1 Sentence Pair Matching Features
Five types of sentence pair matching features are
designed to directly calculate the similarity of t-
wo sentences based on the overlaps of charac-
ter/word/sequence, syntactic structure, alignment
and even MT metrics.

N-gram Overlaps: Let Si be the sets of consec-
utive n-grams, and the n-gram overlap (denoted as
ngo) is defined as (Šarić et al., 2012):

ngo(S1, S2) = 2 · ( |S1|
|S1 ∩ S2| +

|S2|
|S1 ∩ S2|)

−1

We obtain n-grams at three different levels (i.e.,
the original and lemmatized word, the character
level), where n = {1, 2, 3} are used for word level
and n = {2, 3, 4, 5} are used for character level.
Finally, we collect 10 features.

Sequence Features: Sequence features are de-
signed to capture more enhanced sequence infor-
mation besides the n-gram overlaps. We compute
the longest common prefix / suffix / substring /
sequence and levenshtein distance for each sen-
tence pair. Note that the stopwords are removed
and each word is lemmatized so as to estimate se-
quence similarity more accurately. As a result, we
get 5 features.

Syntactic Parse Features: In order to model
tree structured similarity between two sentences
rather than sequence-based similarity, inspired by
Moschitti (2006), we adopt tree kernels to cal-
culate the similarity between two syntactic parse
trees. In particular, we calculate the number of
common substructures in three different kernel s-
paces, i.e., subtree (ST), subset tree (SST), partial
tree (PT). Thus we get 3 features.

Alignment Features: Sultan et al. (2015) used
word aligner to align matching words across a pair
of sentences, and then computes the proportion of
aligned words as follows:

sim(S1, S2) =
na(S1) + na(S2)
n(S1) + n(S2)

where na(S) and n(S) is the number of aligned
and non-repeated words in sentence S.

To assign appropriate weights to different word-
s, we adopt two weighting methods: i) weighted
by five POS tags (i.e., noun, verb, adjective, adver-
b and others; we first group words in two sentences
into 5 POS categories, then for each POS category
we compute the proportion of aligned words, and
we get 5 features as a result. ii) weighted by IDF
values (calculated in each dataset separately). To-
tally, we collect 7 alignment features.

MT based Features: Following previous work
in (Zhao et al., 2014) and (Zhao et al., 2015), we
use MT evaluation metrics to measure the seman-
tic equivalence of the given sentence pairs. Nine
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MT metrics (i.e., BLEU, GTM-3, NIST, -WER,
-PER, Ol, -TERbase, METEOR-ex, ROUGE-L)
are used to assess the similarity. These 9 MT
based features are calculated using the Asiya Open
Toolkit2.

Finally, we collect a total of 34 sentence pair
matching features.

2.1.2 Single Sentence Features

Unlike above sentence pair matching features to
directly estimate matching score between two sen-
tences, the single sentence features are to repre-
sent each sentence in the same vector space to cal-
culate the sentence similarity. We design the fol-
lowing three types of features.

BOW Features: Each sentence is represented
as a Bag-of-Words (BOW) and each word (i.e., di-
mension) is weighted by its IDF value.

Dependency Features: For each sentence, its
dependency tree is interpreted as a set of triples,
i.e., (dependency-label, governor, subordinate).
Similar to BOW, we treat triples as words and rep-
resent each sentence as Bag-of-Triples.

Word Embedding Features: Each sentence
is represented by concatenating min/max/average
pooling of vector representations of words. Note
that for each word, its vector is weighted by its
IDF value. Table 1 lists four the state-of-the-art
pretrained word embeddings used in this work.

Embedding Dimension Source
word2vec

Mikolov et al. (2013) 300d GoogleNews-vectors-
negative300.bin

GloVe
Pennington et al. (2014)

100d glove.6B.100d.txt
300d glove.6B.300d.txt

paragram
Wieting et al. (2015) 300d paragram 300 sl999.txt

Table 1: Four pretrained word embeddings

However, in comparison with the number of
sentence pair matching features (33 features), the
dimensionality of single sentence features is huge
(approximately more than 71K features) and thus
it would suppress the discriminating power of sen-
tence pair matching features. Therefore, In order
to reduce the high dimensionality of single sen-
tence features, for each single sentence feature, we
use 11 kernel functions to calculate sentence pair
similarities. Table 2 lists the 11 kernel functions
we used in this work. In total we collect 33 sin-

2http://asiya.cs.upc.edu/demo/asiya_
online.php

Type Measures

linear kernel Cosine distance, Manhanttan distance,
Euclidean distance, Chebyshev distance

stat kernel Pearson coefficient, Spearman coefficient,
Kendall tau coefficient

non-linear kernel polynomial, rbf, laplacian, sigmoid

Table 2: List of 11 kernel functions

gle sentence features, which is of the same order
of magnitude as sentence pair matching features.

Finally, these 67 NLP features are standard-
ized into [0, 1] using max-min normalization be-
fore building regressor models.

2.1.3 Regression Algorithms
Five learning algorithms for regression are ex-
plored, i.e., Random Forests (RF), Gradien-
t Boosting (GB) Support Vector Machines (SVM),
Stochastic Gradient Descent (SGD) and XGBoost
(XGB). Specially, the first four algorithms are im-
plemented in scikit-learn toolkit3, and XGB is im-
plemented in xgboost4. In preliminary experi-
ments, SVM and SGD underperformed the other
three algorithms and thus we adopt RF, GB and
XGB in following experiments.

2.2 Deep Learning Module

Unlike above method adopting manually designed
NLP features, deep learning based models are to
calculate semantic similarity score with the pre-
trained word vectors as inputs. Four pretrained
word embeddings listed in Table 1 are explored
and the paragram embeddings achieved better re-
sults in preliminary experiments. We analyze and
find the possible reason may be that the paragram
embeddings are trained on Paraphrase Database5,
which is an extensive semantic resource that con-
sists of many phrase pairs. Therefore, we use para-
gram embeddings to initialize word vectors.

Based on pretrained word vectors, we adopt the
following four methods to obtain single sentence
vector as (Wieting et al., 2015):

(1) by simply averaging the word vectors in sin-
gle sentence;

(2) after (1), the resulting averaged vector is
multiplied by a projection matrix;

(3) by using deep averaging network (DAN,
Iyyer et al. (2015)) consisting of multiple layers
as well as nonlinear activation functions;

3http://scikit-learn.org/stable/
4https://github.com/dmlc/xgboost
5http://www.cis.upenn.edu/˜ccb/ppdb/
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(4) by using long short-term memory network
(LSTM, Hochreiter and Schmidhuber (1997)) to
capture long-distance dependencies information.

In order to obtain the vector of sentence pair,
given two single sentence vectors, we first use a
element-wise subtraction and a multiplication and
then concatenate the two values as the final vec-
tor of sentence pair representation. At last, we use
a fully-connected neural network and output the
probability of similarity based on a softmax func-
tion. Thus we obtain 4 deep learning based scores.

To learn model parameters, we minimize the
KL-divergence between the outputs and gold la-
bels, as in Tai et al. (2015). We adopt Adam (K-
ingma and Ba, 2014) as optimization method and
set learning rate of 0.01.

2.3 Ensemble Module

The NLP-based scores and the deep learning based
scores are averaged in the ensemble module to ob-
tain the final score.

3 Experimental Settings

Datasets: SemEval-2017 provided 7 tracks in
monolingual and cross-lingual language pairs. We
first translate all sentences into English via Google
Translator and then we build a universal model on
only English pairs. The training set we used is al-
l the monolingual English dataset from SemEval
STS task (2012-2015) consisting of 13, 592 sen-
tence pairs.

For each track, we grant the training dataset-
s provided by SemEval-2017 as development set.
Table 3 lists the statistics of the development and
the test data for each track in SemEval-2017.

Track Language Pair Development Test
Pairs Dataset Pairs

Track 1 Arabic-Arabic
(AR-AR) 1088 MSRpar, MSRvid,

SMTeuroparl (2017) 250

Track 2 Arabic-English
(AR-EN) 2176 MSRpar, MSRvid,

SMTeuroparl (2017) 250

Track 3 Spanish-Spanish
(SP-SP) 1555 News, Wiki

(2014, 2015) 250

Track 4a Spanish-English
(SP-EN) 595 News, Multi-source

(2016) 250

Track 4b
Spanish-English
WMT news data
(SP-EN-WMT)

1000 WMT (2017) 250

Track 5 English-English
(EN-EN) 1186

Plagiarsism, Postediting,
Ans.-Ans., Quest.-Quest.,
HDL (2016)

250

Track 6 English-Turkish
(EN-TR) - - 500

Table 3: The statistics of development and test set.

Almost all test data is from SNLI, except for
Track 4b from WMT. This can explain why on

Track 4b SP-EN-WMT, the performance is very
poor. So we perform 10 − fold cross validation
(CV) on Track 4b SP-EN-WMT.

Preprocessing: All sentences are translated in-
to English via Google Translator. The Stanford
CoreNLP (Manning et al., 2014) is used for tok-
enization, lemmatization, POS tagging and depen-
dency parsing.

Evaluation: For Track 1 to Track 6, Pearson
correlation coefficient is used to evaluate each in-
dividual test set. For Primary Track, since it is
achieved by submitting results of all the secondary
sub-tracks, a macro-averaged weighted sum of all
correlations on sub-tracks is used for evaluation.

4 Results on Training Data

A series of comparison experiments on English
STS 2016 training set have been performed to ex-
plore different features and algorithms.

4.1 Comparison of NLP Features

Table 4 lists the results of different NLP features
with GB learning algorithm. We find that: (1) the
simple BOW Features with kernel functions are ef-
fective for sentence semantic similarity. (2) The
combination of all these NLP features achieved
the best results, which indicates that all features
make contributions. Therefore we do not perform
feature selection and use all these NLP features in
following experiments.

4.2 Comparison of Learning Algorithms

Table 5 lists the results of different algorithms us-
ing all NLP features as well as deep learning s-
cores. We find:
(1) Regarding machine learning algorithms, RF
and GB achieve better results than XGB. GB per-
forms the best on 3 and RF performs the best on 2
of 5 datasets.
(2) Regarding deep learning models, DL-word and
DL-proj outperform the other 2 non-linear model-
s on all the 5 datasets. This result is consistent
with the findings in (Wieting et al., 2015):“In out-
of-domain scenarios, simple architectures such as
word averaging vastly outperform LSTMs.”
(3) All ensemble methods significantly improved
the performance. The ensemble of 3 machine
learning algorithms (RF+GB+XGB) outperforms
any single learning algorithm. Similarly, the en-
semble of the 4 deep learning models (DL-all) pro-
motes the performance to 75.28%, which is sig-
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English STS 2016

NLP Features Postediting Ques.-Ques. HDL Plagiarism Ans.-Ans. Weighted
mean

BOW features 0.8388 0.6577 0.7338 0.7817 0.6302 0.7322
Alignment Features 0.8125 0.6243 0.7642 0.7883 0.6432 0.7312
Ngram Overlaps 0.8424 0.5864 0.7581 0.8070 0.5756 0.7203
Sequence Features 0.8428 0.6115 0.7337 0.7983 0.4838 0.7000
Word Embedding Features 0.8128 0.6378 0.7625 0.7955 0.4598 0.6992
MT based Features 0.8412 0.5558 0.7259 0.7617 0.5084 0.6851
Dependency Features 0.7264 0.5381 0.4634 0.5820 0.3431 0.5328
Syntactic Parse Features 0.5773 0.0846 0.4940 0.3976 0.0775 0.3376
All Features 0.8357 0.6967 0.7964 0.8293 0.6306 0.7618
Rychalska et al. (2016) 0.8352 0.6871 0.8275 0.8414 0.6924 0.7781
Brychcı́n and Svoboda (2016) 0.8209 0.7020 0.8189 0.8236 0.6215 0.7573
Afzal et al. (2016) 0.8484 0.7471 0.7726 0.8050 0.6143 0.7561

Table 4: Feature comparison on English STS 2016, the last three are top three systems in STS 2016

English STS 2016

Algorithm Postediting Ques.-Ques. HDL Plagiarism Ans.-Ans. Weighted
mean

Single
Model

RF 0.8394 0.6858 0.7966 0.8259 0.5882 0.7518
GB 0.8357 0.6967 0.7964 0.8293 0.6306 0.7618
XGB 0.7917 0.6237 0.7879 0.8175 0.6190 0.7333
DL-word 0.8097 0.6635 0.7839 0.8003 0.5614 0.7283
DL-proj 0.7983 0.6584 0.7910 0.7892 0.5573 0.7234
DL-dan 0.7695 0.4200 0.7411 0.6876 0.4756 0.6274
DL-lstm 0.7864 0.5895 0.7584 0.7783 0.5182 0.6921

Ensemble
RF+GB+XGB 0.8298 0.6969 0.8086 0.8313 0.6234 0.7622
DL-all 0.8308 0.6817 0.8160 0.8261 0.5854 0.7528
EN-seven 0.8513 0.7077 0.8288 0.8515 0.6647 0.7851

Table 5: Algorithms comparison on English STS 2016 datasets

nificantly better than single model and is compa-
rable to the result using expert knowledge. Fur-
thermore, the ensemble of 3 machine learning al-
gorithms and 4 deep learning models by averaging
these 7 scores (EN-seven), achieves the best re-
sults on all of the development set in English STS
2016. It suggests that the traditional NLP methods
and the deep learning models are complementary
to each other and their combination achieves the
best performance.

4.3 Results on Cross-lingual Data

To address cross-lingual, we first translate cross-
lingual pairs into monolingual pairs and then
adopt the universal model to estimate semantic
similarity. Thus, language translation is critical
to the performance. The first straightforward way
for translation (Strategy 1) is to translate foreign
language into English. We observe that it is more
likely to produce synonyms when using Strategy
1. For example: one English-Spanish pair
The respite was short.
La tregua fue breve.
is translated into English-English pair,
The respite was short.

The respite was brief.
where short and brief are synonyms produced by
MT rather than their actual literal meaning ex-
pressed in original languages. Reminding that one
MT system may be in favour of certain words and
it also can translate English into foreign language.
Thus we propose Strategy 2 for translation, i.e.,
we first translate the English sentence into foreign
target language and then roll back to English via
MT again. Under Strategy 2, the above example
English-Spanish pair is translated into the same
English sentence:
The respite was brief.

Table 6 compares the results of the two strate-
gies on cross-lingual data. It is clear that Strate-
gy 2 achieves better performance, which indicates
that the semantic difference between synonyms in
cross-lingual pairs resulting from MT are different
from that in monolingual pairs.

4.4 Results on Spanish-English WMT

On Spanish-English WMT dataset, the system per-
formance dropped dramatically. The possible rea-
son may lie in that they are from different domain-
s. Therefore, we use 10-fold cross validation on
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Cross-lingual STS 2016

Algorithm news multisource Weighted
mean

Stategy 1
RF1 0.9101 0.8259 0.8686
GB1 0.8911 0.8220 0.8570
XGB1 0.8795 0.7984 0.8394

Stategy 2

RF2 0.9009 0.8405 0.8711
GB2 0.9122 0.8441 0.8786
XGB2 0.8854 0.8265 0.8563
RF+GB+XGB2 0.9138 0.8474 0.8810
DL-all2 0.8016 0.7442 0.7732
EN-seven2 0.8832 0.8291 0.8565

Brychcı́n and Svoboda (2016) 0.9062 0.8190 0.8631

Table 6: Pearson correlations on Cross-lingual
STS 2016, the last row is the top system in 2016.

this dataset for evaluation. Table 7 list the result-
s on Spanish-English WMT, where the last col-
umn (wmt(CV)) of show that using the in-domain
dataset achieves better performance.

Take a closer look at this dataset, we find that
several original Spanish sentences are meaning-
less. For example, the English-Spanish pair
His rheumy eyes began to cloud.
A sus ojos rheumy comenzóa nube.
has a score of 1 as the second is not a proper Span-
ish sentence. Since there are many meaningless S-
panish sentences in this dataset sourced from MT
evaluation, we speculate that these meaningless
sentences are made to be used as negative training
samples for MT model. Thus, only on this dataset,
we grant Spanish as target language and translate
English sentences into Spanish sentences. After
that, we use 9 MT evaluation metrics (mentioned
in Section 2.1) to generate MT based Features.
Then these 9 MT metrics are averaged as the sim-
ilarity score (MT(es)3).

Spanish-English WMT
Algorithm wmt wmt(CV)
RF2 0.1761 0.2635
GB2 0.1661 0.2053
XGB2 0.1627 0.2620
RF+GB+XGB2 0.1739 0.2677
DL-all2 0.0780 -
EN-seven2 0.1393 -
MT(es)3 0.2858 0.2858
RF+GB+XGB2+MT(es)3 0.2889 0.3789
EN-seven2+MT(es)3 0.2847 -

Table 7: Pearson correlations on Spanish-English
WMT. MT(es)3 is calculated using their translated
Spanish-Spanish form. We did not perform cross
validation in deep learning models and did not en-
semble them due to time constraint.

From Table 7, we see that the MT(es)3 score

alone achieves 0.2858 on wmt in terms of Pear-
son correlation, which even surpasses the best per-
formance (0.2677) of ensemble model. Based on
this, we also combine the ensemble model with
MT(es)3 and their averaged score achieves 0.3789
in terms of Pearson correlation.

4.5 System Configuration

Based on the above results, we configure three fol-
lowing systems:

Run 1: all features using RF algorithms. (RF)
Run 2: all features using GB algorithms. (GB)
Run 3: ensemble of three algorithms and four

deep learning scores. (EN-seven)
Particularly, we train Track 4b SP-EN-WMT us-

ing the wmt dataset provided in SemEval-2017 and
Run 2 and Run 3 on this track are combined with
MT(es)3 features.

5 Results on Test Data

Table 8 lists the results of our submitted runs on
test datasets. We find that: (1) GB achieves slight-
ly better performance than RF, which is consisten-
t to that in training data; (2) the ensemble mod-
el significantly improves the performance on all
datasets and enhance the performance of Primary
Track by about 3% in terms of Pearson coefficien-
t; (3) on Track 4b SP-EN-WMT, combining with
MT(es)3 significantly improves the performance.

The last three rows list the results of two top
systems and one baseline system provided by or-
ganizer. The baseline is to use the cosine sim-
ilarity of one-hot vector representations of sen-
tence pairs. On all language pairs, our ensemble
system achieves the best performance. This indi-
cates that both the traditional NLP methods and
the deep learning methods make contribution to
performance improvement.

6 Conclusion

To address mono-lingual and cross-lingual sen-
tence semantic similarity evaluation, we build a u-
niversal model in combination of traditional NLP
methods and deep learning methods together and
the extensive experimental results show that this
combination not only improves the performance
but also increases the robustness for modeling
similarity of multilingual sentences. Our future
work will concentrate on learning reliable sen-
tence pair representations in deep learning.
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Run Primary Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6
AR-AR AR-EN SP-SP SP-EN SP-EN-WMT EN-EN EN-TR

Run 1: RF 0.6940 0.7271 0.6975 0.8247 0.7649 0.2633 0.8387 0.7420
Run 2: GB 0.7044 0.7380 0.7126 0.8456 0.7495 0.3311∗ 0.8181 0.7362
Run 3: EN-seven 0.7316 0.7440 0.7493 0.8559 0.8131 0.3363∗ 0.8518 0.7706
Rank 2: BIT 0.6789 0.7417 0.6965 0.8499 0.7828 0.1107 0.8400 0.7305
Rank 3: HCTI 0.6598 0.7130 0.6836 0.8263 0.7621 0.1483 0.8113 0.6741
Baseline 0.5370 0.6045 0.5155 0.7117 0.6220 0.0320 0.7278 0.5456

Table 8: The results of our three runs on STS 2017 test datasets.
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and Bojana Dalbelo Bašić. 2012. Takelab: System-
s for measuring semantic text similarity. In Pro-
ceedings of SemEval 2012. Montréal, Canada, pages
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Abstract

This paper describes our proposed solu-
tion for SemEval 2017 Task 1: Semantic
Textual Similarity (Daniel Cer and Spe-
cia, 2017). The task aims at measuring the
degree of equivalence between sentences
given in English. Performance is eval-
uated by computing Pearson Correlation
scores between the predicted scores and
human judgements. Our proposed system
consists of two subsystems and one re-
gression model for predicting STS scores.
The two subsystems are designed to learn
Paraphrase and Event Embeddings that
can take the consideration of paraphras-
ing characteristics and sentence structures
into our system. The regression model
associates these embeddings to make the
final predictions. The experimental re-
sult shows that our system acquires 0.8 of
Pearson Correlation Scores in this task.

1 Introduction

The SemEval Semantic Textual Similarity (STS)
task (Daniel Cer and Specia, 2017) is to assess
the degree of similarity between two given sen-
tences and assign a score on a scale from 0 to 5.
A score of 0 indicates that the two sentences are
completely dissimilar, while a score of 5 indicates
that the sentences have the same meaning. Predict-
ing the similarity between pieces of texts finds util-
ity in many NLP tasks such as question-answering,
and plagiarism detection.

In this paper, we proposed a system to fa-
cilitate STS task. Our system includes training
two types of embeddings–Paraphrase Embeddings
(PE) and Event Embeddings (EE)–as features to
assess STS. For the first type of embeddings, PE,
we exploit two crucial properties for measuring

sentence similarity: paraphrasing characteristics
and sentence structures. The paraphrasing char-
acteristics help identifying if two sentences share
the same meaning. Our system incorporates it us-
ing an unsupervised learning step over the Para-
phrase Database (PPDB; Ganitkevitch et al. 2013),
which is inspired by Wieting et al. 2015a. The sen-
tence structure, on the other hand, can detect struc-
tural differences, which reflect different aspects of
the similarity between the input sentences. Our
system employs a Convolutional Neural Network
(CNN) to strengthen the embedding by including
the sentence structure into our representation. The
second type of embeddings, EE, conveys the dis-
tributional semantics of events in a narrative set-
ting, associating a vector with each event.

In the last part of our system, we build a regres-
sion model that associates the two distributed rep-
resentations and predicts the similarity scores.

2 System Description

Our system builds two types of embedding mod-
els, Paraphrase Embeddings (PE) and Event Em-
beddings (EE), and trains a regression model for
predicting the similarity score between two sen-
tences, which is described in this Section 2.3.

2.1 Paraphrase Embeddings
The Paraphrase Database (PPDB) is a large scale
database containing millions of automatically ex-
tracted paraphrases. Wieting et al. 2015a show
that by training word embeddings on PPDB (Gan-
itkevitch et al., 2013), paraphrase information can
be captured by the embeddings, which is very use-
ful for the STS task. Their system works well
when word overlaps reflect sentence similarities,
which is the most common case in the STS dataset.
We extend their work by introducing a Convolu-
tional Neural Network (CNN) model, because it
better accounts for sentence structure.
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Figure 1: The convolutional neural network archi-
tecture consists of two networks that share the net-
work parameters. The networks are constructed
by a convolutional layer, a max-pooling layer, and
two fully connected layers.

Figure 1 describes our network architecture.
Each input example consists of a pair of sen-
tences/phrases. The initial input representation for
each sentence is created by averaging the word
vectors of the words in the sentence. The initial
word vectors can rely on pre-trained word embed-
dings, such as Word2Vec (Mikolov et al., 2013) or
Glove (Pennington et al., 2014).

This input layer is followed by a convolutional
layer, a max-pooling layer, and two fully con-
nected layers. The projected outputs (the embed-
dings layer in Figure 1) comprise the PE that will
later be used for regression. Note that the two
networks in Figure 1 share the network parame-
ters. During training, the errors back-propagate
not only to the network, but also to the embed-
dings. To train PE, we adopt a 2-step framework
inspired by Wieting et al. 2015a and initialize our
word embedding look-up table with the best per-
forming embeddings they released–PARAGRAM-
PHRASE XXL. In the first step, we train the CNN
on PPDB 2.0 (Pavlick et al., 2015) and aim at mak-
ing PE a quality representation for paraphrase-
related tasks. The objective function here is a
margin-based ranking loss (Wieting et al., 2015a):

min
Wc,Ww

( ∑
<x1,x2>∈X

max(0, δ − cos(g(x1), g(x2))

+ cos(g(x1), g(t1)))
+max(0, δ − cos(g(x1), g(x2)))

+ cos(g(x2), g(t2))
)

+λc||Wc||2 + λw||Winit −Ww||2,

where X is all the positive paraphrasing pairs; δ
is the margin 1; g(·) is the functional representa-
tion of CNN; λc and λw are two hyperparameters
for L2-regularization; Wc is the parameters to be
trained; Ww is the most recent word embeddings;
Winit is the initial word embeddings; and t1 and
t2 are negative examples. The negative examples
are randomly and uniformly selected from other
examples. That is, for x1, we randomly select a
phrase t1 from the corpus, which is nearly unlikely
to be a paraphrase to x1. The same strategy is also
applied to select t2 for x2.

In the second step, we fine-tune the PE by fit-
ting it to SemEval STS data. This is a super-
vised regression task, with an objective function
that considers both the distances and angles of the
two projected embeddings. This regression objec-
tive is the same as the one that we will describe in
Section 2.3. Although the objective function used
here and in Section 2.3 are the same, they are used
differently. The intention of using it in this step is
to adjust the PE representations, while the regres-
sion model in Section 2.3 is used for combining
different embeddings for regression. More details
will be discussed in Section 2.3.

2.2 Event Embeddings

Word embeddings capture distributional seman-
tics. It is a function that maps a word to a
dense, low-dimension vector. With the same
concept in mind, we can infer event semantics
by exploring its contextual events to build EE.
Similar ideas have be explored in several recent
works (Granroth-Wilding and Clark, 2016; Pi-
chotta and Mooney, 2016; Pacheco et al., 2016).

Our EE model is constructed as follows: first,
we extract event tokens, similar to narrative scripts
construction (Chambers and Jurafsky, 2008). We
resolve co-referent entities and run a dependency
parser on all documents 2. For each entity in a
co-reference chain, we represent an event token e
by its predicate p(e), a dependency relation to the
entity d(e), and animacy of the entity a(e); result-
ing in a triplet ((p(e), d(e), a(e))). An event chain
thus can be constructed by corresponding all the
entities in a co-reference chain to event tokens.

We extend the definition of the event predicate
p(e) to include lemmatized verbs and predicative
adjectives. These extensions are useful as they

1δ is tuned over {0.4, 1} in our evaluation.
2we use Stanford CoreNLP library (Manning et al., 2014)
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capture important information about the state of
the entity. For example, “Jim was hungry. He
ate a sub”. The word “hungry” captures meaning-
ful narrative information that should be included
in the event chain of the entity “Jim”, so the re-
sulting chain here should be: (hungry, subj, an-
imate), (eat, subj, animate). Moreover, relying
on verb predicates alone is sometimes insufficient,
when the verbs are too ambiguous on their own,
e.g., verbs like go, get, and have. For such weak
verbs, we include their particles and clausal com-
plement (xcomp) in the predicates, e.g., “have
to sleep” will be represented as one predicate–
have to sleep. Lastly, negations to the predicate
matter a lot to event semantics, so we also include
it as a part of predicates. For instance, “did not
sleep” will be represented as not sleep.

For dependencies d(e), we only consider sub-
jects, objects, and indirect objects in the depen-
dency tree. Argument animacy information a(e) is
also included, because the entity’s animacy often
changes the event semantics. For instance, the dif-
ference in meaning of the phrases “killed a joke”
and “killed a person” is hard to identify without
including the object’s animacy information. There
are three possible animacy types that are repre-
sented in our triplet: animate, inanimate, or un-
known.

The Skip-Gram model (Mikolov et al., 2013),
which predicts contextual tokens given a current
token, is then used for training EE. The model
treats each event token as a word and each event
chain as a sentence, and learns EE by optimizing
the following objective:

p(C(e)|e) =
∏

e′∈C(e)

P (e′|e)

=
∏

e′∈C(e)

exp(ve′ , ve)∑
e∗∈E exp(ve∗ , ve)

,

where e is the current event, C(e) is the contextual
events of e, and ve is the embedding representation
of e.

To make the computation feasible, the negative
sampling strategy is again used here. For each
pair of event tokens in a sliding window, we sam-
ple k negative tokens. Other optimizing strategies
for improve embedding quality used by Mikolov
et al. 2013 are also applied here, such as sub-
sampling for high-frequency tokens and filtering
low-frequency tokens. The followings are the hy-
perparameters related to PE that are used in our

Figure 2: The regression model that considers the
distance and angle between the two inputs.

system: the sub-sampling rate is empirically set to
0.001; the minimum count of tokens is set to 5;
the sliding window size and k are set to 5; and the
vector dimension is set to 300.

2.3 Regression
In this section, we discuss how to fuse the differ-
ent embedding representations in the final regres-
sion model that predicts a similarity score between
the two input sentences. The objective function is
shown below:

h∗ = ve1 ⊗ ve2 (1)

h4 = |ve1 − ve2| (2)

h = tanh(W∗ · h∗ +W4 · h4) (3)

p = softmax(W · h), (4)

where ve1 and ve2 are vector representations of
input 1 and input 2 respectively; W∗ ∈ Rd×k,
W4 ∈ Rd×k, and W ∈ R6×k are the parame-
ters to be trained; d is the total dimension of PE
and EE; k is a hyperparameter of hidden layer size
(the 6 in the first dimension of W is from the soft-
max layer outputs which account for the proba-
bilities of integer scores between 0-5). The final
score is calculated by taking the mean of the 6
softmax outputs. This regression model is visu-
alized in Figure 2. The PE and EE are concate-
nated to represent each input. They are fixed rep-
resentations that will not be updated during the
regression. The ”X” and ”-” shown in Figure 2
are element-wise products and element-wise dif-
ferences between two input representations (Equa-
tion (1) and (2)). They represent the angles and
distances between the input sentences. This re-
gression objective has been shown to be very use-
ful in text similarity tasks (Tai et al., 2015).

3 Evaluation

We train PE using two datasets, PPDB 2.0 (Pavlick
et al., 2015) and SemEval STS data. These are
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Train Dev. Test
W2V 0.3060 0.2442 0.2641
EE 0.2491 0.2458 0.3545
paragram-small 0.6723 0.5446 0.6989
paragram-XXL 0.6639 0.6610 0.7322
PE 0.8138 0.6896 0.7979
PE+W2V 0.8214 0.6879 0.7961
PE+EE (official) - - 0.7928
PE+EE 0.8243 0.6932 0.8015
Winner STS2017 - - 0.8547

Table 1: Pearson Correlation Scores for the mod-
els we tested, where the Train data is STS2012-
2015, Dev. data is STS2016, Test data is STS2017.
The best scores of our model are in bold fonts.

used in the first (Section 2.1) and second steps
(Section 2.2) respectively. We used the New
York Times (NYT) section of the Gigaword cor-
pus (Parker et al., 2011) for training EE and our
baselines. The SemEval STS data is also used in
training the final regression model. The data splits
are as follows: SemEval STS2012-2015 was used
as the training set, STS2016 data was used as the
development set, and STS2017 was used as the test
set. After the development stage was finished, the
training and development sets were both used to
train a final model with the best hyperparameters.

To update the parameters, Mini-batch Stochas-
tic Gradient Descent is used for optimizing the pa-
rameters and Adagrad (Duchi et al., 2011) is used
to update the learning rate while training. The
batch size is set to 100 and the number of epochs
is set to 10. L2-regularization is included in all
the objective functions and the λ is tuned over
{1e−5, 1e−6, 1e−7, 1e−8}. Both PE and EE’s
dimensions are set to 300.

The first baseline we compare with is the
Word2Vec Skip-Gram (W2V; Mikolov et al. 2013)
model, one of the most popular universal word
embeddings. It was trained over the same cor-
pus as EE (NYT section of Gigaword). The sec-
ond baseline (paragram-small) and third baseline
(paragram-XXL) are the best performing word
embeddings for STS tasks shown in Wieting et al.
2015b,a. In order to represent the input sentences
with the word embeddings, we average the word
embeddings based on the words in the input sen-
tences. This approach has been shown to be effec-
tive in Wieting et al. 2015a,

Table 1 lists the Pearson Correlation Score of

SemEval 2017 STS tasks. We can see that the
general embedding models, (W2V and EE), do not
perform well as their general purpose representa-
tion does not fit the textual similarity task. On the
other hand, paragram-small and paragram-XXL
which were trained with the textual-similarity-
related data (PPDB and STS data) perform reason-
ably well. The PE model, which takes paragram-
XXL as the initial embeddings and tunes all the
parameters on a CNN, gets higher score in both
development and test sets. The performance fur-
ther increases as we introduce EE to be parts of in-
put representations (PE+EE), while the W2V does
not provide such improvement (PE+W2V).

PE is specifically designed for identifying para-
phrasing characteristics and sentence structures,
which we believe are the keys to STS task, result-
ing in the strongest feature set in our system. We
do not expect that using EE alone will give high
performance, since considerable amounts of infor-
mation are filtered out during event chain extrac-
tion. In addition, EE does not use any STS-related
data during training. However, it is still helpful for
capturing high-level event semantics, which can
be a complement to our PE.

The official result of PE+EE is also included in
Table 1. Our best results improve on it, by fine
tuning the model’s hyperparameters. In addition,
the best performing system of SemEval STS2017
acquires the score of 0.8547, outperforming our
model. However, it is not clear that what exter-
nal resources or hand-crafted features were used
in their work. Our system, nevertheless, can ac-
commodate additional resources and features. We
believe that our results can be further improved by
including such information and we will look into
it in the future.

4 Conclusion

In this paper, we describe our system for SemEval
2017 STS task which consists three key compo-
nents relevant to this task: paraphrasing character-
istics, sentence structures, and event-level seman-
tics. To incorporate the first two ideas into the sys-
tem, PE–a CNN model trained with a paraphrase
database–is used. It measures sentence similarity
in terms of paraphrasing and structure similarities.
We capture event semantics using EE, and include
it in our system. It complements the PE and fur-
ther boosts performance. Our full system was able
to achieve a 0.8 of Pearson Correlation Score.
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Abstract

We use referential translation machines for
predicting the semantic similarity of text
in all STS tasks which contain Arabic,
English, Spanish, and Turkish this year.
RTMs pioneer a language independent ap-
proach to semantic similarity and remove
the need to access any task or domain spe-
cific information or resource. RTMs be-
come 6th out of 52 submissions in Span-
ish to English STS. We average prediction
scores using weights based on the training
performance to improve the overall perfor-
mance.

1 Referential Translation Machines
(RTMs)

Semantic textual similarity (STS) task (Cer et al.,
2017) at SemEval-2017 (Bethard et al., 2017) is
about quantifying the degree of similarity between
two given sentences S1 and S2 in the same lan-
guage or in different languages. RTMs use inter-
pretants, data close to the task instances, to derive
features measuring the closeness of the test sen-
tences to the training data, the difficulty of trans-
lating them, and to identify translation acts be-
tween any two data sets for building prediction
models. RTMs are applicable in different domains
and tasks and in both monolingual and bilingual
settings. Figure 1 depicts RTMs and explains the
model building process.

RTMs use ParFDA (Biçici, 2016a) for in-
stance selection and machine translation perfor-
mance prediction system (MTPPS) (Biçici and
Way, 2015) for generating features for the training
and the test set mapping both to the same space
where the total number of features in each task
becomes 368. The new features we include are
about punctuation: number of tokens about punc-

Figure 1: RTM depiction: ParFDA selects inter-
pretants close to the training and test data using
parallel corpus in bilingual settings and mono-
lingual corpus in the target language or just the
monolingual target corpus in monolingual set-
tings; an MTPPS use interpretants and training
data to generate training features and another use
interpretants and test data to generate test features
in the same feature space; learning and prediction
takes place taking these features as input.

tuation (Kozlova et al., 2016) and the cosine be-
tween the punctuation vectors.

RTMs are providing a language independent
text processing and machine learning model able
to use predictions from different predictors. We
use ridge regression (RR), k-nearest neighors
(KNN), support vector regression (SVR), Ad-
aBoost (Freund and Schapire, 1997), and ex-
tremely randomized trees (TREE) (Geurts et al.,
2006) as learning models in combination with fea-
ture selection (FS) (Guyon et al., 2002) and partial
least squares (PLS) (Wold et al., 1984). For most
of the models, we use scikit-learn. 1 We
optimize the models using a subset of the train-
ing data for the following parameters: λ for RR, k
for KNN, γ, C, and ε for SVR, minimum number
of samples for leaf nodes and for splitting an in-

1http://scikit-learn.org/. For RR, contains
different solvers, support for sparse matrices, and checks for
size and errors.
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all Tr.1 Tr.2 Tr.3 Tr.4a Tr.4b Tr.5 Tr.6
ar-ar ar-en es-es es-en en-es en-en en-tr

test 250 250 250 250 250 250 500
ranks 34 ‘34’ 34 ‘27’ 26 6 61 ‘39’
out of 44 48 44 47 52 52 78 47
r 0.37 0.34 0.17 0.7 0.6 0.15 0.55 0.07

Table 1: RTM ranks and the number of instances
in the STS test sets with abbreviations: Arabic
(ar), English (en), Spanish (es), Turkish (tr). Only
250 instances are evaluated in en-tr. Results within
single quotes used mismatching corpora and there-
fore we reran our experiments (Section 3).

ternal node for TREE, the number of features for
FS, and the number of dimensions for PLS. For
AdaBoost, we do not optimize but use exponential
loss and 500 estimators like we use also with the
TREE model. We use grid search for SVR. Fig-
ure 2 plots sample search contours.

Evaluation metrics we use are Pearson’s corre-
lation (r), mean absolute error (MAE), relative ab-
solute error (RAE), MAER (mean absolute error
relative), and MRAER (mean relative absolute er-
ror relative) (Biçici and Way, 2015). Official eval-
uation metric is r.

This year, we experiment with averaging scores
from different models. The predictions, ŷ, are
sorted according to their performance on the train-
ing set and the mean of the top k predictions
(equally weighted averaging) or their weighted av-
erage according to their performance are used:

ŷ̂ŷyµk
=

1
k

k∑
i=1

ŷ̂ŷyi (1)

ŷ̂ŷywk
=

1∑k
i=1

1
wi

k∑
i=1

1
wi
ŷ̂ŷyi (2)

The weights are inverted since we are trying to de-
crease MAER and normalize by the sum. We use
MAER for sorting and selecting predictions.

2 SemEval-17 STS Results

SemEval-2017 STS contains STS sentence pairs
from the languages listed in Table 1 where the top
r from among our officially submitted results are
listed, which contain a mean averaged, a weight
averaged, and a top prediction corresponding to
weight 3, mean 3, and SVR model predictions.
These results do not contain AdaBoost results and
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Figure 2: Sample SVR optimization plot (en-en).

they are optimized less. We build individual RTM
models for each subtask with RTM team name.
Interpretants are selected from the corpora dis-
tributed by the translation task of WMT17 (Bo-
jar et al., 2017) and they consist of monolingual
sentences used to build the LM and parallel sen-
tence pair instances used by MTPPS to derive the
features. For monolingual STS, we use the cor-
responding monolingual corpora. We built RTM
models using:

• 275 thousand sentences for en-en, 200 thou-
sand sentences for en-tr, and 250 thousand
sentences for others for training data

• 7 million sentences for the language model

which are close to the fixed training set size setting
in (Biçici and Way, 2015).

We identified numeric expressions using regu-
lar expressions as a pre-processing step, which re-
places them with a label. Identification of numer-
ics improve the performance on the test set (Biçici,
2016b). For en-es or es-en, we did not use any lan-
guage identification tool and separated sentences
based on left/right difference rather than using
the mixed format that was made available to the
participants even though identification of the lan-
guage increase r on the test set from 0.5375 to
0.6066 while decreasing error (Biçici, 2016b). For
en-tr, we were not provided any training data;
therefore, we used the training data from other
subtasks.

3 Experiments After the Challenge

Table 2 compares the top averaging result with the
top result without averaging on the test set. The
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Task r MAE RAE MAER MRAER model
ar-ar 0.5302 1.4072 1.122 1.3068 1.331 weight 7
ar-ar 0.5286 1.3909 1.109 1.2941 1.304 TREE
ar-en 0.2144 1.5793 1.276 1.4937 1.456 mean 2
ar-en 0.2235 1.565 1.264 1.4556 1.432 FS-SVR
es-es 0.7398 0.9689 0.708 0.7756 0.746 weight 4
es-es 0.7409 0.9673 0.7072 0.7739 0.7467 FS-TREE
es-en 0.5481 1.4072 1.137 1.3229 1.362 mean 3
es-en 0.5197 1.4176 1.146 1.3483 1.328 FS-TREE
en-es 0.1101 1.3122 1.305 0.3306 1.377 weight 2
en-es 0.0847 1.3263 1.319 0.3351 1.388 TREE
en-en 0.7103 1.0261 0.852 0.8678 1.042 weight 11
en-en 0.6528 1.0644 0.883 0.9126 1.052 FS+PLS-SVR
en-tr -0.0204 1.6094 1.2849 1.4614 1.3533 weight 8
en-tr -0.0527 1.7121 1.3669 1.4955 1.4569 FS+PLS SVR
all 0.4105 averaging
all 0.4011 others

Table 2: RTM top averaged result compared with the top non averaged result on the test set. Averaging
improve the performance on the test set.

all Tr.1 Tr.2 Tr.3 Tr.4a Tr.4b Tr.5 Tr.6
ar-ar ar-en es-es es-en en-es en-en en-tr

ranks 33 33 34 25 33 6 53 45
out of 44 48 44 47 52 52 78 47

Table 3: RTM ranks in the STS test sets with re-
sults from Table 2.

results warn us that ar-ar, ar-en, en-es, and es-
en obtain MRAER larger than 1 suggesting more
work towards these tasks. en-en has slightly more
than 1 in MRAER and this is worse than the 0.719
MRAER obtained by RTMs in STS in 2016. For
es-es, we obtain slightly lower results compared
with 0.729 MRAER of RTMs in STS in 2016
where we used language identification. The test
set domain is different this year; Stanford Natural
Language Inference corpus (Bowman et al., 2015)
is focusing on inference and entailment tasks and
entailment assumes direction and in contrast the
goal in STS is the bidirectional grading of equiv-
alence (Agirre et al., 2015). Table 3 list the ranks
we can obtain with RTMs these new results. Fig-
ure 3 plots the performance on the test set where
instances are sorted according to the magnitude of
the target scores.

Also in this section, we present results about
transfer of learning. Transfer learning attempt to
re-use and transfer knowledge from models de-

veloped in different domains or for different tasks
such as using models developed for handwritten
digit recognition for handwritten character recog-
nition (Guyon et al., 2012). We cross use RTM
SVR models developed for different tasks as a
cross-task TL 2 and present the results in Table 4
with #train listing the size of the training set used
for each task. Cross use of RTM es-es model in-
crease r for en-en from 0.71 to 0.75 and for en-ar
from 0.19 to 0.50 while making all tasks except 4b
en-es below the 1 MRAER threshold we seek for
showing improvements in prediction performance
relatively better than a predictor knowing and us-
ing the mean of the target scores on the test set.

4 Conclusion

Referential translation machines pioneer a clean
and intuitive computational model for automatic
prediction of semantic similarity by measuring the
acts of translation involved. Averaging predictions
improve the correlation on the test set.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada

2www.youtube.com/watch?v=9ChVn3xVNDI;
we have the same domain of STS but we use the models for
different tasks.
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test
r #train ar-ar en-ar es-es es-en en-es en-en en-tr

tr
ai

n

ar-ar 1105 0.4391 0.1053 0.0885 -0.0153 -0.0554 0.5535 -0.1235
en-ar 2186 -0.0773 0.1938 0.0596 -0.1587 -0.0138 -0.0861 0.0036
es-es 1644 0.5235 0.4953 0.7342 0.4051 0.0238 0.7503 0.3888
es-en 1722 0.5947 0.3572 0.6886 0.4017 0.1591 0.6798 0.4781
en-es 1722 0.5643 0.5616 0.666 0.6052 0.2141 0.6794 0.4998
en-en 15672 0.57 0.2963 0.6841 0.2213 -0.0933 0.7109 0.0817
en-tr 22329 0.4242 0.2222 0.3914 -0.0671 -0.0638 0.4075 -0.0074

MAER # train ar-ar en-ar es-es es-en en-es en-en en-tr

tr
ai

n

ar-ar 1105 1.2202 1.5205 1.4414 1.5653 0.3624 1.0899 1.676
en-ar 2186 1.6913 1.5928 1.6145 1.819 0.4261 1.6371 1.8628
es-es 1644 0.8667 0.9702 0.7136 0.9997 0.3966 0.6175 1.0874
es-en 1722 1.332 1.4329 1.3814 1.444 0.3051 1.2728 1.4783
en-es 1722 1.012 1.1449 0.978 1.099 0.3246 0.8882 1.2638
en-en 15672 0.9224 1.3786 0.9324 1.3048 0.4329 0.8031 1.4932
en-tr 22329 1.044 1.2837 1.1252 1.3961 0.4787 1.0383 1.4959

MRAER # train ar-ar en-ar es-es es-en en-es en-en en-tr

tr
ai

n

ar-ar 1105 1.24 1.357 1.251 1.459 1.549 1.16 1.415
en-ar 2186 1.775 1.6 1.546 1.731 1.663 1.648 1.644
es-es 1644 0.943 0.935 0.759 0.962 1.896 0.735 0.934
es-en 1722 1.168 1.203 1.126 1.21 1.408 1.08 1.173
en-es 1722 1.2 1.249 1.038 1.25 1.385 1.104 1.193
en-en 15672 1.127 1.434 0.982 1.297 1.785 1.081 1.446
en-tr 22329 1.271 1.415 1.146 1.416 1.97 1.169 1.492

Table 4: RTM SVR model (rows) r, MAER, and MRAER results on the test sets (columns).
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Figure 3: RTM’s top predictor’s absolute errors
relative to the magnitude of the target.
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Ergun Biçici. 2016b. RTM at SemEval-2016 task 1:
Predicting semantic similarity with referential
translation machines and related statistics. In
SemEval-2016: Semantic Evaluation Exercises -
International Workshop on Semantic Evaluation.
San Diego, CA, USA.
http://aclanthology.info/papers/rtm-at-semeval-
2016-task-1-predicting-semantic-similarity-with-
referential-translation-machines-and-related-
statistics.
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Abstract

In this paper we report our attempt to use,
on the one hand, state-of-the-art neural ap-
proaches that are proposed to measure Se-
mantic Textual Similarity (STS). On the
other hand, we propose an unsupervised
cross-word alignment approach, which is
linguistically motivated. The neural ap-
proaches proposed herein are divided into
two main stages. The first stage deals with
constructing neural word embeddings, the
components of sentence embeddings. The
second stage deals with constructing a se-
mantic similarity function relating pairs of
sentence embeddings. Unfortunately our
competition results were poor in all tracks,
therefore we concentrated our research to
improve them for Track 5 (EN-EN).

1 Introduction

Semantic Textual Similarity (STS) refers to the
Natural Language Processing (NLP) task which
is aimed at measuring the degree of similar-
ity/dissimilarity between two text units (Agirre
et al., 2012, 2016). In other words given a pair
of text snippets (generally a pair of sentences) the
task is to determine a real value (the semantic sim-
ilarity score) in the interval between 0.0 and 5.0,
which represents how much similar are the two
sentences of a given pair.

There are two main types of proposed systems
in prior editions of the competition: supervised
and unsupervised systems. While supervised sys-
tems are expected to be highly reliable because of
that they use human-annotated gold standards, un-
supervised systems also are highly reliable by us-
ing modest levels of linguistic knowledge. In this
work we report results from both, unsupervised
and supervised systems.

Currently the STS task involves tracks of differ-
ent nature, i.e. the monolingual and cross-lingual
ones. In this paper we investigate the underlying
properties in text which are relevant to measure se-
mantic similarity, thus we focus our major efforts
into the English-English Track 5.

2 Data

We tested a couple of supervised systems. We pre-
pared the STS monolingual English datasets from
years 2012, 2013, 2015 and 2016. After discard-
ing sentence pairs whose similarity score was ab-
sent from the corresponding gold standard files,
we obtained a dataset consisted of 10, 592 sen-
tence pairs (6, 858 are already marked as training
pairs and 3, 734 are already marked as test pairs).

In order to obtain subword embeddings we
trained the “fastText” method for 20, 50, 100,
200 and 300 dimensions by using the English
Wikipedia (Bojanowski et al., 2016). We decided
to take advantage of the capability of this method
for inferring out-of-vocabulary words. This ad-
vantage is mainly due to the fastText’s character
level n-gram approach, which represents a mean-
ingful performance difference both in training and
in testing.

3 Systems Description

Multiple Neural Network architectures were used
to model similarity measuring in supervised set-
tings. Also an unsupervised system1 was directly
tested on this year’s evaluation dataset.

3.1 Word embeddings + RNN
We see the Recurrent Neural Networks (RNN) as
intuitive models for observing relevance of sen-
tence elements; in particular the Long-Short Term
Memories (LSTMs). These kind of networks are

1https://github.com/iarroyof/sts_align
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Given sentence letter A

Other sentence named B
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Figure 1: Attentional architecture for detecting
relevant parts of each sentence within a pair of sen-
tences.

well documented as suitable for modeling sequen-
tiality of lexical units within sentences whereas
avoiding the gradient vanishing of long term pat-
terns (Hochreiter and Schmidhuber, 1997).

In the case of Attention LSTMs, they capture
additional features of the sequential process they
model. The additional features are encoded into an
attention vector. This attention vector indicates to
the network which segments of the sequence (sen-
tence) are statistically more relevant than the other
ones according to the training set.

In this paper we used the architecture proposed
by (Vinyals et al., 2015), where the authors used
a stacked Attention LSTM for PoS tagging. In
Figure 1 we show a modified version of the men-
tioned architecture, which consists of two atten-
tion LSTM layers on the bottom, one Gated Re-
current Unit (GRU) at the middle and a simple
RNN on top (Cho et al., 2014). Notice that this de-
scription corresponds to each of the twin networks
showed in the figure, which is our adaptation to the
STS task. This recurrent architecture is followed
by a Maxout Network (Goodfellow et al., 2013),
which has a monolithic output layer (i.e. the simi-
larity score yi ∈ [1, 5] ⊂ R).

3.2 Sentence embeddings + MLP
The word/sentence embedding stage was modeled
via the doc2vec method (Le and Mikolov, 2014),

which is based on the word2vec word embedding
method (Mikolov et al., 2013). For each pair of
sentences, we obtained a pair of sentence embed-
dings (sa, sb) ∈ Rd × Rd. Thus each pair was
concatenated to form a pair vector pi = sa∥sb ∈
R2d. In this way, we obtained a training set
(p1, y1), ..., (pm, ym) which was feed to a simple
MLP. The output layer of the MLP is a 6-node
softmax, so we have six possible output similar-
ity values, i.e. yi ∈ {0, ..., 5}.

3.3 Cross word aligner
We proposed an unsupervised system which is
motivated by linguistic elements we identified as
highly relevant accordingly to linguistic theories.
General linguistics states that we can know what is
being said about something by seeing at the pred-
icative structure. The theories by Harris (1968)
inspire NLP algorithms where it is said that word
use leads to meaning (which is commonly inter-
preted as word co-occurrence). Harris also said
that combinatorics of words is more informative
in the predicates, where redundancy is needed by
speakers to provide integrity to a message.

In an attempt to follow these statements and also
inspired by success obtained by authors like Han
et al. (2013) and Rychalska et al. (2016), we im-
plemented a word alignment system. Unlike pre-
vious works, our system considers that verbs oper-
ate on nouns. We used Open Information Extrac-
tion algorithms (openIE) for detecting predicates
(Pa,Pb) of the form (NP, V P, NP ) within each
sentence of the pair (Sa, Sb) (Fader et al., 2011).

Similarly to the word analogies commonly used
for word embedding evaluations (Mikolov et al.,
2013), our system considers that verbs frequently
operate on nouns. Thus, it is measured how sim-
ilar each verb va ∈ Pa of a sentence Sa is, with
respect to its combination with each noun nb ∈ Pb

of a sentence Sb, i.e. dc(Sa, Sb). Given that the
relationship dc(·, ·) is not commutative this simi-
larity also is computed from Sb to Sa, i.e.

dc(Sa, Sb) =
1

Nv,a

∑
va∈Sa

1
Nn,b

∑
nb∈Sb

θ(va, nb)

(1a)

dc(Sb, Sa) =
1

Nv,b

∑
vb∈Sb

1
Nn,a

∑
na∈Sa

θ(vb, na),

(1b)

where θ(·, ·) is the cosine similarity and va, na ∈
Rd are word embeddings categorized as verbs
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People are ready for change

People change

Figure 2: General scheme for the vector similari-
ties of cross word alignments with respect to struc-
tural categories.

and nouns within the sentence Sa, respectively.
Nv,a, Nn,a are the number of verbs and nouns con-
sidered in Sa (same for Sb). Overall, equations
(1a) and (1b) are the average vector similarities
of cross word alignments with respect to struc-
tural categories between Sa and Sb. For exam-
ple, in Figure 2 the sentence “People are ready
for change” [Sa] is compared against the phrase
“people change” [Sb]. The main idea, in one di-
rection [Sb] → [Sa], is to quantify how the word
“people” is used along the conjugated form “are”
(which forms a predicate together with the noun
phrase “ready for change”). This operation is also
performed in the inverted direction [Sa] → [Sb].

The kind of predicates showed in Figure 2 are
often part of more complex sentences, e.g. “It
is clear that future is near and people is ready
for change”. We extracted these predicates by
using the openIE algorithm implemented in the
coreNLP2 library.

There are cases in the STS corpora where no
extractions are made. This is due to the low re-
call openIE systems offer until now (Xu et al.,
2013). That is, many openIE algorithms can ex-
tract neither implicit relations (e.g. “Mexico City,
where Aztecs live”) nor short phrases (e.g. “The
white house”). We assume that these snippets are
expressed in their minimum form, so things like
“people changes” are embedded word by word.
The embeddings are then compared either to em-
beddings of other equally short phrases or to em-
beddings of openIE extractions. The global score
is simply the average of all distances:

sf =
dc(Sa, Sb) + dc(Sb, Sa)

2

4 Results

Our systems passed through several refinement
stages. Unfortunately, the submitted runs were

2http://stanfordnlp.github.io/CoreNLP/

LSTM Attention
Track 1 0.0471 0.0214
Track 2 0.0769 0.1292
Track 3 0.1527 0.0458
Track 4 0.1719 0.0120
Track 5 0.1446 0.0191
Track 6 0.0738 0.2038
Track 7 0.0800 0.2168
Overall 0.1067 0.0926

Table 1: LSTM network without/with attention
mechanism. Official results of the competition in
this year’s evaluation.

to early stages and did not reach competitive per-
formance as can be seen in Table 1. We trans-
formed the multi-lingual data onto English using
the Google Translate API and trained a unique
model on resulting data. We submitted two LSTM
models, with and without attention mechanism.
The models were selected by monitoring the best
test score after 25 training epochs. Additional
systems were tested after-competition. Our best
results are considered as such given its absolute
value (inverse correlations can be reinterpreted in-
system in the case we reach higher values).

4.1 Word embeddings + RNN

A sentence can be seen as a sequence of word em-
beddings which are appended in order to form a
sentence matrix. For this system we used FastText
word embeddings. Given a sentence pair, each
sentence matrix is fed to each of the multi-layered
RNNs described in Section 3.1. We used the last-
top hidden states (or time steps) of the two net-
works as sentence embeddings. We concatenated
these sentence embeddings. In this way, we ob-
tained pair vectors p1, ..., pm ⊂ R2t that were feed
to the top Maxout network (herein t is the number
of hidden states each of the top RNN layers has in
Figure 1).

The networks showed in Table 2 were trained
over 1500 pairs from data described in Section 2
(1050 for training and 450 for test). As shown in
the table, we fed the networks with word embed-
dings of 200, 100 and 50 dimensions. Results are
much better for the architecture formed by word
embeddings of 200 dimensions, 50 hidden states
and 100 hidden Maxout nodes.
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Time
steps

Hidden
Maxout

Embe-
dding di-
mension

Correlation/
MSE

50 100 200 -0.2951/1.2
100 40 100 -0.2848/1.8567
25 10 50 -0.0103/2.0738
10 40 50 -0.0123/2.0252

Table 2: Twin Attention LSTM-GRU-RNN-
Maxout architecture and performance (after-
official evaluation) on the 2017 track 5.

4.2 Sentence embeddings + MLP

We trained Doc2vec sentence embeddings
sa, sb ∈ Rd of different dimensions (i.e. d=100,
200, 300, 500, 600) by using the whole data
described in Section 2. All values of d other
than 300 showed very poor learning in the MLP
stage. Thus, we reported only results produced by
300-dimensional sentence embeddings.

Hidden layers MSE (%) Correlation
[210, 45] 64.56 0.0777
[260, 66] 64.67 0.0349
[250, 75] 64.94 0.0140
[80] 62.95 -0.0058
[270, 60] 65.32 0.0139

Table 3: Multilayer Perceptron architecture and
performance in this year’s evaluation (track 5).

In Table 3 we depict the Mean Squared Error
(MSE) for the test set and the Pearson’s weighted
correlation coefficient for the track 5 evaluation.
Many combinations in the architecture during the
training showed that even the minimum test MSE
is very high. Therefore our setting Doc2vec+MLP
did not allow for good generalization.

4.3 Cross word aligner

The cross word alignment system is unsupervised
and we tested it directly on some of the most
popular past year’s datasets. We used fastText
word embeddings of different dimensions. A good
choice for semantic assessment is 100 dimensions
(Bojanowski et al., 2016). Additionally we re-
ported results for 300, 200, 50 and 20 dimensions.

On top of Table 4 we show our best result (after
official evaluation), which is that for 200 dimen-
sions. Furthermore we noticed our engineered fea-
tures are sensitive to text properties, e.g. domains

Corpus Dim. Correlation
Eval. 2017 200 -0.4599
Eval. 2017 100 -0.4557
Eval. 2017 50 -0.4291
Eval. 2017 20 -0.3716
Eval. 2017 300 -0.3597
OnWN 200 -0.4389
Plagiarism 100 -0.1851
Headlines 20 -0.1481

Table 4: Cross word aligner results. This year’s
evaluation and best results for popular STS data.

and, therefore, writing styles are very different be-
tween Headlines and Eval. 2017. It is needed
to say that we tested direct word alignments (i.e.
verb-verb, noun-noun) without success.

5 Conclusions

Despite of the success that RNNs have recently
showed, we observed that even when they do not
require feature engineering, instead they require
training time, large data amounts, high computa-
tional power and architecture engineering. The re-
sults we showed in Section 4.1 are not good. The
reason is very probably one the aforementioned
and it needs to be improved. We think the amount
of sequential patterns with which we trained our
networks was not enough. Such patterns are based
on punctual lexical items (each particular word
embedding), but not in generalized sequential and
semantic patterns.

Our cross word alignment system is based on
feature engineering, in such a way that we showed
that when a simple cosine similarity focuses on
relevant segments of sentences, the performance
can be progressively improved (probably by im-
proving feature engineering and adding external
resources not considered at this moment). This
reasoning is consistent with much other unsuper-
vised approaches. It is needed to say that even
when we performed simple feature engineering, a
critical part of our method was the use of word
embeddings, which are barely based on linguistic
feature engineering.
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Abstract

This paper describes our approach to the
SemEval-2017 “Semantic Textual Similar-
ity” and “Multilingual Word Similarity”
tasks. In the former, we test our approach
in both English and Spanish, and use a
linguistically-rich set of features. These
move from lexical to semantic features. In
particular, we try to take advantage of the
recent Abstract Meaning Representation
and SMATCH measure. Although with-
out state of the art results, we introduce se-
mantic structures in textual similarity and
analyze their impact. Regarding word sim-
ilarity, we target the English language and
combine WordNet information with Word
Embeddings. Without matching the best
systems, our approach proved to be simple
and effective.

1 Introduction

In this paper we present two systems that com-
peted in SemEval-2017 tasks “Semantic Textual
Similarity” and “Multilingual Word Similarity”,
using supervised and unsupervised techniques, re-
spectively.

For the first task we used lexical features, as
well as a semantic feature, based in the Ab-
stract Meaning Representation (AMR) and in the
SMATCH measure. AMR is a semantic formal-
ism, structured as a graph (Banarescu et al., 2013).
SMATCH is a metric for comparison of AMRs
(Cai and Knight, 2013). To the best of our knowl-
edge, these were not yet applied to Semantic Tex-
tual Similarity. In this paper we focus on the con-
tribution of the SMATCH score as a semantic fea-
ture for Semantic Textual Similarity, relative to a
model based on lexical clues only.

For word similarity, we test semantic equiva-
lence functions based on WordNet (Miller, 1995)
and Word Embeddings (Mikolov et al., 2013). Ex-
periments are performed on test data provided
in the SemEval-2017 tasks, and yielded compet-
itive results, although outperformed by other ap-
proaches in the official ranking.

The document is organized as follows: in Sec-
tion 2 we briefly discuss some related work; in
Sections 3 and 4, we describe our systems regard-
ing the “Semantic Textual Similarity” and “Mul-
tilingual Word Similarity” tasks, respectively. In
Section 5 we present the main conclusions and
point to future work.

2 Related work

The general architecture of our STS system is
similar to that of Brychcı́n and Svoboda (2016),
Potash et al. (2016) or Tian and Lan (2016), but we
employ more lexical features and AMR semantics.

Brychcı́n and Svoboda (2016) model feature de-
pendence in Support Vector Machines by using the
product between pairs of features as new features,
while we rely on neural networks. In Potash et al.
(2016) it is concluded that feature based systems
have better performance than structural learning
with syntax trees. A fully-connected neural net-
work is employed on hand engineered features and
on an ensemble of predictions from feature based
and structural based systems. We also employ a
similar neural network on hand engineered fea-
tures, but use semantic graphs to obtain one of
such features.

For word similarity, our approach isolates the
micro view approach seen in (Tian and Lan, 2016),
where word embeddings are applied to measure
the similarity of word pairs in an unsupervised
manner. This work also describes supervised ex-
periments on a macro/sentence view, which em-
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ploy hand engineered features and the Gradient
Boosting algorithm, as in our STS system.

Henry and Sands (2016) employ WordNet for
their sentence and chunk similarity metric, as also
occurs in our system for word similarity.

3 Task 1 - Semantic textual similarity

In this section we describe our participation in
Task 1 of SemEval-2017 (Cer et al., 2017), aimed
at assessing the ability of a system to quantify the
semantic similarity between two sentences, using
a continuous value from 0 to 5 where 5 means se-
mantic equivalence. This task is defined for mono-
lingual and cross-lingual pairs. We participated
in the monolingual evaluation for English, and we
also report results for Spanish, both with test sets
composed by 250 pairs. Most of our lexical fea-
tures are language independent, thus we use the
same model.

For a pair of sentences, our system collects the
numeric output of metrics that assess their simi-
larity relative to lexical or semantic aspects. Such
features are supplied to a machine learning algo-
rithm to: a) build a model, using pairs labeled with
an equivalence value (compliant with the task), or
b) predict such value, using the model.

3.1 Features

In our system, the similarity between two sen-
tences is represented by multiple continuous val-
ues, obtained from metrics designed to leverage
lexical or semantic analysis on the comparison of
sequences or structures. Lexical features are also
applied to alternative views of the input text, such
as character or metaphone1 sequences. A total of
159 features was gathered, from which one relies
on semantic representations.

Lexical features are obtained from INESC-
ID@ASSIN (Fialho et al., 2016), such as TER,
edit distance and 17 others. These are applied
to 6 representations of an input pair, totaling 96
features since not all representations are valid on
all metrics (for instance, TER is not applicable on
character trigrams). Its metrics and input represen-
tations rely on linguistic phenomena, such as the
BLEU score on metaphones of input sentences.

We also gather lexical features from HARRY2,
where 21 similarity metrics are calculated for bits,

1Symbols representing how a word sounds, according to
the Double Metaphone algorithm.

2http://www.mlsec.org/harry/

bytes and tokens of a pair of sentences, except for
the Spectrum kernel on bits (as it is not a valid
combination), resulting in 62 of our 159 features.

The only semantic feature is the SMATCH
score (Cai and Knight, 2013) which represents
the similarity among two AMR graphs (Banarescu
et al., 2013). The AMR for each sentence in a
pair is generated with JAMR3, and then supplied
to SMATCH, which returns a numeric value be-
tween 0 and 1 denoting their similarity.

In SMATCH, an AMR is translated into triples
that represent variable instances, their relations,
and global attributes such as the start node and lit-
erals. The final SMATCH score is the maximum
F score of matching triples, according to various
variable mappings, obtained by comparing their
instance tokens. These are converted into lower
case and then matched for exact equality.

3.2 Experimental setup

We applied all metrics to the train, test and trial
examples of the SICK corpus (Marelli et al., 2014)
and train and test examples from previous Seman-
tic Textual Similarity in SemEval, as compiled by
Tan et al. (2015).

Thus, our training dataset is comprised of 24623
vectors (with 9841 from SICK) assigned to a con-
tinuous value ranging from 0 to 5. Each vector
contains our 159 feature values for the similarity
among the sentences in an example pair.

We standardized the features by removing the
mean and scaling to unit variance and norm. Then,
machine learning algorithms were applied to the
feature sets to train a model of our Semantic Tex-
tual Similarity representations. Namely, we em-
ployed ensemble learning by gradient boosting
with decision trees, and feedforward neural net-
works (NN) with 1 and 2 fully connected hidden
layers.

SMATCH is not available for Spanish, therefore
this feature was left out when evaluating Spanish
pairs (es-es). For English pairs (en-en), the sce-
narios include: a) only lexical features, or b) an
ensemble with lexical features and the SMATCH
score (without differentiation).

Gradient boosting was applied with the default
configuration provided in scikit-learn (Pedregosa
et al., 2011). NN were configured with single and
multiple hidden layers, both with a rectifier as ac-
tivation function. The first layer combines the 159

3https://github.com/jflanigan/jamr
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input features (or 158 when not using SMATCH)
into 270 neurons, which are either combined into
a second layer with 100 neurons, or to the output
layer (with 1 neuron). Finally, we employed the
mean square error cost function and the ADAM
optimizer (Kingma and Ba, 2014), and fit a model
in 100 epochs and batches of 5.

Our experiments were run with Tensorflow 0.11
(Abadi et al., 2015), with NN implementations
from the Keras framework4. Gradient boosting
implementation is from scikit-learn.

3.3 Results
System performance in the Semantic Textual Sim-
ilarity task was measured with the Pearson coef-
ficient. A selection of results is shown in Table
1, featuring our different scenarios/configurations,
our official scores (in bold), and systems that
achieved results similar to ours or are the best of
each language/track. Variations of our system are
identified by the “l2f ” prefix.

System es-es en-en

RTV (best of en-en) 0.6863 0.8547
ECNU (best of es-es) 0.8559 0.8518
neobility 0.7928 0.7927
l2f G. boost 0.7620 0.7919
l2f G. boost (+smatch) - 0.7811
UdL - 0.7805
MatrusriIndia 0.7614 0.7744
cosine baseline 0.71169 0.7278
l2f NN-1 (+smatch) - 0.6998
l2f NN-1 0.6808 0.6952
l2f NN-2 0.6065 0.6832
l2f NN-2 (+smatch) - 0.6661

Table 1: Pearson scores on monolingual evalu-
ation, in descending order of performance on the
English track.

We should mention that, afterwards, we ran our
experiments with Theano 0.8.2, which yielded dif-
ferent results. As an example, on the English
track, using the same settings (network topology,
training data and normalization) of run “l2f NN-2
(+smatch)” resulted in a Pearson score of 0.72374.
More recently, Tensorflow released version 1.0,
which resulted in a score of 0.70437 for the same
setup5.

4https://keras.io/
5https://www.tensorflow.org/install/

migration#numeric_differences

In order to evaluate the contribution of
SMATCH, we analyzed some examples where
SMATCH led to a lower deviation from the gold
standard, and, at the same time, higher deviation
from runs without SMATCH.

On 15 pairs, SMATCH based predictions were
consistently closer to the gold standard, across all
learning algorithms, with an average difference
of 0.27 from non SMATCH predictions. How-
ever, after analyzing the resulting AMR of some of
these cases, we noticed that information was lost
during AMR conversion. For instance, consider
the following examples, which led to the results
presented in Table 2.

(A) The player shoots the winning points. / The
basketball player is about to score points for
his team., with a gold score of 2.8.

(B) A woman jumps and poses for the camera. /
A woman poses for the camera., with a gold
score of 4.0.

(C) Small child playing with letter P / 2 young
girls are sitting in front of a bookcase and 1
is reading a book., with a gold score of 0.8.

Considering example A, we can see the infor-
mation lost during the AMR conversion in the fol-
lowing.

(w / win-01
:ARG1 (p / point))
vs.
(b / basketball
:ARG1-of (s / score-01
:ARG2 (t / team
:location-of (p / point))))

(1)

The top structure (until “vs.”) is the AMR for
the first sentence, where “winning” is incorrectly
identified as a verb, and the actual verb (“shoot”)
and its subject (“player”) are missing. The same
subject is also missing in the bottom AMR. For
a comprehensive understanding of the AMR no-
tation and the parser we employed please see Ba-
narescu et al. (2013) and Flanigan et al. (2014),
respectively.

The same happened with example B (and C, al-
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Algorithm SMATCH no SMATCH Gold

G. boost 2.77 2.93
A NN-1 3.31 1.82 2.8

NN-2 2.00 1.74

G. boost 4.13 4.15
B NN-1 4.00 4.31 4.0

NN-2 4.05 4.34

G. boost 1.76 1.89
C NN-1 1.01 1.66 0.8

NN-2 1.32 1.89

Table 2: Predictions for pairs A, B and C where SMATCH excels, grouped by pair.

though not presented here):

(a / and
:op1 (p / pose-02
:ARG0 (w / woman)
:ARG1 (c / camera)))

vs.
(p / pose-02
:ARG0 (w / woman)
:location (c / camera))

(2)

Thus, we could not identify specific situations
to which AMR explicitly contributed, since exam-
ples where using SMATCH yielded better results
reveal that SMATCH was applied to AMR with
less information than in the source sentence.

To conclude, we should say that 20 pairs were
consistently better predicted without SMATCH,
with an average difference to SMATCH based pre-
dictions of 0.38.

4 Task 2.1 - Multilingual word
similarity: English

In this section we report the experiments con-
ducted for the second task of 2017 SemEval
(Camacho-Collados et al., 2017). The task con-
sists of, given a pair of words, automatically mea-
suring their semantic similarity, in a continuous
range of [0 − 4], from unrelated to totally sim-
ilar. The test set was composed of 500 pairs of
tokens (which can be words or multiple-word ex-
pressions); a small trial of 18 pairs set was also
provided by the organizers.

For this task we used a family of equivalence
functions, from now on equiv(t1, t2), where t1
and t2 are the tokens to be compared. equiv func-
tions return a value in the range [0−1]. This value
was later scaled into the goal’s range. Then, we

analyzed how to combine them. In the following
subsections we detail our approach.

4.1 Equivalence functions
Two functions were considered:

• equivWN , which uses WordNet (Miller,
1995).

• equivW2V , which employs Word2Vec vec-
tors (Mikolov et al., 2013) to compare the
two tokens – we use the pre-trained vectors
model available, trained on the Google News
dataset6.

equivWN (t1, t2) is defined as:

equivWN =


1 if syn(t1) = syn(t2)
x if syn

(
hyp(t1)

) ⊃ hyp(t2)
x if hyp(t1) ⊂ syn

(
hyp(t2)

)
0 otherwise,

where:

• syn(t) gives the synset of the token t;

• hyp(t) gives the hypernyms of t;

• x = 1−max(n× 0.1, m× 0.1), with n and
m being the number of nodes traversed in the
synsets of t1 and t2, respectively.

equivWN matches, thus, two tokens if they
have a common hypernym (Resnik, 1995) in their
synset path. We compute the path distance by
traversing the synsets upwards until finding the
least common hypernym. For each node up, a
decrement of 0.1 is awarded, starting at 1.0. If,
no concrete common hypernym is found, then 0 is
the result returned.
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Token 1 Token 2 equivWN (×4) equivW2V (×4) Gold

eagle falcon 0.8 (3.20) 0.44 (1.76) 3.72
keyboard light 0.7 (2.80) 0.02 (0.09) 0.24
science fiction comedy 0.0 (0.00) 0.34 (1.37) 2.78
sunset string 0.0 (0.00) 0.09 (0.36) 0.05

Table 3: Results of our functions in some instances of the trial set.

TeamName Pearson Spearman Final

Luminoso run2 0.783 0.795 0.789
Luminoso run1 0.781 0.794 0.788
QLUT run1 0.775 0.781 0.778
hhu run1 0.71 0.699 0.704
HCCL* run1 0.675 0.7 0.687

...
l2f(a.d.) run2 0.644 0.654 0.649
l2f(a.d.) run1 0.637 0.648 0.643

...
SEW run1 0.373 0.414 0.392
hjpwhuer run1 -0.037 -0.032 0.0

Table 4: Results for the runs submitted for Task 2.1 - English.

For example, laptop and notebook have the
common synset Portable Computer, one
node above both words, which results in a score
of 1 − 0.1 = 0.9. Crocodile and lizard return
0.8, as one needs to go up two nodes in both to-
kens to find the common synset Diapsid. We do
not consider generic synsets such as artifact
or item.

Regarding equivW2V , it computes the cosine
similarity between the vectors representing the
two tokens:

equivW2V (t1, t2) = cos
(
W2V (t1), W2V (t2)

)
,

where W2V (t) is the vector representing the word
embedding for the token t. If the token is com-
posed by more than one word, their vectors are
added before computing the cosine similarity. For
example, self-driving car and autonomous car ob-
tain a cosine similarity of 0.53 (showing a de-
gree of similarity, resulting from multiple-word to-
kens), while brainstorming and telescope result in
a score of 0.04, which means the tokens are not re-
lated. Note that the scores are rounded to 0 if they
are negative.

6https://code.google.com/archive/p/
word2vec/

4.2 Combining the equivalence functions

We started by applying the equiv(t1, t2) to the
trial set. Table 3 shows some results for this
experience. As one can see, in certain cases it
would be better to use equivWN , and in others the
equivW2V function.

Just these few examples show how hard it is to
combine these functions. Although we did not
expect to accomplish relevant results with such
approach, we decided to train a linear regression
model in Weka (Hall et al., 2009) with the (very
small) provided example set.

The final result obtained was C1 = 5.0381 ×
equivw2v + 0.6355, which only uses one of the
functions. We used this equation in one of our
runs, RunW2V, with a modified version: C ′ =
min(C1, 4).

Believing equivWN had potential to be im-
portant in certain cases, we manually designed a
weighed function to combine both functions. The
threshold was decided by analyzing the trial set
only. We ended up with the following decision
function:

C2 =

{
equivWN × 4 if equivW2V < 0.12
C ′ otherwise.
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The idea behind it is the following: when
equivW2V is below a threshold (set to 0.12), we
use equivWN . Then either equivWN does not find
a relation as well (and probably has a value of 0.0),
or it finds one and it is probably correct (see sun-
set/string in Table 3). This led to our second run,
RunMix.

4.3 Results

Results for the task are presented in Table 4, with
our runs in bold as submitted (run1 is RunW2V
and run2 is RunMix). Both our runs attain a
similar score, which is somehow surprising given
how differently the scores were calculated. We
placed at the middle of the table, although only
a few points short from the 5th best ranked run - a
difference of less than 0.04 on both Pearson and fi-
nal score. This ends up being an interesting result,
based on how simple our approach was, and the
lack of data to properly learn a function to com-
bine our equiv functions.

5 Conclusions and Future Work

In this paper we present our results on two tasks
of 2017 SemEval competition, “Semantic Textual
Similarity” and “Multilingual Word Similarity”.
The results obtained yielded competitive results,
although being outperformed by other approaches
in the official ranking.

For the “Semantic Textual Similarity” task, our
models performed similarly for multilingual data,
since most features are language independent, and
essentially rely on matching tokens among input
sentences. Therefore, our method is feasible for
all monolingual pairs.

We could not identify situations where the
SMATCH metric improved the results, although in
15 cases SMATCH based predictions were closer
to the gold standard, across all learning algo-
rithms.

Future work includes replacing the exact in-
stance matching in SMATCH with our word sim-
ilarity module, and using the SMATCH repre-
sentation in a structural learning method such as
Tree-LSTM (Tai et al., 2015), or in a more bal-
anced/weighed ensemble with the lexical features.

In what respects the “Multilingual Word Simi-
larity” task, we believe that our participation was
simple, but still effective. We used two semantic
resources (WordNet and Word2Vec), a weighting
function learned on a small trial set, and a hand-

crafted formula to combine the similarity scores
of our two functions, which makes it an approach
lacking ground. The results were still promising,
given the simplicity of our approach.

As future work, the word similarity module it-
self could be largely improved by automatically
learning a set of weights to combine the two func-
tions. For instance, the gold standard, now avail-
able, can be a useful tool for this task, as other
large datasets like Simlex-999 (Hill et al., 2014).
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Abstract

In this paper, we introduce an approach
to combining word embeddings and ma-
chine translation for multilingual seman-
tic word similarity, the task2 of SemEval-
2017. Thanks to the unsupervised translit-
eration model, our cross-lingual word em-
beddings encounter decreased sums of
OOVs. Our results are produced using
only monolingual Wikipedia corpora and
a limited amount of sentence-aligned data.
Although relatively little resources are uti-
lized, our system ranked 3rd in the mono-
lingual subtask and can be the 6th in the
cross-lingual subtask.

1 Introduction

With convenient word representation methods be-
ing proposed, word embeddings are successfully
utilized in state-of-the-art systems ranging from
text classification (Kim, 2014), opinion catego-
rization (Enrı́quez et al., 2016), machine transla-
tion (Zou et al., 2013), to stock price prediction
(Peng and Jiang, 2016) and so on.

In earlier studies, the latent semantic analysis
(LSA) was introduced by Deerwester (1990). It is
called topic model because terms are represented
as the vectors of topics and was popularized by
Landauer (1997). In 2003, researchers developed
the topic model based on latent Dirichlet alloca-
tion(LDA) (Blei et al., 2003). LDA did not widely
spread until the Gibbs sampling was applied to the
on-line training of LDA (Hoffman et al., 2010).
Another traditional distributional method, point-
wise mutual information metric was proposed by
Turney and Pental (2010). Recently, fast dis-
tributed embeddings like (Mikolov et al., 2013c)
and GloVe (Pennington et al., 2014) are based on
the assumption that the meaning of a word de-

pends on its context. As Levy et al. (2015) pointed
out, there is no significant performance difference
between them.

For cross-lingual word representation, there
are generally four categories: Monolingual map-
ping (Mikolov et al., 2013b), pseudo-cross-lingual
training (Gouws and Søgaard, 2015), cross-lingual
training (Hermann and Blunsom, 2014) and joint
optimization (Coulmance et al., 2015). As pre-
sented in (Mogadala and Rettinger, 2016) , the
joint optimization method represents the state-of-
the-art level in cross-lingual text classification and
translation. These methods train embeddings both
on monolingual and parallel corpora by jointly op-
timizing the losses. However, they are rarely used
in word similarity due to the unsatisfying perfor-
mance.

In this task, we adopt different strategies for
the two subtasks. We use word2vec for subtask1,
monolingual word similarity. For the subtask2,
cross-lingual word similarity, we use jointly op-
timized cross-lingual word representation in ad-
dition to transliteration model. We build a cross-
lingual word embedding system and a special ma-
chine translation system. Our approach has the
following characteristics:

• Fast and efficient. Both word2vec and the
cross-lingual word embeddgings tool have
impressive speed (Coulmance et al., 2015)
and not need expensive annotated word-
aligned data.

• Decreasing OOVs. Our translation system is
featured by its transliteration model that deal
with OOVs outside the parallel corpus.

We constructed a naive system and did not try
out the parameters for embeddings and translation
models in limited time.
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2 Our Approach

We use skip-gram word embeddings directly for
monolingual subtask. For cross-lingual subtask,
we use English as pivot language and train multi-
lingual word embeddings using monolingual cor-
pora and sentence-aligned parallel data. A trans-
lation model is also trained by our statistical ma-
chine translation system. Subsequently, we trans-
late the words in the test set into English and look
up their word embeddings. For those out of En-
glish word embeddings, we check them from orig-
inal language word embeddings.

2.1 Word Embeddings
For monolingual task, we choose word2vec to
generate our word representations for robustness
reason. Mikolov (2013c) modeled input word em-
beddings w⃗ as the weights from the input layer to
the projection layer and its output vector w⃗o as
weights from the projection layer to the one-hot
output layer.

Skip-gram Model. The skip-gram model as-
sumes that P (w|c) = σ(w⃗ · c⃗), with c as the em-
bedding of context. Then minimize the loss func-
tion which is simplified as:

J =
∑
s∈C

∑
w∈s

∑
c∈s[w−l:w+l]

− log σ(w⃗ · c⃗) (1)

where C is the sentence set of training corpus, s
means a sentence and l is the window length. σ
is the sigmoid function. Negative sampling is ig-
nored in the equation for simplification.

Trans-gram Model. With skip-gram model
introduced, we now extend it to the trans-gram
model (Coulmance et al., 2015) for cross-lingual
task. For sentence aligned data As,t, where s is
the source language and t is the target language,
we consider the whole sentence st as the context
of each word ws in sentence ss. The loss for the
source language is written as:

Js,t =
∑

ss∈Cs

∑
ws∈ss

∑
ct∈st

− log σ(w⃗s · c⃗t) (2)

The skip-gram model also adopts the negative
sampling.

The skip-gram model is famous for its effi-
ciency (Mikolov et al., 2013a). The trans-gram
model is of the same computational complexity,
thus has the same speed. Although the cross-
lingual embeddings can be trained fast, their per-
formance on word similarity task is unsatisfying

Figure 1: Framework of our translation system.

(0.493 of correlation) with word aligned data (Lu-
ong et al., 2015). So we turn to machine trans-
lation for steady performance with assistance of
these word embeddings.

2.2 Machine Translation System

We constructed a phrase-based statistical machine
translation (SMT) system with the transliteration
model (TM) (Durrani et al., 2014). Our SMT sys-
tem is illustrated in Figure 1. Like most of the
phrased-based machine translation model, our sys-
tem follow the steps which are shallow gray in the
diagram. First we use GIZA++ (Och and Ney,
2003) as our aligner to align words and get lexical
translation table. Then phrases are extracted and
we estimate their translation scores directly and
inversely by refining the word alignments heuristi-
cally. Subsequently, a distance-based bidirectional
reordering model conditioned on both source and
target language is built to arrange the word orders.
For more details, please see (Koehn et al., 2003).
Since our SMT system is a discriminative model,
after all the features are captured, their weights are
tuned using minimum error rate training (MERT)
(Och, 2003). We choose KenLM (Heafield et al.,
2013) as our language model and a stack decoder
(Zens and Ney, 2008) with beam search for our
system.

Transliteration model. Since the parallel cor-
pus is of small size and the coverage of words is
very limited, we apply a transliteration model to
translate the OOVs. It models the character re-
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lationships between words and generate words at
the character level. For the word alignments with
character relationship, consider a word pair (e, f),
the transliteration model is defined as:

ptr(e, f) =
∑

a∈Align(e,f)

|a|∏
j=1

p(qj) (3)

where Align(e, f)is the set of possible charac-
ter alignment sequence, a is one of the alignment
sequences, qj is one alignment. For word pairs
without character relation, it is modeled by multi-
plying source and target character unigram mod-
els. The whole model is defined as the combina-
tion of transliteration and non-transliteration sub-
model, where λ is the prior probability of non-
transliteration:

pntr(e, f) =
|e|∏
i=1

pE(ei)
|f |∏
j=1

pF (fi) (4)

p(e, f) = (1 − λ)ptr(e, f) + λpntr(e, f) (5)

The transliteration model learns the character
alignment using expectation maximization (EM)
over the character pairs. λ is computed in the tun-
ing stage of the whole system.

3 Experiments

3.1 Implementation
Word representations based on different corpus
may have a significant gap on the performance.
Larger corpus typically generate better word em-
beddings. But we only use the shared corpus for
comparison.

Data. We use the benchmark monolingual
Wikipedia and Europarl copora in the task de-
scription (Camacho-Collados et al., 2017) as our
data. Especially, we only utilize the EN-DE, EN-
ES, EN-it, EN-FA parallel data for translation and
cross-lingual embedding training, where EN: En-
glish, DE: German, FA: Farsi, ES: Spanish, IT:
Italian.

Preprocessing. For Wikipedia data, we first fil-
ter out the stop words using the list from RANKS
NL1. Then we clean up digits and normalize the
marks. Empty lines and web tags are deleted fur-
ther. For parallel data, we just filter out the stop
words and normalize the marks. Parallel data are
split with 99% as training set and 1% as develop
set for tuning in translation system.

1http://www.ranks.nl/stopwords

similarity score. We use the cosine distance of
two embeddings as the similarity score of a word
pair. Its range is [-1,1].

3.2 Monolingual Experiments

We conduct an experiment on English word em-
beddings to see the performance of our vectors.
We use phrasing and positional context when
training. The phrasing is to extract phrased based
on co-occurence and the threshold is 400. Po-
sitional context treats the same word in differ-
ent position as different words. Our monolin-
gual embeddings are trained with 500 dimen-
sion, 5 iterations, 15 negative samples, win=5
and mincount=10. We use similary part of
WordSim353 (Agirre et al., 2009), MEN (Bruni
et al., 2012) , M.Turk (Radinsky et al., 2011),
Rare Words (Luong et al., 2013) and SimLex (Hill
et al.) as test sets, which contain 203, 3000, 287,
2034 and 999 word pairs respectively. The results
of our embeddings and in (Levy et al., 2015) of the
same window size without phrasing and positional
context are listed in Table 1.

The performance of the submitted systems (ex-
tra resources are used) including ours (in bold) and
RUFINO (the other system uses the same corpus)
on all languages are listed in Table 2.

3.3 Cross-lingual Experiments

In the cross-lingual word similarity subtask each
word pair is composed by words in different lan-
guages. This subtask consists of ten cross-lingual
word similarity datasets: EN-DE, EN-ES, EN-FA,
EN-IT, DE-ES, DE-FA, DE-IT, ES-FA, ES-IT, and
FA-IT. We define the OOVs as the words that can
either be found in parallel data or word embed-
dings. In this subtask, due to the limited amount of
parallel data, OOVs occupy a large proportion in
the test sets. We show the statistics of OOVs in test
sets before, after transliteration model and their fi-
nal counts after looking up cross-lingual word em-
beddings in Table 3.

In subtask 2, for the sake of limited time, we
did not use phrasing and positional context like
in subtask1. For phrases in test sets, we sum up
the vectors of all word in the phrase as its em-
bedding. The results of random embeddings that
equal to random guess without any semantics, cor-
rect results of our system and the top system (Lu-
minoso2) are listed in Table 4.
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WordSim353s MEN M.Turk RareWords SimLex
correlation sp pr sp pr sp pr sp pr sp pr

our embeddings .814 .800 .769 .756 .650 .684 .444 .416 .436 .435
(Levy et al., 2015) .772 - .772 - .663 - .454 - .403 -

Table 1: Performance of English word embeddings on different test sets. sp is short for Spearman
correlation, pr is short for Pearson correlation.

EN DE IT FA ES
Luminoso2 .789 .700 .741 .503 .743
Luminoso1 .788 .693 .738 .501 .740

HCCL .687 .594 .651 .436 .701
NASARI .682 .514 .596 .405 .600
RUFINO1 .656 .539 .476 .360 .549

... ...
hjpwhuer .0 .024 .048 .0 .0

Table 2: Results on subtask1.

before TM after TM final
EN-DE 117 85 -27.4% 31
EN-ES 71 46 -35.2% 11
EN-IT 72 51 -29.2% 11
EN-FA 120 68 -43.3% 27
DE-ES 166 11 -33.1% 31
DE-IT 156 110 -29.5% 27
DE-FA 190 124 -34.7% 27
ES-IT 119 80 -32.8% 8
ES-FA 153 88 -42.5% 23
IT-FA 155 96 -38.1% 25

Table 3: Counts of OOVs after each steps.

random HCCL Luminoso2
EN-DE .083 .484 .763
EN-ES .022 .554 .761
EN-IT .040 .427 .776
EN-FA .074 .493 .598
DE-ES .031 .408 .728
DE-IT .035 .303 .741
DE-FA .056 .361 .567
ES-IT .039 .350 .753
ES-FA .034 .420 .627
IT-FA .014 .303 .604

GLOBAL .053 .464 .754

Table 4: Results on subtask2.

4 Results

Compared with the results in (Levy et al., 2015),
our embeddings have an improvement of 4.2% on
WordSim353s and 3.3% on SimLex while have a
slight decline of 0.3% on MEN, 1.3% on M.Turk
and 1.0% on RareWords. Thus phrasing and posi-
tional context fail to benefit word embeddings on
some test sets. It is also concluded that the embed-
dings we trained are comparable.

Table 2 shows that our system is ranked 3rd and
behave steadily better than RUFINO for subtask1.
With phrasing and positional context, Word2vec
can achieve satisfying performance.

As we can see in Table 3, up to 43.3% of OOVs
are significantly reduced , which are generated at
the character level with transliteration model and
proved to be real words. It is revealed that our
transliteration model can saliently reduce OOVs.

Our cross-lingual system was ranked 8th in offi-
cial results because of using mismatched data. We
rerun our model using the correct data and our true
results (will be mentioned in task description pa-
per) listed in Table 4 can rank the 6th. It can be
seen that our results for subtask2 are much bet-
ter than that of the random embeddings, which is
equal to guess blindly. However, the gap between
the best system and ours is significant. Not enough
parallel data and training epochs for non-English
embeddings may account for this.

5 Conclusion

For mono-lingual subtask, we train word2vec
based word embeddings with positional context
and phrasing. For cross-lingual subtask, we built a
cross-lingual word representation model and sta-
tistical machine translation system with an unsu-
pervised transliteration model, which can greatly
translate OOVs. We are the only team that uses the
benchmark corpus and achieve good performance
on both subtasks. But in global ranking for open
resources, there is much space for improvement,
i.e. using more iterations, resources and advanced
models.
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Abstract

This article describes the distributional
strategy submitted by the Citius team
to the SemEval 2017 Task 2. Even
though the team participated in two sub-
tasks, namely monolingual and cross-
lingual word similarity, the article is
mainly focused on the cross-lingual sub-
task. Our method uses comparable cor-
pora and syntactic dependencies to extract
count-based and transparent bilingual dis-
tributional contexts. The evaluation of
the results show that our method is com-
petitive with other cross-lingual strategies,
even those using aligned and parallel texts.

1 Introduction

A comparable corpus consists of documents in two
or more languages or varieties which are not trans-
lation of each other and deal with similar top-
ics. Comparable corpora are by definition mul-
tilingual and cross-lingual text collections. The
use of comparable corpora for word similarity is
a well-known task (Fung and McKeown, 1997;
Rapp, 1999; Saralegi et al., 2008; Gamallo, 2007;
Gamallo and Pichel, 2008; Ansari et al., 2014;
Hazem and Morin, 2014). The main advantage of
comparable corpora is that the Web can be used
as a huge resource of multilingual texts. In con-
trast, their main drawback is the low performance
of the extraction systems based on them. Accord-
ing to (Nakagawa, 2001), word similarity extrac-
tion from comparable corpora is a too difficult
and ambitious objective, and much more complex
than extraction from parallel and aligned corpora.
However, the reasonable results our comparable-
corpus method achieved in the cross-lingual sub-
task of SemEval 2017 Task 2 (Camacho-Collados
et al., 2017) show that the gap between paral-

lel and comparable corpora for word similarity
is shortening. In this article, we describe our
comparable-corpus method for cross-lingual sim-
ilarity in the next section (2).Then Section 3 de-
scribes the experiments and the evaluation and, fi-
nally, a discusion is addressed in Section 4.

2 The Cross-Lingual Strategy

The best known strategy to extract bilingual cor-
respondences from comparable corpora works as
follows: a word w2 in the target language is se-
mantically related to w1 in the source language if
the context expressions with which w2 co-occurs
tend to be translations of the context expressions
with which w1 co-occurs. The basis of the method
is to find the target words that have the most sim-
ilar distributions with a given source word. The
starting point of this strategy is a seed list of bilin-
gual expressions that are used to build the context
vectors defining all words in both languages. This
seed list is usually provided by an external bilin-
gual dictionary. In our approach, the seed expres-
sions used as cross-language pivot contexts are not
bilingual pairs of words as in related work, but
bilingual pairs of lexico-syntactic contexts.

The process of building a list of seed bilingual
lexico-syntactic contexts consists of two steps:
first, we generate a large list of bilingual corre-
lations between lexico-syntactic patterns using an
external bilingual dictionary, syntactic parsing and
syntactic-based transfer rules. Second, this list is
reduced by filtering out those pairs of patterns that
do not occur in the comparable corpus. We also
remove those that are sparse or unbalanced in the
corpus. It results in a list of seed bilingual con-
texts.

To take an example, let us suppose that an
English-Spanish dictionary translates the noun im-
port into the Spanish counterpart importación. To
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English Spanish
(import, of|to|in|for|by|with, N) (importación, de|a|en|para|por|con, N)
(N, of|to|in|for|by|with, import) (N, de|a|en|para|por|con, importación)
(V, obj, import) (V, obj, importación)
(V, subj, import) (V, subj, importación)
(V, of|to|in|for|by|with, import) (V, de|a|en|para|por|con, importación)
(import, mod, A) (importación, mod, A)

Table 1: Bilingual correlations between lexico-syntactic patterns generated from the translation pair:
import-importación. A patterns is a dependency triple (head, relation, dependent). The head and depen-
dent can be lexical units (e.g. import) or Part-of-Speech tags (e.g. N, V, A)

generate bilingual pairs of lexico-syntactic pat-
terns from these two nouns, we follow basic trans-
fer rules such as: (1) if import is the subject of a
verb, then its Spanish equivalent, importación, is
also the subject; (2) if import is modified by an ad-
jective at the left position, then its Spanish equiv-
alent is modified by an adjective at the right posi-
tion; (3) if import is restricted by a prepositional
complement headed by the preposition in, then its
Spanish counterpart is restricted by a prepositional
complement headed by the preposition en. The
third rule needs a closed list of English preposi-
tions and their more usual Spanish translations.
For each entry (noun, verb, or adjective), we only
generated a subset of all possible patterns. No-
tice that prepositions are encoded not as lexical
units, but as syntactic dependencies. Table 1 de-
picts the bilingual pairs of patterns generated from
the bilingual word pair import-importación and a
restricted set of rules.

Finally, the comparable corpus allows us to fil-
ter out missing and sparse patterns, for instance:
(import, with, N/importación, con,N). The
resulting bilingual lexico-syntactic patterns are
used as distributional contexts to build the vector
space.

The distributional vector space we have adopted
is a transparent count-based model with explicit
and sparse dimensions. Sparseness reduction is
performed by selecting the most relevant contexts
per word using a filtering strategy (Bordag, 2008;
Gamallo and Bordag, 2011; Gamallo, 2016). The
filtering strategy to select the most relevant con-
texts consists in selecting, for each word, the R
(relevant) contexts with highest lexical association
scores and computed with loglikelihood measure
(Dunning, 1993). The top R contexts are consid-
ered to be the most relevant and informative for
each word. R is a global, arbitrarily defined con-
stant whose usual values range from 10 to 1000
(Biemann et al., 2013; Padró et al., 2014). In short,

we keep at most the R most relevant contexts for
each target word. This is an explicit and transpar-
ent representation giving rise to a non-zero matrix.
Methods based on dimensionality reduction and
embeddings, by contrast, make the vector space
more compact with dimensions that are not trans-
parent in linguistic terms (Gamallo, 2016).

3 Experiments

3.1 Data and Tools

We have participated at the cross-lingual word
similarity subtask of SemEval 2017 Task 2
(Camacho-Collados et al., 2017), where each
word pair is composed by ten cross-lingual
word similarity datasets (Camacho-Collados et al.,
2015). More precisely, we sent two differ-
ent runs to be evaluated against the English-
Spanish dataset. In this subtask, we used as
comparable corpora the English and Spanish tok-
enized Wikipedia dumps in text format, which are
available at https://sites.google.com/
site/rmyeid/projects/polyglot. The
difference between the two runs (Citius run1 and
Citius run2) we have submitted is in the training
corpus. While Citius run1 is only trained with
the two above mentioned Wikipedias, Citius run2
uses additional text created with BootCat (Baroni
et al., 2006) and seed words that do not occur in
the two Wikipedias.

To process the corpus, we used the multilingual
PoS tagger of LinguaKit1 (Garcia and Gamallo,
2015) and DepPattern, a rule-based and multilin-
gual dependency parser (Gamallo and González,
2011; Gamallo, 2015). Named entities were
identified with the NER module provided by
LinguaKit while multi-words were extracted by
means of an ad-hoc procedure that just selects
those appearing in the test dataset.

1https://github.com/citiususc/
Linguakit
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TeamName Pear. Spear. Final
Luminoso run2 0.75 0.772 0.761
Luminoso run1 0.748 0.772 0.76
NASARI(baseline) 0.636 0.63 0.633
OoO run1 0.579 0.59 0.584
Citius run1& 0.565 0.589 0.577
Citius run2 0.556 0.576 0.566
SEW run1 0.495 0.514 0.505
RUFINO run1& 0.339 0.341 0.34
RUFINO run2& 0.342 0.333 0.337
UniBuc-Sem run1* 0.084 0.096 0.09
HCCL run1* 0.101 0.077 0.087
hjpwhu run2 0.043 0.041 0.042
hjpwhu run1 0.043 0.041 0.042
HCCL run1* 0.04 0.04 0.04

Table 2: Results for the cross-lingual English-
Spanish task.

To build the distributional models, target words
appearing less than 100 times were filtered out.
Similarly, bilingual contexts with frequency less
than 50 were removed. The English-Spanish dic-
tionary used to select the seed contexts required
by the acquisition algorithm contains 10,828 en-
tries, which is the lexical resource integrated in
Apertium, an open source machine translation sys-
tem2. Then, for each word, we selected the 500
most relevant contexts. The final model resulted
in a bilingual non-zero matrix of about 440k tar-
get words and over 208k different dependency-
based contexts. In total we built a non-zero ma-
trix with about 100 billion word-context pairs,
which is a relatively easy-to-handle matrix, and
even smaller in size than an equivalent dense
matrix with 440k words and 500 dimensions.
This is the the co-occurrence matrix used by
Citius run1. A version of the system is pub-
licly available at http://gramatica.usc.
es/˜gamallo/prototypes.htm. A second
matrix (used by Citius run2) was built by search-
ing for new occurrences with BootCat for those
test words that were filtered out from the previous
co-occurrence matrix.

3.2 Results

Table 2 shows the results for the English-Spanish
dataset. Citius run1 is the 5th best system (out of
14). However, if we only consider the runs using

2https://sourceforge.net/projects/
apertium/

a comparable-based strategy with the Wikipedia
dumps (marked with “&” in the table), Citius run1
is the first out of three, leading by 23 points
the second one. It is also noticeable that our
comparable-corpus strategy is in a competitive po-
sition with other methods based on aligned and
parallel corpora, which are most of systems par-
ticipating at the subtask.

We also participated at the monolingual word
similarity task for English and Spanish by making
use of the same distributional vector space we have
adopted for the cross-lingual task and reported in
Gamallo (2016). The results we obtained are rea-
sonable for the two languages, in particular if we
only consider the Spearman correlation. Accord-
ing to this measure, Citius run2 is the 4th best run
in English (out of 23), and is also the 4th best sys-
tem in Spanish (out of 11).

4 Discussion

We have reached interesting results by making
use of a traditional and transparent distributional
model instead of dense and embedding represen-
tations. Besides, in the cross-lingual task, we have
built the models with non-parallel corpora instead
of using aligned and parallel texts. However, our
method is language dependent since it requires
syntactic information and specific language pro-
cessing. Finally, we must also point out that the
test dataset is not well suited to the characteris-
tics of our syntax-based strategy. The test dataset
includes semantically related word pairs that are
not functionally equivalents, such as for instance
globalism / visa or nepotism / king in the En-
glish pairs. Even if globalism is semantically re-
lated to visa, they occur in different syntactic po-
sitions with different syntactic functions. Mod-
els without syntactic contexts (i.e. bag-of-words
models) tend to perform well in tasks oriented to
identify semantic relatedness and analogies (Levy
and Goldberg, 2014; Gamallo, 2016). By con-
trast, syntax-based methods, as the one we have
proposed, tend to outperform bag-of-words tech-
niques when the objective is to compute seman-
tic similarity between functional (or paradigmatic)
equivalent words, such as detection of synonym,
co-hyponym or hypernym word relations (Padó
and Lapata, 2007; Peirsman et al., 2007; Gamallo,
2009).
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Abstract

We have built a simple corpus-based sy-
stem to estimate words similarity in mul-
tiple languages with a count-based appro-
ach. After training on Wikipedia corpora,
our system was evaluated on the multi-
lingual subtask of SemEval-2017 Task 2
and achieved a good level of performance,
despite its great simplicity. Our results
tend to demonstrate the power of the dis-
tributional approach in semantic similarity
tasks, even without knowledge of the un-
derlying language. We also show that di-
mensionality reduction has a considerable
impact on the results.

1 Introduction

Despite the crucial importance of semantic simila-
rity in NLP, the vast majority of experiments have
been conducted on the English language, which
raises the question whether the developed approa-
ches can be generalized.

SemEval-2017 Task 2 provides us with a fra-
mework for evaluating semantic representations in
multiple languages and compare them. We focus
here on the multilingual subtask, which consists
of five monolingual word similarity datasets.

Our submission is based on the well known sta-
tistical approach which uses bag-of-contexts re-
presentation of words in a vector space model.
We run two versions of our system, the first one
using a direct sparse representation and the se-
cond one with compressed dense representation
(detailed below). This second version was evalua-
ted after the official evaluation deadline, and pro-
duced superior results as will appear below.

We briefly describe the multilingual subtask in
section 2. Next, in section 3, we detail our sy-
stem and its parameters. The results are presented

and analyzed in section 4, and then we conclude
in section 5.

2 Task description

Camacho-Collados et al. (2017) describes the task
as follows:

Given a pair of words, the task is
to automatically measure their seman-
tic similarity. All pairs in our datasets
are scored according to a [0-4] simila-
rity scale, where 4 denotes that the two
words are synonymous and 0 indicates
that they are completely dissimilar.

Multilingual word similarity This
subtask provides five monolingual word
similarity datasets in English, German,
Italian, Spanish and Farsi. The sub-
task is intended to test not only mono-
lingual approaches but also multilingual
and language-independent techniques.

The individual score of the systems is defined
by the authors as the harmonic mean of Pearson
and Spearman correlations on the corresponding
dataset. However, as our analysis lead us to take
into account the separate behavior of both measu-
res, we did not focus here on the final score.

3 Our system

Our system is corpus-based only, and uses a few
well known ideas from the distributional approach
in word semantic similarity.

3.1 The training corpus
We have used the Wikipedia corpus taken from
https://sites.google.com/site/rmyeid/

projects/polyglot as recommended by the
authors of the task in order to compare fairly with
other corpus-based systems.
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Some properties of these corpora are given in
Table 1. It should be noted that no preprocessing
was made on the corpora documents.

Table 1: Statistics of the Wikipedia corpora
size lines words uniques

en 8.7G 70.9M 1 392M 5.3M
de 3.5G 32.2M 482M 5.7M
it 1.8G 11.9M 265M 1.9M
es 2.1G 14.8M 338M 2.3M

3.2 Language model
Our model is count-based, and we have used the
same parameters for all languages.

First, we counted occurrences of alphabetic
words in each corpus (barring words with non alp-
habetic characters), and kept the 100,000 most fre-
quent for context words and the 300,000 most fre-
quent as vocabulary. These arbitrary limits are jus-
tified by physical constraints of memory and time.

Contexts
The context we use for a given word wi is defined
as wi−L, . . . , wi−1, wi+1, . . . , wi+L. In this work
we use a context length L = 4.

For each context word wi−k we apply a weight
of 1

k to give a stronger influence to nearest words
in the context.

Then we built a word-context matrix by sum-
ming the weighted context occurrences for each
word in the vocabulary.

PPMI
Pointwise Mutual Information (PMI) introduced
by Ward Church and Hanks (1989) is one of the
popular ways to measure the semantic association
between words and their textual context as defined
above, and can be easily estimated from the word-
context matrix M , as:

PMI(wi, cj) = log
Mij

∑
k

∑
n Mkn∑

k Mik
∑

n Mnj

Bullinaria and Levy (2007) argue that the Posi-
tive PMI (PPMI) outperforms the other variants of
PMI for semantic similarity tasks.

PPMI(w, c) = max (0, PMI(w, c))

Vector compression
A common approach inspired by Latent Semantic
Analysis (Deerwester et al., 1990) is to use trunca-
ted singular value decomposition (SVD) to reduce

the vector dimensionality. The SVD factorization
of the PPMI matrix is MPPMI = U · Σ · V >, and
can be truncated to the first d components.

In our experiments, we have used the symme-
tric variant proposed by Levy et al. (2015) using
only the Ud matrix for representing word vectors,
and we chose d = 500. Randomized SVD (Halko
et al., 2009) from Scikit-learn was used to produce
the matrix decomposition.

3.3 Evaluating word pairs similarity
Basically, we have used the cosine similarity to
compare the word vectors.

Multi-word expressions
While some special features of the present task
(such as domain-specific terms and named enti-
ties) do not necessarily require a special adapta-
tion, multi-word expressions cannot be compared
directly with single-word vectors. For this rea-
son, we simply sum the vectors of every word in
a multi-word expression to give the corresponding
vector estimation.

See in section 4.3 a discussion about the results
of this method.

Out of vocabulary words
Some words of the test dataset do not appear in
our vocabulary, and we choose to give the me-
dian value .5 to the similarity of pairs including
one or more out of vocabulary (OOV) words. Ta-
ble 2 shows the numbers of such pairs for each
language.

Table 2: pairs with OOV words
pairs %

en 21 4.2
de 68 13.6
it 24 4.8
es 17 3.4

A closer look shows that some words (such as
“Brexit” or “DeepMind”) were missed because
they appeared too recently to be in our corpus, ot-
hers because they contain non-alphabetic charac-
ters (like apostrophes or dashes), and the main part
because they were not frequent enough to have
been retained in our vocabulary.

The fact that the German language presents a
higher OOV rate is not surprising, due to the mor-
phological richness of this language. This can
be improved by using a larger vocabulary and/or
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using morphological approaches such as Boja-
nowski et al. (2016).

4 Results

We report the results obtained with our system
(Jmp8) on four different languages in Table 3 and
Table 4. Note that, due to a bug correction, the data
is not exactly the same as in the official evaluation,
though the magnitudes are similar. Moreover, the
results of our second version have not been sub-
mitted for the challenge due to lack of time.

Luminoso is the best performer on this subtask,
and HCCL is, to our knowledge, the best system
which is corpus based and uses the shared trai-
ning corpora. NASARI (Camacho-Collados et al.,
2016) is the baseline proposed by the authors of
the task.

Table 3: Pearson correlation
en de it es

Luminoso 0.783 0.7 0.728 0.732
HCCL 0.675 0.576 0.635 0.688
Jmp8-1 0.516 0.286 0.436 0.455
Jmp8-2 0.687 0.578 0.652 0.685
NASARI 0.683 0.513 0.597 0.602

Table 4: Spearman correlation
en de it es

Luminoso 0.795 0.7 0.754 0.754
HCCL 0.7 0.614 0.668 0.715
Jmp8-1 0.652 0.502 0.635 0.643
Jmp8-2 0.731 0.604 0.695 0.727
NASARI 0.681 0.514 0.594 0.597

4.1 Comparison of both Jmp8 versions

Jmp8-1 simply uses the PPMI matrix to compute
similarities with sparse vectors of 100,000 com-
ponents, while the second version, Jmp8-2, is ba-
sed on a truncated SVD matrix which represents
words as dense vectors of 500 components.

It turns out that Jmp8-1 produces a very im-
portant difference between Pearson and Spearman
correlations, while Jmp8-2 provides more consis-
tent results, and also better ones. In fact, Jmp8-2
outperforms NASARI in all cases, and achieves
similar performance to HCCL.

Interpretation

The important difference between both Jmp8 ver-
sions is explained by the fact that Jmp8-1 presents
a non-linear relationship with the gold standard, as
depicted in Figure 1.

Figure 1: Comparison of both versions (en)
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4.2 Language independence

These results suggest that our method (especially
the second version) generalizes well for different
languages, even if there are differences.

Our interpretation is that the English language
is favored because its corpus is the biggest; Ita-
lian and Spanish results indicate that our appro-
ach remains interesting even with a much smal-
ler corpus. The results are significantly lower for
the German language despite the size of its corpus
(this is true for all methods mentioned here), pre-
sumably because there are many out of vocabulary
words.

This is supported by the fact that we found the
correlations to be much higher (comparable to Ita-
lian and Spanish values), if, instead of using .5 me-
dian value for OOV pairs, we simply deleted these
pairs from the dataset.

With SVD approach, these deletions improved
correlations by about 20% (p = 0.65 and s =
0.67) for German and by less than 3% for other
languages. Note that these numbers should be ta-
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ken with caution because missing data can intro-
duce bias.

4.3 Multi-word influence

To show the effect of the number of words in ex-
pressions on global performances, we calculated
and plotted for each language the correlation with
the gold standard separately for each number of
words by expression (Figure 2). The size of the ci-
rcles indicates the amount of pairs in each group.

For multiple reasons, it is somewhat difficult
to analyze the influence of multi-word expressi-
ons on the overall performance. However, as one
can expect, our simplistic method appears to de-
grade performance when the number of words in
expressions increases. It is rather surprising that
our results are still quite good despite this nega-
tive influence, but this should be mitigated by the
number of pairs involved.

Figure 2: Multi-word influence in a pair (Jmp8-2)
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Another approach such as phrasing (Mikolov
et al., 2013) can be applied as well to address this
issue.

4.4 Comparison with WordSim-353 dataset

Leviant and Reichart (2015) has translated the
WordSim-353 dataset into several languages 1,
and we have tested our system with the similarity
subset (Agirre et al., 2009), which contains 201
pairs of words. It should be noted that WS353 uses
single words only, and we have very few OOV

1http://technion.ac.il/~ira.leviant/
Multilingual_SimLex_Wordsim.html

words (0 in English, 4 in German and 1 in Italian).
Table 5 shows our results.

Table 5: Correlations on WS353-sim dataset
en de it

Jmp8-1
P 0.608 0.461 0.447
S 0.667 0.547 0.592

Jmp8-2
P 0.722 0.654 0.600
S 0.737 0.676 0.602

The gap between Pearson and Spearman corre-
lations is still present for Jmp8-1, confirming that
sparse vectors do not perform well in semantic si-
milarity tasks.

Another interesting point is that the correlations
for the German language are significantly higher
than for the present task, which can be explained
by the lower OOV rate in this dataset, as discussed
above (section 4.2).

Surprisingly, contrary to the results of the pre-
sent task, Italian results are significantly lower
than for the other languages, though less so than
were German results in the present task. We have
not yet found a good explanation for this, as it is
clear that OOV words are out of the picture.

5 Conclusion

We have shown that it is possible to achieve a good
level of performance in multilingual word seman-
tic similarity task with a rather simple but genera-
list approach.

While one should take these results with cau-
tion, some important conclusions can be drawn
from our work. First, it is confirmed that the raw
sparse PPMI representation is less adapted to simi-
larity measure than the compressed dense SVD re-
presentation. Second, a specific approach needs to
be developed to address multi-word expressions,
although the vector addition seems to work mode-
rately well for 2-words. And last, we have seen
that OOV pairs can be problematic for a systema-
tic comparison between systems and/or languages.

The ability of our method to handle multiple
languages seems good, but needs further investi-
gation in those directions with more extensive test
sets in order to yield a refined analysis.

Finally, we are considering the combination
of this method with other approaches, both from
word embeddings methods and from supervised
techniques.
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Abstract 

This paper shows the details of our system 

submissions in the task 2 of SemEval 

2017. We take part in the subtask 1 of this 

task, which is an English monolingual sub-

task. This task is designed to evaluate the 

semantic word similarity of two linguistic 

items. The results of runs are assessed by 

standard Pearson and Spearman correla-

tion, contrast with official gold standard 

set. The best performance of our runs is 

0.781 (Final). The techniques of our runs 

mainly make use of the word embeddings 

and the knowledge-based method. The re-

sults demonstrate that the combined meth-

od is effective for the computation of word 

similarity, while the word embeddings and 

the knowledge-based technique, respec-

tively, needs more deeply improvement in 

details. 

1 Introduction 

Semantic word similarity aims at measuring the 

extent to which two words are similar (Camacho-

Collados et al., 2017). Given two words, the runs 

in this competition should give a score which in-

dicates the similarity between them, and it will be 

evaluated by the official gold standard set. This 

task doesn’t offer any annotated corpus and the 

organizers encourage systems to utilize unlabeled 

corpus. With the development of word embed-

dings technique, more and more attentions are 

paid to it (Mikolov et al., 2013a; Mikolov et al., 

2013b). We also adopt the word embeddings  

________________________ 
*Corresponding author 

method in our runs. 

Besides the word embeddings method, another 

knowledge-based method is proposed by us, 

which is based on BabelNet (Navigli and 

Ponzetto, 2012). Integrating Wikipedia and 

WordNet, BabelNet is a multilingual encyclopedic 

and lexicographic knowledge base, which builds 

an enormous semantic network linking concepts 

and named entities with the aid of a large semantic 

relations.  

Based on the word embedding method and the 

knowledge-based method, a combined method is 

implemented, which achieves the best perfor-

mance. 

2 System Overview 

In the subtask 1 (English monolingual word simi-

larity) of this task, we have submitted two system 

runs, both of which are unsupervised. We mainly 

utilize the word embeddings method and the com-

bined method. 

The Figure 1 shows the framework of our sys-

tem runs. In the top part of the figure, word1 and 

word2 are the input of our systems. Run1 utilizes 

the word embeddings method. Run2 utilizes the 

combined method, which is based on the word 

embeddings and knowledge-based method. 

2.1 DataSet 

Test Set: In this task, we submit our runs on the 

English monolingual word similarity dataset, 

which includes 500 word pairs. These word pairs 
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may be concepts or named entities, which are tab-

separated. 

Gold Standard Set: This set is gold standard 

set, which is annotated by official annotators. 

Each line in this set is a similarity value according 

to the test set describe above in [0-4] rating scale. 

4 shows that the two words are very similar, i.e., 

synonyms; 3 means that the two words are similar, 

but have slightly different details; 2 represents that 

the two words are slightly similar, having a top-

ic/domain/function and ideas or related concepts 

in common; 1 shows that the two words are dis-

similar, which only having some small details in 

common. 0 means that the two words are totally 

dissimilar. 

2.2 Word Embeddings Method 

In this competition, we use the word2vec toolkit1 

to train word embeddings on the English Wikipe-

dia corpus2. Before training word embedding, we 

preprocess the text file of the corpus to change its 

character encoding form from Unicode to UTF-8, 

because it is the default set to run the word2vec 

toolkit. We set the training window size to 5 and 

default dimensions to 200, and choose the Skip-

gram model. After training on the corpus, 

word2vec toolkit generates a word embeddings 

file, in which each word in the Wikipedia corpus 

can be mapped to a word embedding of 200 di-

mensions. Each dimension of the word embedding 

is a double value.  

                                                      
1 https://code.google.com/p/word2vec/ 
2 https://sites.google.com/site/rmyeid/projects/polyglot 

Word Similarity: Mikolov has explained that 

the word embedding has semantic meaning  

(Mikolov et al., 2013a). Therefore, given two 

words, the semantic word similarity can be easily 

attained by the cosine of their word embeddings: 

𝑠𝑖𝑚𝑣𝑒𝑐(w1, 𝑤2) =
𝑉𝑒𝑐(𝑤1) 𝑉𝑒𝑐(𝑤2)

|𝑉𝑒𝑐(𝑤1)||𝑉𝑒𝑐(𝑤2)|
 ,            (1) 

where 𝑣𝑒𝑐(𝑤1) is the word embedding of word w1 

and, |𝑣𝑒𝑐(𝑤1)| and |𝑣𝑒𝑐(𝑤2)|  are the length of 

𝑣𝑒𝑐(𝑤1) and 𝑣𝑒𝑐(𝑤2), respectively. 

Phrase Similarity: As Mikolov has presented 

that phrase vector can be easily gotten by simple 

vector addition (Mikolov et al., 2013b), we can 

gain the phrase similarity between two phrases as 

follows: 

𝑠𝑖𝑚𝑣𝑒𝑐(𝑝1, 𝑝2) =
∑ 𝑣𝑒𝑐(𝑤𝑖)

|𝑝1|
𝑖=1

∑ 𝑣𝑒𝑐(𝑤𝑗)
|𝑝2|
𝑗=1

|∑ 𝑣𝑒𝑐(𝑤𝑖)
|𝑝1|
𝑖=1

||∑ 𝑣𝑒𝑐(𝑤𝑗)
|𝑝2|

𝑗=1
|
 ,       (2)                                                       

where |𝑝1| and |𝑝2| are the number of the words, 

which phrase p1 and p2 contain respectively. Word 

𝑤𝑖 represents the word, which belongs to p1. 

2.3 Knowledge-based Method 

Thanks to the BabelNet, which provides a large 

coverage of concepts and named entities connect-

ed in a large semantic relations, such as synony-

my, hypernymy and hyponymy, we can get the 

semantic relations between the two given words 

(each being a concept or named entity) by the 

BabelNet API3 . In order to easily compute the 

similarity of two words, we implement the follow-

ing algorithm. 

Algorithm 1:  
Input: word1, word2 

Output: the semantic similarity be-

tween word1 and word2 

Procedure: 

1: if word1(or word2) isn’t found 

2:   then sim = 0.5, return sim; 

3: if word1 and word2 are synset    

4:   then sim = 1.0; 

5: else{ 

6:   search their related words; 

7:   if the search steps step > γ 
8:     then sim = 0.0; 

9:   else{ 

10:    construct a graph; 

11:    get the shortest path path; 

12:    get the similarity sim; 

13:   } 

14: } 

15: return sim; 

                                                      
3 http://babelnet.org/download 

word1, word2

Word 
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Wikipedia BabelNet
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 Figure 1: The framework of our system runs. 
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Lines 1-2, we make the similarity of 0.5 ac-

cording to the official suggestion if the systems 

can’t cover the words in the evaluation data. Lines 

3-4, if the two items of input are synset, then we 

assign 1.0 as its similarity. Lines 5-6, if the two 

words do not have this relationship, the program 

will iteratively search the related synsets of word1 

and word2, respectively, until they have common 

related synset(s) or the search steps step beyond a 

set threshold γ beforehand. Due to the large cost 

of the subsequent graph computation, we simply 

set 10 steps as the maximum iterative steps (i.e., 

γ). Lines 7-8, If the steps step is beyond γ, we 

consider that it may cost more than 10 steps to get 

the common synset which connect them in the 

graph, or even not get anything. In other words, 

the two words may be weakly similar, then we 

just simply set 0.0 as their similarity. Lines 9-14, 

if the steps step do not reach the threshold γ, we 

begin to construct the graph with word1, word2 

and their related synset by means of JUNG 

toolkit 4  and then traverse the graph to get the 

Dijkstra shortest path path between the input 

word1 and word2. And we make the reciprocal of 

the path power of μ as their similarity sim:  

                     𝑠𝑖𝑚 =  1/(μ𝑝𝑎𝑡ℎ),                    (3) 

where path  is the Dijkstra shortest path described 

above, and μ is set to 1.4 manually, which is used 

to adjust the similarity sim to be in a proper range 

(see 2.1). At last (line 15), it return the similarity 

sim. 

2.4 Combined Method 

This method is directly generated by combining 

the two methods described above, i.e., the word 

embeddings method and the knowledge-based 

method. We make this method, in order to lever-

age the performance of the two methods. More 

specially, we use the following equation to get the 

final similarity. 

𝑠𝑖𝑚 𝑓𝑖𝑛𝑎𝑙 =  α ∗ 𝑠𝑖𝑚𝑣𝑒𝑐 + (1 − α) ∗ 𝑠𝑖𝑚𝑘𝑏  ,    (4)                                

where 𝑠𝑖𝑚 𝑘𝑏 represents the semantic similarity of 

the knowledge-based method and 𝑠𝑖𝑚𝑣𝑒𝑐  stands 

for the semantic similarity of the word embedding 

method. The parameter α is the manually factor 

for balancing the results of the two methods. And 

it is set to 0.6 manually. 𝑠𝑖𝑚 𝑓𝑖𝑛𝑎𝑙 is the final re-

sult. 

 

                                                      
4 http://jrtom.github.io/jung/ 

3 Evaluation 

Run1: This run uses the word embeddings meth-

od described in Section 2.2. Given two words or 

phrases, it can get the semantic similarity by com-

puting the cosine between their word vectors.  

Run2: This run use the combined method de-

scribed in Section 2.4. It can leverage the word 

embeddings method and knowledge-based meth-

od. 

Runkb: This run use the knowledge-based 

method which is described in Section 2.3.  

The runs are evaluated according to the 

measures of standard Pearson and Spearman cor-

relation. The final score (see the last column in 

Table 1) is the harmonic mean of Pearson and 

Spearman correlations. NASARI in Table 1 (the 

Runs Pearson Spearman Final 

Run1 0.669 0.673 0.671 

Run2 0.774 0.780 0.777 

NASARI 0.683 0.681 0.682 

Table 1: Results of our runs and baseline. 

 Pearson Spearman Final 

1.0 -0.025 -0.020 -0.022 

1.2 0.653 0.652 0.652 

1.4 0.653 0.656 0.654 

1.6 0.644 0.656 0.650 

1.8 0.633 0.656 0.644 

2.0 0.621 0655 0.637 

Table 2: Results of Runkb with various pa-

rameters. 

 Pearson Spearman Final 

0.0 0.653 0.656 0.654 

0.2 0.731 0.747 0.739 

0.4 0.777 0.786 0.781 

0.6 0.774 0.780 0.777 

0.8 0.731 0.735 0.733 

1.0 0.669 0.673 0.671 

Table 3: Results of Run2 with various param-

eters. 
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last row) is the baseline system which is created 

by the official of this task. 

As we can see in Table 1 that the system Run2 

make a 9.5% (Final) improvement in contrast with 

the baseline system (NASARI), and achieves the 

best performance. The performance of the system 

Run1 does not exceed the baseline system. Table 2 

shows that the system Runkb get its best perfor-

mance when  is set to 1.4 (see 2.3). Table 3 

shows that Run2 get its best performance when  

is set to 0.4 instead of 0.6 (see 2.4). These results 

show that the word embeddings method and the 

knowledge-based method, respectively, are not 

enough effective while the combined method of 

them makes the best performance of 0.781 in all 

our runs. 

4 Conclusions and Future Work 

Our best run achieves the performance of 0.781 

(Final). It shows that the combined method is 

more effective for the computation of word simi-

larity than the word embeddings method and the 

knowledge-based method, respectively. There are 

a large room to improve the performance of the 

word embeddings method and the knowledge-

based method. In the future, we will refine the 

various relations among words to improve 

knowledge-based method. 
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Abstract

The RUFINO team proposed a non-
supervised, conceptually-simple and low-
cost approach for addressing the Multi-
lingual and Cross-lingual Semantic Word
Similarity challenge at SemEval 2017.
The proposed systems were cross-lingual
extensions of popular monolingual lex-
ical similarity approaches such as PMI
and word2vec. The extensions were pos-
sible by means of a small parallel list
of concepts similar to the Swadesh’s list,
which we obtained in a semi-automatic
way. In spite of its simplicity, our ap-
proach showed to be effective obtaining
statistically-significant and consistent re-
sults in all datasets proposed for the task.
Besides, we provide some research direc-
tions for improving this novel and afford-
able approach.

1 Introduction

Pairwise semantic lexical similarity is a core com-
ponent in NLP systems that tackle fundamental
NLP tasks such as word sense disambiguation
(Camacho-Collados et al., 2015), semantic textual
similarity (Agirre et al., 2017) and many others.
Since more than two decades, the problem has
been addressed mainly for the English language,
but only recently, other languages have been con-
sidered. The task 2 in SemEval 2017 (Camacho-
Collados et al., 2017) proposes a public challenge
for this task in 5 languages (English, Spanish, Ital-
ian, German and Farsi) and an additional cross-
lingual challenge in their 10 possible combina-
tions. This paper describes the participating sys-
tems of the RUFINO team in these challenges.

Lexical-similarity systems receive two words as
input and return a numerical score that reflects the

Lexical-similarity

system in English

Lexical-similarity

system in Spanish

s1 s2 s3 … sn

Cosine similarity

wEN= “volleyball” 

SIM (wEN, wES)

wES= “pelota”

language-transverse

concepts

volleyball pelota

eye

tree

blood

ojo

árbol

sangre

s1 s2 s3 … sn

cEN,n
cES,n

s3

.

.

.
.
.

..
.

.

.

wESwEN

Figure 1: Architecture of the cross-lingual system

similarity or relatedness between them. Cross-
lingual systems extends the idea to words in dif-
ferent languages. The evaluation of such systems
consist in measuring the correlation of the scores
obtained by several word pairs against the consen-
sus of human judgments (gold standard).

The main fundamental resources used by lexical
similarity systems are monolingual corpora, par-
allel corpora and knowledge-based resources such
as WordNet (Miller, 1995) and Babelnet (Navigli
and Ponzetto, 2012). Among them, monolingual
corpora are the cheapest and most available re-
source in the majority of the languages. Aiming
to propose a lexical similarity system with easy
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replicability, beyond the 5 languages of the chal-
lenge, the RUFINO team proposed a system based
mainly on monolingual corpora.

Like monoligual lexical similarity, the cross-
lingual variant of this task aims to establish quan-
titatively the degree of similarity between two
words, but with the added complexity of being in
different languages. This task contributes to solve
other higher level task such as cross-lingual text
similarity and entailment (Jimenez et al., 2012,
2013). However, to the best of our knowledge, it
is not possible to build a cross-lingual system be-
tween two non-similar languages based solely on
monolingual corpora. For that, we proposed a re-
source inspired by the well-known Swadesh’s list.
The Swadesh’s list (Swadesh, 1950, 1952) is com-
prised of approximately 200 concepts aimed to be
universal, culturally independent and transverse to
almost any language for the purposes of compar-
ative linguistics. We used Wikipedia and Google
Translate to build a list for the 5 languages of the
competition containing 66 concepts with similar
properties to the ones proposed by Swadesh. Since
the alignment of concepts grouped into synsets
among WordNets in different languages is not al-
ways available, we decided to use Google Trans-
late. In case of considering a not included lan-
guage among the supported ones by Google Trans-
late (they are more than 100), we estimated it
could be comparatively more feasible and eco-
nomic to build an automatic translator from a par-
allel corpus than the manual construction of a
WordNet for that language. Nevertheless, a re-
source like BabelNet, for instance, could also pro-
vide accurate translations of transverse concepts.
Our goal, is to build cross-lingual systems starting
from monolingual systems connected across lan-
guages by the proposed list of concepts. Figure 1
provides a general overview of the general archi-
tecture of the proposed system.

The organizers of the challenge proposed a
benchmark corpus for the sake of comparison of
the participating systems. The systems proposed
by our team used for training the Wikipedias in the
5 languages, which is the benchmark corpora for
the monolingual sub-task. The benchmark corpus
for the cross-lingual systems is the Europarl par-
allel corpus1.Alternatively, our cross-lingual sys-
tems used the proposed list of language-traverse
concepts, which is considerably smaller, simpler

1http://www.statmt.org/europarl/

and cheaper than the Europarl corpus. Although,
the results obtained by our systems were in the
middle range of the general ranking of official re-
sults, all of them were statistically significant and
consistent across all datasets. Moreover, in some
cases our results were comparable to other systems
relying in considerably larger, more complex and
more expensive resources.

The rest of the paper contains the following sec-
tions. In section 2, we present the motivation for
our approach. Section 3 contains the detailed de-
scription of our participating systems. In section
4 the obtained results are presented and discussed.
Finally, in section 5 we provide some concluding
remarks.

2 Motivation

A concept list of basic vocabulary items show-
ing the universality of certain parts of the lexi-
con of human languages was initially proposed by
Morris Swadesh (Swadesh, 1950, 1952). Swadesh
claimed that certain morphemes and everyday
words such as mother, son, hand, head, sun,
warm, water, tree, etc. connected with concepts
and experiences common to all human groups are
relatively stable over time. Since then, many con-
cepts lists following the same characteristics have
been compiled for several purposes in descriptive
linguistics.

Considering that concepts are not only trans-
verse to languages, but they also share some prox-
imity when they are semantically close. For in-
stance, mother and son are more semantically
close than mother and sun independently of the
language. Our approach is based on the idea that
a set of transverse concepts to languages serve as
a support to index a vectorial representation of the
words of a given language. In order to obtain such
representation for just one language, it is required
the lexicalization of that set of transverse concepts
and a lexical-similarity (or distance) system of that
language. This semantic representation is cross-
lingual since it only depends on the relative simi-
larities (or distances) of each one of the words to
be represented to the set of transverse concepts.
Therefore, the representation of a particular word
w is a vector where each dimension corresponds
to the similarity score between w and each word
from the set of transversal concepts.

Intuitively, three conditions that a set of trans-
verse concepts for a set of languages should follow
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were considered. First, these concepts should be
relatively frequent in all the given languages due
to the fact that infrequent words tend to produce
low-quality measurements in the required lexical
similarity systems based either on knowledge or
corpus. Second, it is preferable that the transverse
concepts are lexicalized in each one of the lan-
guages with just one word. This condition could
anticipate problems with the rules of the usage of
multi-words in each language. Third, the monolin-
gual lexical similarity systems should be similar in
their construction and used resources. The latter
improves the conditions so that the distances and
similarities among concepts could be proportional
through the different languages.

As a result, the list of transverse concepts, a rel-
atively simple resource to obtain, can be useful
to turn a set of monolingual systems into a cross-
lingual system.

3 Methods

We build two groups of monolingual lexical sim-
ilarity systems and other two groups of cross-
lingual systems. For both, monolingual and cross-
lingual sub-tasks, the systems labeled as run1 rely
mainly on Pointwise Mutual Information (PMI)
(Church and Hanks, 1990), and those labeled as
run2 were based on Polyglot’s word embeddings
(Al-Rfou et al., 2013). The following subsections
describe such systems.

3.1 Monolingual systems
3.1.1 run1: PMI and common contexts
PMI is a simple corpus-based information-
theoretical method for finding associations be-
tween pairs of words using the distributional hy-
pothesis, which states that associations between
words depend on the coocurrences of the words
in a large corpus. The PMI score between two
words a and b can be computed with this formula:

PMI(a, b) = − log
(

P (a ∧ b)
P (a)P (b)

)
.

Probabilities can be estimated by the following
expressions:

P (a) =
oa

N
; P (b) =

ob

N
; P (a ∧ b) =

oa∧b

N − 1

Where oa and ob are the number or occurrences
of words a and b in the corpus, oa∧b is the num-
ber of coocurrences, and N the total number of

words in the corpus (all occurrences). We used
the benchmark corpora proposed for the task, that
is, Wikipedia’s dumps for the 5 languages down-
loaded in October 2016. The preprocessing com-
prised lower-casing and stopwords2 removal. For
obtaining oa∧b, each coocurrence of a followed by
b or vice-versa was counted. N was the total num-
ber of non-stopwords on each corpus.

The PMI scores computed using coocurrences
is a low-cost and effective tool for finding word
associations. However, associations between syn-
onyms or words in the same category cannot be
detected with such method because they do not
tend occur consecutively in text. For capturing
these second-order relationships, we proposed an
association measure based in the proportion of
common contexts between pairs of words. For
that, we defined the context of a word as a du-
ple of its left and right neighbor words (after re-
moving stopwords). During the process of con-
text definiction, we also tried other context set-
tings such as two neighbor words before and af-
ter, two before/one after, one before/ two after,
just one before, just one after, just two before
and just two after (we even attempted not to re-
move the stopwords). However, we observed that
when using the trial data, the setting with the best
performance was a neighbor word before and af-
ter. Thus, we collected for each word a the set of
its contexts Ca. The Jaccard coefficient (Jaccard,
1901; Jimenez et al., 2016) was used for compar-
ing pairs of words represented as their sets of con-
texts:

JCC(a, b) =
|Ca ∩ Cb|
|Ca ∪ Cb|

The final similarity score for a pair of words was
the average of previously scaled PMI and JCC
scores.

SIM(a, b) = 0.5
(

PMI(a, b)
max PMI

+
JCC(a, b)
max JCC

)
Here, max PMI and max JCC are the maxi-

mum scores of the corresponding measures within
the entire dataset of word pairs being compared.
In our implementation, if PMI produced a mathe-
matical error such as division by zero or logarithm
of a negative number, then the PMI score was re-
placed by the average of the scores obtained by the
same measure for the other non-erroneous word
pairs in the dataset.

2urls of stopwords
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English Spanish Italian German Farsi English Spanish Italian German Farsi
angel ángel angelo Engel فرشته background fondo sfondo Hintergrund زمینه

animal animal animale Tier حیوان ministry ministerio ministero Ministerium وزارت

artist artista artista Künstler هنرمند birth nacimiento nascita Geburt تولد

metal metal metallo Metall فلز musician músico musicista Musiker نوازنده

poet poeta poeta Dichter شاعر newspaper periódico giornale Zeitung روزنامه

minute minuto minuto Minute دقیقه novel novela romanzo Roman رمان

blood sangre sangue Blut خون christians cristianos cristiani Christen مسیحیان

ring anillo anello Ring حلقه piano piano pianoforte Klavier پیانو

painter pintor pittore Maler نقاش beautiful hermoso bello schön زیبا

comedy comedia commedia Komödie کمدی composer compositor compositore Komponist آهنگساز

price precio prezzo Preis قیمت quality calidad qualitŕ Qualität کیفیت

concert concierto concerto Konzert کنسرت contract contrato contratto Vertrag قرارداد

sale venta vendita Verkauf فروش religion religión religione Religion دین

read leer leggere lesen خواندن candidate candidato candidato Kandidat نامزد

crisis crisis crisi Krise بحران congress congreso congresso Kongress کنگره

train tren treno Zug قطار scene escena scena Szene صحنه

tree árbol albero Baum درخت shipyard astillero cantiere
navale Werft کشتیسازی

کارخانه

texts textos testi Texte متون sister hermana sorella Schwester خواهر

domain dominio dominio Domain دامنه soldier soldado soldato Soldat سرباز

doubt duda dubbio Zweifel شک speed velocidad velocità Geschwindigkeit سرعت

drama drama dramma Drama درام engines motores motori Motoren موتورهای

statue estatua statua Statue مجسمه structure estructura struttura Struktur ساختار

error error errore Fehler خطا discovery descubrimiento scoperta Entdeckung کشف

eye ojo occhio Auge چشم depth profundidad profonditŕ Tiefe عمق

factory fábrica fabbrica Fabrik کارخانه translation traducción traduzione Übersetzung ترجمه

weapon arma arma Waffe س®ح device dispositivo dispositivo Gerät دستگاه

friend amigo amico Freund دوست identity identidad identitŕ Identität هویت

guitar guitarra chitarra Gitarre گیتار violence violencia violenza Gewalt خشونت

hand mano mano Hand دست founder fundador fondatore Gründer موسس

value valor valore Wert ارزش weight peso peso Gewicht وزن

wind viento vento Wind باد important importante importante wichtig مهم

window ventana finestra Fenster پنجره marriage matrimonio matrimonio Ehe ازدواج

word palabra parola Wort کلمه message mensaje messaggio Nachricht پیام

Table 1: List of 66 language-transverse concepts in the 5 target languages

3.1.2 run2: Polyglot’s embeddings

Our second monolingual system used the pre-
trained Polyglot’s word embeddings (Al-Rfou
et al., 2013), which were obtained using the
word2vec algorithm (Mikolov et al., 2013) applied
to Wikipedia as corpus for a large number of lan-
guages. For each pair of target words a and b,
their 64-dimensional vector representations (64 is
the number of dimmensions in Polyglot’s vectors)
were obtained from Polyglot’s files and then com-
pared using cosine similarity. If a target word
started with a capital letter and it was not found in
the database of embeddings, then the word is low-
ercased and searched again. Similarity, if multi-
words targets are not found we used the vectorial
summation of the representations of the compos-
ing words. After that, if some target is still not
found, as before, we used the average score of
non-erroneous word pairs in the dataset.

3.2 Obtaining a Swadesh-like list

For obtaining a list of concepts with similar prop-
erties to the Swadesh’s list, first we collected the
lists of the top-5000 more frequent terms from
the Wikipedia for each one of the 5 target lan-
guages. Next, each word on each list was trans-
lated to the other 4 languages and the translations
were translated back to the original language. All
translations were obtained using the GOOGLE-
TRANSLATE() function in the spreadsheet edi-
tor of Google Drive. On each list, we preserved
only the rows whose all 4 back translations coin-
cided with the original word. Finally, the 5 list
were merged and aligned for identify terms that
occurred in the 5 languages. Only the terms oc-
curring exactly in the 5 languages were preserved.

From the previous selection, we obtained a list
containing 172 concepts with their lexicalizations
in the 5 target languages. This initial list was
purged manually by removing proper names, car-
dinals, stopwords and other unwanted forms. The
final result is an aligned list of 66 concepts of fre-
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Method→ PMI-JCC Polyglot NASARI

language run1 run2 baseline
English 0.656 0.394 0.682

Spanish 0.549 0.406 0.600

Italian 0.476 0.306 0.596

German 0.539 0.369 0.514

Farsi 0.360 0.256 0.405

Average 0.481 0.334 0.529

Table 2: Results for the monolingual sub-task (val-
ues are the harmonic mean between Pearson’s and
Spearman’s correlation coefficients).

quent words in 5 languages. Besides, all possible
combination pair from the 5 words on each con-
cept are common translations of the others. The
obtained list is shown in Table 1. That is the
proposed list of language-traverse concepts used
for enhancing the previously described monolin-
gual lexical-similarity systems to support cross-
linguality.

3.3 Cross-lingual systems

The proposed lexical cross-lingual systems were
built by combining the monolingual systems de-
scribed in subsections 3.1.1 and 3.1.2, with the
list of 66 language-traverse concepts proposed in
the previous subsection. The method for that is
straightforward and depicted in Figure 1. Basi-
cally, for obtaining a vectorial representation of a
word in a particular language, such word is com-
pared using a monolingual lexical-similarity sys-
tem for that language, against the 66 lexicaliza-
tions of the transverse concepts in that language.
The result is a 66-dimensional vector, which is
a language-independent representation the word.
For comparing a pair of words in two different lan-
guages, their language-independent vectorial rep-
resentations are obtained using their respective
monolingual systems and the aligned list of con-
cepts. Then the final similarity score is obtained
computing the cosine similarity between the two
vectors. We built two cross-lingual systems la-
beled as run1, using the monolingual systems de-
scribed in subsection 3.1.1, and run2, with the sys-
tems described in subsection 3.1.2.

4 Results and discussion

Results obtained by our monolingual systems
(run1 and run2) are shown in Table 2. Run1 av-
eraged relatively close to the baseline, which in

Method→ PMI-JCC Polyglot NASARI

languages run1 run2 baseline
it-fa 0.249 0.210 0.486

es-it 0.356 0.288 0.595

es-fa 0.257 0.300 0.479

en-it 0.342 0.238 0.648

en-fa 0.253 0.373 0.505

en-es 0.340 0.337 0.633

en-de 0.330 0.303 0.598

de-it 0.327 0.232 0.561

de-fa 0.240 0.267 0.458

de-es 0.318 0.302 0.549

Average 0.301 0.285 0.551

Table 3: Results for the cross-lingual sub-task
(values are the harmonic mean between Pearson’s
and Spearman’s correlation coefficients).

fact, is a very strong baseline based in knowledge
from Babelnet (Camacho-Collados et al., 2016).
The system that outperformed the baseline was the
PMI-JCC monolingual system (run1) for Ger-
man. Run2, based on Polyglot’s embeddings, was
consistently worse than run1. Although, both sys-
tems use the same corpora, the difference in per-
formance is significant. As regards our runs, we
suggest that PMI-JCC is a method that takes
better advantage of small corpora in comparison
with the word2vec algorithm used in the construc-
tion of Polyglot’s embeddings.

Unlike the results of monolingual systems, the
results for run1 and run2 in the cross-lingual task
had a similar performance and were considerably
less than the baseline (see Table 3). An interest-
ing question we asked was to what extent the re-
sults of monolingual systems predict the perfor-
mance of bilingual systems. In order to answer
this question, we measured Pearson’s correlation
(r) between the result of the bilingual system and
the minimum between the results of the two mono-
lingual systems for the 10 language combinations.
The result was rrun1 = 0.883, rrun2 = 0.263, and
rbaseline = 0.950. Clearly, the results of monolin-
gual systems based on PMI-JCC and NASARI
are good predictors of the results of bilingual sys-
tems.

5 Conclusions and future directions

From our participation in the task 2 in SemEval
2017 we can gather several conclusions. First,
the proposed lexical-monolingual systems based
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respectively on PMI-JCC and Polyglot’s embed-
dings (i.e. word2vec) obtained considerably dif-
ferent results, in spite of being constructed us-
ing the same corpus (i.e. Wikipedia). This re-
sult suggest that, for inferring lexical relation-
ships, relatively small corpora can be better ex-
ploited by simpler methods such as PMI, which
is convenient for under-resourced languages. Sec-
ond, the proposed approach of using a parallel list
of language-transverse concepts for building lex-
ical cross-lingual systems from monolingual re-
sources showed to be effective with a good cost-
benefit ratio. Third, there is an important perfor-
mance gap between the proposed approach and the
knowledge-based baseline approach.

However, the monolingual versions of both our
approach (run1) and that baseline share the prop-
erty of being good predictors of the performance
of the cross-lingual versions. Therefore, we con-
clude that a straightforward way to improve the
proposed system is to use better monolingual sys-
tems. Additionally, the method for selecting the
set of language-traverse concepts can be improved
by considering the transversality of the relation-
ships and by the use of size-balanced multilingual
corpora.
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Abstract

In this paper we report on the participa-
tion of the MERALI system to the Se-
mEval Task 2 Subtask 1. The MER-
ALI system approaches conceptual sim-
ilarity through a simple, cognitively in-
spired, heuristics; it builds on a linguistic
resource, the TTCSE , that relies on Babel-
Net, NASARI and ConceptNet. The lin-
guistic resource in fact contains a novel
mixture of common-sense and encyclope-
dic knowledge. The obtained results point
out that there is ample room for improve-
ment, so that they are used to elaborate on
present limitations and on future steps.

1 Introduction

Defining conceptual representations along with
their associated reasoning procedures required and
still requires truly interdisciplinary efforts, in-
volving psychologists (Miller and Charles, 1991;
Barsalou, 1999; Malt et al., 2015), philoso-
phers (Machery, 2009; Gärdenfors, 2014), neu-
roscientists (Vigliocco et al., 2014), and com-
puter scientists (Resnik, 1998; Agirre et al., 2009;
Pilehvar and Navigli, 2015). Today, the ever-
growing number of applications of semantic tech-
nologies demand for further investigation on con-
cepts’ meaning: this fact explains the popularity of
issues rooted in and related to conceptual similar-
ity, and the success of the present Semantic Word
Similarity task (Camacho-Collados et al., 2017).

In this paper we present an approach to the
computation of conceptual similarity based on a
novel lexical resource, the TTCSE—so dubbed af-
ter Terms to Conceptual Spaces-Extended— that
has been acquired by integrating two different
sorts of linguistic resources, such as the ency-
clopedic knowledge available in BabelNet (Nav-

igli and Ponzetto, 2012) and NASARI (Camacho-
Collados et al., 2015), and the common-sense
grasped by ConceptNet (Speer and Havasi, 2012).
The resulting representation enjoys the interest-
ing property of being anchored to both resources,
thereby providing a uniform conceptual access
grounded on the sense identifiers provided by Ba-
belNet.

The TTCSE provides a conceptual representa-
tion inspired to Conceptual Spaces (CSs), a ge-
ometric representation framework where knowl-
edge is represented as a set of limited though cog-
nitively relevant quality dimensions (Gärdenfors,
2014). The CSs framework has been recently
used to extend and complement the representa-
tional and inferential power allowed by formal on-
tologies with special emphasis on dealing with the
corresponding typicality-based conceptual reason-
ing (Lieto et al., 2015, 2017); in this setting, the
TTCSE aims at providing a wide-coverage, cog-
nitively based linguistic resource for this sort of
knowledge, by extending previous work (Lieto
et al., 2016; Mensa et al., 2017).

2 Concept Representation in the TTCSE

Concepts representation in the TTCSE is consistent
with CSs: each concept c is provided with a vec-
tor representation ~c providing information on the
given concept along some semantic dimensions d.
All concepts included in such description are re-
ferred to through BabelNet synset IDs, and dimen-
sions themselves are a subset of the relationships
available in ConceptNet. Such relations report
common-sense information like, e.g., ISA, ATLO-
CATION, USEDFOR, PARTOF, MADEOF, HASA,
CAPABLEOF, etc.. For a full description of the
employed properties we refer the reader to (Mensa
et al., 2017).

Let D be the set of N dimensions. Each con-
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AtLocation

IsA

UsedFor

Antonym

RelatedTo tool, food, table, cutlery, 
eating, knife, spoon, utensil

tool, cutlery, utensil

table, desk, plate

eating

knife, spoon

MadeOf metal

Figure 1: Example of representation for the con-
cept FORK (BN:00035902N). The representation
has been made human-readable by displaying con-
cept lexicalizations in place of their actual Babel
synset IDs.

cept ci in the linguistic resource is defined as a
vector ~ci = [si

1, .., s
i
N ], where each si

h constitutes
the set of concepts filling the dimension dh ∈ D.
Each s can contain an arbitrary number of values,
or be empty. For example, the representation for
the concept FORK includes information about 6 di-
mensions that are filled with overall 18 concepts,
like illustrated in Figure 1.

The TTCSE resource contains 14, 677 concepts,
and it was built by starting from the 10K most fre-
quent nouns present in the Corpus of Contempo-
rary American English (COCA),1 browsing over
11M associations available in ConceptNet and the
2.8M NASARI vectors. Concepts in the TTCSE

are filled, on average, with 14.90 (concept) val-
ues.2

3 Conceptual similarity with the TTCSE

Our similarity metrics does not employ WordNet
taxonomy and distances between pairs of nodes,
such as in (Wu and Palmer, 1994; Leacock et al.,
1998), nor it depends on information content ac-
counts either, such as in (Resnik, 1998).

Conversely, given the aforementioned represen-
tation for concepts, one principal assumption un-
derlying our approach is that two concepts are

1http://corpus.byu.edu/full-text/.
2The final resource is available for download at the URL

http://ttcs.di.unito.it.

similar insofar as they share values on the same
dimension, such as when they are both used for
the same ends, they share the same components,
etc.. Given two concepts ~ci and ~cj , the conceptual
similarity along each dimension —filled in both
vectors— should be ideally computed as a func-
tion of the cardinality of the intersection between
overlapping dimensions

sim(~ci,~cj) =
N∑

k=1

|si
k ∩ sj

k|

where si
k is the set of concepts filling the k-th

dimension in the vector ~ci representing the con-
cept ci. The rationale underlying this formula is
to grasp shared features, thereby allowing us to
provide an explanation based on common-sense
accounts. For example, rather than computing a
distance on WordNet or observing how frequently
they co-occur, to justify the similarity score for the
pair 〈bird, cock〉 we consider that each concept
ISA ‘animal’; and that both of them are RELAT-
EDTO ‘feather’, ‘chicken’, ‘roosting’ and ‘verte-
brate’.

However, our approach is presently limited by
the actual average filling factor, and by the noise
that can be possibly collected by an automatic
procedure built on top of the BabelNet and
ConceptNet resources. To handle the possibly
unbalanced number of concepts that charac-
terize the different dimensions and to prevent
the computation from being biased by more
richly defined concepts, we adopt the Symmet-
rical Tversky’s Ratio Model (Jimenez et al., 2013).

sim(~ci,~cj) =
1
N∗
·

N∗∑
k=1

|si
k ∩ sj

k|
β (αa+ (1− α) b) + |si

k ∩ sj
k|

where |si
k ∩ sj

k| counts the number of shared con-
cepts that are used as fillers for the dimension dk

in the concept ~ci and ~cj , respectively; and a and
b are computed as a = min(|si

k − sj
k|, |sj

k − si
k|),

b = max(|si
k − sj

k|, |sj
k − si

k|); and N∗ counts the
dimensions actually filled with at least one concept
in both vectors. The Symmetrical Tversky’s Ratio
Model allows us to tune the balance between car-
dinality differences (through the parameter α), and
between |si

k ∩ sj
k| and |si

k− sj
k|, |sj

k− si
k| (through

the parameter β). The parameters α and β were set
to .8 and .2 for the experimentation, based on a pa-
rameter tuning performed on the RG, MC and WS-
sim datasets (Rubenstein and Goodenough, 1965;
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Dimension (h) Dim. score |sbird
h | |scock

h | shared values

RELATEDTO 0.68 44 06
feather, chicken

roosting, vertebrate
ISA 0.58 07 04 animal

Table 1: Example of computation of the concep-
tual similarity for the pair ‘bird’ and ‘cock’, by in-
specting the actual content of the TTCSE resource.

Miller and Charles, 1991; Agirre et al., 2009).
For example, in order to compute the semantic

similarity between the concepts bird and cock the
TTCSE finds that the ISA and RELATEDTO dimen-
sions are filled in both~cbird and~ccock, thusN∗ = 2
in the present setting. Figures in column |sbird

h |
and |scock

h | report about how many concepts were
retrieved that fill each dimension; elements in the
‘shared values’ column detail how many concepts
were found in common to be part of both concept
descriptions along the given dimension. The fi-
nal similarity score obtained by the TTCSE is 0.63,
against the 0.65 assigned in the gold standard.

4 Evaluation

The dataset proposed for the experimentation in-
cluded 500 word pairs; thanks to the mixture of
abstract/concrete concepts and named entities it
can be considered as a very complete and chal-
lenging test bed. Results have been computed
through Pearson and Spearman correlations (re-
spectively, r and ρ) and their harmonic mean; the
latter measure ranges between 0.789 (obtained by
the LUMINOSO team) and 0, as displayed in Fig-
ure 2. In particular, MERALI obtained 0.589 (r),
0.600 (ρ) and 0.594, respectively. We presently
focus on this run of the system and disregard the
other one that attained substantially similar results,
stemming from a slightly different parameters set-
ting.

We dissected the dataset, to identify our sys-
tem’s weaknesses, to the ends of improving both
the conceptual similarity computation procedures
and the lexical resource. We noticed that out of the
500 overall word pairs, 405 involve concept com-
parisons, while in the reminder pairs we have at
least one entity at stake (namely, 45 entity-entity
pairs and 50 entity-concept pairs).

Comparisons involving entities are somehow
different from those involving only concepts: for
example, the cases where the semantic similar-
ity is computed between a concept and an en-
tity (e.g., in ‘Darwin-evolution’, ‘Gauss-scientist’,

Figure 2: Results of the SemEval Task 2 Subtask 1
(English): harmonic mean between Spearman and
Pearson correlations for each team.

‘Siemens-electric train’) pose additional problems
with respect to cases in which two entities are
considered (such as for ‘Juventus-Bayern Mu-
nich’, ‘Plato-Aristotle’, and ‘Alexander Fleming-
Penicillin’). Under an ontological perspective,
individual entities act like instances, whilst con-
cepts can be considered as classes: one thus won-
ders what does comparing individuals and classes
mean. Moreover, according to the Conceptual
Spaces framework, individuals can be thought of
as points, while concepts are represented as re-
gions over the multidimensional conceptual space.
Comparisons between a class and an individual are
intuitively harder in that they require i) to find the
relations relating the individual and the class being
examined; and ii) in a CSs perspective, to com-
pare a point with a region. Furthermore, under a
cognitive perspective, it is difficult to follow the
strategy adopted by humans in providing a score
for pairs such as ‘Zara-leggings’ (gold standard
similarity judgement: 1.67): directly comparing
a manufacturer and a product is nearly unfeasible,
since their features can be hardly compared. Jus-
tifying the answer is perhaps helpful to give some
information on the argumentative paths that can be
followed to assess semantic similarity. One major
risk, in these respects, is that instead of similarity,
the scores provided by human annotators rather
refer to generic relatedness. For example, let us
consider the pair ‘tail-Boeing 747’ (gold standard
similarity judgement: 1.92): although each Boe-
ing 747 has a tail, the whole plane (holonym) can-
not be conceptually similar to its tail (meronym),
in the same way a door is not similar to its knob.

So we have re-run the statistical tests to com-
pute Spearman and Pearson correlations over
the three subsets (entity-entity, entity-concept,
concept-concept); the partial results are reported
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# pairs r ρ harm.mean
entire data 500 0.59 0.60 0.59
entity-entity 45 0.69 0.70 0.69
entity-concept 50 0.72 0.66 0.69
concept-concept 405 0.56 0.57 0.56

Table 2: Spearman (ρ) and Pearson (r) correla-
tions (and their harmonic mean) obtained by the
MERALI system over the three subsets.

in Table 2.

It turned out that, against our intuition, the
MERALI system has better accuracy on word
pairs including an entity; so we further examined
the latter subset (concept-concept), where we ob-
tained poorer results. Here we notice that in many
cases (22, that is over 5% of this subset) overly
high scores were determined by the maximization
implemented in the word-similarity: in such cases,
in fact, semantic similarity is usually computed as
the similarity of the closest senses underlying the
given terms (Budanitsky and Hirst, 2006). An ex-
ample of this sort of errors is the pair ‘apocalypse-
fire’ (gold standard similarity judgement: 1.25),
where the MERALI system returned a value by
far higher than the expected value (namely, 3.85):
fires can legitimately be interpreted as apocalyp-
tic events, but only in a figurative way. Similar,
though distinct, differences in score are observed
when comparing two identical concepts: not al-
ways human beings provide the maximum (equal-
ity) score, sometimes in unexpected way like for,
e.g., ‘movie-film’ (gold standard similarity judge-
ment: 3.92), ‘multiple sclerosis-MS’ (gold stan-
dard similarity judgement: 3.92). Out of 24 such
cases, for 13 pairs (3% of this subset) we over-
estimated the semantic similarity. As regards as
fully different concept pairs (46, over 11%), in
half cases we have over-estimated the similarity,
perhaps due to a too permissive enriching routine
that sometimes accepts noisy concepts as dimen-
sion fillers.

However, the main issue of the first version of
the MERALI system is that the overall amount
of information available to the system is often
not enough to fully assess the semantic similar-
ity between concepts. Sometimes concepts them-
selves have been missing, and missing concepts
may be lacking in (at least one of) the resources
upon which the TTCSE is built. Also, difficul-
ties stemmed from insufficient information for the

concepts at stake: this phenomenon was observed,
e.g., when both concepts have been found, but no
common dimension has been filled. This sort of
difficulty shows that the coverage of the resource
still needs to be enhanced, especially by improv-
ing the extraction phase, so to add further concepts
per dimension, and to fill more dimensions.

5 Conclusions

We have illustrated the system MERALI, that re-
lies on a novel resource, the TTCSE . The under-
lying representation is compatible with the Con-
ceptual Spaces framework and aims at putting to-
gether encyclopedic and common-sense knowl-
edge. The results of the MERALI system have
been illustrated and discussed. The experimenta-
tion clearly showed that there is room for improv-
ing the system along two main axes: dimensions
must be filled with further information, and the
quality of the extracted information should be im-
proved. Also the computation of the similarity can
be refined by testing further heuristics, so to re-
duce the cases of over-estimation of semantic sim-
ilarity. All mentioned aspects will be addressed in
our future work.
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Abstract

This paper describes the HHU system that
participated in Task 2 of SemEval 2017,
Multilingual and Cross-lingual Semantic
Word Similarity. We introduce our un-
supervised embedding learning technique
and describe how it was employed and
configured to address the problems of
monolingual and multilingual word sim-
ilarity measurement. This paper reports
from empirical evaluations on the bench-
mark provided by the task’s organizers.

1 Introduction

The goal of Task 2 of SemEval-2017 is to provide
a reliable benchmark for the evaluation of mono-
lingual and multilingual semantic representations
(Camacho-Collados et al., 2017). The proposed
evaluation benchmark goes beyond classic seman-
tic relatedness tests by providing both monolin-
gual and cross-lingual data sets that include mul-
tiword expressions, domain-specific terms, and
named entities for five languages. To measure ‘se-
mantic similarity’ between pairs of lexical items,
the HHU system uses the algorithm proposed in
(QasemiZadeh et al., 2017), which is based on
a derandomization of the ‘random positive-only
projections’ method proposed by QasemiZadeh
and Kallmeyer (2016).

Word embedding techniques (i.e., using dis-
tributional frequencies to produce word vectors
of reduced dimensionality) are one of the most
popular approaches to semantic word similar-
ity problems. These methods are often ratio-
nalized using Harris’ Distributional Hypothesis
that words of similar linguistic properties appear
with/within a similar set of ‘contexts’ (Harris,
1954). For example, words of related meanings
co-occur with similar context words {c1, . . . cn}.

This hypothesis implies that if these context
words are grouped randomly into m buckets, e.g.
{{c1 . . . cx}1, . . . , {cy, . . . cn}m}, then co-related
words still co-occur with similar sets of buck-
ets. QasemiZadeh and Kallmeyer (2016) exploit
this assumption and propose random positive-only
projections for building word vectors directly at a
reduced dimensionality m. In this paper, we pro-
pose a derandomization of this method and a hash-
based technique for learning word embeddings. In
Section 2, we describe our method. In Section 3,
we report results obtained by applying this method
to the shared-task benchmark. Finally, we con-
clude in Section 4.

2 Method

Our method consists of two logical routines:
(a) a text skimmer to collect co-occurrence in-
formation; and (b) a hash-based encoder to
build low-dimensional vectors from collected co-
occurrences in (a). Evidently, these procedures
can be merged and ordered differently to meet re-
quirements of an application.

To build an m-dimensional embedding for an
entity w (such as a word or phrase) that co-occurs
with (or within) some context elements c (result-
ing from the skimming routine), we take the fol-
lowing steps:

Algorithm 1 : Encoding Co-Occurrences

1: ~w = ~0
2: for each c co-occurring with w do
3: d← abs(hash(c) %m)
4: ~wd = ~wd + 1

return ~w

Here, wd is the dth component of ~w. The hash
function assigns a hash code (e.g., an integer) to
each context element c. The abs function returns
the absolute value of its input number and % is the

250



modulus operator and it gives the remainder of the
division of the generated hash code by the chosen
value m. We use the following hash function:1

int hash(byte[] key) {
int i = 0;
int hash = 0;
while (i != key.length) {

hash += key[i++];
hash += hash << 10;
hash ^= hash >> 6;

}
hash += hash << 3;
hash ^= hash >> 11;
hash += hash << 15;
return hash;

}

Our choice for hash is motivated by its low col-
lision rate for short words (byte sequences) and
the closer resemblance of computed ds to an in-
dependent and identical distribution (i.i.d). It can
be verified that the procedure proposed above im-
plements a derandomization of QasemiZadeh and
Kallmeyer’s POP method: The generated modulus
of hash codes from context elements constitutes
a random positive-only projection matrix, and the
component-wise additions compute the multipli-
cation of this randomly generated matrix with the
original high-dimensional vectors (QasemiZadeh
et al., 2017).

2.1 Computing Similarities
Once ~ws are constructed, they are weighted by
the expected and marginal frequencies, e.g., us-
ing positive pointwise mutual information (PPMI)
(Church and Hanks, 1990; Turney, 2001). Let
Wp×m (consisting of p row vectors ~w of dimen-
sionalitym) be the set of embeddings in our model
(i.e., the output of Algorithm 1). The PPMI weight
for a component wxy in W is given by:

ppmi(wxy) = max(0, log
wxy×

∑p
i=1

∑m
j=1 wij∑p

i=1 wiy×
∑m

j=1 wxj
).

For this task, however, we adopt cascaded PPMI
weightings: PPMI-weighted vectors are weighted
once more using the above-mentioned formula,
i.e., we compute ppmi(ppmi(Wp×m)). We be-
lieve this cascaded weighting yields better results
by providing a well-balanced scaling of the origi-
nal PPMI weights. Note that the weighting pro-
cess is fast since it is carried out on vectors of
small dimensionality m.

1Designed by Bob Jenkins (2006); see http://www.
burtleburtle.net/bob/hash/doobs.html.

Finally, we compute similarities between these
weighted vectors using a correlation measure.
QasemiZadeh and Kallmeyer (2016) suggest Pear-
son’s r for PPMI weighted vectors. Later, in
QasemiZadeh et al. (2017), they suggest Good-
man and Kruskal’s γ coefficient (Goodman and
Kruskal, 1954). To compute γ, concordant and
discordant pairs must be counted. Given any
pairs such as (xi, yi) and (xj , yj) from two m-
dimensional vectors ~x and ~y and the value v =
(xi − xj)(yi − yj), these two pairs are concor-
dant if v > 0 and discordant if v < 0. If v = 0,
the pair is neither concordant nor discordant. Let
p and q be the number of concordant and discor-
dant pairs, then γ is given by (Chen and Popovich,
2002, p. 86):

γ =
p− q
p+ q

.

In this paper, we suggest a new estimator based on
Lin’s information theoretic definition of similarity
(Lin, 1998):

simlin = log(2×∑m
i=1(xiyi)(1+log(2+xiyi))∑m

i=1 x2
i +

∑m
i=1 y2

i
).

2.2 Extending the Method to Cross-Lingual
Tasks

The proposed method can also be employed in
a cross-lingual setting. However, this requires a
small dictionary (translation-memory) and an ad-
ditional pre-processing step.

In the pre-processing step, all pairs of lexical
items in the input dictionary must be first mapped
onto a common symbol space. Let’s assume that
the input dictionary consists of entries of the form
l 7→ {t1, . . . , tn} (i.e., l is a lexical item in the
source language which has a number of ti transla-
tions in the target language). To build the common
symbol space, we generate all possible (l, ti) tu-
ples and we assign them unique identifiers—i.e.,
(l, ti) 7→ s . Finally, these tuples and their as-
signed identifiers are flattened in a symbol table
t: for instance, if (l, ti) are assigned to the unique
identifier s, then the entries of (l, s) and (ti, s) are
stored in this table t. Note that the mappings in t
are not necessarily one-to-one.

To build cross-lingual vectors for lexical items
w in any of the input languages, similar to the
monolingual setting, input corpora are scanned to
collect context elements c. However, only those
context elements that can be found in t are en-
coded into models. If t contains an identifier sym-
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bol s for a given context element c, then s is passed
to Algorithm 1 to update vector ~w.

3 Reports from Empirical Evaluation

3.1 General Settings

As input, we use the Wikipedia text corpora pro-
vided by the task organizers.2 In our reports,
we include results from the sense-based NASARI
vectors (i.e., the baseline introduced by the or-
ganizers): 300-dimensional embeddings obtained
using a hybrid approach (Camacho-Collados et al.,
2016). The evaluation metric is the harmonic
mean (H) of Pearson’s r and Spearman ρ corre-
lations between the test datasets (i.e., gold data
constructed from scores assigned by humans to
word pairs) and the corresponding system gener-
ated ones.

We treat multi-word expressions similar to
single-token words. Given a list of tokens, instead
of collecting co-occurrence information only for
single tokens, we extend our scan of input cor-
pora to contiguous n-gram sequences of tokens
for which n is decided by the maximum length
of items in the evaluation test sets. In effect, we
limit the active vocabulary of our system and col-
lect co-occurrence information only for those lex-
ical items in the task’s test sets.

3.2 Monolingual Subtask

To collect co-occurrence information from input
corpora, given the small size of input corpora, we
adapt a greedy approach. Input corpora are read
line by line; if a lexical item wt in our target vo-
cabulary appears in a line at span i to j, we update
~wt by passing the following items as context ele-
ment to Algorithm 1:

Feature Sets:

• The whole line (as one unit): this is done
to capture information about possible co-
occurrences of test lexical items within a
large context (such as done in word-by-
document models).

• All the tokens from position i − 20 to j +
20 (i.e., including wt), i.e., the classic sliding
context window. We include wt to enforce
similarity between a pair of multiword lexical
items of similar constituent tokens.

2https://sites.google.com/site/rmyeid/projects/polyglot

Lang r ρ H m Weighting Similarity RUN
FA .541 .585 .562 2000 Cascaded-PPMI r 1
FA .606 .601 .604 2500 Cascaded-PPMI simlin 2
EN .71 .699 .704 2500 Cascaded-PPMI simlin 1
EN .656 .697 .676 2500 Cascaded-PPMI r 2

Table 1: Results for our official submissions.

• All n-grams (n ∈ {3, 4}) generated from
each of the tokens appearing in the above
sliding context window: this is done to
capture information about the morphological
structure of the context words.

Table 1 summarizes the results and configura-
tions that we have used in our official submis-
sions. For Farsi, for the first run, we built vectors
of dimension m = 2000, weighted them using
cascaded-PPMI (see Section 2.1) and used Pear-
son’s r as a similarity measure. Evaluated by the
organisers, this resulted in r = 0.541, ρ = 0.585,
and the official score of H = 0.562. In the second
run, however, we built vectors of dimensionality
m = 2500 and after cascaded-PPMI weighting,
similarities were computed using simlin. This re-
sulted in scores of r = 0.606, ρ = 0.601, and
H = 0.604. To choose these configurations, we
relied on the trial data as well as resources intro-
duce in Camacho-Collados et al. (2015). For En-
glish, we observed that adding n-gram features de-
teriorates results; hence, we removed this set of
features from our model of dimensionality m =
2500. In both runs, we used cascaded-PPMI. As
a similarity measure, we used simlin and Pearson’s
r in the first and second run, respectively. This
produced a score of r = 0.71, ρ = 0.699, and
H = 0.704 for the first run, and r = 0.656,
ρ = 0.697, and H = 0.676 over the second run.
Note that for both languages, we could build any
vectors for a number lexical items since they did
not occur in the input corpora (see the last column
of Table 2 for details).

3.2.1 Extended Evaluations
While our official submissions are limited to En-
glish and Farsi, to provide a better understanding
of the method’s performance, we provide results
for all the five languages in the monolingual sub-
task. To build models, we use the feature sets de-
scribed in the previous section. The remaining
hyper-parameter of our method is m (the dimen-
sionality of models); we report results for m ∈
{300, 700, 2000}. Results obtained using various
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Hash Method - WPPMI - SimPearson

Lang Baseline Dim =300 Dim = 700 Dim = 2000 #M
r ρ H r ρ H r ρ H r ρ H

DE 0.513 0.514 0.514 0.439 0.436 0.438 0.537 0.574 0.555 ↑ 0.603 0.655 0.628 ↑ 16
EN 0.683 0.681 0.682 0.428 0.474 0.450 0.535 0.598 0.564 0.614 0.652 0.632 3
ES 0.602 0.597 0.600 0.512 0.568 0.539 0.576 0.644 0.608 ↑ 0.665 0.719 0.691 ↑ 7
FA 0.412 0.398 0.405 0.475 0.496 0.486 ↑ 0.512 0.535 0.523 ↑ 0.538 0.569 0.553 ↑ 25
IT 0.597 0.594 0.596 0.469 0.503 0.485 0.537 0.589 0.562 0.616 0.674 0.643 ↑ 12

Table 2: Results for vectors of various dimensionality (denoted by dim), and when using PPMI for
weighting and Pearson’s r for measuring similarity between them. H denotes the harmonic mean of r
and ρ (i.e., the task’s official score). #M is the number of lexical items which have not occurred in our
input corpora; for pairs containing these items, we use 0 as a default value for similarity. Those settings
that yield better results than the baseline are marked using ↑.

Lang Dim =300 Dim = 700 Dim = 2000
r ρ H r ρ H r ρ H

DE .576 .577 .576 ↑ .609 .609 .609 ↑ .619 .617 .618 ↑
EN .633 .627 .630 .659 .653 .656 .644 .633 .638
ES .660 .659 .659 ↑ .675 .670 .673 ↑ .669 .669 .669 ↑
FA .449 .439 .444 ↑ .468 .458 .463 ↑ .517 .506 .512 ↑
IT .609 .601 .605 ↑ .617 .611 .614 ↑ .618 .612 .615 ↑

Table 3: Method’s performance when using PPMI
for weighting and Goodman and Kruskal’s γ for
a similarity measurement. This combination gives
the best performance for models of small dimen-
sionality such as m = 300.

Lang Dim =300 Dim = 700 Dim = 2000
r ρ H r ρ H r ρ H

DE .392 .377 .384 .511 .515 .513 .616 .624 .620 ↑
EN .435 .436 .436 .548 .553 .551 .632 .630 .631
ES .506 .505 .506 .583 .578 .580 .673 .683 .678 ↑
FA .477 .501 .488 ↑ .518 .540 .529 ↑ .551 .573 .562 ↑
IT .445 .443 .444 .532 .534 .533 .643 .650 .646 ↑

Table 4: Method’s performance when using the
combination of PPMI and simlin.

combinations of weighting techniques and similar-
ity measure are summarized in Table 2 to 7.3

Disregarding the choice of weighting technique
and similarity measure, an increase inm often pro-
duces better results, but at the expense of higher
computational cost. In addition, as suggested in
Section 2.1, by comparing results between Ta-
ble 2 to 4 and Table 5 to 7, we observe that us-
ing cascaded-PPMI weighting instead of simple
PPMI weighting often yields better scores. The

3Slight improvements in results for Farsi are due to
homogenizing character encoding: Zero-width non-joiner
characters (U+200c) are replaced by the space character
(U+0020); the Arabic letter Kaf (U+0643) is replaced by the
Farsi letter Kaf U+06A9, and the Arabic letter Yeh (U+064A)
is replaced by the Farsi letter Yeh (U+FBFC).

Lang Dim =300 Dim = 700 Dim = 2000
r ρ H r ρ H r ρ H

DE .486 .486 .486 .587 .626 .606 ↑ .630 .675 .651 ↑
EN .519 .538 .528 .608 .647 .627 .639 .668 .653
ES .572 .626 .598 .646 .695 .670 ↑ .683 .721 .701 ↑
FA .507 .521 .514 ↑ .535 .565 .550 ↑ .552 .595 .573 ↑
IT .516 .538 .527 .597 .638 .617 ↑ .626 .670 .647 ↑

Table 5: Method’s performance when using the
combination of cascaded-PPMI and Pearson’s r.

Lang Dim =300 Dim = 700 Dim = 2000
r ρ H r ρ H r ρ H

DE .551 .556 .553 ↑ .630 .633 .631 ↑ .648 .652 .650 ↑
EN .608 .603 .606 .659 .653 .656 .661 .648 .655
ES .647 .650 .649 ↑ .692 .688 .690 ↑ .688 .684 .686 ↑
FA .500 .487 .493 ↑ .528 .517 .523 ↑ .559 .551 .555 ↑
IT .593 .598 .595 .640 .633 .636 ↑ .637 .631 .634 ↑

Table 6: Method’s performance when using the
combination of cascaded-PPMI and γ.

Lang Dim =300 Dim = 700 Dim = 2000
r ρ H r ρ H r ρ H

DE .434 .454 .444 .597 .614 .605 ↑ .665 .686 .675 ↑
EN .497 .508 .502 .641 .644 .643 .684 .677 .680
ES .575 .589 .582 .677 .683 .680 ↑ .727 .733 .730 ↑
FA .537 .557 .547 ↑ .582 .592 .587 ↑ .589 .605 .597 ↑
IT .513 .513 .513 .634 .641 .637 ↑ .690 .693 .692 ↑

Table 7: Method’s performance for the combina-
tion of cascaded-PPMI and simlin: This combina-
tion proves to provide the best results for high-
dimensional models.
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Lang r ρ H RUN
EN-FA 0.519 0.492 0.505 Baseline
EN-FA 0.485 0.544 0.513 1
EN-FA 0.429 0.582 0.494 2

Table 8: Results for EN-FA detest.

only exception is whenm is small (e.g.,m = 300)
and γ is used to measure similarities. For small
m = 300, this combination of PPMI weight-
ing and γ gives the best performance (Table 3);
we witness that for m = 300, this combination
also gives the best results for Camacho-Collados
et al.’s data sets.

3.3 Cross-Lingual Subtask

We applied the methodology described in Sec-
tion 2.2 to build cross-lingual embeddings for the
pair emphEnglish and Farsi. To build the common
symbol space, we extracted an English-to-Farsi
translation dictionary from the English Wiktionary
dump of January 2017, containing translations for
7500 lexical items in English. These 7500 entries
were converted to a symbol table t of size 17760.
We then augmented this table with Wikipedia’s ti-
tle translations. As a result, the number of entries
in t increased to 1,299,770.

For each w in the test data set, we collected
co-occurrences from a context window (extended
20 tokens at each side of w) for both words and
multiword expressions that appear in t. Note that
the sole input to our method was unaligned text
from the English and Farsi Wikipedia corpus (sim-
ilar to the monolingual setting). In both runs, we
used vectors of dimensionality m = 3000 and the
proposed simlin measure to compute similarities
between vectors. To weight vectors, in the first
run, we used cascaded-PPMI while we used sim-
ple PPMI for the second run. Table 8 provides a
summary of the method’s performance. Surpris-
ingly, our simple methodology performs at least
as well as the baseline technique.

Results reported in Table 8 can be easily im-
proved by feeding in additional input, particularly
parallel corpora. For instance, we observe that us-
ing the Open Subtitles corpus in addition to the
Wikipedia corpus can enhance the results for the
combination of cascaded-PPMI and simlin (Run 1)
from H = 0.505 to 0.575.

4 Conclusion

This paper described the methodology behind the
HHU system that participated in the SemEval
2017 shared task on semantic word similarity. The
proposed technique uses a hash-based algorithm
for building embeddings. The method is fast
and simple, and it demands only a small amount
of computational resources to build a model.
As shown by empirical evaluations, our method
shows acceptable performance in semantic simi-
larity tasks. Our code is available for download
(https://user.phil.hhu.de/~zadeh/
material/hash-vectors/) in order to
replicate the results reported in this paper.
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Abstract
In this paper, we describe our proposed
method for measuring semantic similar-
ity for a given pair of words at SemEval-
2017 monolingual semantic word simi-
larity task. We use a combination of
knowledge-based and corpus-based tech-
niques. We use FarsNet, the Persian Word-
Net, besides deep learning techniques to
extract the similarity of words. We eval-
uated our proposed approach on Persian
(Farsi) test data at SemEval-2017. It
outperformed the other participants and
ranked the first in the challenge.

1 Introduction

Semantic similarity represents a special case of se-
mantic relatedness: for example, cars and gasoline
would seem to be more closely related than, say,
cars and bicycles, but the latter pair are certainly
more similar(Resnik et al., 1999). Semantic simi-
larity has been used in many application in natural
language processing. At SemEval-2017 monolin-
gual semantic word similarity task, given a pair
of words, we have to automatically measure their
semantic similarity and score them according to
a [0-4] similarity scale where 4 denotes that the
two words are synonymous and 0 indicates that
they are completely dissimilar(Camacho-Collados
et al., 2017). In subtask 1 in which we partici-
pated, the two words in the pair belong to the same
language. This subtask provides five monolin-
gual word similarity datasets in English, German,
Italian, Spanish and Farsi. The language whose
dataset we used is Farsi.

The rest of the paper is organized as follows.
Section 2 reviews published work related to the

semantic word similarity task. Section 3 explains
the proposed algorithm. The experimental results
are discussed in Section 4 and the conclusion and
future work are reported in Section 5.

2 Related Works

There are different methods for finding seman-
tic similarity and relation between two words.
Christoph(Christoph, 2015)generally divides sim-
ilarity measurement techniques into two cate-
gories: knowledge-based and corpus-based tech-
niques. Some of the available techniques use a
combination of these two methods. In knowledge-
based techniques, a taxonomy or ontology like
WordNet(Miller, 1995) usually is used to ex-
tract taxonomic information like path length
and depth in the hierarchy(Pilehvar and Nav-
igli, 2015). For example, the proposed meth-
ods by Resnik(Resnik, 1995), Lin(Lin et al.,
1998)and FaITH(Pirró and Euzenat, 2010) fall
in this category. In corpus-based techniques,
usually a large corpus is used to extract sta-
tistical information. Christoph(Christoph, 2015)
also divides corpus-based methods into two cat-
egories. One category contains simple distribu-
tional approaches, which check co-occurrences
of words like SemSim(Bollegala et al., 2007)
and PMI(Church and Hanks, 1990) . Another
category contains dense vector representations-
based methods, which usually use dimensionally
reduction techniques in vector representations.
LSA(tefănescu et al., 2014) , SGNS(Mikolov
et al., 2013), SVD(Levy and Goldberg, 2014)and
GLOVE(Pennington et al., 2014) are some meth-
ods which fall in this category.

In the proposed method, we use a combina-
tion of both knowledge-based and corpus-based
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techniques. On the one side, we have used
FarsNet(Shamsfard et al., 2010a) ontology to en-
able knowledge-based techniques and on the other
side we have used corpus-based techniques like
Word2Vec(Mikolov et al., 2013) in order to im-
prove results.

3 The Proposed Method

One of the corpus-based methods is continuous
vector representation, also known as word em-
bedding. For using this method, first we pre-
process the Wikipedia corpus downloaded from
Polyglot (Al-Rfou et al., 2013) and then we
use Word2Vec toolkit, which is represented by
deeplearnig4j library(Team, 2016) in java. Fur-
thermore, we use some Lexical Resources such
as FarsNet(Shamsfard et al., 2010a) (the Persian
WordNet) and BabelNet(Navigli and Ponzetto,
2012) in order to measure similarity between pair
of words. We explain this method in detail in sec-
tions 3.1 and 3.2.

3.1 Corpus-based Method
Preprocessing:Preprocessing includes four steps:
stop-words removal, removing punctuations and
numbers, stemming and normalizing multi word
expressions by replacing all space characters with
”zero-width non-joining” character.

First, we remove all Persian stop-words accord-
ing to ”ranks” website1 , and then we remove
punctuation marks and all English and Persian
numbers in the text. After that, we replace plu-
ral words with their singular form and remove in-
flectional suffixes using STeP-1(Shamsfard et al.,
2010b). Finally, we detect multi-word expres-
sions, which appeared in corpus and contain only
two words, by checking all bi-grams of corpus
in FarsVaje Lexicon2 and normalize them by re-
placing all space characters with ”zero-width non-
joining” character. We also replace multi-word
expressions, which appeared in test dataset, with
their normalized form.

Word2Vec: ”Word2Vec is a two-layer neural
network that processes text. Its input is a text
corpus and its output is a set of vectors: fea-
ture vectors for words in that corpus. Deeplearn-
ing4j(Team, 2016) implements a distributed form
of Word2vec for Java”3.

1http://www.ranks.nl/stopwords/persian
2A lexicon developed at NLP lab of Shahid beheshti Uni-

versity and is used in Negar (Shamsfard et al., 2016)
3https://deeplearning4j.org/word2vec

To measure the similarity of two words first we
measure the similarity of their corresponding syn-
onyms. If there are n synonyms for the first word
and m synonyms for the second, we will calculate
the similarity for n*m pairs which are made of the
Cartesian product of two synonym sets extracted
from FarsNet (Word2Vec gives us cosine similar-
ity and we consider it as similarity between a pair
of words). At last, we choose maximum value of
similarities as score of a pair of words. We use de-
fault tokenizer factory for tokenizing the corpus,
which tokenizes the text by spaces and is useful for
our purpose. We set Word2Vec parameters as be-
low: minWord-Frequency= 1, iterations=1, layer
Size=100, seed=42 and windowSize=5.

3.2 Knowledge-based Methods
FarsNet: FarsNet is a Lexical ontology for Per-
sian language. This ontology is designed to con-
tain a Persian WordNet with about 42000 synset in
the last version, which we use to measure similar-
ities. In this section, we will explain the approach
we use to measure semantic distance between two
words using some rules and then introduce a func-
tion, which map the measured distance to similar-
ity score. First, we explain some strict rules in-
troduced by(Rychalska et al., 2016) and then we
explain some less strict rules:

1. If two words are exactly the same or are two
different writing forms of one word or belong
to the same synset, the distance will be zero
(D(x,y)=0).

2. If two words have more than four common
senses in their corresponding synsets, the dis-
tance will be one (D(x, y) =1).

3. If there is a direct or two-level hypernym re-
lation between the corresponding synsets of
words, the distance will be two (D(x, y) =2).

4. If two words share any common sense, the
distance will be three (D(x, y) =3).

5. If two words are derivationally related, the
distance will be four (D(x, y) =4).

If none of these rules met, we use the following
rules, which are less strict:

1. If there is any relation except hypernym be-
tween synsets of two words, the distance will
be three (D(x, y) =3).
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2. If there is any two-links relation except hy-
pernym between synsets of two words, the
distance will be four (D(x, y) =4).

3. If there is any three-links relation between
synsets of two words, the distance will be five
(D(x, y) =5).

After all, if no relation is found between a pair
of word to measure the distance between them,
the distance will set to -1 and then we calcu-
late similarity score using equation 1 introduced
by(Rychalska et al., 2016):

A(x.y) =

{
βe−αD(x,y) ifD(x, y) ≥ 0

0 otherwise
(1)

We set α to 0.25 and β to 1 as these values
seemed to yield the best results.

BabelNet: BabelNet is a very large, wide cov-
erage multilingual semantic network. We use
the version of Babel Net which was available on
September 2016.

Semantic distance D is measured using the fol-
lowing rules for these pairs of words:

1. If words are exactly the same or one of them
is main sense for another, the distance will be
zero (D(x, y) =0).

2. If there is a direct named-relation between
pairs, the distance will be one (Un-named re-
lations are filtered e.g. semantically related)
(D(x, y) =1).

3. If words share more than four common sense
the distance will be two (D(x, y) =2).

4. If words share any common sense, the dis-
tance will be three (D(x, y) =3).

5. If their synsets share any important domain,
the distance will be four (domains like media
which are too general to be considered as a
similarity measure are filtered) (D(x, y) =4).

6. If the main gloss of one of the words contains
the other one the distance will be five (D(x, y)
=5).

7. If there is a 2-link (indirect) n amed-relation
between them, the distance will be six (D(x,
y) =6).

If none of these rules met, D will set to -1 then we
calculate similarity score using equation 1.

Gloss: We also use gloss of words extracted
from FarsNet and BabelNet to measure similarity
of a pair of words. A combination of the following
methods is used (note that in all methods finally
we calculate sum of intersections)

1. Gloss-Gloss: In this method, the intersection
between glosses of both words is calculated.

2. Hyper-Hyper: In this method, the intersec-
tion between glosses of Hypernyms of both
words is calculated.

3. Hypo-Hypo: In this method, the intersection
between glosses of Hyponyms of both words
is calculated.

4. Gloss-Hyper: In this method, we calculate
the intersection between glosses of Hyper-
nyms of the first word and glosses of the sec-
ond word and vice versa (the intersection be-
tween glosses of Hypernyms of the second
word and glosses of the first word) and finally
we calculate sum of both intersections.

In order to calculate intersections, we use fol-
lowing method:

First, we remove stop-words from sentences
and extract words, after that we choose longest
common subsequence in each iteration and calcu-
late square of its length as its score in that iteration.
For example, suppose that we have two following
sequences:

1,2,3,4,5 and 1,2,7,4.
In the first iteration 1, 2 is LCS and its length is

2 so the score in this iteration will be 4.
In the second iteration, we have two following

sequences: 3,4,5 and 7,4 and 4 is LCS of these
sequences with length of 1 so the final score will
be 1+4=5.

After measuring all scores, we normalize all of
them between 0 and 1 using following equations:

mean =
1
n

n∑
i=1

xi (2)

variance =
1

n− 1

n∑
i=1

(xi −mean)2 (3)

y =
xi −mean

2 ∗ √variance (4)

x =
1

1 + e−y
(5)
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3.3 Combination of methods
To obtain the final similarity score for a pair of
words, we calculate their normalized weighted
sum using equations 6 and 7 :
scoreknowledge−based =

scoreFarsnet + 0.3 ∗ scoreBabelnet + 0.15 ∗ scoreGloss

(6)

FinalScore =

scoreknowledge−based + 0.75 ∗ scoreW2V

2.2
(7)

4 Experimental Results

We evaluated our proposed approach at SemEval
2017 and ranked first among the participants in
task2, subtask1 for Farsi.Table 1 shows the results
of the submitted runs on test data from SemEval
2017 task2-subtask1 for Farsi. Test data at Se-
mEval 2017 task2 is available at :
alt.qcri.org/semeval2017/task2/

data/uploads/semeval17_task2_
test.zip

The test data for Farsi language contains 500
pairs of Farsi words that we have to measure their
semantic similarity.

Farsi Test Data Pearson Spearman Final
Mahtab 0.719 0.711 0.715
hhu run2 0.606 0.601 0.604
hhu run1 0.541 0.585 0.562
Luminoso run2 0.507 0.498 0.503
Luminoso run1 0.506 0.496 0.501
HCCL run1 0.424 0.45 0.436
NASARI(baseline) 0.412 0.398 0.405
SEW run1 0.383 0.404 0.393
RUFINO run1 0.378 0.344 0.36
RUFINO run2 0.25 0.262 0.256
hjpwhuer run1 0.002 -0.003 0.0

Table 1: The results of the submitted runs on Farsi
test data at SemEval 2017 task2 subtask1.

5 Conclusions and Future Work

This paper described our proposed method, a
combination of corpus-based techniques like
Word2Vec and knowledge-based techniques using
FarsNet to measure semantic similarity between
given pairs of words. The results show that our
method achieved good results, better than other
participants in the challenge. Future work will fo-
cus on enhancing the similarity measures besides
using other corpus-based techniques like GloVe
and LSA.

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word represen-
tations for multilingual nlp. arXiv preprint
arXiv:1307.1662 .

Danushka Bollegala, Yutaka Matsuo, and Mitsuru
Ishizuka. 2007. Measuring semantic similarity be-
tween words using web search engines. www 7:757–
766.

Jose Camacho-Collados, Mohammad Taher Pilehvar,
Nigel Collier, and Roberto Navigli. 2017. SemEval-
2017 Task 2: Multilingual and Cross-lingual Seman-
tic Word Similarity. In Proceedings of SemEval.
Vancouver, Canada.

LOFI Christoph. 2015. Measuring semantic similarity
and relatedness with distributional and knowledge-
based approaches. Information and Media Tech-
nologies 10(3):493–501.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational linguistics 16(1):22–29.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems.
pages 2177–2185.

Dekang Lin et al. 1998. An information-theoretic def-
inition of similarity. In ICML. Citeseer, volume 98,
pages 296–304.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
Babelnet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence 193:217–
250.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Mohammad Taher Pilehvar and Roberto Navigli. 2015.
From senses to texts: An all-in-one graph-based ap-
proach for measuring semantic similarity. Artificial
Intelligence 228:95–128.
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Abstract

This paper describes SEW-EMBED, our
language-independent approach to multi-
lingual and cross-lingual semantic word
similarity as part of the SemEval-2017
Task 2. We leverage the Wikipedia-
based concept representations developed
by Raganato et al. (2016), and propose
an embedded augmentation of their ex-
plicit high-dimensional vectors, which we
obtain by plugging in an arbitrary word
(or sense) embedding representation, and
computing a weighted average in the con-
tinuous vector space. We evaluate SEW-
EMBED with two different off-the-shelf
embedding representations, and report
their performances across all monolin-
gual and cross-lingual benchmarks avail-
able for the task. Despite its simplic-
ity, especially compared with supervised
or overly tuned approaches, SEW-EMBED

achieves competitive results in the cross-
lingual setting (3rd best result in the global
ranking of subtask 2, score 0.56).

1 Introduction

Semantic similarity is a well established research
area of Natural Language Processing, concerned
with measuring the extent to which two linguistic
items are similar (Budanitsky and Hirst, 2006). In
particular, word similarity is nowadays a widely
used evaluation benchmark for word and sense
representations (Turney and Pantel, 2010).

While many classical approaches to word sim-
ilarity have been limited to the English lan-
guage (Gabrilovich and Markovitch, 2007; Mi-
halcea, 2007; Pilehvar et al., 2013; Baroni et al.,
2014), a growing interest for multilingual and

cross-lingual models is emerging (Hassan and Mi-
halcea, 2011; Camacho Collados et al., 2016) and
it is accompanied by the development of multilin-
gual benchmarks (Gurevych, 2005; Granada et al.,
2014; Camacho Collados et al., 2015).

In this respect Wikipedia, as one of the
most popular semi-structured resources in the
field (Hovy et al., 2013), provides a convenient
bridge to multilinguality, with several million
inter-language links among articles refferring to
the same concept or entity. In fact, a number of
successful approaches to semantic similarity make
explicit use of Wikipedia, from ESA (Gabrilovich
and Markovitch, 2007) to NASARI (Camacho Col-
lados et al., 2016). Others, like SENSEMBED (Ia-
cobacci et al., 2015), report state-of-the-art re-
sults when trained on an automatically disam-
biguated version of a Wikipedia dump. Regard-
less of whether Wikipedia is seen as a multi-
lingual semantic network of concepts and enti-
ties or as a sense-annotated corpus, hyperlinks
(inter-page links) constitute its key structural prop-
erty: in light of this, Raganato et al. (2016) ad-
dressed the sparsity problem of original hyper-
links and developed SEW1, a semantically en-
riched Wikipedia where the overall number of
linked mentions has been more than tripled by
solely exploiting the structure of Wikipedia itself
and the wide-coverage sense inventory of Babel-
Net (Navigli and Ponzetto, 2012)2.

In addition to building the corpus, the authors
used SEW’s sense annotations to construct vector
representations of concepts and entities from the
BabelNet sense inventory, and tested them on mul-
tiple semantic similarity tasks. Being defined at
the concept level, SEW’s representations are inher-
ently multilingual: however, they consist of high-

1http://lcl.uniroma1.it/sew
2http://babelnet.org
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Figure 1: Illustrative example of SEW-EMBED’s embedded representation (b) for the BabelNet entity
Lorenzo de Medici (bn:00052034n) obtained from the corresponding explicit representation (a).

dimensional sparse vectors, not immediately com-
parable with existing approaches, especially those
based on word embeddings, and less flexible to use
within downstream applications.

In this paper we propose SEW-EMBED, an em-
bedded augmentation of SEW’s original represen-
tations in which sparse vectors, defined in the
high-dimensional space of Wikipedia pages, are
mapped to continuous vector representations via
a weighted average of embedded vectors from an
arbitrary, pre-specified word (or sense) represen-
tation. Regardless of the particular representation
used, the resulting vectors are still defined at the
concept level, and hence immediately expendable
in a multilingual and cross-lingual setting.

We describe and evaluate SEW-EMBED with
two off-the-shelf embedded representations: the
popular word embeddings of Word2Vec (Mikolov
et al., 2013a) and the embedded concept repre-
sentations of NASARI (Camacho Collados et al.,
2016)3. We report and discuss the results obtained
by both versions on all monolingual and cross-
lingual benchmarks available for the task (Cama-
cho Collados et al., 2017), and include a compar-
ison with the original explicit representations of
Raganato et al. (2016).

2 Background: Developing a
Semantically Enriched Wikipedia

The approach used by Raganato et al. (2016) to de-
velop SEW relies on a cascade of hyperlink propa-
gation heuristics, applied to an English Wikipedia

3http://lcl.uniroma1.it/nasari

dump after some standard pre-processing. In gen-
eral terms, each propagation heuristic identifies a
list of BabelNet synsets to be propagated across a
given Wikipedia page p; then, for each synset, oc-
currences of any of its potential lexicalizations are
detected and added as new sense annotations for
p. Raganato et al. (2016) distinguishes between
intra-page and inter-page heuristics (depending on
whether the synsets propagated across p are col-
lected from the same page), but all of them share a
common assumption: every occurrence of an am-
biguous mention within p refers to the same under-
lying sense (one sense per page) and hence it is an-
notated with the same synset.4 After all heuristics
have been applied, overlapping mentions and du-
plicates are removed by enforcing a conservative
policy which favors intra-page annotations over
inter-page ones, and selects the longest match in
case of overlapping annotations of the same type.

The result of this process is SEW, a Wikipedia-
based corpus with over 200 million sense annota-
tions of BabelNet synsets for all open-class parts
of speech (nouns, verbs, adjectives, and adverbs).

3 SEW-EMBED: Building Vectors from
Sense Annotations

In this section we provide the details of SEW-
EMBED. We start by briefly describing the origi-
nal explicit representations based on SEW (Section
3.1) and then our embedded augmentation (Sec-
tion 3.2). The workflow of our procedure is de-
picted in Figure 1 with an illustrative example.

4Although restrictive, this assumption is surprisingly ac-
curate, as shown also in previous work (Wu and Giles, 2015).
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3.1 Explicit Representation

As a starting point, we consider the Wikipedia-
based representation (WB-SEW) by Raganato
et al. (2016), in which each concept or entity s in
the BabelNet sense inventory is represented as a
vector vs where dimensions are Wikipedia pages.
For each Wikipedia page p in SEW, the corre-
sponding component of vs is computed as the es-
timated frequency of s appearing as sense anno-
tation in p. Frequency is estimated using lexi-
cal specificity (Lafon, 1980), a statistical measure
based on the hypergeometric distribution, particu-
larly suitable for extracting an accurate set of rep-
resentative terms for a given subcorpus SC of a
reference corpus RC. We applied the procedure
described by Camacho Collados et al. (2016), with
the single page p as SC and the whole SEW as
RC. As a result we obtain vs, a rather sparse vec-
tor in which non-zero components correspond to
the Wikipedia pages where s appears as a hyper-
link; the weight ωp associated with each compo-
nent reflects the representativeness of s in the con-
text described by p (Figure 1a).

3.2 Embedded Representation

In order to compute the embedded augmentation
of an explicit vector vs, obtained as in Section 3.1
for a given concept or entity s, we follow Cama-
cho Collados et al. (2016) and exploit the com-
positionality of word embeddings (Mikolov et al.,
2013b). According to this property, the represen-
tation of an arbitrary compositional phrase can be
expressed as the combination (typically the aver-
age) of its constituents’ representations. We build
on this property and plug a pre-trained embedding
representation into the explicit representation of
Raganato et al. (2016). In particular, we consider
each dimension p (i.e. Wikipedia page, cf. Section
3.1) of vs and map it to the embedding space E
provided by the pre-trained representation to ob-
tain an embedded vector ep. Such mapping de-
pends on the specific embedding representation:

• In case of a word embedding representation
we consider the Wikipedia page title as lex-
icalization of p and then retrieve the associ-
ated pre-trained embedding. If the title is a
multi-word expression and no embedding is
available for the whole expression, we exploit
compositionality again and average the em-
bedding vectors of its individual tokens;

• In case of a sense or concept embedding
representation we instead exploit BabelNet’s
inter-resource links, and map p to the target
sense inventory for which the corresponding
embedding vector can be retrieved.

The embedded representation es of s (Figure 1b)
is then computed as the weighted average over all
the embedded vectors ep associated with the di-
mensions of vs:

es =
∑

p∈vs
ωp ep∑

p∈vs
ωp

(1)

where ωp is the lexical specificity weight of di-
mension p. In contrast to a simple average, here
we exploit the ranking of each dimension p (rep-
resented by ωp) and hence give more importance
to the higher weighted dimensions of vs.

3.3 Word Similarity
In order to calculate similarity at the word level,
we follow other sense-based approaches (Pilehvar
et al., 2013; Camacho Collados et al., 2016) and
adopt a strategy that selects, for a given word pair
w1 and w2, the closest pair of candidate senses:

Sim(w1, w2) = max
s1∈Sw1 , s2∈Sw2

σ(~s1, ~s2) (2)

where Sw is the set of candidate senses of w in
the BabelNet sense inventory, and ~s is the vector
representation associated with s ∈ Sw. As simi-
larity measure σ we use standard cosine similar-
ity for SEW-EMBED (Section 3.2), and weighted
overlap (Pilehvar et al., 2013) for the explicit rep-
resentations based on SEW (Section 3.1).

Finally, we rely on a back-off strategy that set
Sim(w1, w2) = 0.5 (i.e. the middle point in our
similarity scale) when no candidate sense is found
for either w1 or w2.

4 Experiments

In this section we report and discuss the per-
formance of SEW-EMBED on the monolin-
gual and cross-lingual benchmark of the Se-
meval 2017 Task 2 (Camacho Collados et al.,
2017). We consider two versions of SEW-
EMBED: one based on the pre-trained word em-
beddings of Word2Vec (Mikolov et al., 2013a,
SEW-EMBEDw2v)5, and another one based on the

5We utilized the pre-trained models available at https:
//code.google.com/archive/p/word2vec.
These models were trained on a Google News corpus of
about 100 billion words.
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EN FA DE IT ES
r ρ Mean r ρ Mean r ρ Mean r ρ Mean r ρ Mean

SEW-EMBEDw2v 0.56 0.58 0.57 0.38 0.40 0.39 0.45 0.45 0.45 0.57 0.57 0.57 0.61 0.62 0.62
SEW-EMBEDNasari 0.57 0.61 0.59 0.30 0.40 0.34 0.38 0.45 0.42 0.56 0.62 0.59 0.59 0.64 0.62
SEW 0.61 0.67 0.64 0.51 0.56 0.53 0.51 0.53 0.52 0.63 0.70 0.66 0.60 0.66 0.63
NASARI 0.68 0.68 0.68 0.41 0.40 0.41 0.51 0.51 0.51 0.60 0.59 0.60 0.60 0.60 0.60

Table 1: Results on the multilingual word similarity benchmarks (subtask 1) of Semeval 2017 task 2, in
terms of Pearson correlation (r), Spearman correlation (ρ), and the harmonic mean of r and ρ.

DE-ES DE-FA DE-IT EN-DE EN-ES
r ρ Mean r ρ Mean r ρ Mean r ρ Mean r ρ Mean

SEW-EMBEDw2v 0.52 0.54 0.53 0.42 0.44 0.43 0.52 0.52 0.52 0.50 0.53 0.51 0.59 0.60 0.59
SEW-EMBEDNasari 0.47 0.55 0.51 0.35 0.45 0.39 0.47 0.55 0.51 0.46 0.55 0.50 0.59 0.63 0.61
SEW 0.57 0.61 0.59 0.53 0.58 0.56 0.59 0.64 0.61 0.58 0.62 0.60 0.61 0.63 0.61
NASARI 0.55 0.55 0.55 0.46 0.45 0.46 0.56 0.56 0.56 0.60 0.59 0.60 0.64 0.63 0.63

EN-FA EN-IT ES-FA ES-IT IT-FA
r ρ Mean r ρ Mean r ρ Mean r ρ Mean r ρ Mean

SEW-EMBEDw2v 0.46 0.49 0.48 0.58 0.60 0.59 0.50 0.53 0.52 0.59 0.60 0.60 0.48 0.50 0.49
SEW-EMBEDNasari 0.41 0.52 0.46 0.59 0.65 0.62 0.44 0.54 0.48 0.58 0.64 0.61 0.42 0.52 0.47
SEW 0.58 0.63 0.61 0.64 0.71 0.68 0.59 0.65 0.62 0.63 0.70 0.66 0.59 0.65 0.62
NASARI 0.52 0.49 0.51 0.65 0.65 0.65 0.49 0.47 0.48 0.60 0.59 0.60 0.50 0.48 0.49

Table 2: Results on the cross-lingual word similarity benchmarks (subtask 2) of Semeval 2017 task 2, in
terms of Pearson correlation (r), Spearman correlation (ρ), and the harmonic mean of r and ρ.

embedded concept vectors of NASARI (Camacho
Collados et al., 2016, SEW-EMBEDNasari). In
all test sets, the figures of SEW-EMBEDw2v cor-
respond to the results of SEW-EMBED reported
in the task description paper (Camacho Collados
et al., 2017). We additionally include the re-
sults obtained by the original explicit represen-
tations based on SEW (cf. Section 3.1) and by
the NASARI baseline, and use them as comparison
systems across Sections 4.1 and 4.2.6

4.1 Subtask 1: Multilingual Word Similarity
Table 1 shows the overall performance on mul-
tilingual word similarity for each monolingual
dataset. Both SEW-EMBEDw2v and SEW-
EMBEDNasari achieve comparable results: their
correlation figures are in the same ballpark as the
NASARI baseline for Italian, Farsi, and Spanish;
instead, they lag behind in English and German.
Most surprisingly, however, the explicit represen-
tations based on SEW show an impressive perfor-
mance, and reach the best result overall in 4 out
of 5 benchmarks: this might suggest that many
word pairs across the test sets are actually being
associated with concepts or entities that are well

6For an extensive comparison including all participating
systems in the task, the reader is referred to the task descrip-
tion paper (Camacho Collados et al., 2017).

connected in the semantically enriched Wikipedia,
and hence the corresponding sparse vectors are
representative enough to provide meaningful com-
parisons. In general, the performance decrease on
German and Farsi for all comparison systems is
connected to the lack of coverage: both SEW and
SEW-EMBED use the back-off strategy (cf. Sec-
tion 3.3) 70 times for Farsi (14%) and 54 times
(10.8%) for German.

4.2 Subtask 2: Cross-lingual Word Similarity

Table 2 reports the overall performance on cross-
lingual word similarity for each language pair.
Consistently with the multilingual evaluation
(Section 4.1), both SEW-EMBEDw2v and SEW-
EMBEDNasari achieve comparable results in the
majority of benchmarks. All approaches based on
SEW seem to perform globally better in a cross-
lingual setting: on average, the harmonic mean of
r and ρ is 2.2 points below the NASARI baseline
(compared to 3.2 points in the evaluation of Sec-
tion 4.1). This suggests the potential of Wikipedia
as a bridge to multilinguality: in fact, even though
SEW was constructed automatically on the En-
glish Wikipedia, knowledge transfers rather well
via inter-language links and has a considerable im-
pact on the cross-lingual performance.
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Again, the best figures are consistently achieved
by the explicit representations based on SEW: the
improvement in terms of harmonic mean of r
and ρ is especially notable in benchmarks that
include a less-resourced language such as Farsi
(+11.75% on average compared to the NASARI

baseline). This improvement does not occur with
SEW-EMBED, since in that case sparse vectors are
eventually mapped to an embedding space trained
specifically on an English corpus.

4.3 General Discussion

Overall, SEW-EMBED reached the 4th and 3rd po-
sitions in the global rankings of subtask 1 and 2
respectively (with scores 0.552 and 0.558, not in-
cluding the NASARI baseline). Thus, perhaps sur-
prisingly, the embedded augmentation yielded a
considerable decrease in terms of global perfor-
mance in both subtasks, where the original explicit
representations of SEW achieved a global score of
0.615 in subtask 1, and a global score of 0.63 in
subtask 2 (cf. Sections 4.1-4.2).7

Intuitively, multiple factors might have influ-
enced this negative result:

• Dimensionality Reduction. Converting an
explicit vector (with around 4 million dimen-
sions) into a latent vector of a few hundred
dimensions leads inevitably to losing some
valuable information, and hence to a decrease
in the representational power of the model.
Such a phenomenon was also shown by Ca-
macho Collados et al. (2016), where the lex-
ical and unified representations of NASARI

tend to outperform the embedded represen-
tation on several word similarity and sense
clustering benchmarks;

• Lexical Ambiguity. While the original con-
cept vectors of SEW are defined in the unam-
biguous semantic space of Wikipedia pages,
we constructed their embedded counterparts
via the word-level representations of their
lexicalized dimensions (Section 3.2); hence,
when moving to the word level, we ended up
conflating the different meanings of an am-
biguous word or expression;8

7The global score is computed as the average harmonic
mean of Pearson and Spearman correlation on the best four
(subtask 1) and six (subtask 2) individual benchmarks (Ca-
macho Collados et al., 2017).

8E.g., in SEW-EMBEDw2v , the distinct explicit dimen-
sions represented in SEW by the Wikipedia pages BANK and

• Non-Compositionality. The compositional
properties of word embeddings that we as-
sumed in Section 3.2 falls short in many
cases, such as idiomatic expressions or
named entity mentions (e.g. Wall Street, or
New York). The explicit vectors of SEW, in-
stead, do not require the compositional as-
sumption and always consider a multi-word
expression as a whole.

Even though the embedded representations of
SEW do not match up to the accuracy of explicit
ones on experimental benchmarks, they are on the
other hand more convenient in terms of compact-
ness and flexibility (due to the reduced dimension-
ality), and also in terms of comparability, as they
are defined in the same vector space of Word2Vec-
based representations such as the embedded vec-
tors of NASARI (Camacho Collados et al., 2016)
or DECONF (Pilehvar and Collier, 2016).

5 Conclusion

In this paper we presented SEW-EMBED, a
language-independent concept representation ap-
proach which we put forward as a competi-
tor system in the Semeval-2017 Task 2 (Cama-
cho Collados et al., 2017). SEW-EMBED is
tied to a Wikipedia-based sense-annotated cor-
pus, SEW (Raganato et al., 2016), obtained au-
tomatically by exploiting the hyperlink structure
of Wikipedia and the wide-coverage sense inven-
tory of BabelNet. SEW is used to construct sparse
vector representations in the space of Wikipedia
pages, which are then mapped to an embedded
representation by plugging in an arbitrary word
(or sense) embedding model and computing a
weighted average. We described and evaluated
SEW-EMBED on all benchmarks available for the
task, together with the explicit sparse vectors orig-
inally proposed by Raganato et al. (2016). In spite
of the methodological simplicity of the approach
(which was designed as an extrinsic test bed for
the quality of SEW’s annotations), global figures
put SEW-EMBED close to, or on par with, state-of-
the-art approaches such as NASARI. In particular,
we showed that a cross-lingual setting yields the
best overall improvement for concept representa-
tions based entirely on SEW, suggesting its poten-
tial for multilingual and cross-lingual applications.

BANK (GEOGRAPHY) were both mapped to the Word2Vec
embedding of bank.
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Abstract 

This paper presents Wild Devs’ participa-

tion in the SemEval-2017 Task 2 “Multi-

lingual and Cross-lingual Semantic Word 

Similarity”, which tries to automatically 

measure the semantic similarity between 

two words. The system was build using 

neural networks, having as input a collec-

tion of word pairs, whereas the output 

consists of a list of scores, from 0 to 4, 

corresponding to the degree of similarity 

between the word pairs. 

1 Introduction 

The Wild Dev’s team participated this year in 

SemEval 2017 Task 2, subtask 1, in the evalua-

tion for the English language. The system is 

based on a neural network, trained on an enriched 

corpus of word pairs.  

The paper is structured in 4 sections: this sec-

tion discusses existing approaches to similarity us-

ing word embedding, before presenting the archi-

tecture of our system in Section 2. The next sec-

tion briefly analyses the results, while Section 4 

drafts some conclusions and further work. 

In natural language processing, one of the most 

important challenges is to understand the meaning 

of words.  

The organizers of Task 2 (Task2, 2017) state 

that this task “provides a reliable benchmark for 

the development, evaluation and analysis” of: 

 

 Word embeddings, monolingual word 

embeddings, as well as bilingual and multilin-

gual word embeddings which have a unified 

semantic space for the languages; 

 

 Similarity measures that use lexical resources; 

 Supervised systems that combine multiple 

measures. 

Our initial option was word embedding. The 

most prominent word embedding software tools 

are: 

 

1. Word2Vec (Mikolov et al., 20013) is an algo-

rithm with the explicit goal of producing word 

embeddings that encode general semantic rela-

tions (Collobert et al., 2011). 

2. GloVe (Pennington et al., 2014) has a similar 

aim as Word2Vec. Its authors present GloVe main-

ly as an unsupervised learning algorithm, also of-

fering an implementation. 

3. Deeplearning4j is an open source deep learn-

ing library for Java which implements both 

Word2Vec and GloVe, among other algorithms 

(Deeplearning4j, 2017).   

4. Principal Component Analysis (Jolliffe, 

2002) and T-Distributed Stochastic Neighbor Em-

bedding (van der Maaten 2008) are two algo-

rithms that reduce the dimensionality of already 

generated word embedding vectors.  

After initial tests using the data provided by the 

task organizers, we realized that it would yield 

better results to aggregate multiple techniques, 

and thus resolved to use a supervised system 

which combines multiple techniques. Recent stud-

ies show that neural-network-inspired word em-

bedding models exceed the traditional count-

based distributional models on word similarity.  
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The supervised system we propose is a neural 

network trained on a list of gold standard word 

pairs. Three individual models (word embedding, 

definition comparison, synonyms, detailed in the 

next section) are run on the collection of word 

pairs and different lists of scores are obtained. The 

neural network is trained by comparing the lists of 

scores to the gold standard. 

 In order to develop a gold standard, we col-

lected a set of word pairs and designed a web site 

that allowed human annotators to rate each word 

pair on the scale of 0 to 4. The users were students 

from the Faculty of Letters, who thus had a profi-

cient and professional knowledge of the English 

language. 

2 Methodology  

Nowadays, there is a huge mass of textual data in 

electronic format, and this fact increased the need 

for fast and accurate techniques for textual data 

processing. Despite the evolution of the field, 

evaluation still rely (most of the time) on a com-

parison between the output of a statistical system 

on the one hand, and a hand-crafted gold standard, 

on the other hand. Generally, a gold standard pro-

vides an interesting basis for the comparison of 

systems against the same set of data, or for the 

comparison of the evolution of the performance of 

the different versions of a system performing a 

certain task. 

2.1 Increased Gold Standard 

In order to train the neural network, we needed a 

set of word pairs and a gold standard. The task’s 

website affirmed that a human-generated gold 

standard is used, therefore we decided to increase 

its size by building a collection of word pairs 

manually rated according to their similarity. 

For building the list of word pairs, we used 

Daniel Defoe’s novel “Robinson Crusoe”
1
. We 

picked nouns at random from the novel and built 

pairs (for testing that a word is a noun, we used 

WordNet). A web interface (figure 1) was devel-

oped to allow user to validate the similarity be-

tween word pairs. Most word pairs obtained 

scores between 0 and 2. In order to obtain higher 

scores (3 and 4), meaning higher similarity, we 

built some pairs using a noun from the novel and 

one of the synonyms in its synset from WordNet. 

                                                      
1 The novel is in the public domain and is available on Pro-

ject Gutenberg 

The group of annotators was composed of stu-

dents from the Faculty of Letters who had profi-

cient and professional knowledge of the English 

language. To assist their voting, we built a web 

site (Figure 1) that offers word pairs and saves the 

votes in a database. We used a session cookie to 

avoid giving the same word pair to a session 

twice. 

Figure 1. The website for rating word pairs 

 

After the website was up, we added a username 

field to sessions, as well as a statistics page which 

collected the total number of votes for a student 

for all his sessions.  

One of our priorities has been the maintenance 

of the website and quick fixing of bugs, in order 

to avoid losing data about sessions and the num-

ber of votes each student has done. As always 

when using volunteers, the danger exists that 

some users could cheat by scoring the word pairs 

at random. We took the precaution that we kept a 

record of all votes for a word pair, and thus could 

single out a suspect-looking vote. In order to in-

sure inter-annotator agreement, each pair of words 

was evaluated by 5 different users. 

The site also contained the original description 

of the rating scale, from the SemEval website, 

such that our gold standard would be similar to 

that used by the organizers. 

In this way, we obtained a gold standard of 

5747 word pairs, and the distribution of scores is 

satisfactory. The collection will be made publical-

ly available. 

After having the corpus, we built our system 

using neural networks. The architecture of our 

systems is presented in figure 2. 
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               Figure 2. Architecture 

 

2.2 Word Embeddings 

From word vectors, we can find out the similarity 

of two words using the dot product of their vec-

tors. One drawback is that most existing imple-

mentations load all vectors into RAM, which re-

quires gigabytes of RAM. Given word vector files 

which can be obtained from various word embed-

ding algorithms, our supervised system can use 

each of those vectors to obtain a score file, and 

train the neural network. 

2.3 Definition Comparison 

This module calculates the similarity of two 

words by comparing their definitions using the 

Levenshtein distance as a String metric. 

An initial check is performed to verify if the 

words are identical, in which case the score will 

be 4, or if they are pairs of antonyms formed by 

derivation from the same root (e.g. hopeful <-> 

hopeless, legal <-> illegal), in which case the 

score will be 0. If it is not the case, the program 

goes on. 

For each of the two words, a call is made to the 

API offered by the Pearson Publishing House. 

 

 

 

  

The result is a JSON which can contain one or 

more entries, depending on how many meanings 

the word has. Our program parses the JSON and 

extracts only the definitions, which are then stored 

in an array.  

Thus we have two arrays of definitions, one for 

each word, we iterate through the first array and 

we compare every definition to all the definitions 

of the other word. For this purpose, we use the 

Levenshtein distance (the minimum number of 

single-character edits, i.e. insertions, deletions or 

substitutions, required to change one word into the 

other). To calculate the Levenshtein distance we 

use Java’s StringUtils library. 

This score is increased by our program if one 

word includes the other (e.g. flower-sunflower) or 

if at least one of the words can be found in the 

definition of the other. From all the scores we get 

from comparing the definitions, only the biggest 

will be kept. Because the scores obtained by ap-

plying the Levenshtein distance to dictionary en-

tries have very small values (between 0 și 1.5 out 

of 100), we process them to get one of the values: 

0, 1, 2, 3, 4. 
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If one or both words cannot be found in the dic-

tionary or if an error occurs during the execution, 

the returned score is 0. 

The program can support a limited number of 

multi-word expressions and personal names, if 

they can be found in the Pearson dictionary. 

2.4 Synonymy 

This module calculates the similarity of two 

words using Wordnet, by comparing their synsets. 

For each word pair, the list of synsets is retrieved, 

and the sets of synonyms are compared two by 

two in order to count the common words. A score 

is thus obtained, to be compared to the score given 

by users (mainly to check the user’s credibility). 

Additionally, the list of word pairs having higher 

scores has been increased by using synonyms of 

these words, extracted from Wordnet. 

3 Evaluation 

We performed an internal evaluation of our sys-

tem on the training data and obtained a score of 

0.372 (Pearson: 0.385, Spearman: 0.357). The re-

sults show that we have managed to accomplish 

the main objective of this project, to outperform 

the random strategy. The lower scores have been 

obtained for named entities and multiword ex-

pressions, instances which do not exist in our gold 

standard, for which we plan to add dedicated 

modules. 

Our team participated in task 1 for English, and 

was officially evaluated with a Pearson score of 

0.459 and a Spearman score of 0.477, giving a to-

tal of 0.468.  

4 Conclusions 

This paper explores word similarities by using a 

supervised system that aggregated corpus based 

techniques, as well as word embedding tech-

niques. It also exposes the need for more experi-

ments that should be done in this field, and we 

take into account the possibility to create such a 

solution for the Romanian language. 

In the future, we will refine the components of 

the supervised system. Given more time, we could 

get an even larger gold standard using our site, 

which will allow us to even better train our neural 

network. 

We could also implement word embedding 

software that efficiently uses hard disk space, ra-

ther than loading all vectors into RAM at once, or 

use a distributed computing approach. 

There are some other aspects that we are inter-

ested to tackle in the future, such as named entity 

recognition and multiword expressions recogni-

tion. 
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Abstract

In this paper, we present a community an-
swers ranking system which is based on
Grice Maxims. In particular, we describe
a ranking system which is based on an-
swer relevancy scores, assigned by three
main components: Named entity recogni-
tion, similarity score, and sentiment anal-
ysis.

1 Introduction

This paper describes the Grice Ranking sys-
tem which participated to SemEval 2017 Task
3 (Nakov et al., 2017) subtask A competition1.
The SemEval 2017 Task 3 (Nakov et al., 2017)
sub-task A focuses on raking a list of answers (10
in our case) as follows. Given a question Q and
a list of answers 〈a1, ..., an〉. Rank these an-
swers according to their relevancy with respect to
the question Q. Our participation to the task was
mainly motivated by our interest in applying Grice
maxims (Grice, 1975) principles to a ranking task
to define standards of Grice maxims for ranking
tasks. The system follows 3 steps: similarity, en-
tity recognition, and sentiment analysis.

2 Grice maxims principles

Grice main idea is that communication between
human beings is logic and rational. Following this
idea, any conversation assumes cooperation be-
tween the conversation parties. This cooperation
supposes in essence four maxims that usually hold
in dialogues or conversations. These maxims are:

1. Quality: Say only true things.

2. Quantity: Be informative.

3. Relation: Be relevant in your conversation.
1http://alt.qcri.org/semeval2016/task3/

4. Manner: Be direct and straightforward.

These maxims have been intensively researched
in the domain of linguistics and pragmatics in the
last decades, where the researchers focused on
how to use Grice theory to explain speaker inten-
tion when he says some thing. For example, these
maxims explain that the speaker B understands the
intention of the speaker A. The same holds for A
who understands the indirect Answer of B.

A What is the time?

B The bus left five minutes ago.

In this work, we use these maxims partially to
measure the appropriateness or relevancy of an-
swer(s) of a given question. In this approach, we
do not try to understand what the speaker (inten-
tional) means. Instead, we try to understand if
the speaker contribution contains (extensional) el-
ements that comply with Grice maxims.

In the following, we explain how we interpret
the quantity, relation and manner maxims in our
approach. We do not use the quality maxim and it
is beyond the scope of our research.

2.1 Quantity
We interpret this maxim as how much an answer is
informative by examining whether an answer con-
tains the following informative elements?

1. Named entities: A named entity here refers
to person, organization, location, or product.

2. References: References include web urls,
emails, and phone numbers.

3. Currency: We consider the presence of cur-
rency in an answer as informative element.

4. Numbers: In some cases, phone numbers, or
currency are not recognized because they are
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implicit such as 20000 is a good salary. For
this reason, we consider the presence of num-
bers (2 digits or more ) in answers as an in-
formative element.

Of course, this list is not exhaustive. However,
these are the informative elements that we utilize
in our approach.

2.2 Relation
We think that defining what is a relevant contri-
bution in the relation maxim is still an open is-
sue (Frederking, 1996). At the same time, we try
to discover relevancy indicators and use them in
our algorithm. Accordingly, we consider the fol-
lowing as relevancy indicators.

1. Similarity: Similarity between the question
and the answer.

2. Imperatives: Answers that contain impera-
tive verbs such as try, go to, or check indicate
that the answerer is explaining a way to solve
the problem being discussed.

3. Expression of politeness: Expressions of
politeness I would, I suggest, or I recommend
are usually polite alternatives for imperatives.

4. Factoid answer particles: For factoid ques-
tions is/are or does/do, the answer particles
yes/no indicate the relevancy of the answer.

5. Domain specific terms: Domain specific
terms indicate relevancy. For example, terms
such as CV, NOC, torrent,... are domain spe-
cific terms . Using such terms indicates also
that the answerer is trying to explain how to
solve the problem being discussed.

Again, this list is not exhaustive and it would be
much better for our approach if we could use more
concrete criteria that indicate the relation maxim.

2.3 Manner
Grice summarizes this maxim as (a speaker con-
tribution is expected to be clear) and he gives
four criteria that indicate not violating this maxim:
Avoid obscurity of expressions, avoid ambiguity,
be brief, and be orderly. We did not use these cri-
teria for the difficulty of applying them. Instead,
we give the following criteria that can be used to
judge that a speaker contribution complies with or
violates the manner maxim.

1. Be positive: By this criterion, we mean that
the speaker contribution is expected to be tol-
erant and permissive.

2. Avoid frustrating utterances: Answers that
contain such expressions are usually not use-
ful in the conversation.

3. Avoid ironic and humbling expressions:
We mean here that the answer tends to be for-
mal and professional and that the answerer is
aiming to give a direct useful contribution.

4. Avoid insulting and degrading expres-
sions: Answers that contain such expressions
are not expected to be be useful.

We may also consider the grammatical and ortho-
graphic correctness as a criterion. We did not con-
sider it because many of the members of Qatar
Living are not native speakers of English.

3 Implementation

In the following, we present the ranking algo-
rithm , where we start with explaining the used
resources. Then, we illustrate some experiments
that we have conducted in the framework of our
approach, and finally we describe the Grice Rank-
ing system.

3.1 Resources

We used the following resources in our algorithm.
Quality: No resources and this maxim was not
used in the implementation.
Quantity: We adopted pre-trained openNLP2

name finder model for named entity recognition
(NER) to our domain data. we needed this model
because of the low performance of the state of the
art NER systems on the training data. We have
trained the openNLP NER system on an self an-
notated subset of the training data set. The gen-
erated model reached 87% F1-measure. Both the
annotated corpus and the model are downloadable
online3.
Relation: We have used the following resources:

a) Similarity: We used Word2Vec4(Turian et al.,
2010) and Brown and clark (Agerri and
Rigau, 2016) embeddings.

2https://opennlp.apache.org/
3https://www.researchgate.net/project/Named-Entity-

Recognizer-For-Qatar
4https://github.com/ragerri/cluster-preprocessing/
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b) Imperatives and Expression of politeness:
We used an OpenNLP POS-tagger to detect
these expressions. We reward answers that
contains such expressions.

c) Domain specific terms: Using the training
data, we have compiled a small dictionary
that contains domain specif terms such as
router, CV, NOC, torrent,.... The terms in
the dictionary are not classified and of course
they are not exhaustive. Answers that contain
such expressions are also rewarded.

Manner: We used two sentiment polarity lists5,
one positive sentiment list and other negative sen-
timent list.

a) Be positive: We used the positive sentiment
list to reward answers that contain positive
expressions.

b) Avoid frustrating expressions: We used the
negative sentiment list to penalize answers
that contain such expressions.

c) Avoid ironic and humbling expressions: The
negative sentiment list includes some of the
ironic and humbling expressions. We used
the training data to extend the list with new
expressions that we found in the training data.
Answers that contain such expressions are
penalized.

d) Avoid insulting and degrading expressions:
The negative sentiment list includes some of
these expressions. We have extended the list
with new expressions that we found in the
training data. We penalize answers that con-
tain such expressions.

3.2 Experiments
In the following, we describe some of the ex-
periments that we conducted to evaluate the pro-
posed algorithm which is described in next sec-
tion. We evaluate the systems using the test set
taken from SemEval 2016 (Nakov et al., 2016),
where we used MAP (mean average precision) as
performance measure.

Experiment 1 (similarity run): Rank the an-
swers of a question using TF-IDF as a similarity
function from the most similar answer to less rel-
evant one.

5https://github.com/jeffreybreen/twitter-sentiment-
analysis-tutorial-201107

Experiment 2 (clusters/word representation 1):
We experimented mixing different combinations
of word embeddings and similarity measure to
rank the answers. We used Brown embedding with
N-grams level, with a weight of 0.5 to embedding
similarity and 0.5 to string similarity.

Experiment 3 (clusters/word representation 2):
Using Brown and Clark with weight of 0.3 to
string similarity and 0.7 to cluster similarity.

Experiment 4 (clusters/word representation 3):
Including word2vec to Brown and clark, with a
low-level features, like word shape with the same
weight of 0.3 to string similarity and 0.7 to cluster
similarity.

Experiment 5 (similarity rule based): In this
experiment, we run the system in two phases:

1. Rank the comments depending on their
token-based similarity score.

2. Re-rank them based on background rules
such as downgrading the answers of the same
person which we considered as duplicates.

3.3 Grice Maxims Based Ranking Algorithm
In the following, we present the ranking algo-
rithm.6.
Input: Q: 〈p, qText〉, L: 〈a1, ..., an〉

p: The person who is asking
qText: The question text.
ai = 〈pi, aTexti, scorei〉.
pi: The person who answered ai

qTexti: The answer text of ai

scorei: The relevancy of ai.
Output: L: The input list after sorting.
algorithm GriceMaximsRanking(Q, L)
begin

foreach answer ai in L
if pi = p then scorei = i ∗ −100
else
scorei = |SMqi|+ |NEi|+ |REi|+ |CNi|+

|IMi|+ |DTi|+ |PSi|;
scorei− = |NSi|+ |IRi|+ |IDi|;

sort L ;
return L;

end

6 SM : Similarity between question and answer. NE:
Named entities. RE: Reference expressions. CN : Currency
and numbers. IM : Imperative and polite expressions. DT :
Domain specific terms. PS: Positive sentiment words. NS:
Negative sentiment words. IR: Ironic and humbling words.
ID: Insulting and degrading words. p: Refers to the person
who is asking. qText: Refers to the question text
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The algorithm works in four steps as follows.

1. The algorithm checks whether the answerer
is the same person who asked the question.
The answers made by person who asked the
question are downgraded such that they be-
come the last answers in the list.

2. For the rest of the answers, we compute the
similarity between the question Q and the an-
swer ai, where 0 ≤ SMqi ≤ n (n = |L|).

3. Then, based on Grice maxims, the answers
are rewarded or penalized as follows.

a The answer ai is rewarded according to
the number of entities, reference expres-
sions, currency and numbers, impera-
tives, domain specific terms, and posi-
tive sentiment words.

b On the other hand, ai is penalized ac-
cording to the number of negative senti-
ment, ironic, and insulting words.

4. After rewarding and penalizing all answers,
we then sort the list of answers according to
their achieved scores in a descending order.
Best answer is the first answer in the list and
so on.

Evaluating the algorithm on the same test set in the
previous experiments, we get MAP=0.7151. The
best system in SemEval 2016 (Filice et al., 2016)
achieved MAP=79.19 as shown in Table 1.

System MAP
Baseline 0.5280
Experiment 3 0.5596
Experiment 1 0.5839
Experiment 2 0.6089
SemEval-2016 Worst System 0.6224
Experiment 5 0.6403
Experiment 4 0.6422
Our System 0.7151
SemEval-2016 Best System 0.7919

Table 1: Results of some community Question An-
swer Ranking approaches in SemEval 2016.

4 Results

Our system obtained a rank7 of 12 out of 13 par-
ticipated systems and a MAP of 78.56. It beat

7http://alt.qcri.org/semeval2017/task3/

the IR baseline by 6 points, and the last system
LaSIGE-primary by 15 points, with a difference
of 10 points from the best system.
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Abstract

This paper presents a description of the par-
ticipation of the UPC-USMBA team in the
SemEval 2017 Task 3, subtask D, Arabic.
Our approach for facing the task is based on
a performance of a set of atomic classifiers
(lexical string-based, vectorial, and rule-
based) whose results are later combined.
Our primary submission has obtained good
results: 2nd (from 3 participants) in MAP,
and 1st in in accuracy.

1 Introduction

The SemEval Task 3 subtask D, (Nakov et al.,
2017), asks, given a query, consisting of a ques-
tion, and a set of 30 question-answer pairs, to re-
rank the question-answer pairs according to their
relevance with respect to the original question.

Question Answering, QA, i.e. querying a com-
puter using Natural Language, is a traditional ob-
jective of Natural Language Processing. CQA dif-
fers from conventional QA systems basically on
three aspects: The source of the possible answers,
that are the threads of queries and answers ac-
tivated from the original query, the structure of

the threads and the available metadata can be ex-
ploited for the task, types of questions include the
frequent use of complex questions, as definitional,
why, consequences, how to proceed, etc. One fac-
tor that makes very attractive the task is that many
approaches, rule-based, pattern-based, Statistical,
ML, have been applied to face it. See (Nakov et
al., 2017) for an overview of frequently used tech-
niques. See also the overviews of past contests,
(Nakov et al., 2016a) and (Nakov et al., 2016b).

2 Our Approach

Due to the negative results in last year participa-
tion, for this year we present a system that com-
bines different classifiers, going beyond the two
classifiers, Arabic and English shallow features-
based ones, used last year. The new classifiers fol-
low approaches that have produced good results
in systems as (Barrón-Cedeño et al., 2016), (Mi-
haylov and Nakov, 2016), and (Joty et al., 2016).
We will refer in what follows to these classifiers
as atomic ones and they are further combined for
obtaining the final results.
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The overall architecture of our system is pre-
sented in Figure 1. As can be seen, the system
performs in four steps, a preliminary step, aim-
ing at collecting needed resources, basically Ara-
bic and English classified medical terminologies,
a learning step, for getting the models, a classifi-
cation step, for applying them to the test dataset,
and a last step combining the results of the atomic
classifiers that are described next.

2.1 Overall description

A core component of our approach is the use of
a medical terminology, covering both Arabic and
English terms and organized into three categories:
body parts, drugs, and diseases. See (Adlouni et
al., 2016).

After downloading the training (resp. test) Ara-
bic dataset we translate into English all the Arabic
query texts and all the Arabic texts corresponding
to each of the query/answers pairs. For doing so
we have used the Google Translate API1. The texts
are then processed using for English the Stanford
CoreNLP toolbox2 (Manning et al., 2014) and for
Arabic Madamira3 (Pasha et al., 2015). The re-
sults are then enriched with WordNet synsets and
with Named Entities included in the medical dic-
tionaries for both Arabic and English. Then a pro-
cess of feature extraction is carried out. This pro-
cess is different for each atomic classifier and will
be described next. Finally, a process of learning
(resp. classification) is performed. Also these pro-
cesses differ depending on the involved classifiers.

2.2 Atomic Classifiers

The atomic classifiers4 used by our system are the
following:

• Basic lexical string-based classifiers, i.e. Ba-
sic ar and Basic en, identical to the ones
used last year. The basic classifiers use
three sets of features5: shallow linguistic fea-
tures, vectorial features, and domain-based
features. Details can be seen in (Adlouni et
al., 2016). We have used for learning the

1translate.google.com
2http://stanfordnlp.github.io/CoreNLP/
3http://nlp.ldeo.columbia.edu/madamira/
4In fact the classifiers, besides classifying each pair as

relevant or not, use their confidence scores for obtaining the
score of each pair and, thus, their relative order. We can, so,
define them as regressors or rankers.

5Extracted independently for each language.

Logistic Regression classifier included in the
Weka toolkit6, (Hall et al., 2009).

• A simple IR system, using LUCENE en-
gine, with different combinations served as
index, Question, Answer and Question con-
catenated with the Answer.

• Latent Semantic Indexing (LSI), learned
from different datasets, was used to get
dense representations of our sentences by us-
ing SVD (Singular Value Decomposition).
These vectorial representations are then used
to measure the similarity between each pair
Qo/Qi where Qo denote the original ques-
tion and Qi denote the ist Question within
the set of questions to rank. Various corpora
was used for that matter including Wikipedia,
Webteb.com, altibbi.com and dailymedical-
info.com which are specialized Arabic web-
sites for medical domain articles. The pre-
processing step consisted of denoising col-
lected articles, extracting paragraphs, remov-
ing stopwords, diacritics, tokenizing, normal-
izing and lemmatizing. The same pipeline is
used later for the query and for each pair of
Question/Answer. The implementation used
for LSI is from gensim (Řehůřek and Sojka,
2010). After the SVD decomposition, cosine
similarity measure is calculated for each pair
which are ordered for each query and a quar-
tile approach is taken to decide if the pair is
relevant or not.

• A topic-based LDA using the same training
datasets that for LSI. We used the implemen-
tation of Rehurek’s gensim7.

• Embedding systems. We have tried sev-
eral embeddings with no remarkable results.
Specifically we tried Word2Vec8, Glove9, and
doc2vec10. The last one produced the best re-
sults but was outperformed by the combina-
tion of LDA and LSI.

• A Rulebased system, with rulesets for Arabic
and English. The motivation of rule-based
classifiers is that for some queries both the
original questions and some of the questions

6http://www.cs.waikato.ac.nz/ml/weka/
7http://radimrehurek.com/gensim/models/ldamodel.html
8http://deeplearning4j.org/word2vec.html
9http://nlp.stanford.edu/projects/glove/

10http://radimrehurek.com/gensim/models/doc2vec.html
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Figure 1: Train and testing pipelines

included into the thread are short questions
involving a clear objective. We can man-
ually build condition rules for recognizing
these questions and extracting their objec-
tives. Consider, for instance, a question be-
ginning with ”What is the cause of”, and con-
taining close to it a disease name. This ques-
tion can be easily classified with the Ques-
tion type (QT) CauseDisease and parameter-
ized with the tag Disease with the extracted
name as value. Similarly we can build an-
swer rules for detecting whether the answer
part of a pair satisfy the objective (in this ex-
ample) an occurrence of the disease name.
If the original question fires a condition rule
and is classified with a QT with some associ-
ated tag and some of its questions within the
thread are also classified with the same QT
being their tags compatible, it is highly likely
that the corresponding pairs are relevant for
the original query. Moreover, if the answer
part of the pair satisfy the associated answer
rule the confidence (and, thus, the score) of
the pair increases. Unfortunately although
the precision of condition rules is high, recall
is very low. Our hope is that with careful en-
gineering of the rules and this kind of atomic
classifier if not alone could contribute to im-
prove the performance of other classifiers. 13
QTs were used for Arabic and 16 QTs for En-

glish, with a total of 75 rules.

2.3 Combinations

Output of the atomic classifiers are further com-
bined. We have evaluated the powerset of the
atomic classifiers for looking for the best combi-
nation using the training set. However, no more
than 3 atomic classifiers produced good results and
the best one resulted from the combination of one
of the LSI and one of the LDA classifiers. The
parameters used for learning the combiner are the
following:

• scoring form, i.e. ’max’ or ’ave’, defin-
ing how for each pair i of each query q the
scores of the different atomic components s
are combined.

• thresholding form, i.e. None, ’global’ or ’lo-
cal’, defining whether a threshold has to be
used for getting the result of each pair i.

• thresholding level, i-e. 0.2, 0.4, 0.6, 0.8.

• result form, i.e. ’max’, ’voting’, ’coinci-
dence’.

3 Experimental framework

We carried out all the processes depicted in Fig-
ure 1, for preprocessing and training using the
training dataset. Besides, we tried all the possible
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Team Rank MAP Accuracy
GW QA-primary 1 0.6116 0.6077
UPC-USMBA-primary 2 0.5773 0.6624
QU BIGIR-primary 3 0.56695 0.4964

Table 1: Official results of the task

combinations of atomic classifiers. The best re-
sults were obtained for the combination LDA and
LSI learned from Webteb, lemmatized. This com-
bination was our primary run. As we were inter-
ested on the performance of our manual rules we
submitted, too, a contrastive run including a com-
bination of basic ar and basic en with rule based.
We were interested on analyzing two measures
MAP as official measure and accuracy as the mea-
sure based on the individual results and not in the
order. As our classifiers are not true rankers, ana-
lyzing the two measures seemed more appropriate
for evaluating our system and proposing ways of
improvement.

4 Results

In Table 1 a summary of the Official results of Se-
meval 2017 Task 3 Subtask D, corresponding to
primary runs is presented.

Regarding MAP, and so, looking at the official
rank, we are placed in the middle (2nd from 3
participants). Regarding accuracy, that is impor-
tant for us as argumented in previous section, we
are placed on the top of the rank. We analyzed
the results in the test dataset of our atomic clas-
sifiers (with different parameterization) and com-
binations. Due to space constraints we cannot in-
clude the whole results. The MAP for the atomic
classifiers (using the best parameters got in train-
ing) range from 55 to 58.32. All the atomic results
were outperformed by our primary run but Lucene
obtaining our best result, 58.32.

5 Conclusions and future work

This year our results have been rather good, sec-
ond (but from only 3 teams) in MAP and first in
accuracy.

From our contrastive run we need more time for
analyzing the results. The accuracy of each rule
of each language should be measured and some
rules should be refined, some others removed and
probably more rules are needed.

Our next steps will be:

• Performing an in depth analysis of the perfor-
mance of our two rulesets, analyzing the ac-

curacy of each rule and cross comparing the
rules fired in each language. It is likely that if
a rule has been correctly applied to a pair for
a language a corresponding rule in the other
languages should be applied as well, so mod-
ifying an existing rule or including a new one
could be possible. Learning a rule classifier
is another possibility to examine.

• Using a final ranker over the results of our
atomic classifiers for trying to improve our
MAP.

• Trying others NN models as CNN and
LSTM.

• Extending the coverage of our medical ter-
minologies to other medical entities (proce-
dures, clinical signs, etc).
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Abstract

This paper presents the system in
SemEval-2017 Task 3, Community Ques-
tion Answering (CQA). We develop a
ranking system that is capable of captur-
ing semantic relations between text pairs
with little word overlap. In addition to
traditional NLP features, we introduce
several neural network based matching
features which enable our system to mea-
sure text similarity beyond lexicons. Our
system significantly outperforms baseline
methods and holds the second place in
Subtask A and the fifth place in Subtask
B, which demonstrates its efficacy on
answer selection and question retrieval.

1 Introduction

In task 3 of SemEval 2017, participants are
required to address typical problems in mod-
ern CQA forums. We participate two sub-
tasks: question-comment similarity (Subtask A)
and question-question similarity (Subtask B). In
Subtask A, given a question and 10 comments in
its comment thread, one is required to re-rank the
10 comments according to their relevance with the
question. Subtask B gives a question and asks par-
ticipants to re-rank 10 related questions according
to their similarity to the input question.

The challenge of both subtasks is that two natu-
ral language sentences often express similar mean-
ings with different but semantically related words,
which results in semantic gaps between them. To
bridge the semantic gaps, we build a ranking sys-
tem with a variety of features. In addition to tra-
ditional NLP features such as tf-idf (Salton and
Buckley, 1988), the longest common subsequence
(Allison and Dix, 1986), translation models (Jeon

∗ Corresponding Author

et al., 2005), and tree kernels (Schlkopf et al.,
2003; Collins and Duffy, 2002; Moschitti, 2006),
which match sentences based on word overlap,
syntax (tree kenerls), and word-word translations
(translation models), we also introduce neural net-
work based matching models into the system as
features. The neural matching features, includ-
ing a long short term memory network (LSTM)
(Schuster and Paliwal, 1997) and a 2D matching
network which is a variant of our model in (Wu
et al., 2016), can extract high level matching sig-
nals from distributed representations of the sen-
tences and capture their similarity beyond lexi-
cons. We also design some specific features for
each subtask. All the features are combined as
a ranking model by a gradient boosted regression
tree which is implemented by Xgboost (Chen and
Guestrin, 2016). Our system significantly outper-
forms baseline methods on the two subtasks. On
Subtask A, it holds the second place and is compa-
rable with the best system. On Subtask B, it holds
the fifth place. The results demonstrate that our
system can alleviate the semantic gaps in the tasks
of CQA and effectively rank relevant comments
and similar questions to high positions.

2 System Description

Our system is built under a learning to rank frame-
work (Liu et al., 2009). It takes a question and
a group of candidates (comments or related ques-
tions) as input, and outputs a ranking list of the
candidates based on scores of question-candidate
pairs. The ranking scores are calculated in three
steps: text preprocessing, feature extraction, and
feature combination. In preprocessing, we replace
special characters and punctuations with spaces,
normalize all letters to their lowercase, remove
stop-words, and conduct stemming and syntax
analysis. Subsequently, we extract a variety of fea-
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tures from text pairs including traditional NLP fea-
tures and neural matching features for both sub-
tasks and some task-specific features. Finally,
we feed the features to a ranking model which
is trained under a pairwise loss using the training
data provided in the subtasks to calculate the rank-
ing scores.

In the following, we will describe details of pre-
processing, features, and feature combination.

2.1 Preprocessing

We exploit NLTK toolkit (Loper and Bird, 2002)
to conduct stemming, tokenization, and POS tag-
ging. We use Stanford PCFG parser (Klein and
Manning, 2003) to get the parse tree of each sen-
tence.

2.2 Traditional NLP Features

The following features are designed based on
words and syntactic analysis.

Tf-idf cosine: each piece of text is converted to
a one hot representation weighted by tf-idf values,
where tf is the term frequency in the text, and idf
is calculated using the unannotated Qatar corpora
(Nakov et al., 2017). The cosine of representations
of the two pieces of text is used as a feature.

Longest common subsequence: we measure
the lexical similarity of each text pair with the
term-level longest common subsequence (LCS)
(Allison and Dix, 1986). The length of LCS is
normalized by dividing the maximum length of the
two pieces of text.

Word overlap: we calculate the normalized
count of common ngrams (n=1,2,3) and nouns.

Tree kernels: tree kernels are similarity func-
tions used to measure the syntactic similarity of
a text pair. We compute the subtree kernel (ST)
(Schlkopf et al., 2003), the subset tree kernel
(SST) (Collins and Duffy, 2002), and the partial
tree kernel (PTK) (Moschitti, 2006) on the parse
trees of a text pair.

Translation probability: we learn word-to-
word translation probabilities using GIZA++ 1

with the unannotated Qatar Living data. In
training, we regard questions as source lan-
guage and their answers as target language.
Following (Jeon et al., 2005), we use trans-
lation probability p(qusetion A|question B) and
p(comment|question) as features for a question-

1http://www.statmt.org/moses/giza/
GIZA++.html

question pair and a question-comment pair respec-
tively.

In Subtask A, we compute the features on both
(question body, comment) and (question subject,
comment), and in Subtask B, we compute the fea-
tures on (question body, question body) and (ques-
tion subject, question subject).

2.3 Neural Matching Features

In addition to the traditional NLP features, we also
use neural matching features to measure text sim-
ilarity based on their distributed representations.
These neural network based models have proven
their effectiveness in previous works (Zhang et al.,
2016; Fang et al., 2016; Wu et al., 2016; Zhao
et al., 2016).

Word embedding cosine: we em-
ploy a pre-trained word embedding from
https://github.com/tbmihailov/
semeval2016-task3-cqa, where the di-
mensionality of word vectors is 200. We average
the embedding of words in a piece of text as its
representation, and compute the cosine of the
representations of two pieces of text as a feature.

Bi-LSTM: long short term memory (LSTM)
is an advanced type of recurrent neural net-
work which leverages memory cells and gates to
learn long-term dependencies within a sequence
(Hochreiter and Schmidhuber, 1997). We use a
bidirectional LSTM (bi-LSTM) with a multi-layer
perceptron (MLP) to calculate a matching score
for a text pair as a feature.

Specifically, given a text pair (Sx, Sy), the
model looks up an embedding table to convert Sx

and Sy to Sx = [ex,1, ..., ex,i, ..., ex,I ] and Sy =
[ey,1, ..., ey,i, ..., ey,J ] respectively, where ex,i, ey,i

are the embeddings of the i-th words of Sx and Sy

respectively. Then Sx and Sy are encoded in hid-
den sequences by a bi-LSTM which consists of a
forward LSTM and a backward LSTM. The for-
ward LSTM reads Sx in its order (i.e., from wx,1

to wx,I ) and transforms it to a forward hidden se-
quence {−→h x,i}Ii=1. ∀i ∈ {1, . . . , I}, −→h x,i is de-
fined by:

ii = σ(W (i)ex,i + U (i)hx,i−1 + b(i))

fi = σ(W (f)ex,i + U (f)hx,i−1 + b(f))

oi = σ(W (o)ex,i + U (o)hx,i−1 + b(o))

ui = tanh(W (u)ex,i + U (u)hx,i−1 + b(u))

ci = ii ⊗ ui + fi ⊗ c(i−1)

hi = oi ⊗ tanh(ci),
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Figure 1: Architecture of 2D matching network

where σ(·) is a sigmoid function and tanh(·)
is a hyperbolic tangent function. W (i), W (f),
W (o), W (u) U (i), U (f), U (o), U (u), b(i), b(f), b(o),
and b(u) are parameters. Similarly, the backward
LSTM reads Sx in its reverse order (i.e., from wx,I

to wx,1) and transforms it to a backward hidden
sequence {←−h x,i}Ii=1. Then ∀i ∈ {1, . . . , I}, we
concatenate

−→
h x,i and

←−
h x,i as hx,i, and then rep-

resent Sx as vx = average(hx,1, ..., hx,I). Fol-
lowing the same procedure, we have vy as the rep-
resentation of Sy. Finally, we concatenate (vx, vy)
as an input of a multi-layer perceptron (MLP) to
calculate a score.

2D matching network: the model is a variant
of the one proposed in (Wu et al., 2016) which
has proven effective on the data of SemEval-2015.
The model in (Wu et al., 2016) leverages prior
knowledge and performs text matching with multi-
ple channels. In our system, we only use two chan-
nels, which means we do not take prior knowl-
edge such as knowledge base (Zheng et al., 2016)
and topic information into consideration. The ar-
chitecture is shown in Figure 1. Given a text
pair (Sx, Sy), their word embedding representa-
tions Sx, Sy and their bi-LSTM representations
{hx,i}Ii=1 and {hy,i}Ji=1, we compute a word sim-
ilarity matrix M1 = [m1,i,j ]I×J and a sequence
similarity matrix M2 = [m2,i,j ]I×J . ∀i, j, the
(i, j)-th element of M1 is defined by

m1,i,j = e>u,i · er,j . (1)

where eu,i is the i-th word embedding of the utter-
ance, and er,j is the j-th word embedding of the
response. The (i, j)-th element of M2 is defined
by

m2,i,j = h>u,iAhr,j , (2)

where A is a parameter. After that, a convolu-
tional neural network (CNN) takes M1 and M2

as input channels, and alternates convolution and
max-pooling operations (The system only has one
convolution and one pooling layer). Suppose that

z(l,f) =
[
z
(l,f)
i,j

]
I(l,f)×J(l,f)

denotes the output of

feature maps of type-f on layer-l, where z(0,f) =
Mf , ∀f = 1, 2. On convolution layers, we em-
ploy a 2D convolution operation with a window
size r(l,f)

w × r(l,f)
h , and define z(l,f)

i,j as

z
(l,f)
i,j = σ(

Fl−1∑
f ′=0

r
(l,f)
w∑
s=0

r
(l,f)
h∑
t=0

w
(l,f)
s,t · z(l−1,f ′)

i+s,j+t + bl,k), (3)

where σ(·) is a ReLU (Nair and Hinton, 2010),

and w(l,f) ∈ Rr
(l,f)
w ×r

(l,f)
h and bl,k are parameters

of the f -th feature map on the l-th layer, and Fl−1

is the number of feature maps on the (l − 1)-th
layer. A max pooling operation can be formulated
as

z
(l,f)
i,j = max

p
(l,f)
w >s≥0

max
p
(l,f)
h

>t≥0

zi+s,j+t. (4)

Feature vectors at the last pooling layer are con-
catenated to form a similarity vector v, which is
fed to an MLP to predict the final similarity score.

We learn the bi-LSTM and the 2D matching
network by minimizing cross entropy on training
data. Let Θ denote the parameters, then the objec-
tive function can be formulated as

−
N∑

i=1

[lilog(f(sx,i, sy,i)) + (1− li)log(1− f(sx,i, sy,i))] ,

(5)

where li ∈ {0, 1} is a label, f(sx,i, sy,i) is the neu-
ral network we want to learn, and N is the number
of instances in the training data.

We use two data sets to learn the neural net-
works, which means we obtain two features from
each model. The first one is the training data pro-
vided by SemEval-2017 task 3, and the other one
is 2 million Yahoo! Answer data we crawled,
which is released in (Zhang et al., 2016). In
both data, question subjects and question bodies
are concatenated together. In SemEval-2017 data,
comments in Subtask A are annotated as Good,
PotentiallyUseful, and Bad, and we treat “Good”
as 1 and the others as 0. In Subtask B, each re-
lated question is annotated as PerfectMatch, Rele-
vant, and Irrelevant, and we treat “PerfectMatch”
and “Relevant” as 1 and “Irrelevant” as “0”. The
Yahoo Answer data is only used to learn the neu-
ral networks for Subtask A, in which we take a
question and its best answer as a positive instance,
and randomly sample an answer from other ques-
tions as a negative instance. The motivation of
leveraging external data is that the training data of
SemEval-2017 is small, which may cause overfit-
ting in learning of neural networks.
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Subtask A Subtask B
Train Test Train Test

2016-train 2016-dev 2016-test 2017-test 2016-train 2016-dev 2016-test 2017-test
Original questions - - - - 267 50 70 88
Related questions 6154 244 327 293 2670 500 700 880

Comments 37848 2440 3270 2930 - - -

Table 1: Statistics of the datasets

2.4 Task Specific Features

The features described above are used in both Sub-
task A and Subtask B. In addition to them, we also
design some specific features for each subtask.

In Subtask A, we design some features based
on heuristic rules which might indicate whether a
comment is good or not: (i) whether a comment
is written by the author of the question. (ii) the
length of a comment. (iii) whether a comment
contains URLs or email addresses. (iv) whether
a comment contains positive or negative smileys,
e.g., ;), :), ;(, :(.

In Subtask B, a related question has a meta-
data field that shows its relative rank in an exter-
nal search engine by considering its similarity with
the original question. We use the relative rank as a
feature for subtask B.

2.5 Feature Combination

Since both Subtask A and Subtask B are ranking
problems, we learn gradient boosted regression
trees using XgBoost (Chen and Guestrin, 2016)
as ranking models to combine all features. The
ranking models are learned by minimizing pair-
wise loss on training instances provided by the
subtasks.

3 Experiments

3.1 Data Sets and Evaluation Metrics

We used the data sets provided by SemEval-2017
(Nakov et al., 2017). Table 1 gives the statistics.
We employed Mean Average Precision (MAP),
Average Recall (AveRec), and Mean Reciprocal
Rank (MRR) as evaluation metrics.

3.2 Parameter Tuning and Feature Selection

We tuned parameters according to average MAP
on 5-fold cross validation (CV) with grid search
algorithm. There are three sensitive parameters of
XGBoost that should be tuned in training, namely
gamma, subsample, colsample bytree. The best
parameters of two subtasks is shown in Table 2.

Subtask A Subtask B
gamma 19 10

subsample 0.5 1
colsample bytree 0.5 0.2

bst:max depth 10 10
bst:eta 0.01 0.01

scale pos weight 0.7 0.7

Table 2: Parameters of XgBoost

Bi-LSTM 2D MN
Two LSTMs not shared shared

Dim. of embedding 200 200
Dim. of hidden states 200 200

# CNN filters - 8
CNN filter size - (3,3)
nodes of MLP (200,50,2) (400,50,2)

Table 3: Parameters of neural networks

We adopted Adagrad (Duchi et al., 2011) which
is a stochastic gradient descent method to optimize
the neural network models. In order to prevent
overfitting, we used early-stopping (Lawrence and
Giles, 2000) and dropout (Srivastava et al., 2014)
with rate of 0.5. In bi-LSTM and 2D matching
network (2D MN), the dimensionality of word em-
bedding is 200. Word embedding was initialized
by the result of word2vec (Mikolov et al., 2013)
trained on unannotated Qatar data (Nakov et al.,
2017) and updated in training. We set the initial
learning rate and batch size as 0.001 and 30 re-
spectively. The other parameters of the two mod-
els are listed in Table 3.

We conducted feature selection by 5-fold CV to
filter out useless features for the two subtasks. Our
approach is that we first used all features and ob-
tained an MAP on 5-fold CV, then we removed
the features one by one and checked how MAP
changes. If MAP increased significantly by re-
moving that feature, we removed the feature. The
final result is that we preserved all features for
Subtask A, and removed neural matching features
for Subtask B. Details of feature contributions will
be described in Section 3.5.

Apart from the primary submission, we also

283



5-fold cross validation Test-2017
Features MAP AvgRec MRR MAP AvgRec MRR
All 70.65 88.54 76.17 88.24 93.87 92.34
- traditional NLP features 69.06 87.94 75.16 87.83 93.60 92.73

- tf-idf cosine 70.28 88.21 76.23 87.88 93.75 92.21
- LCS 69.95 88.01 76.15 88.04 93.90 92.21
- word overlap 69.69 88.10 75.41 88.62 94.14 92.97
- tree kernels 69.50 87.98 95.38 87.97 93.84 92.38
- translation probability 69.77 88.25 75.50 87.81 93.77 92.59

- neural matching features 64.81 82.85 71.91 85.06 91.40 91.52
- word embedding cosine 69.90 88.28 76.24 88.31 93.81 92.40
- bi-LSTM 67.57 86.67 74.54 88.02 93.90 92.54
- 2D MN 69.72 88.01 75.86 88.17 94.04 92.50

- meta-data features 68.09 86.75 74.90 86.54 92.58 91.66

Table 4: Subtask A: results of ablation experiments

5-fold cross validation Test-2017
Features MAP AvgRec MRR MAP AvgRec MRR
All 77.13 91.86 83.89 44.78 79.13 49.89

- tf-idf cosine 72.81 87.85 79.91 44.80 78.60 49.89
- LCS 74.25 88.95 80.90 42.93 78.59 46.94
- word overlap 74.04 88.79 80.67 45.19 80.63 49.65
- tree kernels 76.10 90.98 82.88 45.48 80.63 49.65
- translation probability 75.99 90.35 82.20 44.89 79.57 49.18

- meta-data feature 76.14 91.16 82.98 47.00 80.31 50.83
+ neural matching features* 71.32 86.74 78.21 42.77 77.23 45.98

+ word embedding cosine* 74.76 89.31 81.21 43.59 78.76 46.83
+ bi-LSTM* 71.43 86.88 78.39 42.89 77.89 46.65
+ 2D MN* 70.39 85.49 77.53 43.46 78.60 46.71

Table 5: Subtask B: results of ablation experiments. * means we did not use it in our submitted system
for its bad performance on CV.

submitted two contrastive results. The only differ-
ence is the parameter setting of XgBoost. In the
primary submission, we selected the parameters
with which our system achieved the best perfor-
mance on 5-fold CV, while in the two contrastive
submissions, we selected two parameter combina-
tions that correspond to the smallest and the sec-
ond smallest variance of MAP on 5 runs.

3.3 Baseline
We selected the relative rank provided by the
search engine, Google, as a baseline method, and
denote it as IR baseline.

3.4 Overall results
We show the primary and contrastive results of
Subtask A and Subtask B in Table 6 and Table 7
respectively. There is no significant difference be-

Submission MAP AvgRec MRR
primary 88.24 93.87 92.34
contrastive1 88.17 93.82 92.17
contrastive2 88.18 93.91 92.45
KeLP (first) 88.43 93.79 92.82
Baseline (IR) 72.61 79.32 82.37

Table 6: Subtask A: results of our system on test set

tween our primary and contrastive results, indicat-
ing that the final result is not sensitive to our pa-
rameter selection of Xgboost. On subtask A, the
primary and contrastive results significantly out-
perform the baseline method with a big margin.
The primary result, achieving 88.24 on MAP, is
ranked second in all submitted systems, demon-
strating that neural matching features are effective
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Submission MAP AvgRec MRR
primary 44.78 79.13 49.88
contrastive1 43.89 79.48 48.18
contrastive2 44.79 79.13 49.89
simbow (first) 47.22 82.60 50.07
Baseline (IR) 41.85 77.59 46.42

Table 7: Subtask B: results of our system on test set

on the task of answer selection. Our improvement
is not big on Subtask B, which is only 3 points on
MAP score. This is because we only use shallow
features on this task and neural matching features
are useless according to our experiments. There
are two reasons why neural matching fails on this
task: (1) training data provided by SemEval-2017
is too small to train a neural network, and our ex-
ternal data only consists of question-answer pairs
which does not support learning neural networks
for question-question similarity; (2) a question and
its question often share most of words and are only
different on a small proportion of function words.
Neural matching models, however, are not good at
capturing such difference.

3.5 Feature Contribution

We conducted ablation experiments on training
data with 5-fold CV and on test data to examine
the usefulness of features. The conclusion is that
traditional NLP features are effective on both sub-
tasks, while neural matching features can only im-
prove the system performance on Subtask A.

In Table 4, we present the results on Subtask A,
including our system with all features and the sys-
tem with one of the features excluded. We can ob-
serve that all features are useful on training data,
but the system can achieve a better result on test
data if we exclude the word overlap feature. Neu-
ral matching features are important on Subtask A,
with which we obtain 5 point gain on training data
and 3 point gain on test data. Meta-data features
are also useful, indicating that they are good com-
plementary to the similarity based features.

In Table 5, we show the results of ablation ex-
periments on Subtask B. Neural matching features
caused performance drop on this task, therefore
we did not include them in our submitted system.
Although all the traditional NLP features are use-
ful on training data, word overlap, tree kernels,
and meta-data feature hurt the performance on the
test data. It is also worth noting that our system

can be further improved on the test data if the
meta-data feature, i.e., relative rank of Google, is
excluded from our system.

4 Conclusion

We developed a ranking system with neural
matching features for Subtask A and Subtask B
in SemEval-2017. The system holds the second
place in Subtask A and the fifth place in Subtask
B, which demonstrates its efficacy on answer se-
lection and similar question retrieval.
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Abstract

This paper describes our system, dubbed
MoRS (Modular Ranking System), pro-
nounced ’Morse’, which participated in
Task 3 of SemEval-2017. We used MoRS
to perform the Community Question An-
swering Task 3, which consisted on re-
ordering a set of comments according to
their usefulness in answering the ques-
tion in the thread. This was made for a
large collection of questions created by a
user community. As for this challenge we
wanted to go back to simple, easy-to-use,
and somewhat forgotten technologies that
we think, in the hands of non-expert peo-
ple, could be reused in their own data sets.
Some of our techniques included the anno-
tation of text, the retrieval of meta-data for
each comment, POS tagging and Named
Entity Recognition, among others. These
gave place to syntactical analysis and se-
mantic measurements. Finally we show
and discuss our results and the context of
our approach, which is part of a more com-
prehensive system in development, named
MoQA.

1 Credits

This work was supported by FCT through
funding of LaSIGE Research Unit, ref.
UID/CEC/00408/2013.

2 Introduction

The main difference between Question Answering
(QA) and Community Question Answering (cQA)
is, while QA systems rely on a user query in or-
der to search and prepare an answer based on the

∗Corresponding author: mrodrigues@lasige.di.fc.ul.pt

searching capabilities it already has and its docu-
ments, in cQA the query and respective related an-
swers are already provided, being only necessary
a reordering by relevance of such answers, or per-
haps even a rephrasing of such an answer in order
to suit better the query.

In recent times, QA systems have attracted great
interest in the information retrieval community,
and also in the cQA (Höffner et al., 2016).

A characteristic of cQA, is that a user resorts
to the web for answers without a given structured
knowledge base. The arbitrariness of cQA forums,
the dependence and waiting time on their results,
may slow the gathering of answers in real time.
Also, public forums are dependent of the users in-
put (i.e. answers), which might be rather unstruc-
tured, not straight to the point, not related to the
question at hand, not well written (i.e. grammati-
cally), lengthy or even incorrect. Our team shares
this exact same interest and continuous develop-
ment in this area.

Our participation focused on the Community
Question Answering (CQA) Task 3 SubTask A
of 2017 SemEval edition 1 (Nakov et al., 2017),
which consisted on reordering a set of comments
according to their usefulness in answering the
question in the thread. This was made for a large
collection of questions created by a user com-
munity, provided by the task organizers. Suc-
cinctly, Subtask A: Question-Comment Similar-
ity, involved ranking ”Good” comments above the
”PotentiallyUseful” or ”Bad” comments, where
there was no distinction between them, since their
difference was not important for the task’s evalu-
ation method. Finally, the result file was to be a
ranked list of the probability of the comments ac-
cording to their relevance.

We developed MoRS (pronounced ”morse”),
1http://alt.qcri.org/semeval2017/

task3/
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which went back to simple and rather effective
technologies, making it available at a later stage to
the public, with minimal pre-requisites and ease of
(re)use. MoRS addressed Subtask A of Task 3 by
first recognizing relevant terms in each query and
also in the respective comments in the thread re-
lated to the question being analyzed. Next, the sys-
tem builds its features by passing through a sub-
module which analyzes each question and respec-
tive comments. Then, MoRS compares named en-
tities from the questions and comments and cross-
references them. It also identifies the comments
that shared most concepts with the ones associ-
ated to the thread question. MoRS employed a
semantic similarity to measure how close in mean-
ing both comments and questions are even if they
do no share the same exact concepts.(Couto and
Pinto, 2013) Additionally, MoRS used Machine
Learning (Pedregosa et al., 2011) techniques to
classify if a comment as ”Good”, as explained in
the description of the Subtask, and ”Not Good”
according to the comment’s relevance.

The paper also describes the main system where
MoRS is part of, which is a larger and modular
pipeline, MoQA (Modular Question Answering,
pronounced ”mocha”) and also presents the result
measure values obtained in Subtask A. Despite
successful implementation we did not get the de-
sired results due to data set corruption found only
after result submission.

The following section, Section 3, approaches
some works that have inspired our system overall,
Section 4 explains its composing sub-modules, in
Section 5, we present and discuss our results, and
finally in sections 6 and 7 we talk about our con-
clusions and how we plan to approach the future
work and applicability of MoRS.

3 Related Work

When coming upon methodology and features to
use, the most important ones features came from
(Mihaylova et al., 2016), from where we could
see such features like: (1) the number of question
marks in the documents, (2) whether it contains
smileys, e-mails, “thank you” phrases, (3) num-
ber of offensive words from a predefined list, (4)
length of the answer (in characters), (5) if it in-
cludes a first person singular, or (6) plural pro-
noun, or even (7) if the author of the comment
is the same as he author of the question at hand.
Moreover, we could use, if available, character-

istics such as the position of the comment in the
thread, and the ID of the author of the comment.
After tokenization, another metric used is the ra-
tio of the comment length and of the question
length (in of number of tokens), the number of
comments from the same user the thread and the
order in which they are written by him. Other
aspect of meta-data worthy of exploration is the
presence and the number of links in the question
and in the comment (inbound or outbound), tak-
ing into consideration that the presence of a refer-
ence to another resource is indicative of a relevant
comment(Mohtarami et al., 2016). These features
were the ones we explored in the development of
MoRS.

The modularity promoted by OAQA (Yang
et al., 2015) and YodaQA (Baudiš, 2015) along
with an also modular and reusable and reshapable
implementation developed in WS4A (Rodrigues
et al., 2016), shaped the idea of a system for lay
users, using resources easily available.

4 MoRS Pipeline

As we can see in Figure 1, the system is sepa-
rated and defined in several modules that work as
a pipeline, where each module was designed to be
as much independent from the others as possible.
The most complex module is the Scorer, which
will be detailed in this section. The first step, takes
the xml files provided by the organization that go
through our xml parser (a). This parser is specific
to the format of the xml file, and in principle is
the only module that has to be user defined for fu-
ture use in other projects. The information that
comes out of this parsing is the question itself, its
author, and from each comment, the author, the
text that compose the comment and, if in train-
ing phase, the golden score of the comment. The
comment then goes through the Scorer module (b),
and each comment goes through various scoring
methods already described in section 2 which in-
volve, (1) cross-matching of Named Entities (ex-
act and partial tokens), using Stanford Named En-
tities Recognition (Finkel et al., 2005), determin-
ing the number of named entities that the com-
ment has in common with the question; (2) if the
author of the comment is the same as the author
of the question, giving it away that such a com-
ment would not be fit, since the questioner only
on rare occasions answers his own question; (3) if
the comment has any question marks, proving that
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Figure 1: The pipeline of MoRS with its main modules

that comment does not answer the question by not
being assertive; (4) if there is any swear words or
even (5) misspelled words (from a given list), that
may demonstrate a lack of zeal in the answer, plain
ignorance or at least lack of effort from the author
when answering; (6) sentence semantic similarity
score for sentences between the question and the
comment, based on the Wu-Palmer metric 2; (7) if
there are any personal pronouns, making the no-
tion of opinion making, which may indicate an
answer to the question; (8) the presence of other
question URLs or even (9) image URLs which
might indicate that a question might be already
answered in another thread; (10) the existence of
nouns in common may point to similar concepts
in discussion in the comment; (11) the presence of
smileys, from related work showed that they are
not a good sign or assurance in this way, because
they did not show seriousness from the comment’s
author; (12) the number of comments from that
author, in which a relative large number indicates
that the author has many comments in that thread
that at least do not answer correctly the question,
therefore the need of other comments. Finally,(13)
the length of the comment and it’s ratio (14) with
the length of the question.

After each set of question plus ten comments,
the resulting arrays are written to the Records file
(c) for the next step: the classification phase (d):
after all questions and correspondent answers are
dealt with, we use Machine Learning, more specif-
ically Support Vector Machines (SVM), to classify
between ”Good” comments and other comments,
based on the information provided in the training
files.

The ”training” phase from the classification
2http://sujitpal.blogspot.pt/2014/12/

semantic-similarity-for-short-sentences.
html

ends here, in step (d).
In the second phase, the test files go through

the same modules as the training files did, with
the difference that in the classification module, the
resulting arrays are classified as ”Good” or not,
and then they go through an implementation of
SVMlight, SVMrank (e).

SVMrank is an instance of SVMstruct
(Joachims, 2002) which mainly features: a fast
optimization algorithm, a working set selection
based on steepest feasible descent, the ability to
handle thousands of support vectors and training
examples.

The classified arrays are then transformed in the
following format, where the first digit is the im-
portance/relevance of that comment. The larger
this first number, more important is the comment,
qid denotes the question number, for classification
within that question, and the 1:, 2:, 3:, etc. are the
scores for each feature. Here follows an example:
1 qid:2 1:0 2:0 3:1 4:0.2
2 qid:2 1:1 2:0 3:1 4:0.4
1 qid:2 1:0 2:0 3:1 4:0.1
1 qid:2 1:0 2:0 3:1 4:0.2

SVMrank has also a learning phase, where the
scored arrays from the training files were pro-
vided. After the ranking scores for each question
is given, these are run through the Formatter mod-
ule (f), where the submission file is prepared ac-
cording to the Subtask’s requirements specified in
the instructions (g).

5 Results

Our results placed us on the bottom of the table,
with the best MAP result belonging to the KeLP
team of 88.43, our result of 63.32, and the baseline
just slightly lower of 62.30.

Comparing to last year’s standards and to our
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Submission MAP AvgRec MRR P R F1 Acc
KeLP 79.19 88.82 86.42 76.96 55.30 64.36 75.11
MoRS 81.15 81.42 88.44 74.37 99.94 85.28 74.34
Baseline 45.56 65.42 53.50 34.44 76.41 47.47 43.32

Table 1: MoRS’ comparison to last year’s task 3
results.

Submission MAP AvgRec MRR P R F1 Acc
Beihang 0.714 89.2 77.265 - - - -
MoRS 79.91 80.02 86.51 74.39 100 85.31 74.39
Baseline 45.56 65.4 53.50 - - - -

Table 2: MoRS’ results for the development set of
2017.

team’s surprise, MoRS was far from achieving a
comparable performance. After verifying our clas-
sification module of ”Good” and not ”Good” an-
swers, we noticed that our module was defect,
lacking about 95% of the arrays necessary to build
it, due to a small pipeline error which did not warn
us about this mistake, and continued regardless.

After re-running MoRS, and also verifying ev-
ery step of our system, we compared the results of
MoRS with the data-sets from last years’ task (Ta-
ble 1) and with the development set of 2017 (Table
2), and confirmed that in fact, this year’s results
would have been much better if the models were
correctly built.

To our surprise, our scores were significantly
lower than what we were experiencing during
our scores during the development phase, which
achieved very similar results, consisting in a MAP
score of 79.91. Highlight to a maximum score of
100 in the Recall.

Another thing we noticed is that the SVMrank
had quite the same behavior in both cases, so
the issue of the results was exactly the classifi-
cation of good answers, which brought the re-
sults to a surprising first place if it had partici-
pated in SemEval 2016 Task3. This was mainly
because of our research in the features used by
the teams in that year’s task and choosing what
we thought best fit the purpose of this task.
The scores for both 2016 test set and 2017 dev
set are available in https://github.com/
migueljrodrigues/MoRS-Scores.

6 Conclusion

As for this challenge we wanted to go back to
simple, easy-to-use, and somewhat forgotten tech-
nologies (some going back to 2002) that we think,
in the hands of non-experts, could be reused in
their own data sets. To simplify the task of fu-

ture users, we implemented a pipeline, where
only the data set provided has some restrictions
of format (xml), and we took to a minimum the
prerequisites necessary to run the same pipeline
(xml files of training and testing), which does not
need any computational requisites unavailable to
those that do not have large processing resources.
The result in this challenge is negative due to a
pipeline error. Despite this, after solving the prob-
lem, MoRS achieved top results comparing to last
year’s scores and this year’s development set, and
so we believe in bringing an easy and simple sys-
tem to the hands of non-experts in this area, while
taking advantage of its capabilities.

7 Future Work

For the algorithm in itself, and since the system is
already in place, we pretend to take part in next
years Task, maybe with a larger participation in
the other subtasks of Task 3. Also, some immedi-
ate improvements are to be regarded, such as the
handling of empty questions, that represented in
the subject, and even use the subject to better grab
a context of the question in itself.

In the future, we intend to assimilate this mod-
ule into MoQA, a Modular Question Answering
system, already in development. This system in-
tends to make use of the capabilities developed
here in order to rank answers from biomedical ar-
ticles (from PubMed) taking into account a user
query. The system, besides the biomedical ex-
ample, is to be modular to any domain knowl-
edge, if the correct data-set is to be provided.
This system also has the ability to adapt to gen-
eral questions without a specific domain knowl-
edge, thanks to implementation of DBpedia 3 RDF
queries through a Web Service. Finally, MoQA
will be easy to understand and reshape according
to the users’ likeness, if they want to, due to its’
modular nature and clear and simple division of
the same modules.

References
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Abstract

We describe our system for participating
in SemEval-2017 Task 3 on Community
Question Answering. Our approach relies
on combining a rich set of various types
of features: semantic and metadata. The
most important types turned out to be the
metadata feature and the semantic vectors
trained on QatarLiving data. In the main
Subtask C, our primary submission was
ranked fourth, with a MAP of 13.48 and
accuracy of 97.08. In Subtask A, our pri-
mary submission get into the top 50%.

1 Introduction

SemEval-2017 Task 3 on Community Question
Answering (Nakov et al., 2017) aims to solve a
real-life application problem. The main subtask
C (Question-External Comment Similarity) asks
to find an answer in the forum that is appropriate
as a response to a newly posted question. This is
achieved by retrieving similar questions and rank-
ing their answers with respect to the new question.
Three additional supporting subtasks are defined:

Subtask A (Question-Comment Similarity):
Given a question from a question-comment thread,
rank the comments within the thread based on
their relevance with respect to the question. The
comments in a question-comment thread are anno-
tated as Good, PotentiallyUseful and Bad. A good
ranking is the one that ranks all Good comments
above PotentiallyUseful and Bad ones.

Subtask B (Question-Question Similarity):
Given a new question, re-rank the similar ques-
tions retrieved by a search engine with respect to
that question. The potentially relevant question-
s are annotated as PerfectMatch, Relevant and Ir-
relevant with respect to the original question. A
good ranking is the one that the PerfectMatch and

the Relevant questions are both ranked above the
Irrelevant ones.

Subtask C (Question-External Comment
Similarity): Given a new question and the set of
the first 10 related questions (retrieved by a search
engine), each associated with its first 10 comments
appearing in its thread. Re-rank the 100 comments
(10 questions × 10 comments) according to their
relevance with respect to the original question.

2 Related Work

This year’s SemEval-2017 Task3 is a follow up of
SemEval-2016 Task3 (Nakov et al., 2016) on An-
swer Reranking in Community Question Answer-
ing. There are three reranking subtasks associated
with the English dataset. Subtask A is the same
as subtask A at SemEval-2015 Task 3 (Joty et al.,
2015), but with slightly different annotation and a
different evaluation measure.

The research of rerank can be classified into t-
wo categories, traditional feature engineering and
newest deep neural network employing. The first
type of method pays more attention on textural
features exploiting. Textual features have been
exploited well, including lexical features (e.g., n-
grams), syntactic features (such as parse trees) and
semantic features (for instance wordnet-based).
Some work exploit various feature extraction ap-
proaches and indicates the importance of feature
selection in the rerank task. (Filice et al., 2016;
Franco-Salvador et al., 2016; Mihaylova et al.,
2016). However those methods all face the prob-
lem of feature merging, due to many features may
affect each other.

Most recently, convolution neural networks (C-
NN) and recurrent neural networks (RNN) are em-
ployed in the task of text rerank (Wu and Lan,
2016; Qiu and Huang, 2015). Wu’s team use both
convolutional neural network and long-short ter-
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m memory network (Wu and Lan, 2016) to train
the model. Qiu’s model (Qiu and Huang, 2015)
integrates sentence modeling and semantic match-
ing into a single model, which can not only cap-
ture the useful information with convolutional and
pooling layers, but also learn the matching metric-
s between the question and its answer. However,
these methods all face the problem of too many
parameters in the model and it is hard to choose
the best parameters.

We build our system on top of the framework
developed by (Mihaylov and Nakov, 2016). In ad-
dition, we extract more different kinds of features.
In order to solve the problem of feature merging,
we just try different combinations of features and
choose the best one in the development set.

3 Data

There are 6,398 questons and 40,288 comments
for subtask A, 317 original + 3,169 related ques-
tions for subtask B, and 317 original questions +
3,169 related questions + 31,690 comments for
subtask C (Nakov et al., 2016).

We also used semantic vectors pretrained on
Qatar Living Forum: 200 dimensional vectors,
available for 472,100 words and phrases.

4 Method

In particular, we formulate all the three tasks as
classification problems.

We use various of features like question and
comment metadata; distance measures between
the question and the comment; lexical semantics
vectors for the question and for the comment.

4.1 Features

We use several semantic vector similarity and
metadata feature groups. For the similarity mea-
sures mentioned below, we use cosine similarity
(Nguyen and Bai, 2010):

1− a.b

‖a‖.‖b‖ (1)

Semantic Word Embeddings. We use semantic
word embeddings obtained from Word2Vec mod-
els trained on different unannotated data sources
including the QatarLiving and DohaNews (Abbar
et al., 2016). For each piece of text such as com-
ment text, question body and question subject, we
construct the centroid vector from the vectors of
all words in that text.

centroid(w1..n) =
∑n

i=1 wi

n
(2)

4.1.1 Semantic Features
We use various similarity features calculated using
the centroid word vectors on the question body, on
the question subject and on the comment text, as
well as on parts thereof:

Question to Answer similarity. We assume that
a relevant answer should have a centroid vector
that is close to that for the question (Min et al.,
2017). We use the question body to comment tex-
t similarity, and question subject to comment text
similarity.

Maximized similarity. We rank each word in
the answer text to the question body centroid vec-
tor according to their similarity and we take the
max similarity of the top N words (Fu and Mura-
ta, 2016). We take the top 1,2 and 3 similarities as
features. The assumption here is that if the aver-
age similarity for the top N most similar words is
high, then the answer might be relevant.

Aligned similarity. For each word in the ques-
tion body, we choose the most similar word from
the comment text and we take the average of all
best word pair similarities as suggested in (Tran
et al., 2015)

Dependency syntax tree based word vector
similarities. We obtain the dependency syntax tree
with the Stanford parser (De Marneffe and Man-
ning, 2008), and we take similarities between cen-
troid vectors of noun phrases from the comment
text and the centroid vector of the noun phrases
from the question body text. The assumption is
that same parts of dependency syntax tree between
the question and the comment might be closer than
other parts of dependency tree.

Word clusters (WC) similarity. We cluster the
word vectors from the Word2Vec vocabulary in-
to 500 clusters (with 400 words per cluster on
average) using K-Means clustering (Basu et al.,
2002). We then calculate the cluster similarity be-
tween the question body word clusters and the an-
swer text word clusters. For all experiments, we
use clusters obtained from the Word2Vec model
trained on QatarLiving forums with vector size of
100, window size 10, minimum words frequency
of 5, and skip-gram 1.

LDA topic similarity. We perform topic clus-
tering using Latent Dirichlet Allocation (LDA) as
implemented in the gensim toolkit (Rehurek and

293



Sojka, 2010)on Train1+Train2 questions and com-
ments. We build topic models with 150 topics. For
each question body and comment text, we get the
corresponding distribution, and calculated similar-
ity. The assumption here is that if the question and
the comment share similar topics, they are more
likely to be relevant to each other.

Semantic features above can fully represent the
similarity between the question and the comment,
which is very important in the next classification
part.

4.1.2 Metadata-based Features

Metadata-based features provide clues about the
social aspects of the community (Kıcıman, 2010).
Thus, except for the semantic features described
above, we also used some common sense metadata
features:

Answer containing a question mark. We think
if the comment has a question mark, it may be an-
other question, which might indicate a bad answer
(Katzman et al., 2017).

The presence and the number of links in the
question and in the comment. We count both in-
bound and outbound links. Our hypothesis is that
the presence of a reference to another resource is
indicative of a relevant comment (Newton et al.,
2017).

Answer length. The assumption here is that
longer answers could bring more useful detail
(Yang et al., 2017).

Question length. If the question is longer, it
may be more clear, which may help users give a
more relevant answer (Figueroa, 2017).

Question to comment length. If the question is
long and the answer is short, it may be less rele-
vant.

The comment is written by the author of the
question If the answer is posted by the same user
who posted the question and it is relevant, why has
he/she asked the question in the first place?

Answer rank in the thread. Earlier answers
could be posted by users who visit the forum more
often, and they may have read more similar ques-
tions and answers. Moreover, discussion in the fo-
rum tends to diverge from the question over time.

4.1.3 Other-extra Features

Some features neither belong to the semantic nor
metadata-based features, we call them extra fea-
tures. They are also useful in the task of rerank.

Special symbols. We think whether the com-
ment text contains smiley, e-mails, phone num-
bers, only laughter, ”thank you” phrases, personal
opinions, or disagreement is an important feature
(Toba et al., 2014).

Numbers of special part of speech We extract
statistics about the number of verbs, nouns, pro-
nouns, and adjectives in the question and in the
comment, as well as the number of numbers.

Numbers of misspelled words We obtain the
features relate to spelling and include number of
misspelled words that are within edit distance 2
from a word in our vocabulary and number of of-
fensive words from a predefined list (Agichtein
et al., 2008).

4.2 Classifier

For each Question and Comment pair, we first-
ly extract the features described above from the
Question body and the comment text. Then we
concatenate the extracted features in a bag of fea-
tures vector and have them normalized. After the
normalization, the value are mapped to interval
[-1,1]. At last, we input them into the classifi-
er. In our experiments, we use L2-regularized l-
ogistic regression classifier (Buitinck et al., 2013)
and SVM classifier (Zweigenbaum and Lavergne,
2016) respectively. For the logistic regression
classifier, we tune the classifier with different val-
ues of the C (cost) parameter (Aono et al., 2016),
and we take the one that yield the best accuracy on
10-fold cross-validation on the training set. For
the SVM classifier, we choose different kernels
(Moreno et al., 2003) and achieve the best results
with RBF kernel. We only show the better result-
s of above two classifiers in the next section. We
use binary classification Good vs. Bad (including
both Bad and Potentially Useful original labels).
The output of the evaluation for each test example
is a label, either Good or Bad, and the probability
of being Good in the 0 to 1 range. We then use
this output probability as a relevance rank for each
Comment in the Question thread.

5 Experiments and Evalution

This section presents the evaluation of the
SemEval-2017 Task 3 on CQA (Nakov et al.,
2017). Note that for our system EICA we did not
use data from SemEval-2015 CQA. The best result
of each partition and subtask is highlighted. Our
percentage comparisons all use absolute values.
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Table 1
Results of Subtask A: English Question-Comment Similarity(test set for 2016).

Model MAP AvgRec MRR P R F1 Acc

Random baseline 52.80 66.52 58.71 40.56 74.57 52.55 45.26
Search engine 59.53 72.60 67.83 – – – –
Kelp (Top 1) 79.19 88.82 86.42 76.96 55.30 64.36 75.11
ConvKN (Top 2) 77.66 88.05 84.93 75.56 58.84 66.16 75.54
SemanticZ (Top 3) 77.58 88.14 85.21 74.13 53.05 61.84 73.39
EICA 77.68 87.94 84.89 81.90 34.39 48.44 70.24

Table 2
Results of Subtask A: English Question-Comment Similarity(test set for 2017).

Model MAP AvgRec MRR P R F1 Acc

Random baseline 62.30 70.56 68.74 53.15 75.97 62.54 52.70
Search engine 72.61 79.32 82.37 – – – –
KeLP (Top 1) 88.43 93.79 92.82 87.30 58.24 69.87 73.89
Beihang-MSRA (Top 2) 88.24 93.87 92.34 51.98 100.00 68.40 51.98
IIT-UHH (Top 3) 86.88 92.04 91.20 73.37 74.52 73.94 72.70
EICA 86.53 92.50 89.57 88.29 30.20 45.01 61.64

Table 3
Results of Subtask B: English Question-Question Similarity(test set for 2016).

Model MAP AvgRec MRR P R F1 Acc

Random baseline 46.98 67.92 50.96 32.58 73.82 45.20 40.43
Search engine 74.75 88.30 83.79 – – – –
UH-PRHLT (Top 1) 76.70 90.31 83.02 63.53 69.53 66.39 76.57
ConvKN (Top 2) 76.02 90.70 84.64 68.58 66.52 67.54 78.71
Kelp (Top 3) 75.83 91.02 82.71 66.79 75.97 71.08 79.43
EICA 76.34 90.67 83.68 70.59 61.80 65.90 78.71

Table 4
Results of Subtask B: English Question-Question Similarity(test set for 2017).

Model MAP AvgRec MRR P R F1 Acc

Random baseline 29.81 62.65 33.02 18.72 75.46 30.00 34.77
Search engine 41.85 77.59 46.42 – – – –
simbow (Top 1) 47.22 82.60 50.07 27.30 94.48 42.37 52.39
LearningToQuestion (Top 2) 46.93 81.29 53.01 18.52 100.00 31.26 18.52
KeLP (Top 3) 46.66 81.36 50.85 36.01 85.28 50.64 69.20
EICA 41.11 77.45 45.57 32.60 72.39 44.95 67.16
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Table 5
Results of Subtask C: English Question-External Comment Similarity(test set for
2016).

Model MAP AvgRec MRR P R F1 Acc

Random baseline 15.01 11.44 15.19 9.40 75.69 16.73 29.59
Search engine 40.36 45.97 45.83 – – – –
SUper team (Top 1) 55.41 60.66 61.48 18.03 63.15 28.05 69.73
Kelp (Top 2) 52.95 59.27 59.23 33.63 64.53 44.21 84.79
SemanticZ (Top 3) 51.68 53.43 55.96 17.11 57.65 26.38 69.94
EICA 48.57 46.90 54.80 56.48 9.33 16.01 90.86

Table 6
Results of Subtask C: English Question-External Comment Similarity(test set for
2017).

Model MAP AvgRec MRR P R F1 Acc

Random baseline 5.77 7.69 5.70 2.76 73.98 5.32 26.37
Search engine 9.18 21.72 10.11 – – – –
IIT-UHH (Top 1) 15.46 33.42 18.14 8.41 51.22 14.44 83.03
BUNJI (Top 2) 14.71 29.47 16.48 20.26 19.11 19.67 95.64
KeLP (Top 3) 14.35 30.74 16.07 6.48 89.02 12.07 63.75
EICA 13.48 24.44 16.04 7.69 0.41 0.77 97.08

5.1 SemEval-2016 Task 3 Results

We can see the results of Subtask A (question-
comment similarity ranking) in Table 1. In terms
of ranking measures, our system outperform both
the random and the search engine baseline. We
observe a MAP improvement of 18.15% compare
with the results obtained by the search engine. We
obtain the second rank in SemEval-2016 (Nakov
et al., 2016).

Similar to Subtask A ,the performance of our
approach is also superior in Subtask B (question-
question similarity ranking). As we can see in Ta-
ble 3, using the test set for 2016, the improvement
of MAP and AvgRec has been of 1.59%, 2.37% re-
spectively compare to the search engine baseline.
In this case, the improvements in performance are
slightly reduced. We obtain the second rank in
SemEval-2016 (Nakov et al., 2016).

For Subtask C, the results are shown in Table
5. Using the test set for 2016, the improvement
of MAP and AvgRec has been of 8.21%, 0.93%
respectively compare to the search engine baseline
(Nakov et al., 2016).

5.2 SemEval-2017 Task 3 Results

We can see the results of Subtask A (question-
comment similarity ranking) in Table 2. In terms

of ranking measures, our system also outperform
both the random and the search engine baseline.
Using the test set for 2017 (Nakov et al., 2017),
we observe a MAP improvement of 13.92% com-
pare with the results obtained by the search engine.

Similar to Subtask A ,the performance of our
approach is also superior in Subtask B (question-
related question similarity ranking). As shown in
Table 4, using the test set for 2017 (Nakov et al.,
2017), we obtain the MAP of 41.11% and AvgRec
of 77.45.

For Subtask C, we can see the results in Table
6. Using the test set for 2017 (Nakov et al., 2017),
the improvement of MAP and AvgRec is 4.3%,
2.72% respectively compare to the search engine
baseline.

The results in both SemEval-2016 (Nakov
et al., 2016) and SemEval-2017 (Nakov et al.,
2017) prove that features we use are quite use-
ful for ranking comments with respect to a giv-
en question (Subtask A and C), but they do not
achieve as similar results when ranking questions
with respect to other questions(Subtask B).

6 Conclusion

We have described our system for SemEval-2017,
Task 3 on Community Question Answering. Our
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approach rely on semantic and metadata-based
features. In the main Subtask C, our primary sub-
mission is ranked fourth, with a MAP of 13.48 and
accuracy of 97.08, which is the highest. In Subtask
A, our primary submission is sixth, with MAP of
86.53 and accuracy of 61.64.

In future work, we plan to use our best feature
combinations in a deep learning architecture, as in
the Qiu’s system (Qiu and Huang, 2015), which
outperforms the other methods on two matching
tasks. We also want to use information from en-
tire threads (Joty et al., 2015) to make better pre-
dictions. How to combine them efficiently in the
system is an interesting research question.

Acknowledgments

This research was supported in part by Science and
Technology Commission of Shanghai Municipali-
ty (No.16511102702).

References
Sofiane Abbar, Tahar Zanouda, Laure Berti-Equille,

and Javier Borge-Holthoefer. 2016. Using twitter to
understand public interest in climate change: The
case of qatar. arXiv preprint arXiv:1603.04010 .

Eugene Agichtein, Carlos Castillo, Debora Donato,
Aristides Gionis, and Gilad Mishne. 2008. Finding
high-quality content in social media. In Proceedings
of the 2008 international conference on web search
and data mining. ACM, pages 183–194.

Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and
Lihua Wang. 2016. Scalable and secure logistic re-
gression via homomorphic encryption. In Proceed-
ings of the Sixth ACM Conference on Data and Ap-
plication Security and Privacy. ACM, pages 142–
144.

Sugato Basu, Arindam Banerjee, and Raymond
Mooney. 2002. Semi-supervised clustering by seed-
ing. In In Proceedings of 19th International Confer-
ence on Machine Learning (ICML-2002. Citeseer.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabi-
an Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, et al. 2013. Api design for machine
learning software: experiences from the scikit-learn
project. arXiv preprint arXiv:1309.0238 .

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. The stanford typed dependencies repre-
sentation. In Coling 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain Pars-
er Evaluation. Association for Computational Lin-
guistics, pages 1–8.

Alejandro Figueroa. 2017. Automatically generat-
ing effective search queries directly from communi-
ty question-answering questions for finding related
questions. Expert Systems with Applications 77:11–
19.

Simone Filice, Danilo Croce, Alessandro Moschit-
ti, and Roberto Basili. 2016. Kelp at semeval-
2016 task 3: Learning semantic relations between
questions and answers. Proceedings of SemEval
16:1116–1123.

Marc Franco-Salvador, Sudipta Kar, Thamar Solorio,
and Paolo Rosso. 2016. Uh-prhlt at semeval-2016
task 3: Combining lexical and semantic-based fea-
tures for community question answering. Proceed-
ings of SemEval 16:814–821.

Liya Fu and Tomohiro Murata. 2016. Configuration
design of virtual cellular manufacturing system with
batch splitting operations. In Advanced Applied
Informatics (IIAI-AAI), 2016 5th IIAI International
Congress on. IEEE, pages 1010–1015.

Shafiq Joty, Alberto Barrón-Cedeno, Giovanni
Da San Martino, Simone Filice, Lluıs Marquez,
Alessandro Moschitti, and Preslav Nakov. 2015.
Global thread-level inference for comment clas-
sification in community question answering. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP.
volume 15.

Debra K Katzman, Sloane Madden, Dasha Nicholls,
Karizma Mawjee, and Mark L Norris. 2017. From
questions to answers: Examining the role of pedi-
atric surveillance units in eating disorder research.
International Journal of Eating Disorders .

Emre Kıcıman. 2010. Language differences and meta-
data features on twitter. In Web N-gram Workshop.
page 47.

Todor Mihaylov and Preslav Nakov. 2016. Semanticz
at semeval-2016 task 3: Ranking relevant answers in
community question answering using semantic sim-
ilarity based on fine-tuned word embeddings. Pro-
ceedings of SemEval pages 879–886.

Tsvetomila Mihaylova, Pepa Gencheva, Martin Boy-
anov, Ivana Yovcheva, Todor Mihaylov, Momchil
Hardalov, Yasen Kiprov, Daniel Balchev, Ivan Koy-
chev, Preslav Nakov, et al. 2016. Super team at
semeval-2016 task 3: Building a feature-rich system
for community question answering. Proceedings of
SemEval pages 836–843.

Sewon Min, Minjoon Seo, and Hannaneh Hajishirzi.
2017. Question answering through transfer learn-
ing from large fine-grained supervision data. arXiv
preprint arXiv:1702.02171 .

Pedro J Moreno, Purdy P Ho, and Nuno Vasconcelos.
2003. A kullback-leibler divergence based kernel
for svm classification in multimedia applications. In
Advances in neural information processing systems.
page None.

297



Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
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Abstract

In this paper we present ThReeNN, a
model for Community Question Answer-
ing, Task 3, of SemEval-2017. The pro-
posed model exploits both syntactic and
semantic information to build a single and
meaningful embedding space. Using a de-
pendency parser in combination with word
embeddings, the model creates sequences
of inputs for a Recurrent Neural Network,
which are then used for the ranking pur-
poses of the Task. The score obtained on
the official test data shows promising re-
sults.

1 Introduction

Community Question Answering (cQA) systems
have proven to be useful for a long time and they
still are an invaluable source of information. How-
ever, due to their rapid growth and to the large
amount of data provided it is not easy to find a rel-
evant answer or a good related question amongst
all the others. For these reasons we present a
model which tries to tackle these problems. The
subtasks we have worked on can be described as
follows:
A) Question-Comment Similarity - Given a
question q and 10 comments c1, . . . , c10, rank such
comments from the most relevant to the least one
with respect to q, and assign to each one a label
which can be "Good" or "Bad".
B) Question-Question Similarity - Given a ques-
tion q and a set of 10 related questions q1, . . . , q10,
rank the 10 questions from "Relevant" to "Irrele-
vant", according to q.
A more detailed description of the task can be
found in (Nakov et al., 2017).
Our work has been inspired by studies regarding
embedding spaces. Indeed, in (Hsu et al., 2016)

GloVe embeddings (Pennington et al., 2014) are
used to solve the same subtasks as ours, achieving
good results using just word embeddings which
encode semantic information into a vector. More-
over, the model proposed in (Yu et al., 2013),
where autoencoders are used to build an embed-
ding space, has been exploited to propose an ap-
proach that mixes semantic and syntactic informa-
tion through the use of word embeddings and de-
pendency parsing. These are then put together and
become an input for the neural network. In this
way we try to enhance the capability of the learn-
ing system.
In principle, our approach aims at enriching se-
mantic information with syntactic relations hold-
ing between elements of the couples (question-
comment or question-question). This should serve
well for both subtasks A and B, since the model
will learn relations between a question and a com-
ment or between a question and another one. How-
ever, further research would be useful to under-
stand to what extent there exist differences in the
kind of relations learnt, and therefore in the sub-
tasks.
The paper is organised as follows: Section 2
outlines the preprocessing and additional features
used by the model, while Section 3 describes the
key models used. Section 4 shows the model se-
lection strategy and the alternatives we explored
with respect to word embeddings and their com-
bination. Finally, Section 5 reports performances
on different models and Section 6 wraps up ev-
erything and discusses about future works. From
now on, we will refer to "comment" for indicat-
ing both a comment (Subtask A) or a related ques-
tion (Subtask B), since our model does not make
distinctions between them. We participated to Se-
meval 2017, ranking 8th in Subtask A and 10th in
Subtask B.
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Figure 1: Dependency parsing of two sentences taken from a question and a comment in the training set.
In this example the first input x(t) of the RNN is going to be: <"is",SUBJ,"there","is",SUBJ,"It">.

2 Data Preprocessing

We applied standard preprocessing to question and
comment body, so as to achieve better perfor-
mance during syntactic parsing and a better align-
ment of our vocabulary to the GloVe one. Each
question also includes the subject of the topic.
Preprocessing included the following steps:

• Portions of text that include HTML tags and
special sequences were removed or substi-
tuted with simpler strings.

• Using a set of regular expressions, we re-
placed URLs, nicknames, email addresses
with a placeholder for each category.

• Too long repetitions of characters inside to-
kens were replaced by a single character (e.g.
loooot became lot). Indeed, in the language
spoken on community forums, letters are of-
ten repeated to emphasize words; with our
approach we were able to reconstruct their
standard form. Moreover, multiple punctu-
ation was also collapsed.

• Standard use of spacing after punctuation
was restored, in order to avoid problems dur-
ing tokenization.

• Using a hand-written dictionary, the most
common abbreviations were replaced with
the corresponding extended form.

We then performed sentence splitting and tok-
enization using nltk (Bird et al., 2009). During
the tokenization step, we performed spelling
corrections.

Finally, texts were analyzed using Tanl pipeline
(Attardi et al., 2007), adding morpho-syntactic

and syntactic information (i.e., part of speech
tagging and dependency parsing). Figure 1 shows
an example of a question and a comment which
are parsed accordingly.

2.1 Additional Features

After that, we generated several features, repre-
senting both metadata and some properties of the
couple Question-Comment. These features have
been commonly used in literature, both with Neu-
ral Networks (as in (Mohtarami et al., 2016)), lin-
ear or SVM models as in (Mihaylova et al., 2016),
in order to include additional and potentially rele-
vant information not easily conveyed through se-
mantic representations. In our case, they are used
as additional input beside the RNN output. Fea-
tures can be grouped as follows:

• Features encoding information about stan-
dard similarity between question and com-
ment (all measures are expressed in terms of
number of tokens):

– size of intersection between question
and comment

– Jaccard Coefficent (ratio between inter-
section size and union size of question
and comment)

– comment length
– ratio between comment length and ques-

tion length
– length of the longest common subse-

quence between question and comment

• Features encoding metadata information, in
particular:

– number of the comment in default order-
ing
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Figure 2: Conceptual schema of the model used
for the classification.

– whether the comment was posted by the
same user asking the question

– whether the user posting the comment
had already posted a comment for the
same question

• Features encoding presence of certain ele-
ments in comment body, in particular we
looked for:

– presence of question marks
– presence of URLs (through regex)
– presence of username (through regex)
– presence of a username among those

that are authors of comments preceeding
the considered one

3 Model

The proposed model1 makes use of the previous
steps (i.e. a dependency parser) whose output is
a tree, to generate a sequence of triples. The ith
triple is made of < Wi, rel,Wr >, where Wi

is the ith word of the text and Wr is the word
associated through rel (i.e. the dependency re-
lation extracted by the parser). Then triples <
ei, rel, er > are generated, where ei and er are
word-embeddings vectors for the two words, and
rel is a 1-hot-encoding of the dependency rela-
tions. The kth input to be fed to the RNN is simply
made by concatenating the kth embedding triple of

1An implementation is available at
https://github.com/AntonioCarta/ThreeRNN

the comment with the kth one of the question. Fig-
ure 1 shows an example of how to obtain a valid
input for our model. Our goal is to let the system
learn the correct composition rule through syntac-
tic dependencies.
Hence, the input of our model is dual: a sequence
of triples which represents the question and an-
other sequence for the comments. These are then
passed to a sentence encoder, which is a Recur-
rent Neural Network (RNN), that is used to re-
turn a single output aiming to represent the en-
tire sequences. In particular we describe a Long
Short Term Memory (Hochreiter and Schmidhu-
ber, 1997) which are capable of learning long-term
dependencies; Then, given x as input in the form:

x(t) = < e
(t)
Qi, Rel

(t)
Q , e

(t)
Qr, e

(t)
Ci, Rel

(t)
C , e

(t)
Cr >

we have:

f (t) = σ
(
Ufx(t) +W fh(t−1) + bf

)
g(t) = σ

(
Ugx(t) +W gh(t−1) + bg

)
y(t) = σ

(
U ix(t) +W ih(t−1) + bi

)
s(t) = f (t) � s(t−1) + g(t) � y(t)

o(t) = σ
(
Uox(t) +W oh(t−1)

)
h(t) = tanh(s(t))� o(t)

where f (t) is the forget gate, g(t) the input gate,
s(t) the state, o(t) the output gate and h(t) the hid-
den state. U and W are the weight matrices for
each gate (e.g., Uo refers to the matrix for the out-
put gate) and� is the Hadamard product. Then the
RNN output, along with a vector made up of ad-
ditional features, become the inputs passed to the
final feed-forward layers which performs the scor-
ing.
Each layer of the final network uses a sigmoid ac-
tivation function. Hence, given x, the layer input,
W and b the layer matrix and bias, the output y is
defined as

y = σ(Wx+ b)

The final output o of the network uses a softmax
activation, thus we have:

oi =
exp(yi)∑n

j=0 exp(yj)

Where n is the length of the vector y. The latter
provides a distribution over two classes: ’Good’
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and ’Bad/Partially Useful’ for subtask A, ’Per-
fectMatch/Relevant’ and ’Irrelevant’ for subtask
B. To obtain the final ranking we took the prob-
ability of a given input to be labeled as the pos-
itive class. The entire network is trained with
back-propagation using a cross-entropy loss func-
tion. Figure 2 shows the conceptual schema of the
model.

4 Experiments

To perform model selection we merged training
and development files provided by Semeval organ-
isers, then we shuffled and extracted a training
and a validation set. We selected various hyper-
parameters, shown with their values in Table 4,
such as learning rate, number of hidden units and
hidden layers for the recurrent and feedforward
layers, dropout (Srivastava et al., 2014), L2 reg-
ularization, activation functions (i.e. ReLu (Nair
and Hinton, 2010), sigmoid and hyperbolic tan-
gent), optimization algorithms (i.e. adam (Kingma
and Ba, 2014) and rmsprop (Tieleman and Hin-
ton, 2012)). The length threshold for the number
of triples in input to the RNN as been also added
as hyper-parameter (i.e., Max length); if the com-
ment/question is shorter, it is filled up with zeros
("null triples"). Since each training required quite
a large amount of time, we opted for a random
search technique (Bergstra and Bengio, 2012).

Parameter Values

RNN LSTM, GRU, SUM
RNN layer 1,2

Hidden layer 1,2,3
Embeddings size 100, 200, 300

Hidden size 50, 100, 200
Max length 5,10,25,50,75,100,150

Dropout 0, 0.1, 0.2, 0.3, 0.4
L2 0.01, 0.001, 0.0001, 0.00001

Activation ReLu, tanh, sigmoid
Optimizer adam, rmsprop

Table 1: Hyper-parameters used during model se-
lection. The selected parameters for Subtask A are
in bold, and underlined for Subtask B.

The embeddings layer uses pretrained embeddings
which are fixed during the training phase. We tried
to update them together with the entire network
during training but the resulting network always

ended up to over-fit. Two different types of em-
beddings have been evaluated: GloVe (Pennington
et al., 2014), which are trained using Wikipedia,
and embeddings trained directly with questions
and answers extracted from the Qatar Living fo-
rum (Mihaylov and Nakov, 2016). However, in
our model both embeddings worked well, thus
with the latter we did not obtained any particular
improvements.
To encode the RNN input into a single embed-
ding we compare three different approaches: SUM
(which sums all the triples given as input), LSTM
(Hochreiter and Schmidhuber, 1997) and GRU
(Cho et al., 2014).
Finally, the neural network model was imple-
mented using Keras (Chollet, 2015), which pro-
vides an efficient and easy-to-use deep learning
utilities.

5 Results

The results obtained in the test set, in both sub-task
A and B, are summarized in Table 2. The primary
submission uses LSTM for subtask A and GRU
for subtask B. Instead, the contrastive model uses
SUM as aggregation and it has been submitted just
for the subtask A. Using the SUM model, which
is computationally less expensive than RNN, we
obtained just a slightly worst MAP (i.e. around
0.5%), which suggests we could further improve
the performance by making the RNN exploit better
the sequence in input. Moreover, there is a trade-
off between representation length and computa-
tional costs, achieved with the use of the length
threshold; this may be regarded as a crucial choice
for our model.

Subtask A Subtask B
MAP Acc MAP Acc

Baseline (IR) 72.61 - 41.85 -
Primary 83.42 68.02 42.24 73.86

Contrastive 82.87 68.67 - -

Table 2: Summary of the results of the submitted
model on subtask A and B

6 Conclusions

To sum up, we have developed a model which
tries to combine semantic and syntactic informa-
tion into a single vector space. We will further
investigate this combination, through the use of
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syntactic relations holding between content words,
rather than exploiting the whole set of dependency
relations (e.g. different tag-sets, partial or shal-
low parsing of sentences etc.). Our experiments
have explored different possibilities regarding the
choice of the word embedding system; all of them
proved in the end to achieve similar results. How-
ever, it may be worth trying to build an ad-hoc em-
bedding space which mixes parsing and lexical in-
formation, aiming to improve the performances of
our model. Future works may include improve-
ments to the RNN in order to better represent
longer sentences, or the use of recursive neural
network that directly use the tree structure given
by the dependency parsing, with different weights
matrices for each dependency relation.
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Abstract

We describe a method of calculating the
similarity between questions in communi-
ty QA. Questions in cQA are usually very
long and there are a lot of useless infor-
mation about calculating the similarity be-
tween questions. Therefore, we imple-
ment a CNN model based on similar and
dissimilar information on questions key-
words. We extract the keywords of ques-
tions, and then model the similar and dis-
similar information between the keyword-
s, and use the CNN model to calculate the
similarity.

1 Introduction

We participate in SemEval-2017 Task 3 Subtask B
(Nakov et al., 2017) on Community Question An-
swering. In this task, we are given a question from
community forum (named original question) and
10 related questions. We need to re-rank the relat-
ed questions according to their similarity between
the origin question.

Both the original question and the related ques-
tion have question subject and question body. The
subject is short. The body is long and contains a
lot of useless information. In our system, we try to
use keywords to replace questions to locate more
important information on the question, so we use a
keyword extraction algorithm that combines syn-
tactic information to get more accurate keywords.
Then we use a CNN model based on similar and
dissimilar information between questions to cal-
culate the similarity of questions. The model can
make good use of similar information and dissimi-
lar information between questions to get better re-
sults.

The paper is organized as follows: Section 2 in-
troduces our system. Section 3 introduces the ex-

periment. And in section 4, there are the conclu-
sions.

2 Model

In this section we describe our system in detail.
In Section 2.1 we show how we extract keyword-
s from the subject and body, and then in Section
2.2 we describe how to construct the CNN mod-
el based on similar and dissimilar information on
question keywords.

2.1 Keyword extraction
First, we cut the question subject and question
body. Then, we extract keywords from each sub-
sentence. We combine all the extracted keywords
together as a result.

We use an unsupervised keyword extraction
method based on dependency analysis. The
method uses syntactic dependency relations be-
tween words as clues. For the given question, we
not only use the statistical information and word
vector information, but also construct the depen-
dency graph to calculate the correlation intensity
between words, and then construct the weighted
graph according to the dependency degree, and
use the TextRank algorithm (Mihalcea and Ta-
rau, 2004) to iterate to calculate the word im-
portance score. The main steps include prepro-
cessing, the construction of the non-directional
weighted graph, graph ranking, and the selection
of the t words with the highest score as keywords
of the question, as shown in Figure 1.

Preprocess: The preprocessing process in-
cludes word segmentation and removing the stop
words. We use the remaining words as the candi-
date words of the keywords.

Construct the undirected weighted graph:
After preprocessing, all candidate words are rep-
resented as vertices of the graph. If two words co-
occur in a sentence, there is an edge to the two

305



Figure 1: Keywords extraction

vertices. The weight of the edge is calculated by
the statistical information on words, the word vec-
tor information and the dependent syntax analysis
information.

The methods that can be used to calculate the
correlation between two words are: Pointwise Mu-
tual Information (PMI), Average Mutual Informa-
tion(AMI) (Terra and Clarke, 2004), etc. Howev-
er, these methods only consider the statistical in-
formation between words, and do not consider the
syntactic dependencies. The syntactic dependency
between words has a positive effect on measuring
the importance of words.

The result of the dependency syntax analy-
sis is analogous to the tree structure. If we re-
move its root node, and ignore the arc of the
point, we can get an undirected dependency dia-
gram G′ = (V ′, E′), V ′ = w1, w2, ..., wn, E

′ =
e1, e2, ..., em, where wi denotes a word and ej
denotes an undirected relationship between two
words. The undirected dependency graph guar-
antees that there is a dependency path between
any two words in the question, and the length
of the dependency path reflects the intensity of
the dependency relationship. Therefore, we intro-
duce the concept of dependency degree accord-
ing to the length of the dependent path (Zhang
et al., 2012), as shown in Equation(1), where
dr path len(wi, wj) represents the dependency
path length between words wi and wj , b is the su-
perparameter.

Dep(wi, wj) =
1

bdr path len(wi,wj)
(1)

The degree of correlation between two words,
that is, the weight of the edge is multiplied by the
gravitational value of the two words by the length
of the dependent path, as shown in Equation(2).

weight(wi, wj) = Dep(wi, wj) ∗ f(wi, wj) (2)

Among them, the concept of gravitational val-
ues proposed by (Wang et al., 2015), inspired by

gravitation. The word frequency is regarded as the
object mass, and the distance between the words
is taken as the distance of the object. The gravi-
tational value f(wi, wj) of the two words is given
by the Equation(3).

f(wi, wj) =
freq(wi) ∗ freq(wj)

d2
(3)

Graph ranking: We use the weighted Tex-
tRank algorithm to sort the graph. In the undi-
rected graph G = (V,E), V is the set of ver-
tices, E is the set of edges, and C(vi) is the set
of vertices connected to the vertex vi. The score
of the vertex vi is calculated from the Equation(4),
where weight(wi, wj) is calculated from the E-
quation(3), d is the damping coefficient.

ws(vi) = (1−d)+d∗
∑

vj∈C(vi)

weight(vi, vj)∑
vk∈C(vj)weight(vj , vk)

(4)

Then we select the t words with the highest s-
core as the keywords.

2.2 CNN model based on similar and
dissimilar information

We use a CNN model based on similar parts and
dissimilar parts between two sentences to get sen-
tence similarity. This model is proposed by (Wang
et al., 2016), now we will introduce the model
briefly. Figure 2 shows the structure of the model.

Given a sentence pair, the model represents each
keyword as a vector, and calculates a semantic
matching vector for each keyword based on part of
keywords in the other sentence. Then each word
vector is decomposed into two components based
on the semantic matching vector: a similar com-
ponent and a dissimilar component. After this, we
use a two-channel CNN to compose the similar
and dissimilar components into a feature vector.
Finally, a fully connected neural network is used
to predict the sentence similarity through the com-
posed feature vector.
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First, with word embedding pre-trained by S-
tanford using GloVe’s model (Pennington et al.,
2014), we transform keywords of question S and
T into matrix S = [s1, s2, ..., sm] and T =
[t1, t2, ..., tn], where si and tj are 300-dimention
vectors of corresponding keywords, and m and n
are the length of keywords of S and T. Second, for
judging the similarity between two sentences, we
check whether each keyword in one sentence can
be covered by the other sentence. For a sentence
pair S and T, we first calculate a similarity ma-
trix A(m×n), where each element a(i,j) ∈ A(m×n)

computes cosine similarity between words si and
tj as

a(i,j) =
sT
i tj

||si|| · ||tj || ∀si ∈ S, ∀tj ∈ T (5)

We calculate a semantic matching vector ŝi for
each word si by composing part of word vectors
in the other sentence T. In this way, we can match
a keyword si to some keywords in T. Similarly, we
also calculate all semantic matching vectors t̂i in
T. We define a semantic matching functions over
A(m×n)

fmatch(si, T ) =

∑k+w
j=k−w ai,jtj∑k+w
j=k−w ai,j

(6)

where
k = argmaxjai,j

w indicates the size of the window to consider
centered at k (the most similar word position). So
the semantic matchisng vector is a weighted aver-
age vector from tk−w to tk+w.

Third, after semantic matching, we have the se-
mantic matching vectors of ŝi and t̂j . Take s as an
example. We interpret ŝi as a semantic coverage
of word si by the sentence T. However, there must
be some difference between si and ŝi. So based on
its semantic matching vector ŝi, our model further
decomposes word si into two components: simi-
lar component ŝi

+ and dissimilar component ŝi
−.

Then we choose a linear decomposition method.
The motivation for the linear decomposition is that
the more similar between si and ŝi, the higher
proportion of si should be assigned to the similar
component. First, we calculate the cosine similar-
ity between si and ŝi. Then, we decompose si

linearly based on α. Eq.(7) gives the correspond-
ing definition:

a(i,j) =
sT
i ŝi

||si|| · ||ŝi||

t̂j
+ = αsi

ŝi
− = (1− α)si (7)

Finally, due to the dissimilar and similar com-
ponents have strong connections, we use a two-
channel CNN model (Kim, 2014) to compose
them together. In the CNN model, we have three
layers. The first is a convolution layer. We define
a list of filters wo. The shape of each filter is d
h, where d is the dimension of word vectors and
h is the window size. Each filter is applied to t-
wo patches (a window size h of vectors) from both
similar and dissimilar channels, and generates a
feature. Eq.(8) expresses this process:

co,i = f(wo ∗ S+
[i:i+h] + wo ∗ S−[i:i+h] + bo) (8)

The second layer is a pooling layer. We choose
max-pooling method to deal with variable feature
size. And the last layer is a full-connected layer.
We use a sigmoid function to constrain the result
within the range [0,1].

3 Experiment

We experimented with the corpus provided by
SemEval-2017 task3. Training set has 267 ques-
tions, each question has 10 related questions, a to-
tal of 2670 question pairs. Development set has
50 questions, 500 question pairs. The test set has
88 questions, 880 question pairs. We do the ex-
periment without preprocessing. We use Stanfod
Parser (De Marneffe and Manning, 2008) to parse
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sentences. And we use the keyword extraction al-
gorithm described in 2.1, for each sub-sentence we
extract 1/3 of the words as keywords and set b =
1.4, d = 0.8. In the CNN model, we set up the filter
shape is 3*300. The number of filters is 500. We
set the similarity threshold of 0.5, that is, a score
greater than 0.5 is considered a positive case. And
we set the learning rate as 0.001. After 20 rounds
of training, we got the result in devlopment set and
test set.

Team MAP AvgRec MRR
Baseline(IR) 41.85 77.59 46.42

Baseline(Random) 29.81 62.65 33.02
simbow 47.22 82.60 50.07

LearningToQuestion 46.93 81.29 53.01
SCIR-QA 42.72 78.24 46.65

Table 1: Test Result

User or Team Name MAP AvgRec MRR
Sagustian 79.6 94.3 86.0
BeiHang 76.9 91.2 83.5
naman 75.1 90.8 81.33

LS2NSEMEVAL 74.4 88.3 79.5
NLMNIH 73.7 88.2 79.33
IIT-UHH 73.6 89.0 79.33

Organizers 71.4 86.1 76.67
MIT-QCRI 71.4 86.1 76.67
SCIR-QA 70.8 87.5 77.25

preslav 55.9 73.2 62.23

Table 2: Develop Result

The results in test set are shown in Table 1, the
first two lines are the baseline, the next two lines
are the best results, the last line is our result. And
results in development set are shown in Table 2. In
test set, our results are better than the baseline, but
there is still some distance from the best results. In
development set, our result is all not so good.

We think that because we do the experiment
without preprocessing, there exists too many un-
known words in word embeddings, which results
in poor system performance. On the other hand,
because the training corpus is too small, the neu-
ral network can not be well trained and can not
find meaningful features. Therefore, in the future
work, we will add features of artificial extraction
into neural network to improve performance. And
we will add features of artificial extraction into

neural network to improve performance.

4 Result and Future Work

We implement a CNN model based on similar
and dissimilar information between questions key-
words, and experiment on SemEval-2017 corpus.
The experimental results show that our method is
better than baseline, we can extract the key infor-
mation from the long sentence to model the ques-
tion better, which helps us to calculate the simi-
larity of the question. We think that keyword ex-
traction is important in this task, and in the future
we will try other keyword extraction methods to
achieve better results.
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Abstract

This paper describes our official entry
LearningToQuestion for SemEval 2017
task 3 community question answer, sub-
task B. The objective is to rerank ques-
tions obtained in web forum as per their
similarity to original question. Our system
uses pairwise learning to rank methods on
rich set of hand designed and represen-
tation learning features. We use various
semantic features that help our system to
achieve promising results on the task. The
system achieved second highest results on
official metrics MAP and good results on
other search metrics.

1 Introduction

In online forums question answering is one of the
most popular way for users to share information
between each other. Due to the unstructured na-
ture of these forums, it’s a problem to find rele-
vant information from the already existing infor-
mation for users. One way to solve this problem
is to design systems to automatically find similar
content (question, answer, comment) to the user’s
posted question. SemEval-2017 task 3 (Nakov
et al., 2017) focuses on solving this problem in
community question answer by various subtasks
of ranking relevant information in Qatar living fo-
rums data. The system presented in this paper fo-
cuses on subtask B, to re-rank given set of ques-
tions retrieved by search engine, in their similarity
to original question.

The system is mainly designed by employing
learning to rank methods on the rich feature set
obtained by text processing of the question text.

2 Data

We primarily use the annotated training, develop-
ment and testing dataset provided by the SemEval-
2017 task 3 organizers. The dataset is collected
by organizers from Qatar living forum. It’s in
the form of an original question and set of related
questions. Each related question in training and
development dataset is annotated with one of the
3 possible tags, PerfectMatch, Relevant or Irrele-
vant. A ranking task is required to rank both Per-
fectMatch and Relevant above Irrelevant questions
without any distinction between the first two. The
train dataset for subtask B consists of 317 original
questions and 3169 retrieved questions by search
engine roughly 10 related questions per original
question. The organizers have also provided anno-
tated test dataset from SemEval-2016 challenge.

Along with these we also used Glove embed-
dings (Pennington et al., 2014) which were pre-
trained using 6 billion tokens from Wikipedia-
2014 and Gigaword dataset.

3 System

Since the task is a ranking task, our system uses
learning to rank (Trotman, 2005) to model the
ranking of questions. Learning to rank refers to
various machine learning techniques used in rank-
ing tasks. These have been studied in informa-
tion retrieval literature and they power many of the
industrial search engines. These systems mainly
fall into 3 categories: pointwise, pairwise and list-
wise as described in (Liu et al., 2009). We use
pairwise methods for our system with rich feature
set. Our feature set is combination of various hand
generated features and semantic features learned
by neural network. In the following section we
first describe these features and then the learning
to rank method used.
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3.1 Features

3.1.1 Neural Embedding Similarity Feature

We use various neural network learned embed-
dings as similarity feature in our system. The sys-
tem uses Siamese network to learn these similar-
ity measures. Siamese nets were first introduced
in the early 1990s by (Bromley et al., 1993) to
solve signature verification as an image match-
ing problem. A siamese neural network consists
of twin networks which accept distinct inputs but
are joined by an energy function at the top. This
function computes some metric between the high-
est level feature representation on each side. The
weights between both the networks are shared
generally, so that they project the similar texts not
far in the embedding dimension. We use con-
trastive loss described in (Chopra et al., 2005) as
the loss function to the Siamese network. Glove
pretrained vectors (300 dimension) are fed as in-
put to the neural network. The final neural embed-
dings are generated by various architectures.

Figure 1: Simaese network

Figure 1 shows a siamese network, where X1

represents the original question text and X2 rep-
resents the candidate question text. GW repre-
sents a complex nonlinear function which is repre-
sented by neural network having weights W . The
euclidean distance of the vectors is used to com-
pute the contrastive loss. The goal is to minimize
the distance in the embedding space of the sim-
ilar question text and maximize for non similar
pairs. The contrastive loss can be given by fol-
lowing equation:

L = Y ||GW (X1), GW (X2)||2 + (1− Y )

max(0,m− ||GW (X1), GW (X2)||2)

where Y is annotated tag, 1 if X1 and X2 are
similar, 0 otherwise. m is margin parameter for
hinge loss, which is kept 1 for all our networks.
We use following networks to generate text em-
bedding:

Long Short Term Memory LSTM (Hochre-
iter and Schmidhuber, 1997) are popular variant
of the the recurrent neural network architecture
that captures the long term dependency in text and
deals with vanishing gradient problem. Recently
LSTMs have been very successful in various NLP
tasks.

Figure 2: Bidirectional recurrent neural network

Figure 2 shows a bidirectional recurrent neu-
ral network architecture. Bi-directional RNN pro-
cesses the text in both directions with separate hid-
den units and these hidden representations are con-
catenated together to create final hidden embed-
ding. For bi-directional LSTM, the hidden unit is
a LSTM cell combining of various gates. We use a
bidirectional LSTM to generate a 256 dimensional
vector for pair of text and train the model by back
propagation using contrastive loss.

Gated Recurrent Unit Gated recurrent unit
(GRU) (Chung et al., 2014) is another variant of
RNN which were introduced recently as compared
to LSTM. They also have seen similar success as
LSTM in various NLP tasks. We use Bi-GRU
as another network to generate the neural embed-
dings trained by siamese network similar to Bi-
LSTM. The final hidden embedding size is 256
dimension for our Bi-GRU network also.
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Convolution Net We also use convolution net-
works as another neural network architecture to
generate embeddings inside the siamese network.
We use 1D-convolution with 128 kernels, stride of
5 followed by 1D-max pool with pool-size of 5
and finally a dense layer to create a 128 dimension
vector.

Implementation Details We use Keras 1 library
with Theano (Theano Development Team, 2016)
backend to train above 3 models. The batch size
is set to 64 and dropout rate is 0.25. We run 25
epochs for each of these 3 networks training. It
takes couple of hours to train on CPU. Instead of
using the entire vectors into our final classifier,
we compute cosine similarity of learned vectors of
both the question text (for each of the 3 networks)
and use that as a feature in our system.

3.1.2 Rank Features
We use rank given by the search engine as a feature
in our system. This gives the system the baseline
accuracy of the search engine.

3.1.3 Lexical Features
These set of features represent the lexical similar-
ity between question texts. The lexical used are the
common n-gram (n = 1, 2, 3) counts between the
original question and a candidate question. Apart
from these features, we compute a count vector
and a tfidf vector for n-grams (n = 1, 2, 3) for both
the question and candidate question and compute
the cosine similarity between them.

3.1.4 Syntactical Features
These features represent the syntactical similarity
between the texts of questions. This is represented
by cosine similarity of POS count vector for n-
gram (n = 1, 2, 3).

3.1.5 Semantic Features
Apart from the neural network learned semantic
features, we also employ semantic similarity be-
tween question text generated by semantic net. We
use the sentence similarity described in (Li et al.,
2006) using WordNet as semantic net. The paper
describes various heuristics used to generate this
sentence similarity. First, word pair similarity is
generated as a function of the shortest path be-
tween the words and height of their lowest com-
mon subsumer (LCS). This combines the word

1https://github.com/fchollet/keras

similarity with their specificity (abstract vs spe-
cific concept).

Then the sentence similarity is obtained as a
linear combination of semantic similarity and the
word order similarity. To generate semantic sim-
ilarity, cosine between semantic vectors is ob-
tained. The semantic vectors are generated by cre-
ating sentence vector of word presence and their
similarity. Word order similarity is computed in
the similar way as semantic similarity but the po-
sition of word in the sentence is used to generate
the word order vector. Finally a linear combina-
tion of these two similarity features is used as the
similarity measure between question texts. We use
the same hyper-parameters as original paper that
give the best results i.e. α = 0.2, β = 0.45, η =
0.4, φ = 0.2, δ = 0.85.

The feature encodes semantic similarity and
gives boost to system, shown in the results table.

3.1.6 Summarization Metrics Feature

There has been a lot of research in machine trans-
lation and summarization community to find met-
rics that correlate with human judgement on these
tasks. We compute BLEU (Papineni et al., 2002)
metrics for 1, 2, 3 and 4 grams and compute a
weighted addition (weights = 0.1, 0.1, 0.3, 0.5).
We also compute ROUGE-L (Lin, 2004), which is
recall oriented similarity measure based on longest
common subsequence (LCS), as a feature in our
system.

3.1.7 Length feature

We compute the heuristic based on length in to-
kens of both the texts as f(l1, l2) = abs(l1−l2)

l1+l2
.

3.1.8 Topic Similarity Feature

Topic modeling is used to generate the salient top-
ics in the text. We use Latent Dirichlet allocation
(LDA) (Blei et al., 2003) to compute topic similar-
ity between texts. We train LDA topic model using
the whole text (body and subject) as corpus. Then
a topic distribution over the 50 topics is computed
for both the text and cosine similarity is used as a
feature in the system.

3.1.9 Other Features

We use count of 10 selected common question
words also as a feature in the system.

All of the above features are calculated for both
the question subject and body separately.
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Dev 2017 as test set Test 2017 as test set
Features MAP MRR MAP MRR
Baseline 71.35 76.67 41.85 46.42
Above + length features 70.92 76.73 41.60 46.35
Above + common ngram counts 71.36 77.79 43.06 46.08
Above + cosine count ngram 71.23 78.33 43.45 45.41
Above + cosine tfidf ngram 73.10 80.73 43.34 49.29
Above + cosine pos ngram 72.98 80.73 44.96 49.10
Above + semantic similarity 73.29 81.17 45.52 50.05
Above + GRU embeddings 74.21 81.17 45.61 50.05
Above + LSTM embeddings 74.43 81.17 45.91 51.15
Above + Convnet embeddings 74.60 81.17 45.91 51.15
Above + BLEU, ROUGE L 74.88 81.17 46.17 52.02
Above + common question word 74.88 81.17 46.45 52.88
Above + topic similarity 75.10 81.33 46.93 53.01
primary 75.10 81.33 46.93 53.01
contrastive-1 74.88 81.17 47.03 52.47
contrastive-2 74.60 81.17 47.23 53.22
All features (Pointwise) 74.43 81.17 45.89 51.07
Best Primary - - 47.22 50.07
Best Overall - - 49.00 52.41

Table 1: Results on dev and test set with various features

3.2 Learning to rank

We use pairwise learning to rank for ranking task
which poses the ranking problem as classification
problem to minimize the average number of inver-
sions in ranking. This formulation is more closer
to ranking task than predicting relevance as regres-
sion and also has theoretical guarantees of maxi-
mizing the MAP in ranking (Chen et al., 2009).

First, we create these pairs by taking original
question Qo and two candidate questions of which
one was relevant and other one not, Qc1 and Qc2.
Then we generate above mentioned feature vec-
tors f(Qo, Qc1), f(Qo, Qc2) and use feature dif-
ference f(Qo, Qc1)− f(Qo, Qc2) to the classifier.
In total, 5949 such pairs are used for training. Lo-
gistic regression is used for our primary submis-
sion and linear kernel SVM with regularization pa-
rameter as 1 for our both contrastive submissions.
The submitted systems primary and contrastive-1
use train, development as training and contrastive-
2 uses test-2016 in concatenation for training.

4 Results

The results generated by the system on test data
were submitted as an entry to SemEval-2017 task
3 subtask B. Our primary entry achieved second
place on the MAP which was official metric for

ranking. Also it achieved highest MRR amongst
all the primary submissions.

Table 1 shows the dev and test set accuracy for
our system with each feature applied incremen-
tally. Our both contrastive submissions trained on
SVM achieved better test accuracy than training
on Logistic Regression. Thus the Ranking-SVM
is able to generalize better.

We also experimented with pointwise learning
to rank method and got inferior results thus cor-
roborating the fact that pairwise methods are help-
ing our system in achieving better accuracy.

5 Conclusion and Future Work

This paper presented a system which uses sophis-
ticated learning to rank method with semantic fea-
tures to obtain promising results on ranking simi-
lar questions. The paper shows that semantic fea-
tures and pairwise learning are essential compo-
nents to the system by ablation tests.

In future, we would like to extend our neural
architecture to attention based models which have
shown success in recent times. We also plan to use
Triplet loss (Hoffer and Ailon, 2015) which cap-
tures ranking task in better way. Another direction
is to use state-of-art listwise learning to rank meth-
ods that can directly optimize MAP.
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Abstract

This paper describes the SimBow sys-
tem submitted at SemEval2017-Task3, for
the question-question similarity subtask B.
The proposed approach is a supervised
combination of different unsupervised tex-
tual similarities. These textual similarities
rely on the introduction of a relation ma-
trix in the classical cosine similarity be-
tween bag-of-words, so as to get a soft-
cosine that takes into account relations be-
tween words. According to the type of re-
lation matrix embedded in the soft-cosine,
semantic or lexical relations can be con-
sidered. Our system ranked first among
the official submissions of subtask B.

1 Introduction

Social networks enable people to post questions,
and to interact with other people to obtain relevant
answers. The popularity of forums show that they
are able to propose reliable answers. Due to this
tremendous popularity, forums are growing fast,
and the first reflex for an internet user is to check
with his favorite search engine if a similar ques-
tion has already been posted.Community Question
Answering at SemEval focuses on this task, with
3 different subtasks. SubtaskA (resp. subtaskC)
aims at re-ranking the comments of one original
question (resp. the comments of a set of 10 re-
lated questions), regarding the relevancy to the
original questions. SubtaskB aims at re-ranking
10 related questions proposed by a search en-
gine, regarding the relevancy to the original ques-
tion. Subtasks A and C are question-answering
tasks. SubtaskB can be viewed as a pure seman-
tic textual similarity task applied on community
questions, with noisy user-generated texts, mak-
ing it different from SemEval-Task1 (Agirre et al.,

2016), which focuses on semantic similarity be-
tween short well-formed sentences.

In this paper, we only focus on subtaskB, with
the purpose of developing semantic textual sim-
ilarity measures for such noisy texts. Question-
question similarity appeared in SemEval2016
(Nakov et al., 2016), and is pursued in Se-
mEval2017 (Nakov et al., 2017). The approaches
explored last year were mostly supervised fusion
of different similarity measures, some being un-
supervised, others supervised. Among the un-
supervised measures, many were based on over-
lap count between components (from n-grams of
words or characters to knowledge-based compo-
nents such as named entities, frame representa-
tions, knowledge graphs, e.g. (Franco-Salvador
et al., 2016)...). Much attention was also paid for
the use of word embeddings (e.g. (Mihaylov and
Nakov, 2016)), with question-level averaged vec-
tors used directly with a cosine similarity or as in-
put of a neural classifier. Finally, fusion was often
performed with SVMs (Filice et al., 2016)

Our motivation in this work was slightly dif-
ferent: we considered that forum data were too
noisy to get reliable outputs from linguistic anal-
ysis and we wanted to focus on core textual se-
mantic similarity. Hence, we avoided using any
metadata analysis (such as user profile...) to get re-
sults that could easily generalize to other similar-
ity tasks.Thus, we explore unsupervised similarity
measures, with no external resources, hardly any
linguistic processing (except a list of stopwords),
relying only on the availability of sufficient unan-
notated corpora representative of the data. And we
fuse them in a robust and simple supervised frame-
work (logistic regression).

The rest of the paper is organized as follows:
in section 2, the core unsupervised similarity mea-
sure is presented, the submitted systems are de-
scribed in section 3, and section 4 presents results.
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2 Soft-Cosine Similarity Measure

In a classical bag-of-words approach, texts are rep-
resented by a vector of TF-IDF coefficients of size
N , N being the number of different words occur-
ring in the texts. Computing a cosine similarity
between 2 vectors is directly related to the amount
of words which are in common in both texts.

cos(X,Y ) =
Xt.Y√

Xt.X
√
Y t.Y

whithXt.Y =
n∑
i=1

xiyi

(1)
When there are no words in common between
texts X and Y (i.e. no index i for which both xi
and yi are not equal to zero), cosine similarity is
null. However, even with no words in common,
texts can be semantically related when the words
are themselves semantically related. Hence we
propose to take into account word-level relations
by introducing in the cosine similarity formula a
relation matrix M , as suggested in equation 2.

cosM (X,Y ) =
Xt.M.Y√

Xt.M.X
√
Y t.M.Y

(2)

Xt.M.Y =
n∑
i=1

n∑
j=1

ximi,jyj (3)

where M is a matrix whose element mi,j ex-
presses some relation between word i and word
j. With such a metric, the similarity between two
texts is non null as soon as the texts share related
words, even if they have no words in common.
Introducing the relation matrix in the denomina-
tor normalization factors ensures that the reflex-
ive similarity is 1. If the words are only related
with themselves (mi,i = 1 andmi,j = 0 ∀i, j with
i 6= j),M is the identity matrix and the soft-cosine
turns out to be the cosine.

We first investigated this modified cosine simi-
larity in the context of topic segmentation of TV
Broadcast News (Bouchekif et al., 2016), using
semantic relations between words to improve the
computation of semantic cohesion between con-
secutive snippets. Other researchers have also pro-
posed this measure (e.g (Sidorov et al., 2014))
along with the soft-cosine denomination, where
the matrix was based for instance on Levenshtein
distance between n-grams. In this work, we inves-
tigate different kinds of word relations that can be
used for computing M .

2.1 Semantic relations
Distributed representations of words, such as the
word2vec approach proposed by (Mikolov et al.,

2013) have known a tremendous success recently.
They enable to obtain relevant semantic relations
between words, based on a simple similarity mea-
sure (e.g. cosine) between the vector representa-
tions of these words.

In this work, 2 distributed representations
of words are computed, using the word2vec
toolkit, in the cbow configuration: one is esti-
mated on English Wikipedia, and the other is es-
timated using the unannotated corpus of questions
and comments on Qatar-Living forum, distributed
in the campaign, which contains 100 millions of
words. The vectors dimension is 300 (experiments
with various vector dimensions didn’t provide any
significant difference), and only the words with a
minimal frequency of 50 are taken into account.

Once the word2vec representations of words
are available, M can be computed in different
ways. We have explored different variants, and
the best results were obtained with the following
framework, where vi stands for the word2vec
reprsentation of word wi:

mi,j = max(0, cosine(vi, vj))2 (4)

Grounding to 0 is motivated by the observation
that negative cosine between words are hard to in-
terpret, and often irrelevant. Squaring is applied to
emphasize the dynamics of the semantic relations:
insisting more on strong semantic relations, and
flattening weak semantic relations. Actually we
have observed in several applicative domains that
high semantic similarities derived from word em-
bedding are more significant than low similarities.

2.2 Edit-distance based relations

Using a Levenshtein distance between words, an
edit relation between words can be computed: it
enables to cope, for instance, with little typo-
graphic errors which are frequent in social user-
generated corpora such as Qatar Living forum. It
is defined as mi,i = 1 and for i 6= j:

mi,j = α ∗
(

1− Levenshtein(wi, wj)
max(||wi||, ||wj ||)

)β
(5)

||w|| is the number of characters of the word,
α is a weighting factor relatively to diagonal ele-
ments, and β is a factor that enables to emphasize
the score dynamics. Experiments on train and dev
led to set α = 1.8 and β = 5.
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3 System Description

3.1 Data pre-processing
Some basic preprocessing steps are applied on the
text: lowercase, suppression of punctuation marks
and stopwords, replacing urls and images with the
generic terms ” url ” and ” img ”. As for the bag
of word representation, TF-IDF coefficients are
computed in a specific way: TF coefficients are
computed in the text under consideration as usual
but IDF coefficients are computed from the large
unannotated Qatar Living forum corpus.

3.2 Supervised combination of unsupervised
similarities

For a given pair of texts to compare, 3
textual similarity measures are considered:
cosMrel (soft-cosine with semantic relations),
cosMlev (soft-cosine with Levenshtein distance),
wavg word2vec (cosine between weighted
averaged word2vec). Soft-cosine measures are
computed as explained in section 2. For the latter,
weights are given by the TF-IDF coefficients
computed as described in section3.1.

Each original question contains a subject and
a body. Each related question additionally con-
tains a thread of comments. We have considered
several variants for text selection: (subject, body,
subject+body, or comments). The 3 textual simi-
larities are then computed between every possible
12 text pairings (3 possible texts for original ques-
tions × 4 possible texts for relative questions),
constituting the set of 36 potential features. We
also include in this set the IR system reciprocal
rank rrk. Logistic regressions, combining these
features, is then trained on the ”train-part1” set of
1999 paired texts of SemEval2016. Thus, we eval-
uate all possible subsets of features among the set
of 37 potential features, and we keep for our pri-
mary submission the one that gave the best result
on average on dev and test2016. contrastive1 was
chosen as the best candidate including only soft-
cosine metrics and rrk and contrastive2 was cho-
sen as the best candidate system with the lowest
amount of features.

4 Evaluation
In this section, we present detailed evaluations of
Task3/subtaskB. Given a new question (aka orig-
inal question), the task consists in reranking the
10 questions (aka related questions) proposed by
a search engine. A precise description of the cor-
pus and metrics can be found in Task3 description

paper (Nakov et al., 2017). Results are presented
with the MAP evaluation measure, on 3 corpora:
dev (50 original questions× 10 related questions),
test2016 (70 original questions × 10 related ques-
tions) and test2017 (88 original questions× 10 re-
lated questions).

It is worth noticing that the MAP scorer used in
this campaign is sensitive to the amount of orig-
inal questions which don’t have any relevant re-
lated questions in the gold labels. In fact, these
questions always account for a precision of 0 in the
MAP scoring. Hence, an Oracle evaluation, giv-
ing a score of 1 to all related questions labeled as
”true”, and a score of 0 to all related questions la-
beled as ”false” in the gold labels, doesn’t provide
a 100% MAP but an Oracle MAP which corre-
sponds to the proportion of original questions that
have at least 1 relevant related question. Hence
the upper bound of MAP performances is 86.00%
for dev, 88.57% for test2016, and only 67.05% for
test2017 (29 original questions without any rel-
evant related question out of 88). Another dif-
ference between test2016 and test2017 is the av-
erage number of ”true” labels for questions that
have at least one relevant associated question (3.7
for test2016 and 2.7 for test2017). On the overall
test2017 is more difficult for the Task.

4.1 Unsupervised textual similarity measures
Table 1 presents the MAP results obtained for dif-
ferent unsupervised textual similarities. Here, the
focus is made on unsupervised textual similarity
measure, and we only present results for the sub-
ject+body configuration for both the original and
related questions. Performances of the Informa-
tion Retrieval system (IR), and of the best sys-
tem submitted at SemEval2016 (Franco-Salvador
et al., 2016) are reported for comparison purpose.

similarity dev test test
2016 2017

IR 71.35 74.75 41.85
best SemEval2016 - 77.33 -
baseline token cos 62.22 68.54 40.88
baseline pp cos 67.49 71.05 42.80
baseline pp cos tfidf 69.41 75.53 44.37
cosMrel relations WP 72.25 77.11 45.38
cosMrel relations QL 75.24 77.96 45.27
cosMlev Levenshtein 70.02 76.34 46.10
wavg-word2vec on QL 73.31 75.77 46.99

Table 1: MAP results for unsupervised textual
similarity measures
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As a baseline, we use the baseline token cos
defined in SemEval2015-Task2 (Agirre et al.,
2015), for semantic textual similarity between sen-
tences. It is a simple cosine similarity between
bag-of-tokens binary vectors (a token is a non-
white-space sequence between 2 white spaces,
and weights are 1 or 0). Performances of base-
line pp cos, which is also a cosine of binary vec-
tors but obtained after the pre-processing step
show the importance of suitable pre-processing.
baseline pp cos tfidf show the influence of appro-
priate term weighting over simple binary coeffi-
cients. Next results reveal significant improve-
ments when introducing a relation matrix M in
the soft-cosine metric (cosM ). When M con-
tains semantic relations, a significant difference
is observed on dev, between relations estimated
on a general corpus WP (Wikipedia, 2.7 Bwords)
and on a specialized corpus QL (Qatar Living,
100 Mwords). The difference is much lower for
test2016, and even negative for test2017. On the
contrary, the Levenshtein-based M matrix per-
forms best on test2017, whereas its gain is only
marginal for dev and test2016. In all cases, in-
troducing a carefully chosen relation matrix M in
the cosine-based similarity measure improves per-
formances. Finally, the cosine between TF-IDF

weighted average word2vec is less effective on
dev and test2016, but performs well on test2017.

It is worth noticing that the mere cosMrel soft-
cosine on QL would have won the 2016 challenge.

4.2 Evaluation of supervised combination
Table 2 presents the MAP obtained for different
supervised combinations of similarity measures.

First, for a given unsupervised textual similarity
measure, all the possible combinations of paired
texts are evaluated, and we give the result of the
subset which gives the best performance on aver-
age on dev, test2016, and test2017. Interestingly,
it is the same combination of paired texts which
performs best for the 3 textual similarity measure:
similarity between subject+body for both ques-
tions and subject+body for the original question
and comments for the related question. This last
pairing performs poorly alone but is interesting in
combination with the first one.

Then we report the results of the submitted sys-
tems to the official evaluation. As can be seen
in Table 2, contrastive2 was more robust to the
more difficult conditions of test2017. Addition-
ally, as the IR performs really worse in test2017,

similarity dev test test
2016 2017

IR 71.35 74.75 41.85
best SemEval2016 - 77.33 -
text combination
cosMrel relations QL 75.76 78.76 46.67
cosMlev Levenshtein 72.26 78.19 47.48
wavg-word2vec on QL 75.91 76.70 47.40
submissions
primary 77.30 79.77 47.22
contrastive1 77.04 79.12 46.84
contrastive2 77.30 79.43 47.87
removing rrk
primary−rrk 76.71 78.61 47.68
contrastive1−rrk 76.09 78.90 46.96
contrastive2−rrk 76.73 78.97 48.38

Table 2: MAP results for supervised combination
of textual similarity measures

we re-trained the systems excluding rrk from fea-
tures. Actually, if rrk was helpful for both dev
and test2016 corpora, we can see that removing
rrk provides better results on test2017, yielding
a maximum MAP score of 48.38. This perfor-
mance is obtained with the following set of simi-
larities: cosMrel between subject+body, cosMlev

between subject+ body and subject of the origi-
nal question and body of the relative question, and
wavg − w2v between subject + body and be-
tween subject+ body of the original question and
comments of the relative question.

5 Conclusion
In this work, we have explored a modified version
of the cosine similarity between bag-of-words rep-
resentation of texts. In this so-called soft-cosine
similarity, a relation matrix M is embedded, al-
lowing relations between words to be taken into
account. The computation of M is unsupervised,
and can be derived from distributed representa-
tions of words. soft-cosine performed well at
SemEval-Taks3 question-question similarity sub-
taskB. A simple supervised logistic regression
combination of different unsupervised similarity
measures over different text selection strategies
ranked first at the official evaluation. In the fu-
ture, we plan to pursue the work on soft-cosine in
two directions: including other relations between
words, for instance using semantic role labeling,
and studying how this matrix M , efficiently ini-
tialized in an unsupervised way, could be further
trained for specific tasks.
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Abstract

We describe deep neural networks frame-
works in this paper to address the com-
munity question answering (cQA) rank-
ing task (SemEval-2017 task 3). Convo-
lutional neural networks and bi-directional
long-short term memory networks are ap-
plied in our methods to extract semantic
information from questions and answers
(comments). In addition, in order to take
the full advantage of question-comment
semantic relevance, we deploy interaction
layer and augmented features before cal-
culating the similarity. The results show
that our methods have the excellent effec-
tiveness for both subtask A and subtask C.

1 Introduction

Answer selection is regarded as a key step in ques-
tion answering tasks, especially for community
question answering (cQA), which is greatly valu-
able for user to retrieve information. Some cQA
forums, such as Quora, Qatar Living and Stack
Overflow, are quite open to users, providing a con-
venient platform for asking and answering ques-
tions. Hence, the development of cQA forums
makes it urgent to answer questions automatically.

SemEval-2017 (Bethard et al., 2017) task 3
(Nakov et al., 2017) is the task for selecting rele-
vant answers (or comments) for questions in com-
munity question answering (cQA). The data is col-
lected from an online cQA forum, Qatar Living,
which is close to some real application needs. The
task consists of several subtasks, which are de-
scribed briefly as follows:

• Question-Comment Similarity: Given
one question and ten candidates comments
{c1, c2, · · · , cn}, the goal is to rank these

!"#$% &'()**+", -)$./01-)%23.45
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Figure 1: One Basic Deep Learning cQA Frame-
work. The question and the comment are mapped
into fixed-length word vectors. After that, they are
fed into the neural network framework to extract
features. Through a fully connected neural net-
work, the framework outputs the similarity of the
question and the comment.

comments according to their relevance to the
question.

• Question-External Comment Similarity:
Given one question and ten candidate ques-
tions, which also have ten candidate com-
ments. The questions can be relevant or com-
pletely irrelevant. As for the original ques-
tion, the target is to rank the top ten relevant
comments from these 100 candidate com-
ments.

The relevance between the question and the
comment can be divided as “Good”, “Potential-
lyUseful” and “Bad”. “PotentiallyUseful” and
“Bad” do not make a clear distinction. “Good”
comments are considered useful and should be
ranked before “PotentiallyUseful” and “Bad”
comments. From the above description, these
tasks can be regarded as a binary classification
tasks: the relation between the question and the
comment is divided into “Relevant” or “Irrele-
vant”.

Deep neural networks techniques accelerate the
development of automatic question answering,
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which due to the great capability of capturing the
semantic meaning of texts. Our work is mainly
motivated by the previous work (Tan et al., 2016;
Feng et al., 2015; Cui et al., 2016; Hu et al., 2014),
which utilizes neural networks to extract features
from texts. We deploy a deep neural networks
framework to measure the relevance of questions
and comments in the cQA task, and then rank the
candidates according to their similarity to the orig-
inal question. In this study, methods based on deep
neural networks extract semantic features from the
question and the comment respectively, which in-
volve little manual operation and show an advan-
tage on the huge amount of data.

In addition, to increase the connection between
the question and the comment, we apply an in-
teraction layer before calculating the similarity.
Then, we add augmented features to improve the
performance of deep neural networks. Finally, the
system we proposed are used to address subtask A
and subtask C, and the results significantly surpass
the baselines provided by the organizers.

2 Methodology

Neural networks are increasingly applied in vari-
ous of natural language processing tasks, due to
the capability of capturing semantic meaning of
texts. Our models are fundamentally motivated by
previous work in Question Answering.

One basic deep learning architecture for cQA
is shown as Figure 1, which is used in a great
many papers (Tan et al., 2015; dos Santos et al.,
2016; Feng et al., 2015; Cui et al., 2016; Hu et al.,
2014). The question and the comment are mapped
into fixed-length word vectors. After that, they
are fed into the neural network framework to ex-
tract features. The frameworks output semantic
vectors of the question and the comment, which
are then concatenated into a vector. Through a
fully connected neural network, the architecture
outputs the similarity of the question and the com-
ment. Finally, the similarity value can be the cri-
teria to rank the candidate comments according to
the original question.

Currently, convolutional neural networks
(CNNs) have proved superiority in a variety of
tasks due to the ability of learning the represen-
tation of short texts or sentences. Meanwhile,
recurrent neural networks (RNNs), especially
the variant: long short term memory networks
(LSTMs), successfully model the long and short

term information of the sequence.

2.1 CNN-based Architecture

The question and the comment are represented by
word embedding sequences with a fixed length:
{w1, · · · , wl}, each element is real-valued and
w ∈ Rd. Each sentence is normalized to a fixed
length sequence by adding paddings if the sen-
tence is short or truncating the excess otherwise.
After embeddings, each sentence can be presented
by a matrix S ∈ Rl×d.

In order to capture higher semantic information
of sentences, convolutional layer is applied after
embeddings, which consists of several convolu-
tional feature maps. Suppose we have k feature
maps zi ∈ Rs×d, after convolutional operation, the
outputs of CNN is C ∈ R(l−s+1)×k.

A pooling layer is added after the convolutional
layer. Max pooling and average pooling are com-
monly used in the model, which choose the max
or average value of the features extracted from the
former layer to reduce the presentation. In this
study, we use 1-max pooling as our methods to
select the max value of each filter, and the ques-
tion and the comment vectors generated by neural
networks are q, c ∈ Rk respectively.

In order to extract features from different scales,
we use different types of feature maps altogether.
These feature maps have different width to capture
information from different contexts, which con-
tribute to the feature extraction of CNNs.

2.2 LSTM-based Architecture

The long short term memory (LSTM) network is a
variant of recurrent neural network (RNN) which
has recently received great results on various of
sequence modeling tasks. LSTM overcomes the
shortcoming of RNN in handling “long-term de-
pendencies”. Memory cells and forget gates are
the key points of the LSTM: they make it capable
of handling both long and short sequences through
controlling the information flow of a sequence. A
LSTM network is made up of several cells with
the following formula:
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ft = σ(Wf · [ht−1, xt] + bf ), (1)

it = σ(Wi · [ht−1, xt] + bi), (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t, (4)

ot = σ(Wo · [ht−1, xt] + bo), (5)

ht = ot ⊙ tanh(Ct), (6)

where W and b are parameters which are trained
and shared by all cells, and ⊙ indicates element-
wise production. Ct is the memory cell, which
stores previous values. The forget gate ft and the
input gate it control the percentage of information
from the previous memory and new inputs respec-
tively, while the output gate ot controls the output
of hidden states. σ(·) indicates the sigmoid func-
tion.

Single directional LSTM only utilizes the
former information of a sequence, while bi-
directional LSTMs utilize the information both
forward and afterward. Usually, in order to
capture more information of the sequence, bi-
directional LSTMs are adopted, with the one pro-
cesses information from the front to the end of a
sequence while the other processes information in
the reverse direction. The output of bi-directional
LSTMs can be the concatenation of two output
vectors from both direction, i.e. ht =

−→
ht ||←−ht .

2.3 Augmented Features

In general, neural networks are able to extract fea-
tures automatically. However, (Fu et al., 2016)
and (Yu et al., 2014) have shown that augmented
features contribute to the behavior of neural net-
works. Some commonly used augmented features
such as word overlap indices, part-of-speech tags,
position indices, etc.

In this work, we use word overlap indices
as augmented features. Given a question
qi = (xq

1, x
q
2, · · · , xq

m) and a comment ci =
(xc

1, x
c
2, · · · , xc

m), the overlap features qfeat and
cfeat are calculated as follows:

q
(i)
feat =

{
1 xq

i ∈ ci,

0 otherwise,
(7)

c
(i)
feat =

{
1 xc

i ∈ qi,

0 otherwise,
(8)

where q
(i)
feat is the ith element of qfeat, so is

c
(i)
feat.

As shown in Figure 2, qfeat and cfeat are added
at the tail of sequence embeddings. Also, their
concatenation xfeat is regarded as augmented fea-
tures before feeding into the fully connected net-
works.

2.4 Interaction Layer
In order to make full use of the connection of the
question and the comment, we design an interac-
tion layer to capture the relevance of them, which
is shown in Figure 2.

Given a question vector q ∈ Rk and a comment
vector c ∈ Rk produced by neural networks, the
interaction layer calculates the matrix multiplica-
tion as follows:

zint = f(qT Wc), (9)

where zint ∈ R is the output of interaction layer,
and M ∈ Rk×k is the parameter of the layer and
updated when training, while f(·) is the activation
function.

2.5 Objective Function and Optimizer
Features extracted by deep neural networks are
concatenated with extra features, which are then
fed into a fully connected neural network alto-
gether.

oh
i = f(Wo[q, c, xfeat, zint] + bo), (10)

where oh
i is the output of hidden layer node i, and

xfeat is the augmented features. Wo and bo are
the weight and the bias of the hidden layer respec-
tively.

After that, the softmax function is applied to
obtain the similarity of the question and the com-
ment:

oi = Softmax(Ws · oh
i + bs), (11)

where oi ∈ [0, 1] is the output of the network,
which satisfies

∑
i oi = 1. Ws and bs are the

weight and the bias of the output layer respec-
tively.

The objective function in this study is cross en-
tropy, which is illustrated as follows:

L = − 1
N

∑
i∈N

{yi log oi + (1− yi) log (1− oi)},
(12)
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Figure 2: The deep neural network frameworks for cQA. The question and the answer are represented by
word vectors, with augmented features added at the end. Then the vectors are fed into neural networks,
such as CNN or LSTM, to extract vectors. Interaction layer compute the similarity of vectors, which
are then concatenated with extracted vectors together. Through a fully connected neural network, the
framework outputs the similarity of the question and the comment.

where yi ∈ {0, 1} is the ground truth label of
the question-comment relation. N is the number
of samples.

The relation of the question and the comment is
divided to two classes, “Good” and “Bad” (“Po-
tentiallyUseful” is regraded as “Bad”). To train
the parameters in networks, Adagrad optimizer
(Duchi et al., 2011) is applied. Adagrad is an al-
gorithm designed for gradient-based optimization,
which adapt the learning rate for better conver-
gence when training the parameters. (Dean et al.,
2012) point out that Adagrad increase the robust-
ness of stochastic gradient descent when training
large-scale neural networks.

3 Experimental Results

In this section, we describe the detail of training
deep neural networks, including the datasets, met-
rics, baseline, parameters settings and so on. Then,
we present the results and give a brief analysis of
these results.

3.1 Data Description

Datasets provided by the organizers are collected
from Qatar Living forum, which is an online cQA
website. The components of the datasets are
shown as Table 3.1:

In our experiment, datasets “train 1”, “train 2”
and “dev” are used to train neural networks. In ad-
dition, dataset “test 2016” is used for development

Dataset train 1 train 2 dev
Questions 1999 670 500

Dataset test 2016 test 2017
Questions 700 880

Table 1: The components of the datasets.

and parameters searching, and dataset “test 2017”
is submitted for evaluation.

3.2 Metrics and Baselines
The official evaluation metrics in this task is Mean
Average Precision (MAP), which is used for rank-
ing submissions from different teams. MAP is of-
ten used to measure the quality of ranking in in-
formation retrieval. In addition, Average Recall
(AvgRec), Mean Reciprocal Rank (MRR), Accu-
racy (Acc), etc. are also reported by the official
scorer.

Baselines are given by the organizer, which con-
sists of Information Retrieval (IR) baseline and
random baseline. IR baseline is the rank of can-
didates given by a search engine, such as Google
or Bing. Random baseline is the results of given a
random number (from 0 to 1) to rank each candi-
date.

3.3 Experimental Setup
Our models in this work are mainly implemented
with tensorflow v1.0 (Abadi et al., 2016) from a
scratch. The code runs on a GTX 1080 GPU and
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Datasets test 2016 test 2017
Methods MAP AvgRec MRR MAP AvgRec MRR

Random (baseline) 52.80 66.52 58.71 62.30 70.56 68.74
IR (baseline) 59.53 72.60 67.83 72.61 79.32 82.37
CNN 73.13 84.25 79.74 82.93 89.94 88.28
multi-CNN 74.38 85.24 81.58 83.42 90.13 88.96
+Augmented Features 73.86 84.99 80.81 83.52 90.48 89.60
+Interaction Layer (Pri) 74.94 85.85 81.10 84.26 90.79 89.40
biLSTM 74.02 84.97 80.79 83.57 90.28 89.42
+Augmented Features 73.57 84.66 79.94 84.06 90.56 89.74
+Interaction Layer 74.72 85.59 81.22 83.96 90.70 89.49

Table 2: Results on Subtask A

Datasets test 2016 test 2017
Methods MAP AvgRec MRR MAP AvgRec MRR

Random (baseline) 15.01 11.44 15.19 5.77 7.69 5.70
IR (baseline) 40.36 45.97 45.83 9.18 21.72 10.11
CNN 47.62 50.25 52.64 12.57 29.00 14.06
multi-CNN 48.85 51.56 55.11 12.55 29.65 14.64
+Augmented Features 49.81 52.04 55.68 13.55 29.45 14.63
+Interaction Layer (Pri) 50.15 53.58 54.56 13.23 29.51 14.27
biLSTM 46.31 51.64 55.39 12.78 26.48 14.25
+Augmented Features 47.29 51.72 55.91 12.73 26.48 14.24
+Interaction Layer 48.06 52.72 53.70 13.23 26.13 14.52

Table 3: Results on Subtask C

it is about 100 epochs that the model become to
converge.

All texts from questions and comments are used
at first to train Word2Vec vectors (Mikolov et al.,
2013a,b) by a Python package gensim 1, whose
length is fixed to 100. The max sequence length of
the question and the comment are fixed to 200. We
add paddings if the sequence is short or truncate
the excess otherwise.

The single-type CNN networks have the filter
size of 3, and 800 feature maps, while the multi-
type CNN networks have the filter sizes of 1,2,3
and 5 with 800 feature maps each. The bi-LSTMs
have the output length of 400 of each direction,
and the hidden states are outputted directly for the
higher layer. The number of nodes in hidden layer
is 256 and the activation function used in fully
connected neural networks is ReLu. The optimizer
is set to AdagradOptimizer and the learning rate is
set to 0.01 initially.

1https://radimrehurek.com/gensim/

3.4 Results on subtask A

Table 3.1 summarizes the results on subtask A:
Question-Comment Similarity. The first two rows
illustrate the random baseline and the IR base-
line, follow by 4 rows of CNN results. The last
three rows are the results of LSTMs. As shown in
the table, our results significantly outperform the
baselines. Neural network based methods perform
quite stable, the differences between their results
are less than 1%.

The multiCNN along with augmented features
and interaction layer achieves the best MAP scores
among these methods, although it does not rank
the first as for MRR scores. It is also clear that in-
teraction layer and augmented features contribute
to the behavior of neural networks.

3.5 Results on subtask C

Table 3.1 illustrates the results on subtask C:
Question-External Comment Similarity. It should
be noted that we use the reciprocal rank of ques-
tions to improve the rank of the comments.

From the table, our methods surpass the base-
lines and the best method obtains the MAP of
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13.55. The circumstance is quite similar to subtask
A, which has proved that our deep neural based ar-
chitectures are of great stability. However, LSTM-
based architectures is far behind CNN-based ar-
chitectures in terms of MAP and AvgRec scores,
but have the advantage in terms of MRR scores.

4 Conclusion

In this paper, we present deep neural networks
frameworks to address community question an-
swering tasks. CNNs and biLSTMs are used to ex-
tract the semantic features of questions and com-
ments. We add an interaction layer and augmented
features to improve the performance of the frame-
work. The results illustrate that our methods are
greatly superior to the baselines provided by orga-
nizers both in subtask A and subtask C.
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Abstract

This paper describes the KeLP system par-
ticipating in the SemEval-2017 commu-
nity Question Answering (cQA) task. The
system is a refinement of the kernel-based
sentence pair modeling we proposed for
the previous year challenge. It is imple-
mented within the Kernel-based Learning
Platform called KeLP, from which we in-
herit the team’s name. Our primary sub-
mission ranked first in subtask A, and third
in subtasks B and C, being the only sys-
tems appearing in the top-3 ranking for
all the English subtasks. This shows that
the proposed framework, which has minor
variations among the three subtasks, is ex-
tremely flexible and effective in tackling
learning tasks defined on sentence pairs.

1 Introduction

This paper describes the KeLP system participat-
ing in the SemEval-2017 cQA challenge (Nakov
et al., 2017). The task setting for the English part
is the same as the previous edition (Nakov et al.,
2016): the corpus is extracted from Qatar Living1,
a web forum where people pose questions about
multiple aspects of their daily life in Qatar, and
three subtasks are defined:
Subtask A: Given a question q and its first 10
comments c1, . . . , c10 in its question thread, re-
rank these 10 comments according to their rel-
evance with respect to the question, i.e., the
good comments have to be ranked above poten-
tial or bad comments.
Subtask B: Given a new question o and the set
of the first 10 related questions q1, . . . , q10 (re-
trieved by a search engine), re-rank the related
questions according to their similarity with respect

1http://www.qatarliving.com/forum

to o, i.e., the perfect match and relevant questions
should be ranked above the irrelevant ones.
Subtask C: Given a new question o, and the set
of the first 10 related questions, q1, . . . , q10, (re-
trieved by a search engine), each one associated
with its first 10 comments, cq1, . . . , c

q
10, appearing

in its thread, re-rank the 100 comments according
to their relevance with respect to o, i.e., the good
comments are to be ranked above potential or bad
comments.

We participated to the previous year edition,
where our system (Filice et al., 2016) achieved
very good results, i.e., first in subtask A, third in
B and second in C. For the new year challenge,
we therefore decided to reuse the same system ap-
plied to a new method for selecting tree structures,
(Barrón-Cedeño et al., 2016; Romeo et al., 2016)
summarized in Sec. 3.

We modeled the three subtasks as binary clas-
sification problems: kernel-based classifiers are
trained and the classification score is used to
sort the instances and produce the final ranking.
We implemented models within the Kernel-based
Learning Platform2 (KeLP) (Filice et al., 2015a),
which determined the team’s name. Our tests pro-
vide two main contributions: (i) we asses the re-
sults obtained in (Filice et al., 2016), demonstrat-
ing that our kernel-based models for relational
learning tasks between two texts (Filice et al.,
2015b) are effective for community Question An-
swering. (ii) We studied the impact of text selec-
tion described in (Barrón-Cedeño et al., 2016).

Our primary submission ranked first in subtask
A, and third in subtasks B and C, demonstrat-
ing that the proposed method is very accurate and
adaptable to different learning problems. At the
moment, we could not find out if text selection
is always useful as our contrastive submission not

2http://www.kelp-ml.org/

326



using it turned out to be much more accurate for
Task B.

In the reminder, Section 2 introduces the pro-
posed kernel-based system, Section 3 describes
the pruning technique to select the relevant parts
from the input sentences, while Section 4 reports
official results.

2 The KeLP system: kernel-based
learning from text pairs

In the three subtasks, the underlying problem is
to understand if two texts are related. Thus, in
subtasks A and C, each pair, (question, com-
ment), generates a training instance for a binary
Support Vector Machine (SVM) (Chang and Lin,
2011), where the positive label is associated with
a good comment and the negative label includes
the potential and bad comments. In subtask B, we
evaluated the similarity between two questions.
Each pair generates a training instance for SVM,
where the positive label is associated with the per-
fect match or relevant classes and the negative la-
bel is associated with the irrelevant ; the result-
ing classification score is used to rank the question
pairs.

In KeLP, the SVM learning algorithm operates
on a kernel combination of tree kernels and a lin-
ear kernel. In particular the linear kernel is applied
on feature vectors containing (i) linguistic simi-
larities between the texts in a pair (Section 2.1);
(ii) task-specific features (Section 2.3).

Tree kernels are applied to evaluate inter-pair
similarities between sentence pairs, in order to au-
tomatically discover pairwise relational patterns.

2.1 Intra-pair similarities
In subtasks A and C, a good comment is likely
to share similar terms with the question. In sub-
task B a question that is relevant to another prob-
ably shows common words. Following this intu-
ition, given a text pair (either question/comment
or question/question), we define a feature vector
whose dimensions reflect the following similarity
metrics:

• Lexical Similarities: Cosine similarity, Jac-
card coefficient (Jaccard, 1901) and contain-
ment measure (Broder, 1997) of n-grams
of word lemmas (n = 1, 2, 3, 4 was used
in all experiments); Longest common sub-
string measure (Gusfield, 1997), Longest
common subsequence measure (Allison and

Dix, 1986), and Greedy String Tiling (Wise,
1996).

• Syntactic Similarities: Cosine similarity of
n-grams of part-of-speech tags. It considers
a shallow syntactic similarity (n = 1, 2, 3, 4
was used in all experiments); Partial tree ker-
nel (Moschitti, 2006) between the parse tree
of the sentences.

• Semantic Similarities: Cosine similarity be-
tween additive representations of word em-
beddings generated by applying word2vec
(Mikolov et al., 2013) to the entire Qatar Liv-
ing corpus from SemEval 20153. Five fea-
tures are derived considering (i) only nouns,
(ii) only adjectives, (iii) only verbs, (iv) only
adverbs and (v) all the above words.

These metrics are computed in all the subtasks
between the two elements within a pair, i.e., q and
ci for subtask A, q and o for subtask B, o and ci
for subtask C. In addition, in subtasks B and C,
the similarity metrics (except the Partial Tree Ker-
nel similarity) are computed between o and the en-
tire thread of q, concatenating q with its answers.
Similarities between q and o are also employed in
subtask C.

2.2 Inter-pair kernel methods
In tasks A and C, some question types may have
an expected answering form. Similarly, in Task B,
related questions may be characterized by the ap-
plication of some latent paraphrasing rules. Such
pairwise patterns cannot be captured by any intra-
pair similarity feature, and require an alternative
approach. Specific features may be manually de-
fined, but this would require a complex feature en-
gineering.

To automatize relational learning between pairs
of texts, one of the early works is (Moschitti
et al., 2007; Moschitti, 2008). This approach was
improved in several subsequent researches (Sev-
eryn and Moschitti, 2012; Severyn et al., 2013a,b;
Severyn and Moschitti, 2013; Tymoshenko et al.,
2014; Tymoshenko and Moschitti, 2015), exploit-
ing relational tags and linked open data. In partic-
ular, in (Filice et al., 2015b), we defined new inter-
pair methods to directly employ text pairs into a
kernel-based learning framework.

The kernels we proposed can be directly applied
to subtask B and to subtasks A and C for learn-

3http://alt.qcri.org/semeval2015/task3
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Figure 1: Structural Representation of a question-answer pair.

ing question-question and question-answer pair-
wise patterns (see also (Tymoshenko et al., 2016;
Da San Martino et al., 2016). As shown in Figure
1, a pair of sentences is represented as pair of their
corresponding shallow parse trees, where common
or semantically similar lexical nodes are linked us-
ing a tagging strategy (which is propagated to their
upper constituents). This method discriminates
aligned sub-fragments from non-aligned ones, al-
lowing the learning algorithm to capture relational
patterns, e.g., the REL-best beach and the REL-
best option. Thus, given two pairs of sentences
pa = 〈a1, a2〉 and pb = 〈b1, b2〉, some tree kernel
combinations can be defined:

PTK+(pa, pb) = PTK(a1, b1) + PTK(a2, b2)
PTK×(pa, pb) = PTK(a1, b1)× PTK(a2, b2)

where PTK is the Partial Tree Kernel (PTK) (Mos-
chitti, 2006). Tree kernels, computing the shared
substructures between parse trees, are effective
in evaluating the syntactic similarity between two
texts. The proposed tree kernel combinations ex-
tend such reasoning to text pairs.

2.3 Task Specific Features
While the features described so far can be effec-
tively applied to any sentence pair modeling task,
in this section, we describe features specifically
developed for the cQA domain.

• Ranking Features: The ten questions related
to an original question are retrieved using a
search engine. We use their absolute and rel-
ative ranks4 as features for subtasks B and C
(for the latter the question rank is given to
all the comments within the related question
thread).

• Heuristics: We adopt the heuristic features
described in (Barrón-Cedeño et al., 2015),
which can be applied to subtasks A and C.

4Some of the results retrieved by the search engine were
filtered out, because they were threads with less than 10 com-
ments, or documents out of Qatar Living. Therefore, the
threads in the dataset may have an associated rank higher than
10. The relative rank maps such absolute values into [1;10].

In particular, forty-five features capture some
comment characteristics such as its length,
its category (Socializing, Life in Qatar, etc.),
whether it includes URLs, emails, or other
particular words, etc.

• Thread-based features: As discussed in
(Barrón-Cedeño et al., 2015), comments in a
common thread are strongly interconnected:
users replicate to each others and start a con-
crete discussion. We used some specific fea-
tures for subtasks A and C that aim at cap-
turing some thread-level dependencies, such
as whether a comment is part of a dialogue
or whether a comment is followed by an ac-
knowledgment from the user who asked the
question

• Stacking features: A good comment for a
question q should be also good for an origi-
nal question o if q and o are strongly related,
i.e., q is relevant or a perfect match to o. We
thus developed a stacking strategy for Sub-
task C that uses the following scores in the
classification step, w.r.t. an original question
o and the comment ci from the thread of q:

– pq,ci , which is the score of the pair
〈q, ci〉 provided by the model trained on
Subtask A;

– po,ci , which is the score of the pair
〈o, ci〉 provided by the model trained on
Subtask A;

– po,q, which is the score of the pair 〈o, q〉
provided by the model trained on Sub-
task B.

Starting from these scores, we built the fol-
lowing features: (i) values and signs of pq,ci ,
po,ci and po,q (6 feats); (ii) a boolean fea-
ture indicating whether both pq,ci and po,q are
positive; (iii) min value = min(pq,ci , po,q);
(iv) max value = max(pq,ci , po,q); (v) aver-
age value = 1

2(pq,ci + po,q).

3 Tree Pruning Techniques

We propose to reduce the size of the input trees
by removing all nodes and branches that are less
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discriminative for the task. To determine such
fragments, we use the supervised approach de-
scribed in (Barrón-Cedeño et al., 2016). After
training a tree kernel, K(), on pairs of trees, the
solution of the dual optimization problem is ex-
pressed as a linear combination of a subset of the
training examples, i.e., the support vectors: M =
{(αj , (aj , bj))}, where the (aj , bj) ∈ A × B is a
pair of parse trees (aj could be the one of an orig-
inal or related question and bj the one of a related
question or a comment, depending on the subtask)
and αj are the coefficients of the combination. The
classification of a new example is obtained as the
sign of the score function f():

f (a, b) =
∑

1≤j≤|M |
αjK ((a, b), (aj , bj)) , (1)

where |M | is the number of support vectors, i.e.,
the number of elements of the set M . The higher
the absolute value of the score of an example, the
more confident the learning algorithm is in clas-
sifying it. We exploit such property to devise a
strategy for determineing the importance w(n) of
a node. Let n be a node of a tree t,

n
4 is the proper

sub-tree rooted at n, i.e., the tree composed of n
and all its descendants in t. We use the score of

n
4

with respect to M to assess the importance of n:

w(n) =


∑

1≤j≤|M |
αjPTK(

n
4, aj) if n ∈ a, a ∈ A∑

1≤j≤|M |
αjPTK(

n
4, bj) if n ∈ b, b ∈ B.

(2)
In order to be consistent, only the parse trees of
aj ∈ A will be used to compute w(n), if n be-
longs to the first tree of the pair (aj , bj) ∈ M .
Conversely if n belongs to the second tree of the
pair (aj , bj) only the parse trees of bi ∈ B will be
used.

Now we can proceed to prune a tree on the ba-
sis of the w(n) importance estimated by model M
for each of its nodes and a user-defined threshold.
We prune a leaf node n if −h < w(n) < h. If n
is not a leaf, then it is removed if all its children
are going to be removed. Note that the threshold
h determines the number of pruned nodes. Our al-
gorithm has a constraint: REL-tagged nodes are
never pruned, regardless of their estimated impor-
tance. This is because a REL tag indicates that a
and b share a common leaf in

n
4, which conveys

useful information, e.g., for paraphrasing (Filice
et al., 2015b).

MAP AvgR MRR P R F1 Acc

2016 IR 59.53 72.60 67.83 - - - -
KeLP 79.19 88.82 86.42 76.96 55.30 64.36 75.11

2017 IR 72.61 79.32 82.37 - - - -
KeLP 88.43 93.79 92.82 87.30 58.24 69.87 73.89

Table 1: Results on subtask A on the 2016 and
2017 official testsets. IR is the baseline system
based on the search engine results.

4 Submission and Results

We chose parameters using the 2016 official test
set as validation set, and we trained on the offi-
cial train and development sets5. In Subtask C,
the stacking features (Section 2.3) need the scores
provided by the models on subtasks A and B.
Such scores are generated with a 10-fold cross
validation. For the final submissions we used all
the 2016 data (including the testset) as training.
We used the OpenNLP pipeline for lemmatiza-
tion, POS tagging and chunking to generate the
tree representations described in Section 2.2. All
the kernel-based learning models are implemented
in KeLP (Filice et al., 2015a). For all the tasks,
we used the C-SVM learning algorithm (Chang
and Lin, 2011). The MAP@10 was the official
metric. In addition, results are also reported in
Average Recall (AvgR), Mean Reciprocal Rank
(MRR), Precision (P), Recall (R), F1, and Accu-
racy (Acc).

4.1 Subtask A

Model: The learning model operates on question-
comment pairs p = 〈q, c〉. The kernel is
PTK+(pa, pb) + LKA(pa, pb). Such kernel lin-
early combines PTK+(pa, pb) = PTK(q1, q2) +
PTK(c1, c2) (see Section 2.2) with a linear ker-
nel LKA that operates on feature vectors includ-
ing: (i) the similarity metrics between q and c
described in Section 2.1; (ii) the heuristic fea-
tures and (iii) the thread-based features discussed
in Section 2.3. PTK uses the default parameters
(Moschitti, 2006), while the best SVM regulariza-
tion parameter we estimated was C = 1. This
system is identical to the one we proposed in the
previous year.
Results: Table 1 reports the results on subtask A.
We confirmed the excellent results of 2016: the
model is very accurate and achieved the first posi-
tion among 13 systems in terms of MAP.

5We merged the official Train1, Train2 and Dev sets.
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MAP AvgR MRR P R F1 Acc

2016
IR 74.75 88.30 83.79 - - - -

KeLP 78.50 91.95 84.52 71.30 70.39 70.84 80.71
KC1 75.47 90.68 82.48 70.42 72.53 71.46 80.71

2017
IR 41.85 77.59 46.42 - - - -

KeLP 46.66 81.36 50.85 36.01 85.28 50.64 69.20
KC1 49.00 83.92 52.41 36.18 88.34 51.34 68.98

Table 2: Results on subtask B on the 2016 and
2017 official test sets. KeLP is our primary sub-
mission, while KC1 is the contrastive one. IR is
the baseline system based on the search engine re-
sults.

4.2 Subtask B

Model: The proposed system operates on
question-question pairs p = 〈o, q〉. The kernel
is PTK×(pa, pb) + LKB(pa, pb), by adopting the
kernels defined in Section 2.2. The product in the
PTK× combination acts like a logic and, as, when
comparing two pairs, we want a strict match in
which both the elements of the first pair must be
similar to the counterpart elements in the second
pair. Conversely, in subtasks A and C, the adopted
PTK+(pa, pb) applies a sort of logic or as we no-
ticed that some form of comments may be con-
sidered good (or bad ) regardless the question they
are answering. We pruned the question trees ac-
cording to the criterion described in Section 3. The
best pruning threshold we estimated on the 2016
test set was h = 0.91. The previous year model
adopted the Smoothed Partial Tree Kernel (SPTK)
(Croce et al., 2011) in place of the PTK. This year
we decided to use the PTK kernel as our prelimi-
nary experiments did not justified the usage of the
slower SPTK.

LKB is a linear kernel that operates on feature
vectors including: (i) the similarity metrics be-
tween o and q, and between o and the entire answer
thread of q, as described in Section 2.1; (ii) rank-
ing features, described in Section 2.3. With re-
spect to the previous year challenge we did not
include some features derived from subtask A,
because in subsequent experiments they did not
demonstrate a significant impact.

The best SVM regularization parameter esti-
mated during the tuning stage is C = 1.

We made an additional submission in which the
pruning in not applied.

Results: Table 2 shows the results on subtask B.
On the official test set, our primary submission
achieved the third position w.r.t. MAP among 13
systems. Differently from what observed in the

Figure 2: 10 fold cross validation results on the
official 2017 test set with different pruning thresh-
olds on subtask B.

tuning stage, on the official test set the contrastive
system achieves the highest MAP and would have
ranked first in the challenge.

In general, the difference between the system
accuracy obtained in 2016 and 2017 suggests that
the two test sets are rather different. To verify this
hypothesis, we performed a 10-fold cross valida-
tion using only the data from 2017 test set. We
kept the same pruning strategy and weights com-
puted on the 2016 training set that we applied to
the entire test set of 2017 for our official submis-
sion. We evaluated different pruning thresholds.
Figure 2 reports the MAP averaged over the re-
sults of a 10 fold cross validation on the official
2017 test set (the 2016 dataset is not used at all).

The results show that (i) our best system with or
without pruning is less accurate than the submitted
results, i.e., producing an MAP of 46.29: this is
reasonable since the model uses less training data.
(ii) our pruning can improve our best system from
46.29 to 47.10 MAP.

Thus, it would seem that the difference between
2016 and 2017 dataset plays an important role for
the pruning approach as removing some subtrees
makes the TK approach more effective but proba-
bly also more specific to the data used for training
the model. Another possible explanation is that
it is easier to improve a weaker model, using less
data. Finding out the properties of tree pruning is
surely an interesting research line we would like
to pursue in the future.
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MAP AvgR MRR P R F1 Acc

2016 IR 40.36 45.97 45.83 - - - -
KeLP 55.91 59.57 60.99 52.16 22.17 31.12 90.83

2017 IR 9.18 21.72 10.11 - - - -
KeLP 14.35 30.74 16.07 6.48 89.02 12.07 63.75

Table 3: Results on subtask C on the 2016 and
2017 official test sets. KeLP is our primary sub-
mission, while IR is the baseline system based on
the search engine results.

4.3 Subtask C

Model: The learning model operates
on the triplet, 〈o, q, c〉, using the ker-
nel, PTK+(pa, pb) + LKC(ta, tb), where
PTK+(pa, pb) = PTK(o1, o2) + PTK(c1, c2)
(see Section 2.2) and LKC is a linear kernel
operating on feature vectors, which include:
(i) the similarity metrics between o and c, between
o and q, and between o and the entire thread of
q, as described in Section 2.1; (ii) the heuristic
features, (iii) the thread-based features, (iv) the
ranking features, and (v) the features derived
from the scores of subtasks A and B, described in
Section 2.3. PTK uses the default parameters. The
subtask training data is rather imbalanced, as the
number of negative examples is about 10 times the
positive ones. We took this into account by setting
the regularization parameter for the positive class,
Cp = #negatives

#positivesC, as in (Morik et al., 1999). The
best SVM regularization parameter estimated
during the tuning stage is C = 5. The system is
identical to the one proposed the previous year.

Results: Table 3 shows the results for subtask C.
Our primary submission achieved the third high-
est MAP among 5 systems. The large difference
among the 2016 and 2017 MAP is mainly due to
the much lower presence of relevant examples in
the 2017 test set, indeed, more than 97% of in-
stances are irrelevant.
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Abstract

In this paper we propose a system for re-
ranking answers for a given question. Our
method builds on a siamese CNN archi-
tecture which is extended by two attention
mechanisms. The approach was evaluated
on the datasets of the SemEval-2017 com-
petition for Community Question Answer-
ing (cQA), where it achieved 7th place ob-
taining a MAP score of 86.24 points on the
Question-Comment Similarity subtask.

1 Introduction

Community Question Answering (cQA) describes
the task of finding a relevant answer to a never-
before seen question (Nakov et al., 2017). The
cQA task in SemEval-2017 is subdivided into
three subtasks: (a) Question-Comment Similar-
ity, (b) Question-Question Similarity, and (c)
Question-External Comment Similarity. We par-
ticipated at the Question-Comment Similarity sub-
task, which consists of re-ranking a set of 10
answers to a given question, such that all the
relevant answers are ranked higher than the ir-
relevant answers. We evaluated this system on
the dataset provided by SemEval-2017 for the
Question-Comment Similarity subtask, wich con-
sits of approximately 2000 questions with 10 an-
swers each. Our system ranked 7th place, achiev-
ing a MAP score of 86.2 which was outperformed
by 2 points by the 1st ranked system. In this paper
we describe the implementation details of our sys-
tem, which follows a siamese CNN architecture
based on (Severyn and Moschitti, 2015) extended
by the attention mechanisms introduced by (Yin
et al., 2015).

Siamese Architecture Siamese architectures
usually consist of two parallel CNNs, each

processing one sentence and then using the
representations for the classification. Siamese ar-
chitectures have been proposed for various tasks,
e.g. (Bromley et al., 1993) used the structure
for signature verification, and they have been
shown to be very useful for modelling sentence
pairs: (He et al., 2015), (Severyn and Moschitti,
2015), and (Tan et al., 2015) used the siamese
architecture to generate representations for both
sentences which then are used for classification.

Attention Mechanisms Recently the notion of
attention has been introduced in neural network
architectures to mimic human behaviour, as we
tend to focus on key parts of the sentences to
extract relevant parts. Most of the work on
attention mechanisms is focused on LSTMs: for
instance in (Bahdanau et al., 2014) the authors use
an attention mechanism for language translation,
and in (Vinyals et al., 2015) the authors use it
for generating parse trees. Regarding attention
mechanisms for CNNs, we are only aware of
(Yin et al., 2015), on which our system is based on.

The rest of the paper is structured as follows:
in Section 2 we present our model showing the
siamese architecture augmented with two different
attention mechanisms. In Section 3 we describe
our experimental setup and show the results ob-
tained with our system. We conclude our discus-
sion in Section 4.

2 Model

The input to the system are pairs of questions and
answer candidates where the model should clas-
sify if the answer candidate is relevant to the ques-
tion, thus, being a binary classification problem.
Given such an input a question and an answer can-
didate, the parallel CNNs produce a representation
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Figure 1: The architecture of the attention-based CNN used in our approach. The bold part highlights
the first attention mechanism the dotted line highlight the second attention mechanism.

for both sentences, which are then concatenated
and fed into a fully connected hidden layer before
being fed into a softmax layer for classification
(see Figure 1). The model is extended with two at-
tention mechanisms: one modifies the input to the
convolution and the second modifies the output of
the convolution. Both methods aim at giving more
weight to relevant parts of the sentences.

2.1 Language Model

We use word embeddings based on word2vec
(Mikolov et al., 2013) as input to the convolu-
tions. As described in (Mikolov et al., 2013) we
first learn representations for phrases by learning
which bigrams and trigrams appear frequently to-
gether. These n-grams are replaced by a unique
token, e.g. ’New York’ is replaced by the token
’New York’. The word embeddings are gener-
ated using the skip-gram model setting the context
window to 5 and the dimensionality to d = 200.
The data used to create the word embeddings is a
large corpus of 200M English Twitter messages.
The word embeddings are stored as a matrix E ∈
Rn×d where n is the number of tokens in the vo-
cabulary. We generate a mapping V from each to-
ken t to the index of the corresponding word vec-
tor in the matrix E where V (t) denotes the index
of token t.

2.2 Siamese CNN Architecture

Input Layer A minimal preprocessing is ap-
plied to both sentences. First, each sentence is
lower-cased and tokenized. Each token t is re-
placed with the corresponding vocabulary index
V (t). Thus, each sentence is represented as a vec-

tor s of indices. We denote the length of the vector
as sq for the length of the question and sa for the
length of the answer.

Embedding Layer The embedding layer uses
the indices provided by the input layer to select
and concatenate the vectors from the embedding
matrix E , thus, creating a matrix representation S
for the sentence. For the question we have Sq ∈
Rsq×d and for the answer candidate Sa ∈ Rsa×d.

Convolution Layer This layer applies a set ofm
convolutional filters of length h over the sentence
matrix S ∈ {Sq, Sa}. Let S[i:i+h] denote the con-
catenation of word vectors Si to Si+h. A feature
ci is generated for a given filter F by:

ci :=
∑
k,j

(S[i:i+h])k,j · Fk,j (1)

The concatenation of all vectors in a sentence de-
fines a feature vector c ∈ Rs−h+1, where s denotes
the sentence length. The vectors are then aggre-
gated from all m filters into a feature map matrix
C ∈ Rm×(s−h+1). The output of the convolutional
layer is passed through the relu-activation function
(Nair and Hinton, 2010), before entering a pooling
layer.

Zero Padding When computing the convolution
at the boundary of the sentence, the convolutional
filter is off the edge. Zero Padding is applied by
adding h− 1 zero vectors at the beginning and the
end of the sentence matrix. The padded sentence
matrix is of the form: Szq ∈ Rsq+2∗(h−1)×d and
Sza ∈ Rsa+2∗(h−1)×d for the question and answer
candidate respectively. Note that the feature map
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matrix has the form: C ∈ Rm×(s+h−1) if the input
is padded.

Pooling Layer The pooling layer aggregates the
vectors in the feature map matrix C by taking the
maximum value for each feature vector. This re-
duces the representation of both the question and
the answer candidate to cq,pooled, ca,pooled ∈ Rm.

Hidden Layer The two vectors cq,pooled and
ca,pooled are concatenated to a vector x ∈ R2m and
passed into a fully connected hidden layer which
computes the following transformation: xh =
relu(W ∗ x + b), where W ∈ R2m×2m is the
weight matrix and b ∈ R2m the bias vector.

Softmax Finally, the outputs of the previous
layer x ∈ R2m are fully connected to a soft-
max regression layer, which returns the class ŷ ∈
[1,K] with largest probability, i.e.,

ŷ = arg max
j

P (y = j | x,w,a)

= arg max
j

ex
ᵀwj+aj∑K

k=1 e
xᵀwk+ak

,
(2)

where wj and aj denotes the weights and bias
of class j.

2.3 Attention Mechanism
We implemented the two different ways of intro-
ducing an attention mechanism into the siamese
structure. The first manipulates the input to the
convolution directly, the second modifies output to
the convolution. Both approaches are based on an
attention matrix.

Attention Matrix The attention matrix A ∈
Rsq×sa is derived from the sentence matrices Sq

and Sa by computing the pairwise Euclidean simi-
larity between the word embeddings of Sq and the
word embeddings of Sa. Thus, Ai,j = (1+ |Sqi −
Saj |)−1 denotes the similarity of the i-th word in
the question with the j-th word in the answer can-
didate.

Convolution Modification The first mechanism
modifies the input to the convolution by apply-
ing a linear transformation to the attention ma-
trix A to create the attention features. For this,
two weight matrices are used: one for the ques-
tion Wq ∈ Rsc×d and one for the answer candi-
date Wa ∈ Rsq×d. To attention matrix is multi-
plied with the weight matrices to generate the at-
tention features: Aq = A∗Wq andAa = AT ∗Wa

with Aq ∈ Rsq×d and Aa ∈ Rsa×d, where the
weight matrices are learned during the training
phase. The attention features are stacked on top
of the sentence matrix, creating an order-3-tensor:
S2

q ∈ Rsq×d×2 for the question and S2
a ∈ Rsa×d×2

for the answer candidate. These tensors are used
as the input into the convolution layer, giving more
weight to the relevant regions in the sentence. As
in (Yin et al., 2015) we refer to this architecture as
ABCNN 1.

Attention Based Pooling The second mech-
anism modifies the output of the convolution.
First a sliding window is applied on h consecu-
tive columns of the feature map matrix Cw

:,i =∑
k=i:i+h

C:,k where i ∈ [1..sq] and the window size

h is the same as the filter length h used for the
convolution. The values of the resulting feature
map matrix Cw ∈ Rm×sq are weighted to include
the attention values. The attention values are gen-
erated by summing the attention matrix column-
wise for the question and row-wise for the an-
swer candidate. Thus, aq =

∑
Aj,: ∈ Rsq and

aa =
∑
A:,j ∈ Rsa represent the attention val-

ues for each token in the question and the an-
swer candidate, respectively. These vectors are
used to weight the feature map matrix, thus, we
get Cq

:,i = aq
i ∗ Cwq

:,i for the question and Ca
:,i =

aa
i ∗ Cwa

:,i where Cwq and Cwa denote the win-
dow averaged feature map matrices for the ques-
tion and answer candidate, respectively. Finally,
standard max pooling is applied to the attention
weighted feature map matrices. As in (Yin et al.,
2015) we refer to this architecture as ABCNN 2.

3 Experiments

For the experiments we compared the three dif-
ferent architectures: (i) the siamese architecture
without the attention mechanism; we refer to this
as siamese CNN (sCNN) (ii) the ABCNN 1 archi-
tecture, and (iii) the ABCNN 2 architecture.

3.1 Setup
For all experiments we used the same pre-trained
200-dimensional word embeddings introduced in
Section 2.1. We employ AdaDelta (Zeiler, 2012)
as optimizer and L2 regularization to avoid over-
fitting. Table 1 gives an overview of the hyper-
parameters chosen via grid search. Furthermore
we employ early stopping on the SemEval-2016
test-set, using a patience of 50 epochs. The final
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lr ε ρ m h L2

sCNN 0.1 1e−6 0.95 500 3 0.001
ABCNN1 0.05 1e−8 0.95 200 3 0.0005
ABCNN2 0.01 1e−8 0.95 200 3 0.0001

Table 1: Hyperparameters of the system. lr: learn-
ing rate,ρ and ε: AdaDelta hyperparameters , h:
filter width, m: number of filters

ranking of the answer candidates for a question is
derived from the softmax probability, i.e. the an-
swer candidates are sorted by their probability of
being relevant.

3.2 Data
The training data provided by SemEval consist of
approx. 2000 questions with 10 answer candidates
each. Each answer candidate is manually labelled
as either Relevant, Irrelevant, or Potentially Use-
ful. Table 2 gives an overview of the data. For the
training phase we combined the Training Part 1,
Training Part 2, and Dev 2016, and we used Test
2016 as validation set for early stopping. Further-
more, we aggregated the Irrelevant and the Poten-
tially Useful pairs to reduce the problem to a bi-
nary classification task.

Relevant Irrelevant Pot. Useful Total
Training Part 1 5287 6362 2461 14110
Training Part 2 1364 1777 649 3790
Dev 2016 2440 1209 413 818
Test 2016 1329 1485 456 3270

Table 2: Overview of the datasets used for training
and validation.

3.3 Results
Table 3 shows the results obtained by the systems
on the Test 2016. The results show that the at-
tention based mechanism boosts the MAP score
by 3-4 points, the AvgRec by 3 points, and the
MRR score by 3-4 points compared to the sCNN
architecture. We also observe that ABCNN2 out-
performs ABCNN1 by 1 point in every metric.

MAP AvgRec MRR Prec Rec F1 Acc
sCNN 0.741 0.854 0.806 0.589 0.815 0.684 0.693
ABCNN1 0.776 0.878 0.833 0.807 0.313 0.451 0.690
ABCNN2 0.788 0.883 0.845 0.798 0.352 0.489 0.700

Table 3: Resutls on the Test 2016 set.

Based on these results we decided to use
ABCNN2 as our primary submission and ABCNN1
as the contrastive submission. Table 4 shows

the results obtained on the SemEval-2017 test-set.
We observe the same pattern as with Test 2016,
i.e. ABCNN2 outperforms ABCNN1 by 1 point.
We included the scores of the 1st, 2nd, and 3rd

placed submissions for comparison. Our system
is outperformed by 2 points by the KeLP and the
Beihang-MSRA submission and by only 0.6 points
by the IIT-UHH submission.

MAP AvgRec MRR Prec Rec F1 Acc
ABCNN1 0.855 0.919 0.905 0.903 0.240 0.379 0.591
ABCNN2 0.862 0.922 0.908 0.907 0.284 0.433 0.613
KeLP(1st) 0.884 0.937 0.928 0.873 0.582 0.698 0.738
Beihang-MSRA(2nd) 0.882 0.938 0.923 0.519 1.0 0.684 0.519
IIT-UHH (3rd) 0.868 0.920 0.912 0.733 0.745 0.739 0.727

Table 4: Resutls on the Test 2017 set.

4 Conclusion

We described a deep learning approach to
question-answering. The proposed architecture
is based on parallel CNNs that compute a sen-
tence representation for the question and the an-
swer. These representations are then concatenated
and used to predict whether the answer is relevant
to the question. The architecture is augmented
by two different attention mechanisms which im-
prove the performance. Our system was evaluated
on the SemEval-2017 competition for Commu-
nity Question Answering, where it ranked 7th on
the Question-Comment subtask. Our system per-
formed poorly on the other two subtasks, thus, for
future work we will improve our system to tackle
these tasks with high performance.
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Abstract

In this paper we present the TakeLab-QA
entry to SemEval 2017 task 3, which is a
question-comment re-ranking problem. We
present a classification based approach, in-
cluding two supervised learning models –
Support Vector Machines (SVM) and Con-
volutional Neural Networks (CNN). We
use features based on different semantic
similarity models (e.g., Latent Dirichlet
Allocation), as well as features based on
several types of pre-trained word embed-
dings. Moreover, we also use some hand-
crafted task-specific features. For training,
our system uses no external labeled data
apart from that provided by the organiz-
ers. Our primary submission achieves a
MAP-score of 81.14 and F1-score of 66.99
– ranking us 10th on the SemEval 2017 task
3, subtask A.

1 Introduction

The ever-growing Community Question Answering
(CQA) on-line services are gaining popularity at an
increasing rate. However, there are some problems
inherent to question-answer collections created by
on-line communities. A major issue is the sheer
volume of CQA collections, which makes finding
an answer to a user question infeasible without
some kind of an automated retrieval system. Conse-
quently, information retrieval on CQA collections
has gained increased focus in the research commu-
nity, giving rise to several shared tasks on SemEval
(Nakov et al., 2017).

From a natural language processing perspective,
this is a difficult task due to high variance in the
quality of questions and answers in CQA collec-
tions (Màrquez et al., 2015). The cause of this
is the self-moderated nature of CQA sites, which

implies that there are few restrictions on who is
allowed to answer a question.

In this paper we describe our entries for the Se-
mEval 2017 Question-Comment Similarity subtask
(Nakov et al., 2017). Given a question q and a
comment list C, the task is to rank the comments
in C according to their relevance with respect to
q. Datasets for this task were extracted from Qatar
Living, a web forum where people pose questions
about various aspects of their daily life in Qatar.

Following Filice et al. (2016), we framed the
task as a binary classification problem. We experi-
mented with two classification approaches – Sup-
port Vector Machines (SVM) (Cortes and Vapnik,
1995) and Convolutional Neural Networks (CNN)
(Kim, 2014). Most of the features we use follow the
work of Barrón-Cedeno et al. (2015) and Nicosia
et al. (2015). Moreover, we use embedding-based
(Mihaylov and Nakov, 2016) features for both mod-
els.

The CNN model with the full feature set has
proven to be the most successful, ranking 10th in
the competition with a MAP-score of 81.14 and an
F1-score of 66.99.

The rest of this paper is structured as follows.
Section 2 gives a brief overview of the data set.
A detailed description of the our models is given
in Section 3. Section 4 outlines our experiments
and results. Finally, we present our conclusions in
Section 5.

2 Dataset

The dataset we used was provided by the shared-
task organizers. Incoming user queries are denoted
as original questions. For each original question,
we are provided with 10 annotated threads. Each
thread consists of a related question1 and a set of

1Related questions are questions that have been asked in
the past, and have a set of posted comments.
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relevant non-relevant % relevant

training 14,418 18,872 43.3
dev 2,198 3,152 41.1
overall 16,616 22,024 43.0

Table 1: Class distribution statistics.

10 comments posted as answers to the related ques-
tion. Subtask A, the main focus of this work, is
concerned with correctly ranking the 10 comments
with respect to a related question (henceforth: ques-
tion). Every question-comment pair contains a clas-
sification label Good, Bad, or PotentiallyUseful. In
our experiments, labels Bad and PotentiallyUse-
ful are both considered non-relevant and the label
Good is considered relevant. Table 1 shows the
class distribution of question-comment pairs in the
shared task dataset. There is a slight bias towards
the non-relevant class, but no mechanisms were
implemented to address this. The official split al-
locates 86% of the data to the train set and 14% to
the development set. For further information on the
collection we refer to (Nakov et al., 2017).

3 System Description

Considering we have class labels available for each
question-comment pair, it is natural to frame this
ranking task as a supervised classification problem.
The input of the classifier is a vector of features
that represents the question-comment pair (q, c).
The output is a class – relevant or non-relevant
– indicating whether c is relevant with respect to
q. We have experimented with two supervised ap-
proaches for classifying the data, SVM and CNN,
which were shown to be very successful in question-
comment re-ranking tasks in previous work (Nakov
et al., 2016). Note that both of these variants of
our system fall into the pointwise category of the
learning-to-rank paradigm (Cao et al., 2007). We
next describe all our systems’ components in detail.

3.1 Preprocessing

We have preprocessed all entries by tokenizing
them, stemming the tokens, and removing stop-
words using the NLTK toolkit.2 These tokens were
used as input to the feature extraction pipeline.

2http://www.nltk.org

3.2 Embedding-Based Features
As observed by Socher et al. (2011), in the case
where a large training set is not available, using
word embeddings obtained from an unsupervised
language model can be an efficient method for im-
proving performance. More specifically, in our
scenario embeddings alleviate lexical gap that of-
ten arises when comparing a question to a relevant
comment.

We use two types of embeddings. First,
word2vec embeddings trained on Quatar Living
questions and comments that was used by last
year’s participants (Mihaylov and Nakov, 2016).
We used 800-dimensional word vectors.3 Sec-
ondly, we use the PARAGRAM4 model introduced
by Wieting et al. (2016), which produces 300-
dimensional word embeddings specifically tuned to
work well when aggregated by a simple operation
such as the average.

After some experimentation, we found the fol-
lowing embedding features offered the best perfor-
mance boosts on the development set:

• Question and Answer Embeddings – using
the PARAGRAM embeddings, we compute the
vector representation of both the question and
comment by averaging their corresponding
content-word vectors. This yields two 300-
dimensional vectors, which are fed into our
models as 600 numerical features;

• Word2vec average cosine similarity – we
compute vector representations of the ques-
tion and comment in the same manner as for
the previous feature, but using word2vec word
vectors. We then introduce into our models
a single numerical feature computed as the
cosine similarity of the question and comment
vector representations.

3.3 SEMILAR Features
Features listed under this group were all obtained
from SEMILAR5 (Rus et al., 2013). This is a li-
brary that implements a multitude of popular se-
mantic similarity measures for text. We use it to
calculate the similarity of the question to the can-
didate comment, and include each measure as a

3 These vectors alone can produce a MAP-score of 78.45
on subtask A, and can be obtained from https://github.
com/tbmihailov/semeval2016-task3-cqa

4We use the SL999 variant available at – http://ttic.
uchicago.edu/~wieting/

5http://deeptutor2.memphis.edu/
Semilar-Web/
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numerical feature. In our experiments we include
similarity measures based on:

• Lexical overlap – two variants, overlap before
preprocessing and overlap after preprocess-
ing;

• WordNet (Fellbaum, 1998);

• Latent Semantic Analysis (Landauer et al.,
1998);

• Latent Dirichlet Allocation (Blei et al., 2003);

• BLEU (Papineni et al., 2002);

• Meteor (Denkowski and Lavie, 2011);

• Pointwise Mutual Information (Church and
Hanks, 1990).

3.4 Other Features

In this group we list hand-crafted features, as well
as features that do not fit into the previous two
groups:

• Words contained in comment – we have
tested each comment for some words that of-
ten seem to be useful in distinguishing good
from bad comments in the previous editions of
the task (Barrón-Cedeno et al., 2015). More
specifically, we checked whether the comment
contains words yes, ok, sorry, no, sure, or can,
and encoded them as binary numerical fea-
tures;

• Answer contains question mark – another
binary numerical feature that has previously
been proven useful is whether the com-
ment body contains a question mark (Barrón-
Cedeno et al., 2015);

• Answer length – longer comments tend to
be better thought-out and, consequently, more
useful with respect to the question at hand.
This numerical feature represents the number
of words in the comment after preprocessing;

• Tf-Idf cosine similarity – we determine Tf-
Idf vectors for each question and comment,
respectively. We then compute the cosine sim-
ilarity of these vectors and include it as a nu-
merical feature for our models.

3.5 SVM

We use the SVM classifier (Cortes and Vapnik,
1995) from ScikitLearn.6 The relevance score of
comment c with respect to question q is the confi-
dence of the SVM classifier that the class is rele-
vant, when presented (q, c) as input.

3.6 CNN

We follow the work of Severyn and Moschitti
(2015). The overall architecture of the network
includes two convolutional layers and the corre-
sponding information flow:7

• The question q and comment c at the input
are represented as matrices containing the
word2vec embeddings of their words. They
are the input of two separate convolutional
layers that perform feature extraction;

• The max-pooling operation is applied to the
resulting feature-maps;

• This results in task-specific representation vec-
tors of the question and the comment. These
vectors are concatenated and fed into a fully
connected hidden layer, along with other fea-
tures that we wish to include. Note that the
extra features could be especially helpful in
cases where many words in q and c that are
not covered by the word2vec model, which
may lead to meaningless features extracted by
the convolutional layers;

• Finally, a fully connected softmax layer cal-
culates the probability distribution over the
output label.

The network is trained by mini-batch stochastic
gradient descent, minimizing the cross-entropy loss.
To combat overfitting we use both early stopping
and dropout (Srivastava et al., 2014).

The score of comment c with respect to question
q is the probability that the network assigns to the
relevant class when presented with (q, c) as input.

4 Evaluation

4.1 Hyperparameters

We optimizeed the hyperparameters of the SVM
classifier using cross-validation on the train set. We

6http://scikit-learn.org/
7The most notable difference is that we ommit the the

similarity matrix present in their network.
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varied the C and γ parameters 8, and experimented
with both linear and non-linear kernels. We found
that the RBF kernel with C set to 5 and γ set to
0.01 was the best performing combination.

For CNN hyperparameters we used as a starting
point the values proposed by Kim (2014), and then
tuned them empirically, to find the setting that op-
timizes the performance on the development set.
More specifically, we used filter windows of size
3, 4, 5, with 64 feature maps for each window, a
dropout rate of 0.7, and mini-batch size of 64.

4.2 Evaluation
Participants were allowed to make three submis-
sions and mark them as primary, contrastive1, or
contrastive2. All submissions were evaluated but
only the primary was considered for the competi-
tion system ranking.

For our contrastive1 run we submitted an SVM
classifier trained on features from the embedding-
based and other groups. We denote this model as
SVM-EO.

In our contrastive2 run we submitted a com-
pletely different combination: the CNN classifier
with the SEMILAR features as additional input to
the hidden layer. We refer to this variant of the
model as CNN-S.

The last combination we considered was the
CNN classifier with all the other features provided
as additional input to the hidden layer. We refer
to this submission as CNN-EOS. This model has
access to both the feature representations generated
by the convolutional layers, as well as to all other
features. Thus, expectedly, it performed best on the
development set,9 and we decided to submit it as
our primary run.

4.3 Results
Final evaluation results released by the shared-task
organizers are shown in Table 2. 10 Our primary
submission was ranked at 10th place, achieving a
MAP-score of 81.14.

Our contrastive submissions, both SVM and
CNN based, achieve comparable performances.
The CNN seems to outperform SVM only when
new features are added, suggesting that the features
work best when used jointly.

8γ only for the RBF kernel.
9Prediction accuracy – number of correct predictions over

all pairs, is used as a overall training and development perfor-
mance metric.

10http://alt.qcri.org/semeval2017/task3/data/uploads
/semeval2017_task3_results.pdf

MAP F1 Acc

Best system (KeLP) 88.43 69.87 73.89

CNN-EOS (primary) 81.14 66.99 70.14
SVM-EO 79.71 67.87 69.11
CNN-S 78.98 62.54 70.14

Baseline 1 (IR) 72.61 – –
Baseline 2 (random) 62.30 66.36 52.70

Table 2: Submission results summary.

Furthermore, while the CNN model did prove
to be better on the MAP metric, SVM outperforms
it on the F1-score. This indicates that maximizing
F1-score may not always maximize MAP-score.

5 Conclusion

In this paper we presented a re-ranking system de-
veloped to participate in SemEval 2017 Task 3 –
Community Question Answering. The system con-
sists of two supervised learning approaches – Sup-
port Vector Machines (SVM) and Convoluational
Neural Networks (CNN), which outperformed the
baseline model. While our models were trained
only on the official dataset, better results may have
been attained with additional training data.

For future work we would like to include addi-
tional features, such as tree kernels (Filice et al.,
2016) and sentiment-specific word embeddings pro-
posed by Tang et al. (2014). We would also like to
experiment with different classification models. An
intriguing venue would be obtaining more training
data from other popular CQA sites, and explore if
some cross-domain information transfer that could
benefit ranking models is possible. Finally, as in-
dicated by our experiments, we would like to con-
sider approaches that optimize the ranking model
explicitly for the MAP-score.
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Abstract

This paper describes our submission to
SemEval-2017 Task 3 Subtask D, ”Ques-
tion Answer Ranking in Arabic Commu-
nity Question Answering”. In this work,
we applied a supervised machine learn-
ing approach to automatically re-rank a set
of QA pairs according to their relevance
to a given question. We employ features
based on latent semantic models, namely
WTMF, as well as a set of lexical features
based on string length and surface level
matching. The proposed system ranked
first out of 3 submissions, with a MAP
score of 61.16%.

1 Introduction

Nowadays Community Question Answering
(CQA) websites provide a virtual place for users
to share and exchange knowledge about different
topics. In most cases, users freely express their
concerns and hope for some reliable answers
from specialists or other users. In addition,
they can search for an answer from previously
posted question-answers (QA) that are similar to
their question. Although posting a question and
looking for a direct or related answer in CQA
sounds appealing, the number of unanswered
questions are relatively high. According to
Baltadzhieva and Chrupała (2015) the number
of unanswered questions in Stack Overflow1

and Yahoo! Answers2 are approximately 10.9%
and 15%, respectively. Interestingly, as noted in
(Asaduzzaman et al., 2013), the high percentage
of unanswered questions is due to the duplicate
question problem, i.e. the existence of a similar
question that had been addressed before, which

1A programming CQA forum
2A community-driven question-and-answer site

makes users not re-address the question again.
Hence, it is the asker’s role to review the site
looking for an answer before posting a new
question. This is a task that requires searching
related questions from a hundred others posted on
a daily basis. Thus, in a good forum there should
be an automatic search functionality to retrieve
the set of QA that are more likely to be related
to the new question being asked. As a result, the
number of duplications and unanswered questions
will be limited.

In order to find a solution to this and other prob-
lems in CQA, the SemEval 2015, 2016, and 2017
Task 3 have been dedicated to dealing with ”An-
swer Selection in Community Question Answer-
ing” (Nakov et al., 2017, 2016; AlessandroMos-
chitti et al., 2015). There are 5 different subtasks,
one of which has been proposed for Arabic. The
specific task for Arabic in the SemEval 2016-2017
Task 3, subtask D, was to re-rank the possible re-
lated question-answer pairs to a given question.

The Arabic task is especially difficult due to its
challenging characteristics. Arabic is one of the
most complex languages to process due to its mor-
phological richness, with relative free word order,
and its diglossic nature (where the standard and
the dialects mix in most genres of data).

The rest of this paper is organized as follows:
Section 2 gives an overview of the task and data,
Section 3 describes the proposed system, Section 4
presents a discussion of the experiments and re-
sults, Section 5 outlines the error analysis, and
Section 6 concludes.

2 Task and Data Description

Arabic by nature has different characteristics that
make it one of the most challenging languages to
process from an NLP perspective. It is a morpho-
logically rich language, flexible word order, and
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in most typical genres and domains available on-
line, we note a significant mix of the standard form
of Arabic (MSA) and dialectical variants (DA). In
fact, the use of dialectical Arabic in fora such as
the CQA presents a special challenge for process-
ing Arabic. The SemEval 2017 subtask D targets
the Arabic language. In particular, the task is to
re-rank a given set of QA pairs with respect to
their relatedness to a given query. Therefore, the
top of the ranked list is either a directly related
pair, ”Direct”; a ”Relevant” pair, which is not di-
rectly related but includes relevant information; or
an ”Irrelevant” pair, at the end of the list. These
are the three labels used for the task. The organiz-
ers cast the task as both a ranking problem with the
three possible ranks as well as a binary classifica-
tion problem where they grouped the labels Direct
and Relevant as true, while Irrelevant is deemed
False.

The Arabic dataset was extracted from medi-
cal fora, where users ask question(s) about med-
ical concerns and the answers are generally from
doctors. The dataset contains: a training of 1,031
questions and 30,411 potentially related QA pairs,
a development set of 250 questions and 7,385 po-
tentially related QA pairs, and a test set of 1400
questions associated with 8 to 9 potentially related
QA pairs for each.3

3 Approach

In this work, we are interested in studying the
effect of using semantic textual similarity (STS)
based on latent semantic representations and sur-
face level similarity features derived from the
given triple: User new Question Qu, and the re-
trieved Question Answer (QA) pairs which we will
refer to as RQ and RA, respectively. Therefore,
we casted the problem as a ranking problem that
orders the QA pairs according to their relatedness
to a given query Qu. We used a supervised frame-
work SV Mrank (Manning et al., 2008).

In order to extract the features set between the
Qu and QA pair, we extracted a set of features
shared between the (Qu, RQ) and shared between
the (Qu, RA) and then we used the concatenation
of both as a feature vector for each triple.

In the following subsection, we describe in de-
tail the preprocessing steps we applied to the raw
data and the set of features we used in the submit-

3For more details refer to the task description paper
at (Nakov et al., 2017)

ted model.

3.1 Preprocessing and Features

3.1.1 Text Preprocessing
Text preprocessing is especially important for this
CQA dataset. Therefore, in this section we briefly
outline the preprocessing we applied before the
feature extraction. First of all, we used SPLIT
(Al-Badrashiny et al., 2016) to check if a token is a
number, date, URL, or punctuation. All URLs and
punctuation are removed and numbers and dates
are normalized to Num and Date, respectively.
Alef and Yaa characters are normalized each to a
single form which is typical in large scale Arabic
NLP applications to overcome and avoid writing
variations. For tokenization, lemmatization and
stemming we used MADAMIRA (Pasha et al.,
2014) (a D3 tokenization scheme which segments
determiners as well as proclitics and enclitics). Fi-
nally, we removed stop words based on a list.4

3.1.2 Features
1 . Latent Semantics Features: a latent seman-

tic representation transforms the high dimen-
sional representation of text into a low di-
mensional latent space and thus overcomes
the problem of standard bag-of-words rep-
resentation by assigning a semantic profile
to the text, which captures implicit syntac-
tic and semantic information. There are var-
ious models such as Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003), which rely
on observed words to find text distribution
over ”K” topics. These models in general
are applied to relatively lengthy pieces of text
or documents. However, texts such as ques-
tion and answer pairs found in CQA are rela-
tively short pieces of text with two to three
sentences on average. Therefore, we used
the Weighted Textual Matrix Factorization
(WTMF) (Guo and Diab, 2012) latent model,
which is more appropriate for semantic pro-
filing of a short text.

The main goal of the WTMF model is to ad-
dress the sparseness of such short text by re-
lying on both observed and missing words to
explicitly model what the text is and is not
about. The missing words as defined by the
model are the whole vocabulary of the train-
ing data minus the ones observed in the given

4https://pypi.python.org/pypi/many-stop-words
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Gigword Sample Unlabeled data

Tokens 45,302,744 16,101
Stem Types 153,452 2234

Table 1: Statistic of the raw Arabic corpora used
for building the WTMF model

document.

We used the implementation of WTMF,5 with
a modification in the preprocessing pipeline
to accommodate Arabic, i.e. we used the
same preprocessing steps in 3.1.1. We used
the stems of the word as the level of repre-
sentation. To train the model we used a sam-
ple data from Arabic Gigaword (Parker et al.,
2011) with the UNANNOTATED Arabic data
provided in the task website.6 We used the
default parameters except for the number of
dimensions, which we set to 500. Table 1
shows Training data statistics.

For feature generation, we first generated
vector representation for Qu, RQ, and RA
using the above model. Then, we used Eu-
clidean distance, Manhattan distance, and
Cosine distance to calculate the overall se-
mantic relatedness scores between ( Qu,RQ)
and between ( Qu,RA).

2 . Lexical Features: similar pairs are more
likely to share more words and hence they
are more likely to be related. Following this
assumption, the following set of features are
used to record the length information of a
given pair using the following measures:|B−
A|, |A∩B|, (|B|−|A|)

|A| , (|A|−|B|)
|B| , |A∩B|

|B| where
|A| represents the number of unique instances
in A, |B −A| refers to the number of unique
instances that are in B but not in A, and
|A ∩ B| represents the number of instances
that are in both A and B. To account for word
forms variations, we applied them at the to-
ken, lemma and stem levels.

4 Experiments and Results

Our ranking system is a supervised model using
SV Mrank, a variation of SVM (Hearst et al.,
1998) for ranking. We tested different types of

5http://www.cs.columbia.edu/ weiwei/code.html
6http://alt.qcri.org/semeval2016/task3/data/uploads/Arabic.

DataDump.txt.gz

kernels, and the best result was obtained using a
linear kernel, which we used to train our model.
Furthermore, we tuned the cost factor parameter
C of the linear kernel on the development set and
we obtained the best result with C=3, which we
set during the testing of our model. The out-
puts of the SV Mrank are mainly used for order-
ing and they do not have any meaning of relat-
edness.7 For binary classification, ”Direct” and
”Relevant” are mapped to ”True” and ”Irrelevant”
is mapped to ”False” for the classification task. We
employed a logistic regression (LR) classifier, LI-
BLINEAR classifier with the default parameters,
implemented using WEKA package (Witten and
Frank, 2005).

We report results on the development tuning
set, DEV, and TEST set. Furthermore, we re-
port the results of different experimental setups to
show the performance over different feature sets.
We report results using lexical features (LEX), us-
ing WTMF features (WTMF), and with combined
features (WTMF+LEX). The latter is our primary
submission to the SemEval-2017 subtask D. It is
worth noting that we only officially participated in
the ranking task. In addition, we report the binary
classification results, which we did not officially
submit. Furthermore, we compare our results to
subtask D baselines and we report the results us-
ing the official metrics.

As can be seen in Table 2, the combined
WTMF+LEX setting outperformed the other set-
tings, WTMF and LEX, individually. This indi-
cates that the combination of LEX features with
WTMF provide complementary information about
the relatedness at the explicit matching level for
the model. Specifically, the WTMF+LEX based
system improved the MAP by about 1% increase
from the WTMF and the LEX based system. Fur-
thermore, we obtain a significant improvement
over the baselines for the DEV set and relatively
modest improvements in the TEST set, with MAP
45.73 and 61.16, respectively.

Table 3 on the other hand, presents the results of
the binary classification on the TEST set using the
WTMF+LEX setting along with the baseline and
the results submitted by the two other participants.
As can be seen in the the table, we achieved the
best result on all metrics except for precision.

7https://www.cs.cornell.edu/people/tj/svm light
/svm rank.html

346



DEV TEST
MAP AvgRec MRR MAP AvgRec MRR

LEX 42.40 47.84 49.78 59.19 83.55 64.6678
WTMF 44.97 49.99 50.63 59.31 83.85 64.8225

WTMF+LEX 45.73 51.48 53.08 61.16 85.43 66.85
Baseline 1 (IR) 28.55 27.96 31.39 60.55 85.06 66.80

Baseline 2 (random) - - - 48.48 73.89 53.27

Table 2: Ranking Results on the development and test sets using official metrics

TEST
P R F1 Acc

WTMF+LEX 55.63 77.45 64.75 66.92
UPC-USMBA-primary 63.41 33.00 43.41 66.24

QU BIGIR-primary 41.59 70.16 52.22 49.64
Baseline 2 (random) 39.04 66.43 49.18 46.13
Baseline 3 (all ’true’) 39.23 100 56.36 39.23
Baseline 4 (all ’false’) - - - 60.77

Table 3: Binary Classification Results us-
ing our LR classifier with combined features
WTMF+LEN on the Test set

5 Error Analysis

There were different challenges faced during the
ranking and classification of a given question. We
observed that False positive (FP) and False neg-
ative (FN) examples fall in one of the following
categories:

1 . Mixed Arabic variants and Mixed Lan-
guages: this is one of the challenges proposed
by the task. Table4 shows an example of this
from the SemEval-2017 test data. The mix in
either dialect with standard Arabic, or Arabic
with a foreign language (English), or both.
This affected FP and FN cases produced by
our system as follows:

(a) WTMF Model: we had a mismatch be-
tween the data genre used to train the
WTMF model and our test data resulting
in a high out of vocabulary (OOV) rate
in the pair of text snippets compared;

(b) . Lexical feature: mixes in either di-
alect/standard, or Arabic with foreign
language, or both resulted in a low over-
lap between the pair.

2 . Noise: even though we removed a list of
stop words, there are other words that are
considered noise words in this task that af-
fect the overlap similarities in both the FP and

1 P�� Y�¤E «r��

T�ytn�� �A�¤ to-
tal sperm 300 millions
sperm [—] S- second h
60%P�f�� �@¡ �h�

? �ylF

My husband was
checked and the result
was total sperm 300
milions sperm [—]S-
second h 60% does
this check up sound
correct?

2 £rt� (Y�Aq�) A��

Y� ¢k� �� (Y�A`�)

�tn§¤ ��C¯�¤ �§dy��

C�rm�� Ahn�[—]��)
A� �� Y�A� �l`��

 Ak� Yl� («d§� X��)

�C¤ Ahy�¯�) ¢k���

�rm��¤

For a while I have been
suffering from itching
in my hands and legs
resulting in redness[–
]Knowing that when I
put my hand on the itch
place I find it burning
and swelling

Table 4: 1 is an example of Mixed Languages and
2 is an example of Mixed between Dialectal,words
between parentheses, and Modern Standard Ara-
bic. Both types of mix resulted in wrong predic-
tion of the relatedness relation

FN categories. For example, words describ-
ing personal information such as weight, age,
or gender are not directly related to the medi-
cal concern being asked and are considered
noise. Therefore, this data needed a hand
crafted list to be used for cleaning.

6 Conclusion

We have presented in this paper the submission of
the GW QA team in SemEval-2017 Task 3 sub-
task D on Arabic CQA ranking. We used a su-
pervised machine learning ranker based on a com-
bination of latent Semantics based similarity and
lexical features. We submitted a primary result
using the SV Mrank and we used Logistic regres-
sion for the binary classification setting, not an of-
ficial submission. Our primary submission MAP
official score ranked first for the Arabic subtask
D. Furthermore, we analyzed the performance of
our model and outlined the limitations that caused
false positive and false negative predictions.
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Abstract

This paper describes our participation
in SemEval-2017 Task 3 on Community
Question Answering (cQA). The Question
Similarity subtask (B) aims to rank a set
of related questions retrieved by a search
engine according to their similarity to the
original question. We adapted our feature-
based system for Recognizing Question
Entailment (RQE) to the question simi-
larity task. Tested on cQA-B-2016 test
data, our RQE system outperformed the
best system of the 2016 challenge in all
measures with 77.47 MAP and 80.57 Ac-
curacy. On cQA-B-2017 test data, perfor-
mances of all systems dropped by around
30 points. Our primary system obtained
44.62 MAP, 67.27 Accuracy and 47.25
F1 score. The cQA-B-2017 best system
achieved 47.22 MAP and 42.37 F1 score.
Our system is ranked sixth in terms of
MAP and third in terms of F1 out of 13
participating teams.

1 Introduction

SemEval-2017 Task 31 on Community Question
Answering (cQA) focuses on answering new ques-
tions by retrieving related answered questions in
community forums (Nakov et al., 2017). This task
extends the previous SemEval-2015 and SemEval-
2016 cQA tasks.

This year, five subtasks were proposed: En-
glish Question-Comment Similarity (subtask A),
English Question-Question Similarity (subtask B),
English Question-External Comment Similarity
(subtask C), Arabic Answer Re-rank (subtask D)
and English Multi-Domain Duplicate Question
Detection (subtask E).

1http://alt.qcri.org/semeval2017/task3

Subtask B (Question Similarity) aims to re-rank
a set of similar questions retrieved by a search en-
gine with respect to the original question, with
the idea that the answers to the similar questions
should also be answers to the new question. For
a given question, a set of ten similar questions is
provided for re-ranking.

2 Data

The cQA task covers two languages: English and
Arabic. The English dataset (CQA-QL corpus)
is based on data from the Qatar Living forum.
The CQA-QL corpus consists of a list of original
questions, having each ten related questions from
Qatar Living, and the first ten comments from
their threads. For subtask B, questions are an-
notated as PerfectMatch, Relevant and Irrelevant
with respect to the original question. Both Per-
fectMatch and Relevant questions are considered
as good without distinction.

For the cQA-B-2017 task, training and develop-
ment datasets are the cQA-B-2016 datasets. A to-
tal of 3,869 question pairs is available for training
including cQA-2016 test questions. cQA-B-2017
test data is composed of 880 question pairs.

3 Question Similarity vs. Question
Entailment

In addition to the efforts within the semEval cQA
tasks since 2015, earlier definitions and methods
were proposed for Question Similarity based on
different elements such as the question topic and
question type (Burke et al., 1997; Jeon et al., 2005;
Duan et al., 2008). But other definitions using spe-
cific kinds of question similarity such as entail-
ment and paraphrases are not yet very developed
for Question Answering (QA).

In a previous effort (Ben Abacha and Demner-
Fushman, 2016), we introduced a new task called
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Recognizing Question Entailment (RQE), which
tackles a specific kind of question similarity. As
question entailment has not previously been pro-
posed for automatic QA, we proposed a new RQE
definition: A question PQ entails a question HQ
if every answer to HQ is also an exact or partial
answer to PQ.

The RQE task is proposed to automatically pro-
vide an existing answer if an entailment relation
exists between a new question and an existing an-
swered question. Considering the example of a
question PQ asking about medications for a preg-
nant woman, the entailed question should include
this specificity too, otherwise the question is not
entailed from a semantic standpoint since its an-
swer is not relevant to the original question PQ.
This answer-related definition makes question en-
tailment a relevant extension of textual entailment
for QA.

Also, our definition includes partial answers
(e.g. an answer of only one sub-question of a ques-
tion PQ asking about causes, diagnoses and treat-
ments of a specific disease). Partial answers are
crucial in dealing with complex questions includ-
ing more than one sub-question.

Our RQE system obtained 75% F1 score on
medical questions when using training data con-
structed automatically (Ben Abacha and Demner-
Fushman, 2016). Our RQE method is applied to
answer consumer health questions received by the
U.S. National Library of Medicine2 (NLM).

4 System

Our RQE System uses a supervised machine learn-
ing approach to determine whether or not a ques-
tion HQ can be inferred from a question PQ. We
use Logistic Regression with a set of lexical and
morpho-syntactic features. The used features were
selected empirically after numerous tests on Rec-
ognizing Question Entailment (RTE) datasets.

4.1 Preprocessing

For each question, we remove stop words and per-
form word stemming using the Porter algorithm
(Porter, 1980).

4.2 Similarity Features

We compute different similarity measures between
the pre-processed questions and use their values as
features:

2http://www.nlm.nih.gov

• Selected similarity measures are Word Over-
lap, the Dice coefficient based on the number
of common bigrams, cosine distance, Leven-
shtein distance, and Jaccard distance.

• The feature list also includes the maximum
and average values among the five similarity
measures and the questions length ratio.

4.3 Morpho-syntactic Feature
We use TreeTagger (Schmid, 1994) for POS tag-
ging. We generate an additional feature for the
number of common nouns and verbs between the
two questions.

4.4 Question Similarity System
For cQA-B-2017, we used our RQE classifier
trained on semEval-2016 datasets (3,869 question
pairs). In cQA-B-2016, the IR baseline system
provided interesting results. We used a weight-
based method to combine the scores provided by
the Logistic Regression model and the IR baseline
ranks. We used a reciprocal rank to convert the
IR baseline rank and a weight w fixed after sev-
eral empirical tests on cQA-2016 data. The for-
mula that we used for combination is: score =
LogisticRegression score + w × 1

IR rank

5 Results

Systems are scored according to Mean Average
Precision (MAP), Mean Reciprocal Rank (MRR),
Average Recall (AvgRec), Precision (P), Recall
(R), F1 and Accuracy (Acc). The official evalu-
ation measure used to rank the participating sys-
tems is MAP.

For the final evaluation we submitted 3 runs.
We only changed the weighting coefficient. For
NLM NIH-primary, the combination weight was
the one that gave the best results on the 2016 test
data (w = 7.9). For NLM NIH-contrastive1, we
used the combination weight that performed the
best on the 2016 development data (w = 8.9),
which had a slightly better impact on MAP on the
new 2017 test data (44.66 vs. 44.62 MAP). For
NLM NIH-contrastive2, we used a third combi-
nation weight (w = 6.8).

Table 1 presents the results on cQA-B-2017 test
data. Our primary system obtained 44.62 MAP
and was ranked sixth over 13 participating teams.
The best system obtained 47.22 MAP. The IR
baseline based on the order provided by the search
engine obtained 41.85 MAP.
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System MAP AvgRec MRR P R F1 Acc
NLM NIH-primary 44.62 79.59 47.74 33.68 79.14 47.25 67.27
NLM NIH-contrastive1 44.66 79.66 48.08 33.68 79.14 47.25 67.27
NLM NIH-contrastive2 44.29 79.05 47.45 33.68 79.14 47.25 67.27
cQA-B-2017 Best System 47.22 82.60 50.07 27.30 94.48 42.37 52.39
cQA-B-2017 IR Baseline 41.85 77.59 46.42 – – – –

Table 1: cQA-B-2017 Official Results (Nakov et al., 2017)

System MAP AvgRec MRR P R F1 Acc
Our RQE System (Ben Abacha
and Demner-Fushman, 2016)

77.47 91.39 83.79 70.29 72.10 71.19 80.57

cQA-B-2016 Best System
(Franco-Salvador et al., 2016)

76.70 90.31 83.02 63.53 69.53 66.39 76.57

cQA-B-2016 IR Baseline
(Nakov et al., 2016)

74.75 88.30 83.79 – – – –

Table 2: Results on cQA-B-2016-Test data. RQE system trained on cQA-B-2016 training and develop-
ment datasets (3,169 pairs)

Table 2 presents the results using the test data
from cQA-B-2016. We used the same system with
the best combination weight according to the de-
velopment data (w = 8.9). Our results outper-
formed the best system on the 2016 test data. A
general drop of 30 points on performance for all
systems can be observed with the cQA-B-2017
test data.

6 Conclusion

In this paper, we described our participation in the
task 3-B of SemEval 2017. We explored the ad-
equacy of our question entailment system for the
question similarity task. Despite the general drop
of performance with regards the 2016 test data for
all participating systems, we obtained good results
on the 2017 test data with 44.62 MAP, 67.27 Ac-
curacy and 47.25 F1 score. Our system is ranked
sixth in terms of MAP and third in terms of F1 out
of 13 participating teams.
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Abstract

This paper describes a text-ranking system
developed by bunji team in SemEval-2017
Task 3: Community Question Answering,
Subtask A and C. The goal of the task is to
re-rank the comments in a question-and-
answer forum such that useful comments
for answering the question are ranked
high. We proposed a method that com-
bines neural similarity features and hand-
crafted comment plausibility features, and
we modeled inter-comments relationship
using conditional random field. Our ap-
proach obtained the fifth place in the Sub-
task A and the second place in the Subtask
C.

1 Introduction

This paper explains the participation of the bunji
team in SemEval-2017 Task 3 on Community
Question Answering (CQA) (Nakov et al., 2017),
Subtask A and Subtask C. The goal of the task is
to re-rank the comments in a question-and-answer
forum such that useful comments for answering
the question are ranked high. Subtask A is extrac-
tion of relevant answers from comments in a ques-
tion thread. Given a question and its comments,
the system must re-rank the comments accord-
ing to their relevance with respect to the question.
Subtask C is extraction of relevant answers from
comments in different question threads. Given
a question (the original question), questions that
are possibly related to the original question (the
relevant questions) and comments to the relevant
questions, the system must re-rank the comments
according to their relevance with respect to the
original question. Since the task is ranking, the
primary metric is mean average precision (MAP).

Our model consists of three elements; use of

similarity features, use of comment plausibility
features and a supervised scoring method that
models inter-comments relationship. The similar-
ity features are designed to capture the similarities
between a question and a comment because a valid
answer should be on the same topic as the ques-
tion. Similarity features were utilized by many
teams in SemEval-2016 (Nakov et al., 2016). In
this work, we take a deep learning approach to ex-
tract similarity features.

The comment plausibility features are designed
to capture characteristics that relevant answers
tend to have. Similar concept was proposed by
Mihaylova et al. (2016), who tried to model read-
ability, credibility, sentiment and trollness. The
comment plausibility features were hand-crafted
to incorporate human knowledge about CQA.

In past CQA tasks, some teams incorporated
inter-comments relationship. An example of such
relationship is acknowledgement, where a good
answer is likely to be followed by acknowledge-
ment of the questioner. Barrn-Cedeo et al. (2015)
modeled inter-comments relationship by taking
distance to nearest acknowledgement as a feature
and using Conditional Random Field (CRF) to
model transition probability between relevant and
irrelevant comments. In our work, we try to model
inter-comments relationship in much simpler way;
by concatenating features of adjacent comments
and by utilizing CRF for final ranking function.

2 Method

Our proposed method is constructed in following
steps:

(i) Neural network is trained to extract similar-
ity features independently to the rest of the
system,

(ii) comment plausibility features are extracted
with hand-crafted rules,
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Figure 1: Neural feature extraction

(iii) neural similarity features and comment plau-
sibility features are concatenated to form the
combined features, and

(iv) CRF is optimized on the combined features
while keeping the neural network fixed.

We used almost identical method for Subtask C.
The differences in the system for Subtask A and
for C are discussed in Section 2.4.

2.1 Neural Similarity Features
One of the challenges in the CQA task is that ques-
tion and comment texts tend to be long. This
makes use of recurrent neural network difficult,
because recurrent neural network is known to be
less effective against a long sequence (Lai et al.,
2015). In this work, we make assumption that only
a very small region of a question and a comment is
needed to decide whether the comment is relevant.
For example, given a 62-words question,

... and would like to know the typi-
cal business dress code in Doha for Non
Nationals.

::
Is

::
it

::::
OK

:::
for

:::::
men

:::
to

:::::
wear

:::::
short

::::::
sleeve

::::::
shirts? For women; I am

assuming the more conservative; ...1

and a 50-words comment,

I agree with MR M;
::
its

:::
not

::::::
much

::
to

:::::
worry

:::
of

:::::
your

::::::
dress.. its not an issue

over here ;just be modest...1

We only need underlined parts of the question and
the answer to identify that the comment is relevant.

1From SemEval-2017 data (Nakov et al., 2017)
(http://alt.qcri.org/semeval2017/task3/
index.php?id=data-and-tools)

We propose a feature extraction method based
on a decomposable attention model (Parikh et al.,
2016). This method is designed to model align-
ment between two sequences of text, allowing the
system to jointly identify informative region and
predict whether the comment is relevant.

The overview of our neural network is shown
in Figure 1. Each question-comments thread (one
question and multiple comments) is mapped to a
real value score using a decomposable attention
model. The loss for stochastic gradient decent is
calculated for each thread using list-wise ranking
loss.

As preprocessing, we remove HTML tags, ap-
ply tokenization and lowercase all characters.
Named entities, image tags, URLs and numerics
are each converted to special symbols. A ques-
tion subject text is prepended to the corresponding
question text. We truncate question and comment
text to first 50 tokens.

The c-th token of j-th comment text (1 ≤ j ≤
N ) in i-th thread is then mapped to word vector
representation xC

i,j,c ∈ RM and the q-th token of
the question text in i-th thread to xQ

i,q ∈ RM .
The word vector was pretrained with the raw fo-
rum text provided by the organizers which con-
tained approximately 100 million words.We only
use 50,000 most frequent words and the rest of the
words are mapped to an averaged vector of 50 least
frequent words.

Each combination of a comment
xC

i,j = {xC
i,j,c}1≤c≤LC and a question

xQ
i = {xQ

i,q}1≤q≤LQ is mapped to a question-
comment vector zi,j using the decomposable
attention model. First, the model compares
and calculates attention ei,j,c,q for each token
combination,

ei,j,c,q = F
(
xC

i,j,c

)T
F

(
xQ

i,q

)
, (1)

where F is a feed forward neural network. Then,
the model extracts subphrase of xC

i,j that is soft-
aligned against xQ

i using attention mechanism:

ēC
i,j,c,q =

exp(ei,j,c,q)∑LC

s=1 exp(ei,j,s,q)
(2)

χC
i,j,q =

LC∑
c=1

ēC
i,j,c,qx

C
i,j,c, (3)

Then we compare the word vector to the soft-
aligned subphrase and aggregate all the combina-
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tions:

vQ
i,j =

LQ∑
q=1

G([χC
i,j,q,x

Q
i,q]), (4)

where G is a feed forward neural network and
[•, •] denotes the concatenation of vectors. This
is calculated vice-versa for vC

i,j . Finally, we map
vQ

i,j and vC
i,j to a score yi,j ∈ R:

zi,j = H([vQ
i,j ,v

C
i,j ]) (5)

yi,j = σ(zi,j) ·W + b, (6)

where H is a feed forward neural network, σ is
an activation function, and W and b are model
parameters. The representation zi,j is used as
the neural features, which is combined with com-
ments plausibility features to form our final model.

The scores yi = {yi,j} are optimized to pre-
dict ground truth label sequence ti = {ti,j} with
permutation probability loss (Cao et al., 2007). A
ground truth label is set 1 if it is labeled “Good”
and 0 if it is labeled “PotentiallyUseful” or “Bad”
in accordance to the task rules (Nakov et al.,
2017). We use k = 1 permutation probability dis-
tribution function P : RN 7→ RN , such that

P (yi) =

[
exp(yi,j)∑N
n exp(yi,n)

]
j∈{1,2,...,N}

. (7)

The permutation probability loss is defined as
DKL(P (ti)∥P (yi)) where DKL is Kullback-
Leibler divergence between two distributions.

Since decomposable attention model and per-
mutation probability loss are fully differentiable,
we can optimize the whole network with mini-
batch stochastic gradient descent with backpropa-
gation. We use rmsprop with momentum (Graves,
2013) and learning rate reduction of 1% for every
100 batches. Dropout (Srivastava et al., 2014) and
L2-norm regularization are applied to each layer
of feed forward neural network to avoid over-
fitting. Batch normalization (Ioffe and Szegedy,
2015) is applied and gradient norm is clipped to
5.0 to improve the training stability. We use leaky
rectified linear unit for activation function σ as
shown in Equation (8) to stabilize the training.

σ(x) = max(x, 0.2x) (8)

Other hyperparameters are shown in Table 1.
Above model selection and hyperparameters were
manually tuned by validation against SemEval-
2016 test data.

Parameter Subtask A Subtask C
Number of layers in F and H 3 3
Number of layers in G 3 3
Dimension of zi,j 200 50
Dimensions of other layers 200 200
Word vector dimension M 200 200
Dropout rate 0.1 0.1
L2 regularization coefficient 0.1×10-4 0.2×10-4

L2 regularization coefficient
for W

0.2×10-4 0.3×10-5

Initial learning rate 0.5×10-5 0.5×10-5

Mini-batch size 2 1
Max tokens 50 30
Training epochs 50 30

Table 1: Hyperparameters of the neural network

?, !, what, which, who, where, when, why, whom, how,
hi, ⟨what, which, who, where, when, why, whom, how,
hi⟩, ⟨yes, yep, year⟩, ⟨no, nope, nah⟩, ⟨thank, thanks, tnx,
thx⟩, ⟨you, u⟩, ⟨good, greate, nice⟩, ⟨bad, not, non⟩

Table 2: Lexicons used in function-of-a-comment
features. ⟨•⟩ denotes a feature that is positive
when any of the words are present in the comment.

2.2 Comment Plausibility Features

Comment plausibility features are designed to ex-
tract information that is not captured by neural
similarity features. These features are divided into
five groups: (1) function of a comment, (2) an-
swer adequacy, (3) dialog structure, (4) answerer’s
meta-information, and (5) miscellaneous.

Part of speech tagging and named entity recog-
nition for comment plausibility features are car-
ried out using Stanford CoreNLP (Manning et al.,
2014).

2.2.1 Function of a Comment

This group of 39 features is designed to capture
the function of a comment; e.g. trying to answer
the question, making remarks, or asking the ques-
tioner for more information. This group of fea-
tures is extracted from each comment.

The occurrence of each word in Table 2 within
each comment is extracted as a binary feature. We
use the part of speech tag for the first and the final
word of the comment. This is expressed as one-
hot representation of whether the first/final word is
noun, adjective, adverb, verb, auxiliary verb, con-
junction (for the final word only) or interjection.
We also added a feature whether the first word is
“is.”

We also use ratio of each part of speech tag to
the number of tokens.
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# Comparing IDF source
Per thread All dataset

S Q C S Q C S Q C
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦ ◦
5 ◦ ◦ ◦ ◦
6 ◦ ◦ ◦ ◦ ◦
7 ◦ ◦ ◦ ◦
8 ◦ ◦ ◦ ◦ ◦

S = question subject, Q = question text, C = comment text

Table 3: Types of TF-IDFs for calculating cosine
distance. Column Comparing shows text blocks to
extract and compare TF-IDF. Column IDF source
shows the documents used to calculate IDF, where
each text block is regarded as a single document.

2.2.2 Answer Adequacy
This group of 27 features is designed to capture
whether the comment has adequate information to
answer the question. For this purpose, this group
of features is extracted from each question-answer
pair.

The presence of each word (what, which, who,
where, when, why, whom, how, hi, and any of
do, does, or did) within a question is extracted
as a binary feature. The presence of each type
of named entities (location, person, organization,
money, percent, date and time) and the presence
of any type of the named entities, numerics, im-
age tags and URLs in each comment are also ex-
tracted.

The relative length of a comment to a question
is also extracted. This is based on the idea that the
answer tends to be long when a question is long.
This relative length is calculated for 6 variants; i.e.
the number of words/characters in a comment di-
vided by,

(i) the total number of words/characters in the
question and the comment,

(ii) the total number of words/characters in the
question subject, text and the comment text,
and

(iii) the total number of words/characters in the
question subject and the comment text.

2.2.3 Dialog Structure
This group of four features is designed to capture
the dialog structure of comments. For this pur-
pose, this group of features is extracted for each
comment using the whole thread.

Dialog structure features include the binary fea-

tures for each of the following statements:
(i) If the comment is posted by the question au-

thor.
(ii) If the comment contains the name of the

question author.
(iii) If the comment contains a name of the user

other than the question author (comment con-
tains a string with “@” prefix).

We use reciprocal chronological order (e.g. 1/3
for the third comment) to capture the global posi-
tion of a comment.

2.2.4 Answerer’s Meta-information

This group of two features is designed to capture
the answerer’s meta-information. For this pur-
pose, this group of features is extracted for each
comment using the whole dataset.

For example, whether a comment is written by
the author of the question is important information
because he or she hardly ever knows the answer.

Answerer’s meta-information features are bi-
nary features for each of the following statements:

(i) If the comment author is anonymous.
(ii) If the comment author has posted a comment

elsewhere in the dataset.

2.2.5 Miscellaneous

To further improve the performance, we adopted
a lexicon of 23 words with the lowest semantic
orientation in CQA (Balchev et al., 2016) and ex-
tracted the occurrence of these words from the
comments.

We also use the cosine distance between the
term frequency-inverse document frequency (TF-
IDF) vectors of a question and a comment. We use
eight types of TF-IDF as listed in Table 3, each
characterized by document blocks (question sub-
ject, question text or comment text) to compare
and to calculate IDF. We also used presence of
word overwrap in the question-comment and the
subject-comment pair as binary features. While
redundant to neural similarity features, redundant
features increase the overall performance by act-
ing like an ensemble.

We use the cosine distance between the TF-IDF
vector of a comment and an averaged TF-IDF vec-
tor of all comments in thread. This is extracted
for an averaged TF-IDF vector of all comments
in dataset, as well. These features are intended
to capture amount of distinctive information that
each comment contains.
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Submission
Subtask A Subtask C

Position MAP AvgRec MRR Position MAP AvgRec MRR
Primary∗ 5 86.58 92.71 91.37 2 14.71 29.47 16.48
Contrastive 1† 7 85.29 91.77 91.48 5 8.19 15.12 9.25
Contrastive 2‡ 7 84.01 90.45 89.17 1 16.57 30.98 17.04
Top team 1 88.43 93.79 92.82 1 15.46 33.42 18.14
baseline(IR) - 72.61 79.32 82.37 - 9.18 21.72 10.11

∗ Combined † Comment plausibility features ‡ Neural features

Table 4: 2017 official result

Submission
Subtask A Subtask C

2017 2016 2017 2016
Primary 86.58 75.6 14.71 39.9
Contrastive 1 85.29 74.4 8.19 38.0
Contrastive 2 84.01 71.4 16.57 28.0
Top team 88.43 79.2 15.46 55.4
IR baseline 72.61 59.5 9.18 40.3

Table 5: Comparison of MAP scores in 2016 and
2017 test dataset

2.3 Combined features

The neural features and the comment plausibil-
ity features are concatenated to form Primary run
for Subtask A and C. The features are further ex-
tended by concatenating features from two com-
ments before and after the target comment, result-
ing in concatenated features over five comments.
This allows extending the dialog structure features
(Section 2.2.3) without adding too many features,
as described in Section 1.

We use first order linear CRF by regarding each
comment as an observation and a thread as a se-
quence. Along with concatenated features, CRF
allows non-local optimization of inter-comments
relationship. For example, presence of “yes” af-
ter a good answer is likely to be acknowledgement
by the questioner. In this case, effect of “yes” is
conditioned on the label of the previous comment.

CRF is trained using L-BFGS with L1 regu-
larization coefficient of 1.0 and L2 regularization
coefficient of 0.001. We use CRFsuite (Okazaki,
2007) as an implementation of CRF.

2.4 Modification for Subtask C

For neural similarity features, hyperparameters
were manually tuned for Subtask C as shown in
Table 1. On training neural models for Subtask
C, we added all the question-comment pairs from
Subtask A to augment the data.

For comment plausibility feature, we ap-

plied greedy stepwise backward elimination using
SemEval-2016 test data as validation data. We
tested the deletion of each feature and removed
the feature whose deletion gives the best MAP im-
provement. We repeated the process until MAP no
longer improves. The process removed following
features:

(i) Presence of any of words ⟨what, which, who,
where, when, why, whom, how, hi⟩.

(ii) The relative length of a comment (Sec-
tion 2.2.2, (ii)).

(iii) Reference to the question author (Sec-
tion 2.2.3, (i) and (ii)).

(iv) Answerer’s meta-information.
(v) TF-IDF (Table 3, #1 and #4).

3 Experiments

Our Primary submission was CRF with combined
features. Contrastive 1 was CRF with only the
comment plausibility features. Contrastive 2 was
CRF with only the neural similarity features.

The official results for the 2017 test data are
shown in Table 4. The Primary obtained the fifth
and the second in Subtask A and C, respectively.

The combined features (Primary) was much
better than Contrastive 1 and 2 in Subtask A, as
expected. The large increase of 1.29 MAP score
from Contrastive 1 to the Primary implies that the
neural features and comment plausibility features
were capturing different aspects of the problem.

On the other hand, Contrastive 1 performed
poorly in Subtask C. This was partially because
the similarity was more important in Subtask C,
which contained many unrelated comments. Thus
neural similarity features performed much better
than in Subtask A and comment plausibility fea-
ture did much worse. Another reason for Con-
trastive 1’s poor performance may have been due
to the over-fitting to development dataset, as im-
plied by large performance drop from 2016 dataset
(Table 5).
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Feature MAP
All features 76.23
− Author’s comment or not 74.80
− Reciprocal of answer’s number 75.00
− Word “?” 75.64
− First word is an auxiliary verb 75.65
− Word “avatar” 75.66
− Word “whom” 75.70
− First word is adjective 75.72
− TF-IDF (Table 3, #1) 75.73

Table 6: The top 8 contributing comment plausi-
bility features in Subtask A

Feature MAP
All features 38.70
− Word “do,” “does” or “did” 37.24
− Word “who” 37.63
− Word “fs” 37.93
− Final word is an adverb 38.13
− Word “what” in the comment 38.23
− First word is a noun 38.33
− Word “?” 38.35
− Cosine distance between a comment TF-IDF
and an averaged TF-IDF over all comments in
thread

38.39

Table 7: The top 8 contributing comment plausi-
bility features in Subtask C

To identify the contributing features within the
comment plausibility features, we carried out ad-
ditional experiments on 2016 test dataset where
we eliminated each feature one by one from the
Primary system. The top 8 contributing features
are shown in Table 6 (Subtask A) and 7 (Sub-
task C). From the result, the comment plausibil-
ity features seem to work as a blacklist for com-
ments that are unlikely to be an answer. For exam-
ple, occurrence of words “?,” “do,” “does,” “did,”
and “what” all contribute to identifying a question
which are less likely to be a comment.

Our neural similarity feature performed worse
than the previous application of recurrent neural
network to Subtask A (MAP scores of 75.7 against
our 71.4) and to Subtask C (MAP scores of 47.2
against our 28.0) (Wu and Lan, 2016). The reason
for the inferior performance may be due to very
large vocabulary of CQA, which caused the neu-
ral network to fall back to only using commonly
appearing words in many cases. As a supporting
observation, attention weight seem to localize on
very few commonly appearing words instead of on
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Figure 2: Visualization of attention (ēQ
i,j,c,q on left

and ēC
i,j,c,q on right) in failing case. Attention

had concentrated on commonly appearing words
rather than more informative regions.

more meaningful region of text (Figure 2). Use of
sub-word vocabulary can help overcome this prob-
lem (Yoon Kim et al., 2016; Wu et al., 2016). Also,
we manually tuned the hyperparamters for neural
network. Random searching for better hyperpa-
rameters can improve the overall performance.

4 Conclusions

This paper explains the participation in SemEval-
2017 Task 3, Subtask A and Subtask C, which is
a problem of ranking the comments in community
question answering forum according to their rele-
vance to the question. We proposed a method that
combines neural similarity features and comment
plausibility features, and modeled inter-comments
relationship. Our approach obtained the fifth place
in the Subtask A and the second place in the Sub-
task C.

For future work, we will improve the neural
method so that it can better handle large vocabu-
lary of CQA. We will also incorporate systematic
end-to-end tuning on both feature selection and
neural method to deal with over-fitting problem.
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Abstract

In this paper, we describe our QU-BIGIR
system for the Arabic subtask D of the Se-
mEval 2017 Task 3. Our approach builds
on our participation in the past version of
the same subtask. This year, our system
uses different similarity features that en-
codes lexical and semantic pairwise sim-
ilarity of text pairs. In addition to well-
known similarity measures such as cosine
similarity, we use other measures based on
the summary statistics of word embedding
representation for a given text. To rank a
list of candidate question-answer pairs for
a given question, we train a linear SVM
classifier over our similarity features. Our
best resulting run came second in subtask
D with a very competitive performance to
the first-ranking system.

1 Introduction

The ubiquitous presence of community question
answering (CQA) websites has motivated research
on building automatic question answering (QA)
systems that can benefit from previously-answered
questions to answer newly-posed ones (Shtok
et al., 2012). A core functionality of such sys-
tems is their ability to effectively rank previously-
suggested answers with respect to their de-
gree/probability of relevance to a posted question.
Ranking is vital to push away irrelevant and low
quality answers, which are commonplace in CQA
as they are generally open with no restrictions on
who can post or answer questions.

To this effect, SemEval 2017 Task 3 “Com-
munity Question Answering” has emphasized the
ranking component in the main task of the chal-
lenge. We have participated in Task 3-Subtask D
(Arabic Subtask) which is confined to the main

 

 

   

 

Question:                                                     اسبابھا ھي وما الدوالي ھي ما   
 

Candidate question-answer pairs (QApairs): 

 Q: تزويدي منكم اطلب ولكن القدم في دوالي معي يوجد اعراض القدم دواليل ھل 
  يسببھا التي والمشاكل الدوالي باعراض

A  :الساق واجھة على منتفخة الأوردة ورظھ ھو شيوعا الأكثر العرض 
 السبب وفق سيكون والعلاج المباشر الطبي الفحص خلال من يكون واالتشخيص

Q  :منھا الوقايه يتم وكيف اسبابھا وما الثالثه الدرجه دوالى ماھى  
A  :ولھا المصابه للمنطقه العلويه الاورده في توسع عن عباره ھي الدوالي 

 منھا الوقايه جدا ويتم طويله لمده والجلوس والسمنه كالحمل الاسباب من الكثير
 جوارب ولبس اكبر بشكل الرايضه وممارسة طويله لمده الوقوف عدم طريق عن

 التفاقم لمنع الحالات لھذه مخصصه

Q  :الدوالي وھل الدوالي من تعتبر القدم في واضح بشكل الملتويه العروق ھل 
  علاجھا يتم لم اذا اخطار لھا
A :دموية وترسبات كدمات إلى وتؤدى الجلد تحت الدوالي تنفجر أن يمكن 

 الساقين دوالي علاج يشمل قد. تقرحات إلى تؤدي أن ويمكن الجلد تحت وتصبغات
 تطورھا من الحد أو الأعراض حدة من التخفيف الى تھدف التي التدابير من عدد

Q  :فكيف الساقين في الأوردة دوالي من من وأعاني سنة٣٧ عمري شاب انا 
 أزيلھا

 A: اختصاصي راجع ومزعجة كبيرة كانت إذا لاستئصال بحاجة أنه الغالب 
الحالة لتقييم الدموية الأوعية جراحة أو عامة جراحة

Figure 1: A question and 4 of its given 30 candidate QA-
pairs

task of ranking answers; given a new question and
a set of 30 question-answer pairs (QApairs) re-
trieved by a search engine, re-rank those QApairs
by their degree/probability of relevance to the new
question. Figure 1 shows an example of a question
and four of its 30 given candidate question-answer
pairs. Further details about SemEval 2017 Task 3
can be found in (Nakov et al., 2017).

In this paper, we describe the system we devel-
oped to participate in that task. The system lever-
ages a supervised learning approach over similar-
ity features. We utilize two types of similarity fea-
tures. First, we employ similarity features based
on term representation for a given pairs of text.
Second, we utilize word2vec to build text repre-
sentation following the same approach as in our
last year’s submission for the same subtask (Mal-
has et al., 2016). We used similarity features based
on that text representation to encode the semantic
similarity for pairs of texts.

The rest of the paper is organized as follows;
the approach and description of features are in-
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troduced in section 2; the experimental setup fol-
lowed in our submitted runs and the results are
presented in section 3. Finally we conclude our
study with final remarks in section 4.

2 Approach

We tackled the answer ranking task with a su-
pervised learning approach that uses linear SVM
models. The features used in classification are de-
signed to capture both lexical and semantic infor-
mation of pairs of texts.

2.1 Data Setup

We are given a set of questions Q; each is asso-
ciated with P question-answer pairs. To compute
our features, we define a text pair < T1, T2 > ac-
cording to three setups:

• QQA: We consider T1 to be the original
question q and the concatenation of one pair
p of its associated question-answer pairs as
T2.

• QA: We consider T1 to be the original ques-
tion q and one answer of its associated
question-answer pairs as T2.

• QQ: We consider T1 to be the original ques-
tion q and one question of its associated
question-answer pairs as T2.

2.2 Term-based Similarity Features

A recent study has showed that simple features
like MK features (Metzler and Kanungo, 2008)
can be very effective for re-ranking candidate
question answer pairs (Yang et al., 2016). We
specifically use the following features described
by Yang et al. (Yang et al., 2016). For all features,
we assume the input to be two pieces of text: T1

and T2 as defined by any of the setups illustrated
in section 2.1.

• SynonymsOverlap: Before computing this
feature, we first apply light text normaliza-
tion to T1 and T2 including special charac-
ter (e.g., ‘,’, ‘.’, etc.) and diacritics removal.
The feature is then computed as the portion
of T1 terms that have a synonym or the origi-
nal term in T2. Synonyms are extracted from
the Arabic WordNet.1

1Described here: http://bit.ly/2mzfc7X

To compute the remaining features, we nor-
malize T1 and T2 following the same ap-
proach when computing SynonymsOverlap
feature. We also apply preprocessing steps
including stemming and stopwords removal.

• LMScore: The language model score is
computed as the Dirichlet-smoothed log-
likelihood score of generating T1 given T2.
The score is computed using the following
equation:

LMScore(T1, T2) =∑
w∈T1

tfw,T1 log
tfw,T2 + µP (w|C)

|T2|+ µ
(1)

where tfw,T1 and tfw,T2 is the frequency of
term w in T1 and T2 respectively. P (w|C)
is the background language model com-
puted using the maximum likelihood estimate
with term statistics extracted from a recent
large-scale crawl of the Arabic Web called
ArabicWeb16 (Suwaileh et al., 2016). We
set µ to 2000 as this is the default value
used in Lucene’s language modeling retrieval
model.2

• CosineSimialirty. This feature computes the
cosine similarity between T1 and T2 as fol-
lows.

CS(T1, T2) =
~T1 · ~T2

|| ~T1|| || ~T2||
(2)

where ~T1 and ~T2 is the vector representation
of T1 and T2 respectively and || ~T1|| and || ~T2||
is the Euclidean lengths of vectors ~T1 and ~T2.
We represent texts as vectors using TF-IDF
representation where term statistics are ex-
tracted from ArabicWeb16 (Suwaileh et al.,
2016).

• JaccardSimialirty. This feature computes
the Jaccard similarity between T1 and T2 as
follows.

JS(T1, T2) =
| ~T1 ∩ ~T2|
| ~T1 ∪ ~T2|

(3)

• JaccardSimialirtyV1. This is a variant of
Jaccard similarity computed as follows.

JS1(T1, T2) =
| ~T1 ∩ ~T2|
| ~T1|

(4)

2http://bit.ly/2lOOdqw
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• JaccardSimialirtyV2. This is a second vari-
ant of Jaccard similarity computed as fol-
lows.

JS2(T1, T2) =
| ~T1 ∩ ~T2|
| ~T2|

(5)

2.3 Semantic word2vec Similarity Features

Every text snippet T has a set of words. Each
word has a fixed-length word embedding represen-
tation, w ∈ Rd, where d is the dimensionality of
the word embedding. Thus for a text snippet T we
define T = {w1, · · · , wk}, where k is the number
of words in T . The word embedding representa-
tion is computed offline following Mikolov et al.
approach (Mikolov et al., 2013).

To compute similarity scores, we represent each
text snippet by a feature vector; different alterna-
tives for feature representations are adopted as de-
scribed next.

2.3.1 Average Word Embedding Similarity
For a text snippet T that has k words, we compute
the average vector as follows:

Tµ =
∑k

i=1(wi)
k

(6)

Notice that Tµ =∈ Rd. This leads to the following
cosine similarity feature.

CSµ(T1, T2) =
~Tµ1 · ~Tµ2

|| ~Tµ1 || || ~Tµ2 ||
(7)

2.3.2 Covariance Word Embedding
Similarity

Instead of computing the average vector, we can
compute a covariance matrix C ∈ Rd×d. The co-
variance matrix C is computed by treating each
dimension as a random variable and every entry
in Cu,v is the covariance between the pair of vari-
ables (u, v). The covariance between two random
variables u and v is computed as in eq. 8, where k
is the number of observations (words).

Cu,v =
∑k

i=1(ui − ū)(vi − v̄)
k − 1

(8)

The matrix C ∈ Rd×d is a symmetric matrix. We
compute a vectorized representation of the matrix
C as the stacking of the lower triangular part of

matrix C as in eq. 9. This process produces a vec-
tor TCov ∈ Rd×(d+1)/2

TCov=vect(C)={Cu,v :u∈{1,··· ,d},v∈{u,··· ,d}} (9)

This leads to the following cosine similarity fea-
ture.

CSCov(T1, T2) =
~TCov1 · ~TCov2

|| ~TCov1 || || ~TCov2 ||
(10)

2.4 Ranking Using SVM

Although Subtask D is a re-ranking task, it has
also a classification task where answers need to
be ranked and labeled with either true or false; the
former designates a Direct or Relevant answer to
the new question, and the latter designates an Irrel-
evant answer. In our last year’s submission (Mal-
has et al., 2016) we used learning-to-rank module
for re-ranking pairs, but we used a simple heuris-
tic to give labels to the candidate question-answer
pairs. This year we use SVM to give a label for
every candidate pair using the SVM model. In ad-
dition to labeling pairs, we use the decision scores
from the SVM model for re-ranking the candidate
question-answer pairs.

3 Experimental Evaluation

In this section we present the experimental setup
and results of our primary, contrastive-1 and
contrastive-2 submissions.

3.1 Experimental Setup

We used the Arabic collection of questions and
their potentially related question-answer pairs pro-
vided by Task 3 organizers to train our word em-
bedding model. The Gensim3 tool was used to
generate the word2vec model from training data4,
setting d = 100. We used the learned model to
compute our features as described in section 2.
Features were generated for the three data setups
described in section 2.1.

3.2 Submissions and Results

The differences among our submitted runs is based
on the selection of the features. In all cases we use
linear SVM for classifying and ranking question-
answer pairs. Details on our official submissions

3
http://radimrehurek.com/gensim/

4Testing data are held out during the computation of the
word2vec model.
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MAP AvgRec MRR P R F1 Acc
QU-BigIR Contrastive 2 59.48 83.83 64.56 55.35 70.95 62.19 66.15
QU-BigIR Contrastive 1 59.13 83.56 64.68 49.37 85.41 62.57 59.91
QU-BigIR Primary 56.69 81.89 61.83 41.59 70.16 52.22 49.64
Baseline 1 (IR) 60.55 85.06 66.08 - - - -
Baseline 2 (Random) 48.48 73.89 53.27 39.04 66.43 49.18 46.13
Baseline 3 (all true) - - - 39.23 100 56.36 39.23
Baseline 4 (all false) - - - - - - 60.77

Table 1: The official scores attained by our primary and contrastive submissions to SemEval 2017 Task 3-SubTask D

are summarized next. Table 1 presents the official
results of our submissions.
Contrastive-1. We use the set of term-based sim-
ilarity features defined in section 2.2. We compute
these features for all data setups defined in sec-
tion 2.1. This results in 18 features in total. Six
features for every data setup (QQ, QA and QQA).
We tuned the parameter C for the linear SVM on
the development set.
Contrastive-2. In addition to the features used
in Contrastive-1 submission, we use the set of se-
mantic word2vec based similarity features defined
in section 2.3. This results in 24 features in total;
eight features for every data setup (QQ, QA and
QQA). This submission produced our best MAP
results.
Primary. We use the full set of similarity fea-
tures defined in section 2.2 and section 2.3. In
addition, we performed a weighted score fusion
with an SVM model based on fixed length repre-
sentation using Covariance word embedding. The
feature vectors we used are computed using equa-
tion 9. We tuned the model weights using the de-
velopment set. Table 2 shows that this setup gets
the best MAP results on the development set.

MAP
QU-BigIR Contrastive 1 42.54
QU-BigIR Contrastive 2 42.87
QU-BigIR Primary 43.41
Baseline (Random) 29.79

Table 2: The development set MAP scores obtained by our
primary and contrastive submissions.

3.3 Discussion

• Our best official submission is Contrastive-
2 using both term-based similarity features
and semantic word2vec similarity features.
This indicates that the two similarity features
types are complementing each other.

• Our results justify the usage of SVM model
for labeling and re-ranking question-answer

pairs. This is clear in the P, R, F1 and Acc
scores reported across all other baselines. We
report very competitive MAP scores to the
best performing ranking systems which are
not using any form of labeling such as IR-
baseline.

• Score fusion in our primary run did not
achieve best results on the official test set
while it was the best run in our experiments
on the development set. We believe that this
happened due to the difference in the source
of question-answer pairs in the development
set compared to the the official test set where
the test set contains only medical questions.

4 Conclusion

This paper describes the system we developed to
participate in SemEval-2017 Task 3 on Commu-
nity Question Answering. Our system has focused
on the Arabic Subtask D which is confined to An-
swer Selection in Community Question Answer-
ing, i.e., finding good answers for a given new
question.

We have adopted a supervised learning ap-
proach where linear SVM models were trained
over similarity features. In our best submission,
term-based similarity features and word2vec sim-
ilarity features were both used; our system ranked
second among the other participating teams.
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Abstract

This paper describes the systems we sub-
mitted to the task 3 (Community Ques-
tion Answering) in SemEval 2017 which
contains three subtasks on english corpora,
i.e., subtask A: Question-Comment Simi-
larity, subtask B: Question-Question Sim-
ilarity, and subtask C: Question-External
Comment Similarity. For subtask A, we
combined two different methods to rep-
resent question-comment pair, i.e., super-
vised model using traditional features and
Convolutional Neural Network. For sub-
task B, we utilized the information of s-
nippets returned from Search Engine with
question subject as query. For subtask C,
we ranked the comments by multiplying
the probability of the pair ”related ques-
tion õ comment” being Good by the re-
ciprocal rank of the related question.

1 Introduction

The purpose of Community Question Answering
task in SemEval 2017 (Nakov et al., 2017) is
to provide a platform for finding good answers
to new questions in a community-created discus-
sion forum, where the main task (subtask C) is
defined as follows: given a new question and a
large collection of question-comment threads cre-
ated by a user community, participants are re-
quired to rank the comments that are most use-
ful for answering the new question. Obvious-
ly, this main task consists of two optional sub-
tasks, i.e., Question-Comment Similarity (subtask
A, also known as answer ranking), which is to
re-rank comments/answers according to their rele-
vance with respect to the question, and Question-
Question Similarity (i.e., subtask B, also known
as question retrieval), which is to retrieve the simi-

lar questions according to their semantic similarity
with respect to the original question. More, a new
subtask: Multi-Domain Duplicate Detection Sub-
task (i.e., subtask E) which is to identify duplicate
questions in StackExchange has been added to Se-
mEval 2017 task 3.

To address subtask A, we explored a tradi-
tional machine learning method which uses mul-
tiple types of features, e.g., Word Match Fea-
tures, Topic Model-based Features, and Lexical
Semantic Similarity Features. Additionally, for
subtask A, we also built a Convolutional Neural
Network (CNN) model to learn joint representa-
tion for question-comment (Q-C) pair. For sub-
task B, we utilized the information of snippets re-
turned from Search Engine with question subject
as query, e.g., we counted the frequency of each
word in each snippets list and added the words
which appear in the subject of original question
and the frequency is more than 1 to the subject
of related question. Since subtask C can be re-
garded as a joint work of the two above-mentioned
subtasks, we ranked the comments by multiplying
the probability of the pair /related question õ
comment0 being Good by the reciprocal rank of
the related question. As for subtask E, we did not
submit the results because of the large amount of
dataset.

The rest of this paper is organized as follows.
Section 2 describes our system. Section 3 de-
scribes experimental setting. Section 4 and 5 re-
port results on training and test sets. Finally, Sec-
tion 6 concludes this work.

2 Systems Description

For subtask A, we presented two different meth-
ods i.e., using traditional linguistic features and
learning a CNN model to represent question and
comment sentences. For subtask B, besides Word

365



Match, Topic Model based, and Lexical Seman-
tic Similarity features, we also extracted Search
Engine Extensional feature. For subtask C, we
ranked the comments by multiplying the probabil-
ity of the pair/relevant questionõ comment0
being Good by the reciprocal rank of the related
question.

2.1 Features Engineering

All three subtasks can be regarded as an estima-
tion task of sentence semantic measures which can
be modeled by various types of features. Besides
Word Match, Topic Model Based, Lexical Seman-
tic Similarity, and Comment Information Features
used in our previous work (Wu and Lan, 2016),
we also extract three types of novel features, i.e.,
Meta Data Features, Google Ranking Feature, and
Search Engine Extensional Features. The details
of features are described as follows. Here we took
the Q-Q pair for example.

Word Matching Feature (WM): Inspired by
the work of (Zhao et al., 2015), we adopt word
matching feature in our system. This feature rep-
resents the the proportions of co-occurred words
that between a given sentence pair. Given a Q-
Q pair, this feature is expressed in the following
nine measures:|Q0 ∩ Q1|, |Q0 ∩ Q1|/|Q0|, |Q0 ∩
Q1|/|Q1|, |Q1−Q0|/|Q1|, |Q0−Q1|/|Q0|, |Q0∩
Q1|/|Q0 − Q1|, |Q0 ∩ Q1|/|Q1 − Q0|, |Q0 ∩
Q1|/|Q0∪Q1|, 2∗|Q0∩Q1|/(|Q0|+ |Q1|), where
|Q0| and |Q1| are the number of the words of Q0

and Q1.
Topic Model based Feature (TMB): Topic

model based feature has been proved beneficial for
question retrieval and answer ranking tasks by the
work of (Duan et al., 2008; Qin et al., 2009). We
use the GibbsLDA++ (Phan and Nguyen, 2007)
Toolkit with 100,000 random sampling question
and answer pairs from Qatar Living data to train
the topic model. In training and test phase, Q0 and
Q1 are transformed into an 100-dimensional topic-
based vectors using pre-trained topic model. After
that we calculate the cosine similarity, Manhattan
distance and Euclidean distance between these t-
wo vectors and regard the scores as TMB feature.
Inspired by the work of (Filice et al., 2016), we al-
so adopt four kinds of nonlinear kernel functions
to calculate the distance between two vectors, i.e.,
”polynomial”, ”rbf”, ”laplacian” and ”sigmoid”.

Lexical Semantic Similarity Feature (LSS):
Inspired by (Yih et al., 2013a), we included the

lexical semantic similarity feature in our model.
Two types of 300-dimensional vectors are pre-
trained on Qatar Living data with word2vec (Yih
et al., 2013b) and Glove (Pennington et al., 2014)
toolkits. We select the maximum, minimum and
average values for each dimension of words vec-
tors to make up a vector to represent the sentence.
After obtained the vector representation of Q0 and
Q1, we also calculated the nine distance measures
mentioned in TMB.

Note that all above three types of features are
adopted in both answer ranking and question re-
trieval tasks.

Search Engine Extensional Feature (SEE):
We first got two lists of 10 snippets returned by

search engine (i.e., Google, Bing) with the sub-
jects of original question Q0 and related ques-
tion Q1 as query. Then we counted the frequen-
cy of each word in each snippets list and added the
words which appear in the Q1/Q0 and the frequen-
cy is more than 1 to the subject of Q0/Q1. Finally,
the WM features are calculated based the changed
subjects of Q0 and Q1.

Google Ranking Feature (GR): The reciprocal
rank of the related question as given by Google is
regarded as one dimensional feature.

Meta Data Feature (MD): Meta data is often
helpful for finding good answers and question cat-
egory distribution of user posted answers is an im-
portant meta data information. There are 28 ques-
tion categories in the training data, we calculate
the following values as features, i.e., the numbers
of answers answered by all users in a certain cat-
egory and the numbers of answers answered by
a single user in all categories are normalized us-
ing max-min scaling, forming two 28-dimensional
vectors. We also take the quality (i.e., Good, Po-
tentiallyUseful, and Bad) of answers into consid-
eration. The numbers of different quality answer-
s answered by all users under a category and the
numbers of different quality answers answered by
a users in all categories are normalized using max-
min scaling, forming two 3*28-dimensional vec-
tors.

Comment Information Feature (CI):
We also extracted following comment informa-

tion features to measure the informativeness of
a comment text: (1) comment unigram feature,
we constructed a vocabulary with the words ap-
peared more than twice in the training data, gen-
erating a 9000-dimensional vector of one-hot for-
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m for each comment. (2) comment ner feature,
we extracted nine types of name entity informa-
tion in the comment, i.e., ”Duration”, ”Location”,
”Person”, ”Organization”, ”Percent”, ”Ordinal”,
”Time”, ”Date”, and ”Money” with the CoreNLP
tool, generating a nine-dimensional one-hot form-
ing vector. (3) comment special characters feature,
We extracted the following five special characters
features from the comment, i.e., email, url, ”@”,
”...”, and ”?”, generating a 5-dimensional vector of
one-hot form for every comment.

Note that MD and CI features are used in an-
swer ranking task only. GR and SEE features are
used in question retrieval task only.

2.2 CNN to address subtask A

We proposed a convolutional neural network to
model question-comment sentence. As illustrated
in Figure 1, it first takes the embeddings (here we
used 300-dimensional Glove vectors) (Pennington
et al., 2014) of question and comment words as
inputs and then summarizes the meaning of ques-
tion and comment through convolution and pool-
ing. Finally the softmax output of Good classes
is regarded as ranking score between question and
comment by a simple hidden layer building on the
concatenation of two feature vectors and softmax
operation. For CNN model, we set the filter num-
bers as 1,2,3 and 4 with same feature map of 100
and the stochastic gradient descent algorithm is
used to update the parameters with learning rate
of 0.001 and cross entropy as loss function.

  
Question Comment

Hidden Layer

SotfMax

Lookup

Pooling

Convolution

  

Figure 1: An illustration of CNN for question-
comment similarity estimation.

3 Experimental Setting

3.1 Datasets

Table 1 shows the statistics of training, develop-
ment, test data sets of SemEval 2016 and test data
sets of SemEval 2017, where the # original, #

related, and # answers represent the number of
original questions, related questions and answer-
s, respectively. The types of comments with re-
spect to original question and related question fal-
l into three classes: Good, PotentiallyUseful
and Bad. The types of related question with re-
spect to original question fall into three classes:
PerfectMatch, Relevant and Irrelevant.

Subtask Data # original # related # answers

A
train – 5,898 37,848
dev – 500 5,000

2016 test – 327 3,270
2017 test – 293 2,930

B
train 267 2,669 26,690
dev 50 500 5,000

2016 test 70 700 7,000
2017 test 88 880 8,800

C
train 267 2,669 26,690
dev 50 500 5,000

2016 test 70 700 7,000
2017 test 88 880 8,800

Table 1: Statistics of datasets.

3.2 Preprocessing

Firstly, we removed stop words and punctuation,
and changed words to their lowercase. After that,
we performed tokenization and stemming using
NLTK1 Toolkit.

3.3 Learning Algorithm

We compared various machine learning algorithm-
s such as Logistic Regression, Random Forest
and AdaBoost implemented by SKLearn2 with
default parameters setting for their good perfor-
mance in preliminary experiments. The proba-
bilistic scores of PerfectMatch and Good class-
es returned by classifiers are regarded as rank-
ing scores of question-question pair and question-
comment pair. According to their performances
with diverse features in three subtasks, they are
used in different subtasks in our final submitted
results.

4 Experiments on Training Data

4.1 Results on Subtask A

Table 2 shows the results of subtask A with two
different methods on SemEval 2016 Test data sets.

1http://www.nltk.org/
2http://scikit-learn.org/stable/
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Methods Features Test MAP(%)
All 77.82

All - WM 76.60
Traditional All - TMB 77.46
NLP All - MD 73.53
Features All - CI 76.56

All - LSS 76.43
CNN – 77.76
Tra + CNN – 79.30

Table 2: Results of subtask A with two differen-
t methods. ”All” means to all features and ”-”
means to exclude some feature groups.

4.2 Results on Subtask B

Table 3 summarizes the results of subtask B on Se-
mEval 2016 Test data sets with different features
and algorithms.

Features Algorithms
LR AdaBoost RandomForest

All 75.43 75.14 74.85
All - WM 74.31 74.78 74.14
All - GR 71.33 73.43 71.33

All - TMB 74.34 74.65 74.25
All - SEE 72.34 73.65 74.10
All - LSS 73.65 74.51 74.21

Table 3: Results of subtask B.

4.3 Results on Subtask C

Table 2 shows the results of subtask C with differ-
ent algorithms and features on SemEval 2016 Test
data sets.

Features Algorithms
AdaBoost Random Forest LR

All 52.04 50.89 48.39
All - WM 51.70 50.63 47.59
All - TMB 51.82 49.05 47.59
All - MD 52.35 50.90 49.12
All - CI 49.19 48.93 46.75

All - LSS 50.54 49.48 47.73

Table 4: Results of subtask C.

4.4 Conclusion on Experimental results

Based on above experimental results, we find that
(1) For subtask A, all the features (e.g., WM,

TMB, MD, CI and LSS) make contribution to the
improvement of performance. The CNN based
model achieves comparable performance with tra-
ditional method and with the average value of s-
cores returned by two methods as ranking score
achieves the best performance.

(2) For subtask B, three algorithms such as L-
ogistic Regression, AdaBoost and Random Forest
achieve comparable results with traditional NLP
features. Specially, LR with all features achieve
the best performance.

(3) For subtask C, AdaBoost with all features
(excluding MD feature) makes the best result com-
pared with Random Forest and Logistic Regres-
sion.

4.5 Systems Configuration

Based on above experimental analysis, the three
system configurations on SemEval 2017 Test data
sets are listed as followings:

(1) subtask A: We used the combination of tra-
ditional method and CNN as primary run. Tradi-
tional method and CNN serve as contrastive1 run
and contrastive2 run.

(2) subtask B: Logistic Regression with all NLP
features is used as primary run. AdaBoost and
Random Forest with all NLP features are used as
contrastive1 run and contrastive2 run.

(3) subtask C: AdaBoost with all NLP features
is used as primary run in the test set. Random For-
est and Logistic Regression with all NLP features
are used as contrastive1 run and contrastive2 run.

5 Results on 2017 Test Data

Table 5 shows the results on SemEval 2017 test set
which are released by the organizers.

subtask run(rank) MAP(%)

A

ECNU-primary(4) 86.72
ECNU-contrastive1 86.78
ECNU-contrastive2 83.15

Kelp-primary(1) 88.43

B

ECNU-primary(11) 41.37
ECNU-contrastive1 42.37
ECNU-contrastive2 42.48
simbow-primary(1) 47.22

C

ECNU-primary(5) 10.54
ECNU-contrastive1 10.54
ECNU-contrastive2 13.29
IIT-UHH-primary(1) 15.46

Table 5: Our results and the best results on three
subtasks test sets. The numbers in the brackets are
the official ranking.

From the results, we find: (1) In subtask A, the
combination of two methods does not make obvi-
ous contribution and the CNN based method has
a certain gap with traditional method, which is in-
consistent with the results on training data as our
expectation. (2) In subtask B, the result using LR
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does not make expected result compared with Ad-
aBoost and Random Forest algorithms. (3) In sub-
task C, beyond our expectation, the method using
LR algorithm achieved the best result.

6 Conclusion

In this paper, we proposed multiple strategies (i.e.,
traditional method of extracting features and deep
learning models) to address Community Question
Answering task in SemEval 2017. For subtask
A, we train a classifier and learn the question-
comment representation based CNN. For subtask
B, we we utilized the information of snippets
searching from Search Engine with question as
query. For subtask C, We ranked the comments by
multiplying the probability of the pair /relevant
questionõ comment0 being Good by the recip-
rocal rank of the related question.
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Abstract 

The majority of core techniques to solve 
many problems in Community Question 
Answering (CQA) task rely on similarity 
computation. This work focuses on simi-
larity between two sentences (or questions 
in subtask B) based on word embeddings. 
We exploit words importance levels in 
sentences or questions for similarity fea-
tures, for classification and ranking with 
machine learning. Using only 2 types of 
similarity metric, our proposed method has 
shown comparable results with other com-
plex systems. This method on subtask B 
2017 dataset is ranked on position 7 out of 
13 participants. Evaluation on 2016 da-
taset is on position 8 of 12, outperforms 
some complex systems. Further, this find-
ing is explorable and potential to be used 
as baseline and extensible for many tasks 
in CQA and other textual similarity based 
system.  

1 Introduction 

Community Question Answering (CQA) is get-
ting popular for requesting valid information 
from experienced people. However, waiting for 
such favorable answers for a new submitted ques-
tion, is a boring task for users once querying to 
online community forums. IR system can utilize 
thread in online community forum for question 
queries. Even so, the appropriate answers are of-
ten mixed among snippets of many irrelevant 
documents, and opening full articles is still re-
quired. A post-processing system is needed in or-
der to obtain the most relevant answers. CQA 
tasks want to address this need, to help user get 
the most favorable answers by improving IR sys-
tem results. 

SemEval CQA Task 3 is designed to gather 
some possible solutions, in five coherent subtasks 
(Nakov et al., 2017). Since some subtasks are re-

lated, we focus only on subtask B, with goal to 
provide a good basis framework for solving prob-
lem in other subtasks. 

In Task 3 of the previous year, word 
embeddings obtained with a tool such as 
word2vec (Mikolov et al., 2013, 2013b) contrib-
uted to the best systems for all subtasks. In addi-
tion, machine learning based methods were most-
ly ranked in the top positions for all subtasks. The 
most popular machine learning approach was 
SVM for classification, regression and ranking, 
while neural networks, even though widely used, 
did not win any subtasks (Nakov et al., 2016).  

Most machine learning approaches rely on sev-
eral similarity features as the basis. Various tech-
niques to compute semantic similarity based on 
word embeddings, were used by Franco-Salvador 
et al. (2016), Filice et al. (2016), Mohtarami et al. 
(2016), Wu and Lan (2016), and Mihaylov and 
Nakov (2016). Besides, they also used various 
lexical and semantic similarities including simple 
match counts on words or n-grams. Specifically, 
Franco-Salvador et al. (2016), also used nouns 
and n-grams overlaps, distributed word align-
ments, knowledge graphs, and common frame. 

Interestingly, Mihaylova et al. (2016) used co-
sine distance between topic pairs, and text dis-
tance for SVM learning features, rather than using 
similarity features. They also implemented other 
Boolean and Qatar Living Forum users as task 
specific features. 

Filice et al. (2016) constructed many types of 
similarity based on text pairs, e.g. n-grams of 
word lemmas, n-grams of POS tags, parse tree, 
and LCS for SVM learning features. Then they 
stack the classifiers across subtasks to solve 
substasks B and C in such a way that utilizes other 
subtasks’ results. This task-specific features seem 
to be the key success for the team to get the rela-
tively best performance on all English subtasks. 
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In this CQA task, we focus on machine learn-
ing approaches with a small number of features. 
We attempt to find an effective way to use word 
embeddings as the basis of our similarity features. 
We also make use of the words (lemmas) that are 
frequent in a thread or small document collection 
(i.e. the original and the 10 related questions), in 
the calculation of similarity between sentences. 
We create several sets of words with different 
‘word importance levels’, from which we derive 
similarity features for machine learning methods. 

The experiment on this 2017 shared task (sub-
task B) shows good results with respect to MAP 
scores. Our method also surpasses IR baseline and 
achieved the 7th position out of 13 teams for the 
primary submission. 

2 System Description 

The framework of our system contains three main 
phases, i.e. (1) pre-processing, (2) feature genera-
tion, and (3) training and classification.  

2.1 Pre-processing 
From each dataset, i.e. development, train and test 
sets, we extract the questions to form threads for 
subtask B. Each thread contains one original ques-
tion (orgQ) and the 10 related questions (relQ). 
We use the term ‘collection of documents’ for the 
thread, which contains questions (each with sub-
ject and body1) as the documents. 

From each collection of documents, we extract 
all lemmas and select only content words: nouns, 
verbs, adjectives, named entities, question words, 
and foreign words. For this need we use 
lemmatizer, POS tagger and Named Entity Rec-
ognizer from Stanford CoreNLP (Manning et al., 
2014). We also count each lemma’s frequency in 
each collection of documents for each certain 
thread, not from the whole dataset.  

Intuitively, in a QA forum, if the frequency of a 
word is high in a certain thread, the word is likely 
to be an important matter in the conversation dis-
cussed by majority users. For this reason, we rank 
the words by their frequencies. We list top-N rank 
of words2 for next process. In our experiments, we 
set N to 4.  

                                                      
1 If body is empty, we copy the subject for the body.  
2 Only words with frequency count ≥ 2 are taken into con-
sideration. 

2.2 Word Importance Level 
We first derive several sets of content words from 
orgQsubj (the set of words in the subject of orgQ), 
orgQbody (the set of words in the body of orgQ),  
and TopN consisting the top N words in the rank-
ing obtained in Section 2.1. Specifically, the fol-
lowing sets are supposed to have different levels 
of importance: 
L1=𝑜𝑟𝑔𝑄௦௨ ∩ 𝑇𝑜𝑝𝑁, 
L2=𝑇𝑜𝑝𝑁 ∩ (𝑜𝑟𝑔𝑄௦௨ ∪ 𝑜𝑟𝑔𝑄ௗ௬), 
L3=𝑇𝑜𝑝𝑁, 
L4=𝑜𝑟𝑔𝑄௦௨ ∪ 𝑇𝑜𝑝𝑁, 
L5=𝑜𝑟𝑔𝑄௦௨ ∪ 𝑜𝑟𝑔𝑄ௗ௬,  
L6=¬(𝑇𝑜𝑝𝑁 ∩ (𝑜𝑟𝑔𝑄௦௨ ∪ 𝑜𝑟𝑔𝑄ௗ௬)).  

For example, the words in L1 belong to both 
set of orgQ-subject and TopN, and thus supposed 
to be very important. 

2.3 Similarity Feature 
We next calculate a number of similarities be-
tween two sets of content words: 𝐶ொ represent-
ing orgQ such as L1 and L2, and 𝐶ொ represent-
ing relQ such as relQsub, relQbody, and their union. 
We later use these similarities as features for the 
classifier as in Table 1. 
 
Semantic Similarity 

The first semantic similarity type in this work 
is the cosine similarity (Equation (2)) between the 
sums (resultant R as in Equation (1)) of word 
embeddings of the words w in the sets. 

    𝑅 =  𝑤



ୀଵ

 (1) 

𝑆𝑖𝑚൫𝐶ொ, 𝐶ொ൯ = 𝑐𝑜𝑠𝜃 =
𝑅ொ ∙ 𝑅ொ

ห𝑅ொหห𝑅ொห
 (2) 

 
As word embeddings, we use the pre-trained 

Google 1B words dataset, with 300-dimensional 
word vectors (Mikolov et al., 2013b). 

 
Lexical Semantic Similarity 

For the second type of similarity, we use lexical 
semantic similarity, which is similar to Konopık et 
al. (2016). We denote the union of 𝐶ொ and 
𝐶ொ by 𝐶 (𝑖. 𝑒., 𝐶 = 𝐶ொ ∪ 𝐶ொ, which con-
sists of m unique words {b1, …, bm}.  

Given two sets 𝐶ொ and 𝐶ொ, we derive 
their m-dimensional lexical vector representations 
𝐿𝑉ொ and 𝐿𝑉ொ respectively.  For each word 
𝑏 in 𝐶, we calculate the maximum cosine similar-
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ity score between the embeddings of 𝑏 and a 
word in 𝐶ொ, which we regard as an element of 
𝐿𝑉ொ: 
𝐿𝑉ொ

= ൜ max
𝑤∈ೝೂ

൫𝑆𝑖𝑚(𝑏1, 𝑤)൯, … , max
𝑤∈ೝೂ

൫𝑆𝑖𝑚(𝑏𝑚, 𝑤)൯ൠ. 

    (3) 
Similarly, we calculate each element of 𝐿𝑉ொ 
from 𝐶ொ. Lastly, we calculate the cosine simi-
larity between 𝐿𝑉ொ and 𝐿𝑉ொ to form a new 
feature. 

2.4 Feature Generation 
For our supervised learning, we compose feature 
sets as Table 1 below. Semantic cosine similarity 
is indexed with i in {1, ..., 10} and lexical se-
mantic similarity with j in {11, ..., 20}. 
 

𝑭𝒊 𝑭𝒋 𝑪𝒐𝒓𝒈𝑸 𝑪𝒓𝒆𝒍𝑸 
𝐹ଵ 𝐹ଵଵ L1 𝑟𝑒𝑙𝑄௦௨ 
𝐹ଶ 𝐹ଵଶ L1 𝑟𝑒𝑙𝑄௦௨ ∪ 𝑟𝑒𝑙𝑄ௗ௬ 
𝐹ଷ 𝐹ଵଷ L3 𝑟𝑒𝑙𝑄௦௨ 
𝐹ସ 𝐹ଵସ L3 𝑟𝑒𝑙𝑄௦௨ ∪ 𝑟𝑒𝑙𝑄ௗ௬ 
𝐹ହ 𝐹ଵହ L4 𝑟𝑒𝑙𝑄௦௨ 
𝐹 𝐹ଵ L4 𝑟𝑒𝑙𝑄௦௨ ∪ 𝑟𝑒𝑙𝑄ௗ௬ 
𝐹 𝐹ଵ L5 𝑟𝑒𝑙𝑄௦௨ ∪ 𝑟𝑒𝑙𝑄ௗ௬ 
𝐹  𝐹ଵ଼ L6 𝑟𝑒𝑙𝑄௦௨ ∪ 𝑟𝑒𝑙𝑄ௗ௬ 
𝐹ଽ 𝐹ଵଽ L2 𝑟𝑒𝑙𝑄௦௨ ∪ 𝑟𝑒𝑙𝑄ௗ௬ 
𝐹ଵ 𝐹ଶ NE 𝑟𝑒𝑙𝑄௦௨ ∪ 𝑟𝑒𝑙𝑄ௗ௬ 

 Table 1: Similarity Feature Composition 

As additional features, we investigated influ-
ence of named entities (NE) in 𝐹ଵ and 𝐹ଶ. We 
extract only sentences or questions containing 
NE-words in orgQ subject and body as 𝐶ொ.  

2.5 Learning, Classification and Ranking 
We use machine learning for relevance classifica-
tion and ranking tasks on the same feature combi-
nations. We extract gold annotations (i.e., rele-
vance and score) from the training set and com-
pose separate SVM input files for both tasks. We 
run the training to produce models for both tasks. 
 For classification task, SVM binary classifier 
with a linear kernel (Joachims, 1999) is used to 
assign label on each relQ, relevant (true) or not 
relevant (false) on the test set. For ranking task, 
SVM rank (Joachims, 2002) is used to produce 
scores. The score assigned to each relQ is regard-
ed as rank, where a higher score means more re-
lated to the orgQ. Then, we take both results (rel-
evance and score) into a system prediction file.  

3 Experiments and Results   

3.1 Dataset 
We use 2016 Task 3 datasets provided by the or-
ganizer3, i.e. TRAIN-part1, DEV and TEST. We 
do not use TRAIN-part2 for it is less reliable and 
contains more noise as informed in the readme-
file. We also conduct experiments on TEST-2016 
dataset to test our system performance and com-
pare it with the published official scores in Nakov 
et al. (2016) as seen in Table 4.  

3.2 Feature Selection 
We create a simple baseline, which uses only a 
single similarity feature. This baseline only com-
putes semantic cosine similarity of 𝐹, i.e. using all 
content words in orgQ and relQ (word importance 
level L5). For tuning the parameters and seeking 
the best combination of features, we train SVM 
with a linear kernel on TRAIN dataset, and ap-
plied the model on DEV dataset. We choose two 
best cost-parameters C with specific feature com-
binations in Table 2. 

 
Features Feature Description C=1 C=100 

7 Base (L5) 69.56 69.56 
7,8 Base (L5) + L6 69.76 68.23 
7,6 Base (L5) + L4 69.73 69.72 
7,4 Base (L5) + L3 69.31 70.06 
7,9 Base (L5) + L2 71.09 70.37 
7,2 Base (L5) + L1 72.06 72.30 
7,1,2 L5+ L1* + L1 70.86 72.09 
7,1,2,9 L5+ L1* + L1 + L2 72.33 72.50 
7,1,2,9, 
17,11,12,19 

L5+ L1* + L1 + L2    
(both similarity types) 

72.26 73.10 

1-20 All features, both sim types 74.04 73.19 
L1* means the similarity is computed between L1 and relQ 
subject only. 

Table 2: MAP Scores on DEV  

The official score for CQA Task is MAP (Mean 
Average Precision), besides other complementary 
scores, i.e. Average Recall, MRR (Mean Recipro-
cal Rank) Precision, Recall, F1 and Accuracy 
(Nakov et al., 2016, 2017).  

To analyze the influence of each feature, we 
conducted experiments on many possible combi-
nations as in Table 2. We combine each word im-
portant level from the lowest level (i.e. L6, L4, 
L3, L2, L1), with baseline (L5) and see how it in-
fluences the MAP score. Generally, by combining 
with other single word importance level features, 

                                                      
3 http://alt.qcri.org/semeval2017/task3/index.php?id=data-
and-tools 
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the MAP score is increased. Combined feature set 
𝐹,ଽ, i.e. word important level L2 (top-N words 
appear in orgQ subject and body) improves the 
MAP score by about 1 point when compared with 
single baseline feature L5. Moreover, we get more 
improvement when baseline is combined with 
word important level L1, i.e. top-N words in orgQ 
subject only (experiment with feature set 𝐹,ଶ).  

We are also curious to join more word im-
portance level features, to compute using both 
similarity types, and to use different content 
words of relQ, e.g. content words that appear in 
subject only or in both subject and body. Some in-
teresting results are also reported in Table 2.  

When adding the similarity between L1 and 
relQ subject only (𝐹,ଵ,ଶ), the MAP score slightly 
decreases for C=100, but decreases by more than 
1 point for C=1. Interestingly, adding one more 
feature from L2 (𝐹,ଵ,ଶ,ଽ), gives the better score 
than the aforementioned features.  

L1 and L2 tend to have higher influence on the 
MAP score, compared with L3, L4, and L6. When 
combining with their lexical semantic similarity 
features (𝐹,ଵ,ଶ,ଽ,ଵ,ଵଵ,ଵଶ,ଵଽ), L1 and L2 increase 
MAP score for C=100, but a little bit decrease the 
score for C=1. Considering that each of L3 to L6 
has its own contribution to the improvement of 
the baseline, we incorporate all features and use 
both similarity types. The results give the two best 
MAP scores among all our experiments in this pa-
rameter tuning and feature selection phase.  

3.3 Final Results 
For our participation in Subtask B, we use combi-
nation of 𝐹ଵ - 𝐹ଶ, and TRAIN-part1 for training. 
We choose C=1 and C=100, as the primary and 
contrastive Con-1 respectively. For contrastive 
Con-2, we use C=1 and join TRAIN-part1+TEST-
2016 for training.  

 
Method MAP AvgR MRR P R F1 Acc 
IR 41.85 77.59 46.42 - - - - 
Best 47.22 82.60 50.07 27.30 94.48 42.37 52.39 
Lowest 40.56 76.67 46.33 36.55 53.37 43.39 74.20 
Random  29.81  62.65  33.02  18.72  75.46  30.00  34.77 
Primary 43.44 77.50 47.03 35.71 67.48 46.71 71.48 
Con-1 44.29 78.59 48.97 34.47 68.10 45.77 70.11 
Con-2 43.06 76.45 46.22 35.71 67.48 46.71 71.48 

Table 3: Final Result on Task B 

Our system achieved the 7th position out of 13 
teams for the primary submission with MAP score 
is 43.44. Our contrastive-1 has the best score 

among our three submissions, i.e. 44.29, which is 
nearly about 1 point higher than the primary sub-
mission.  
 

Method MAP AvgR MRR P R F1 Acc 
IR 74.75  88.30  83.79 - - - - 
Best 76.70  90.31  83.02  63.53  69.53  66.39  76.57 
Lowest 69.04  84.53  79.55  39.53  64.81  49.11  55.29 
Random 46.98  67.92  50.96  40.43  32.58  73.82  45.20 
Con-1  72.49 87.77 81.95 64.32 58.88 61.43 75.43 

Table 4: Experiment on SemEval 2016 subtask B  

We also conduct experiment to test our system 
performance on TEST-2016 dataset. We use mod-
el from TRAIN-part1 dataset training with C=100 
(our best result as in Table 3, i.e. Constrastive-1). 
In respect of previous year results, this result 
achieved the 8th position out of 12 teams, if it is 
put into the leaderboard.  In respect of the scores, 
our results in the 2017 and 2016 dataset are con-
sistently in the middle range between the top and 
the lowest MAP score as seen in Table 4. 

4 Conclusion and Future Work  

As many CQA tasks rely on similarity measure 
as the basis, utilizing word importance classes in 
such a way for semantic similarity metrics can in-
crease the MAP score significantly. Taking into 
consideration the top-n words in a thread, can 
contribute to find alternative words, which are un-
seen in the original question. 

Our future work is to implement this method as 
baseline for other subtasks, and later combine 
with rich features, which involve various task-
specific operations to solve the main problem in 
CQA.   
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Abstract

This paper describes our approach to the
SemEval-2017 shared task of determining
question-question similarity in a commu-
nity question-answering setting (Task 3B).
We extracted both syntactic and seman-
tic similarity features between candidate
questions, performed pairwise-preference
learning to optimize for ranking order, and
then trained a random forest classifier to
predict whether the candidate questions
were paraphrases of each other. This ap-
proach achieved a MAP of 45.7% out of
max achievable 67.0% on the test set.

1 Introduction

A large amount of information of interest to users
of community forums is stored in semi-structured
text, but surfacing that information can be chal-
lenging given the variety of ways users can phrase
their search queries. Question-answering is a sig-
nificant task for both natural language processing
(NLP) and information retrieval (IR), as both the
actual terms used in the query plus the seman-
tic intent of the query itself need to be accounted
for in surfacing relevant potential answers. The
Community Question Answering (cQA) task of
SemEval-2017 (Nakov et al., 2017) seeks to ad-
dress this problem through several related sub-
tasks around effectively determining and ranking
the relevance of related stored questions and asso-
ciated answers.

We chose to focus on subtask B: question-
question similarity. This problem can be seen as
one of paraphrase detection – determine if two
questions have the same meaning. We reviewed
existing performant paraphrase detection meth-
ods and selected several to implement and ensem-
ble (Ji and Eisenstein, 2013; Wan et al., 2006;

Wang and Ittycheriah, 2015; Filice et al., 2015)
along with the related question IR system rank
provided in the dataset. As paraphrase detection
is a classification problem while subtask B is a
ranking problem, we also incorporated pairwise-
preference learning (Joachims, 2002; Fürnkranz
and Hüllermeier, 2003) to aid in improving the key
metric of mean average precision (MAP).

The rest of the paper is organized as follows.
Section 2 provides a detailed description of our
system, including the key identified features that
were extracted, while Section 3 provides the re-
sults from experiments used to evaluate the sys-
tem. Section 4 concludes the paper with a sum-
mary of the work and directions for future explo-
ration.

2 System Description

Our approach consisted of four parts: data prepa-
ration, feature extraction, pairwise-preference
learning, and paraphrase classification. All code
was implemented in Python 3.5. For data extrac-
tion, we converted the XML documents provided
by (Nakov et al., 2017) into pandas DataFrames,
retaining the subject text, body text, and meta-
data related to the original and related questions.
The feature extraction and the pairwise-preference
learning phase are described below. Classification
was handled with a random forest classifier con-
taining 2000 weak estimators.

2.1 Feature Extraction

We computed features as described in several lead-
ing paraphrase detection method papers. One of
which, fine-grained textual features (Wan et al.,
2006), failed to produce any significant value dur-
ing further evaluation for this task and so were
discarded. In addition to the paraphrase detection
features, we also incorporated the reciprocal of the
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reported IR system rank of the related question as
an additional feature.

Unless otherwise noted, question texts for fea-
ture extraction were created by concatenating the
subject and body fields of the question, all terms
were made lowercase, and stop words were re-
moved.

2.1.1 Tree Kernels
Tree kernel (TK) features (Filice et al., 2015) were
derived by generating parse trees of the two sen-
tences, then defining a kernel that allows for a nu-
merical distance to be computed. The kernel takes
all possible valid (not necessarily terminal) par-
tial tree structures within the sentence parse trees
and counts the amount of overlap between the two.
The result is a score for every pair of sentences.

The kernel function K(S1, S2) for two trees S1

and S2 is defined as follows:

K(S1, S2) =
∑

n1∈NS1

∑
n2∈NS2

∆(n1, n2)

where ∆(n1, n2) is the Partial Tree Kernel
(PTK) function as defined in (Filice et al., 2015).
A standard kernel norm is then applied, given by:

K(S1, S2)√
K(S1, S1)K(S2, S2)

.

We computed distances for both constituency
trees and dependency trees. For constituency parse
trees, words that occur in both sentences were
marked along with their part of speech in order
to increase the effect of shared terms belonging
to similar subtrees. Dependency parse trees, on
the other hand, were constructed so that non-leaf
nodes are made up entirely of dependency types
(rather than parts of speech). For example a sin-
gle ROOT node may have nodes nsubj and dobj
as children. Leaves were all tokens representing
words themselves, and every interior node had a
child that was a leaf. The final features produced
were the result of the kernel applied to the con-
stituency parse tree and that result multiplied by
the result from the kernel applied to the depen-
dency parse tree.

2.1.2 TF-KLD
TF-KLD (Term Frequency Kullback-Leibler Di-
vergence) (Ji and Eisenstein, 2013) is a supervised
TF weighting scheme based on modeling proba-
bility distributions of phrases being aligned with

or without the presence of a particular term. More
formally:

We assume labeled sentence pairs
〈~w(2)

i , ~w
(2)
i , ri〉, where ~w

(1)
i is the binarized

vector of bigram and unigram occurrence for the
first sentence, ~w

(2)
i is the bigram and unigram

occurrence vector for the second, and ri ∈ {0, 1}
is an indicator of whether the two sentences
match. We assume the order of the sentences are
irrelevant, and for each feature with index k we
define two Bernoulli distributions:

pk = P (w(1)
ik |w(2)

ik , ri = 1)

which is the probability that feature k appears in
the first sentence given that k appears in the second
and both are matched, and

qk = P (w(1)
ik |w(2)

ik , ri = 0)

which is the probability that feature k appears in
the first sentence given that k appears in the second
and both are not matched.

The Kullback-Leibler divergence is a pre-
metric over probability distributions, defined as
KL(pk||qk) =

∑
x pk(x) log pk(x)

qk(x) . We calculate
a KLD score for each feature k, then use this to
weight the vector of non-binarized occurrences.
The sparse TF-KLD vector then undergoes dimen-
sionality reduction by means of rank-100 nonneg-
ative matrix factorization. Finally, the cosine simi-
larity of individual vectors is taken to give a single
feature for each pair of sentences.

2.1.3 Semantic Word Alignment
Semantic word alignment (WA) (Wang and Itty-
cheriah, 2015) used word embeddings to infer se-
mantic similarity between documents at the indi-
vidual word level. For embeddings we used the
pre-trained 300-dimensional GloVe vectors (Pen-
nington et al., 2014).

Given a source question Q and reference ques-
tion R, let Q = {q0, q1, ..., qm} and R =
{r0, r1, ..., rn} denote the words in each question
text. First, the cosine-similarity between all pairs
of the words (qi, rj) was computed to form a sim-
ilarity matrix (Figure 1). Next we denote the
word alignment position for each query word qi

as aligni, similarity score as simi, and the inverse
document frequency as idfi. Word alignment po-
sition aligni for a query word qi in Q w.r.t words
in R is equal to the position of a word rj in R at
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Submission MAP AvgRec MRR P R F1 Acc
Talla-constrastive1 46.50 82.15 49.61 30.39 76.07 43.43 63.30

Talla-contrastive2 46.31 81.81 49.14 29.88 74.23 42.61 62.95

4 Talla-primary 45.704 81.482 49.555 29.599 76.078 42.618 62.058

Baseline 1 (IR) 41.85 77.59 46.42 - - - -

Baseline 2 (random) 29.81 62.65 33.02 18.72 75.46 30.00 34.77

Baseline 3 (all ’true’) - - - 18.52 100.00 31.26 18.52

Baseline 3 (all ’false’) - - - - - - 81.48

Table 1: System performance on the SemEval-2017 test dataset

which qi has maximum similarity score simi. Fi-
nally, we compute a set of distinct word alignment
features as:

• similarity: f0 =
∑

i simi ∗ idfi/
∑

i idfi.
This feature represents question similarity
based on the aligned words.

• dispersion: f1 =
∑

i (|aligni − aligni−1 −
1|). This feature is a measure of contiguously
aligned words.

• penalty: If we denote the position of
unaligned words (where simi = 0) as
unaligni, then this feature penalizes pairs
with unaligned question words and was cal-
culated as f2 =

∑
unaligni

idfi/
∑

i idfi.

• five important words: fith = simith∗idfith .
This feature set included the similarity score
of the top five important words in the ques-
tion text, where importance of a word was
based on its IDF score.

The first three features were computed in both
directions i.e. for (Qi, Rj) and (Rj , Qi). The co-
sine similarity of the aggregate of all embeddings
in the questions was also computed. This process
was repeated separately for both question subjects
and bodies (instead of on the combined concate-
nated text) for a total of 24 distinct features.

2.2 Pairwise-Preference Learning

Since the official evaluation metric for Subtask B
was MAP, we adopted a ranking approach to indi-
rectly optimize for MAP. Given an original ques-
tion Qi and its list of corresponding related ques-
tions {R1, R2, ..R10}, we are interested in learn-
ing a ranking of this list, where relevant questions
are ranked higher than irrelevant ones. An alter-
native way to learn this ranking is to classify if a
pair from a set of pairs formed within one group,

r1 r2 r3 r4 r5 r6

q1 0.2 0.7 0 0 0 0.4
q2 0 0.1 0.4 0.2 0 0
q3 0.3 0.2 0 0 0.5 0

r1 r2 r3 r4 r5 r6

q1 Х
q2 Х
q3 Х

Figure 1: Word alignment matrix example. The
upper table contains the cosine similarity scores
between words in questions Q and R, while
the lower table contains the corresponding word-
alignment.

where a group is formed for each original question
Qi is correctly ordered or not. This principle is
called “pairwise-preference learning” (Joachims,
2002; Fürnkranz and Hüllermeier, 2003).

To make use of this approach we transformed
the datasets from question-question(or question-
comment) pairs into a set of instance pairs. That
is, we presented a pair of answers with one cor-
rect and one incorrect answer to the same question.
Number of features were kept constant, while fea-
ture values were equal to the difference between
the values of two answers in the instance pair.

In training phase, for each question group
(Qi, {R1, R2, ..R10}) we generated labeled
pairs as “correct-pair(Qi, Rj) minus incorrect-
pair(Qi, Rk)” with label true and “incorrect-
pair(Qi, Rk) minus correct-pair(Qi, Rj)” with
label false. In this way, we generated 2 ∗ (nc +ni)
instance pairs for each question group, where nc

and ni is the number of correct pairs and number
of incorrect pairs within a group respectively.

In testing phase, number of instance pairs gen-
erated for a question group(Qi, {R1, R2, ..R10})
were equal to the number of all possible pairs
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within that question group. Then, our model as-
signed a probability to each of these instance pairs
that it is correctly ordered. To create a final score
for each related-question Rj , we took the sum of
probabilities over all pairs in which Rj was ranked
first. This final score was then used to create a
ranked list of related-questions Rj for each origi-
nal question Qi.

3 Experiments and Evaluation

We combined the provided training and dev
datasets as our system training set and used the
provided SemEval-2016 test data with gold labels
as our test set. No additional external data, other
than pre-trained word embeddings, were used. We
evaluated different classifier hyperparameters us-
ing 10-fold cross-validation and ultimately chose
a random forest classifier with 2000 trees as our
final model.

This system achieved fourth place overall (Ta-
ble 1) on the SemEval-2017 test dataset, and while
both contrastive submissions placed higher than
the primary, nether was able to achieve a greater
MAP than the third place entry. Contrastive1
was identical in feature set to the primary submis-
sion, but included the SemEval-2016 test dataset
as part of the training data, suggesting that MAP
can be improved by increasing the amount of ex-
amples used to train the system. Contrastive2
did not include the extra data and also omitted
the TF-KLD features. Comparing the effects of
ablating the other individual features (Table 2)
across both SemEval-2016 and SemEval-2017 test
datasets demonstrated that both the TF-KLD and
TK features were minimally effective. The IR sys-
tem features had a dramatic difference between the
two years – in 2016 it accounted for a 0.022 gain
in MAP, while in 2017 it produced a 0.010 reduc-
tion. In both cases the WA features contributed the
most, with gains of 0.041 and 0.034, respectively.

Subtask B of Task 3 combines the PerfectMatch
and Relevant classes into a single positive class
for purposes of evaluation. Given that this ap-
proach treated question-question similarity as a
paraphrase detection problem, the expectation was
that this model would do better on the Perfect-
Match and Irrelevant samples, but have a harder
time with Relevant questions. This is seen in
the SemEval-2016 data (Figure 2), where there is
good separation between the computed pairwise-
preference scores of Irrelevant and PerfectMatch

MAP
Features 2016 2017
Max 0.886 0.670
All features 0.781 0.457
All - TK 0.775 0.452
All - TF-KLD 0.773 0.464
All - IR 0.759 0.467
All - WA 0.740 0.423
Baseline 1 (IR) 0.748 0.419
Baseline 2 (random) 0.470 0.298

Table 2: Ablation studies of the four ensem-
bled feature sources against SemEval-2016 and
SemEval-2017 test data. Bolded values indicate
the largest loss due to ablation.

samples while the Relevant class is spread evenly
between the other two. Surprisingly, this dynamic
changed when applied to the SemEval-2017 data,
resulting in improved separation for the Relevant
class, but worse for both Irrelevant and Perfect-
Match classes.

Figure 2: Our model was unable to consistently
score PerfectMatch class questions over Irrelevant
ones across SemEval datasets, suggesting that it
overfit to the distribution of the training data.

Both the significant swing in IR feature contri-
bution and drop in ability to detect PerfectMatch
samples as positive examples of question-question
similarity are reflected in the change in makeup of
the dataset (Table 3). The train + dev dataset we
used for general training was more closely aligned
with the distribution of class labels in 2016 than
in 2017, suggesting a potential i.i.d. data depen-
dence on this approach to produce good results on
test data.
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Dataset n PM R I
train 2669 0.09 0.32 0.59
dev 500 0.12 0.31 0.57
test-2016 700 0.11 0.22 0.67
test-2017 880 0.03 0.16 0.81

Table 3: Distribution of the PerfectMatch (PM),
Relevant (R), and Irrelevant (I) classes within the
datasets.

4 Summary

We described a system that relies on an ensem-
ble of syntactic, semantic, and IR features to de-
tect question-question similarity and demonstrated
it on the SemEval-2017 community question an-
swering shared task. Of the four feature sources
we evaluated, the semantic word alignment fea-
tures provided the largest contributed and con-
sistent boost in MAP. Features derived from TF-
KLD and tree kernel methods had modest effects.
The efficacy of the IR-derived features varied from
providing a noticeable gain on historical data vs a
significant drop on the current test set, likely at-
tributable to the significant increase in the num-
ber of Irrelevant class samples. Future work will
explore how to compensate for highly unbalanced
class scenarios.
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Abstract 

This paper presents our submission to 

SemEval-2017 Task 6: #HashtagWars: 

Learning a Sense of Humor. There are two 

subtasks: A. Pairwise Comparison, and B. 

Semi-Ranking. Our assumption is that the 

distribution of humorous and non-humor-

ous texts in real life language is naturally 

imbalanced. Using Naïve Bayes Multino-

mial with standard text-representation fea-

tures, we approached Subtask B as a se-

quence of imbalanced classification prob-

lems, and optimized our system per the 

macro-average recall. Subtask A was then 

solved via the Semi-Ranking results. On the 

final test, our system was ranked 10th for 

Subtask A, and 3rd for Subtask B. 

1 Introduction 

Humor is an essential trait of human intelligence 

that has not yet been addressed extensively in cur-

rent AI research1. It’s certainly one of the most in-

teresting and puzzling research areas in the field of 

natural language understanding, and developing 

techniques that enable computers to understand 

humor in human languages deserves research at-

tention (Yang et al., 2015).  

    Humor recognition or analysis by computers 

aims to determine whether a sentence in context 

expresses a certain degree of humor. This can be 

extremely challenging (Attardo, 1994) because no 

universal definition of humor has been achieved, 

humor is highly contextual, and there are many 

different types of humor with different character-

istics (Raz, 2012). Previous studies (Mihalcea and 

                                                      
1 http://alt.qcri.org/semeval2017/task6/ 

Strapparava, 2005; Yang et al., 2015; Zhang and 

Liu, 2014; Purandare and Litman, 2006; Bertero 

and Fung, 2016) dealt with the humor recognition 

task as a binary classification task, which was to 

categorize a given text as humorous or non-humor-

ous (Li et al., 2016). Textual data consisting of 

comparable amounts of humorous texts and non-

humorous texts were collected, and a classification 

model was then built using textual features. Barb-

ieri and Saggion (2014) examined cross-domain 

application of humor detection using Twitter data. 

Purandare and Litman (2006) used data from a fa-

mous TV series, Friends. Speakers’ turns which 

occurred right before simulated laughter were de-

fined as humorous ones and the other turns as non-

humorous ones. They also used speakers’ acoustic 

characteristics as features. Bertero and Fung 

(2016) pursued a similar hypothesis. Their target 

was to categorize an utterance in a sitcom, The Big 

Bang Theory, into those followed by laughter or 

not. They were the first to use a deep learning al-

gorithm for humor classification. Besides, because 

genre bias can be problematic, Yang et al. (2015) 

tried to minimize genre differences between hu-

morous and non-humorous texts. 

SemEval-2017 Task 6 aims to encourage the de-

velopment of methods that should take into account 

the continuous nature of humor, on the one hand, 

and to characterize the sense of humor of a partic-

ular source, on the other. The dataset was based on 

humorous responses submitted to a Comedy Cen-

tral TV show @midnight2. There are two subtasks: 

A. Pairwise Comparison, where a successful sys-

tem should be able to predict among a pair of 

tweets which is funnier; and B. Semi-Ranking, 

where, given a file of tweets for a hashtag, systems 

2 http://www.cc.com/shows/-midnight 
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should produce a ranking of tweets from funniest 

to least funny.  

Since automatic humor analysis is difficult, our 

goal is only to provide computer assistance to hu-

man experts. We approached Subtask B as a se-

quence of imbalanced classification problems, and 

optimized our system per the macro-average recall. 

Subtask A was then solved simply via the Semi-

Ranking results of Subtask B. 

2 Data and Our Features  

The training and trial data consists of 106 files, and 

the test data consists of 6 files. Each file corre-

sponds to a single hashtag, and is named accord-

ingly. For example, for the hashtag #DogSongs, the 

file is called Dog_Songs. The tweets are labeled 0, 

1, or 2. 0 corresponds to a tweet not in the top 10 

(i.e. not considered funny). 1 corresponds to a 

tweet in the top 10, but not the funniest tweet. 2 

corresponds to the funniest tweet. Figure 1 shows 

the distribution of these three classes on the train-

ing and trial data sets. This is unlike existing rele-

vant research, which involved comparable amounts 

of humorous and non-humorous texts. 

 

Figure 1: Imbalanced distribution of humor de-

grees on the training and trial data sets. 

   However, this distribution might be more prag-

matic for analyzing humor in real life languages. 

Though humor is as important to our life as is spice 

to our food3, it’s just a small part of the whole mat-

ter. The distribution of humor vs. non-humor might 

be naturally imbalanced. The nature of Subtask A 

is also imbalanced. Although only tweet pairs with 

differing humor degrees are evaluated in the final 

test, those pairs with the same degree of humor will 

occupy by far the larger proportion of all tweet 

pairs for a given hashtag. We chose to solve Sub-

task A simply from ranking results of Subtask B. 

A better semantic understanding of the hashtag 

will contribute to a better performance in the task. 

For example, named entities obviously form an im-

portant part of contextual knowledge. The task or-

ganizers allow participants to manually annotate 
                                                      
3 http://www.aath.org/humor-the-spice-of-life. 

the trial and training data, such as annotating the 

proper nouns referenced in a tweet. However, the 

automatic annotating performance could be unreli-

able and be detrimental to the hashtag understand-

ing. Besides, the manual annotation of around ten 

thousand tweets is not a trivial task. Therefore, we 

only included the tweets and the relevant hashtags 

for classification features. They were regarded as 

two textual features, with the hashtag parsed into a 

sequence of words. 

3 Our Approach 

We first focused on Subtask B, solving it by cas-

caded imbalanced classification. In our daily life, 

there exists similar imbalanced distribution to that 

shown in Figure 1, such as the World Cup and 

beauty contests.  In such cases, there can be n pre-

defined levels or ranks, the number of participants 

or survivors allowed for each higher rank is usually 

exponentially smaller than its lower ranks. In a cas-

caded way, a such n-rank machine learning task 

could be solved by n – 1 imbalanced classifiers. 

 

Figure 2: Cascaded imbalanced classification. 

The cascaded method is illustrated in Figure 2, 

and a pseudo algorithm for training the classifiers, 

classifying a query, and semi-ranking, is detailed in 

Table 1. Each binary imbalanced classifier in the 

cascade is trained to distinguish the data points of 

one rank and those of its higher ranks, while data 

points in any lower ranks are not counted in. All the 

n – 1 classifiers work one by one in the ranking or-

der to complete the election or filtering process. 

For imbalanced classification, there are many 

existing solutions (Kotsiantis et al., 2006; Sun et 

al., 2009; Galar et al., 2012). The solutions can be 

based on data resampling, algorithm adjustment, 

cost-sensitive tuning, boosting approaches, or hy-

brid methods. Since humor distribution might be 

naturally imbalanced, we chose to tune the classi-

fying cost matrix and prediction confidence. 
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Input: Training set X of data point x labeled with n 

ranks {0, 1, …, n – 1}, and a test set T of 

data point t with no labels. 

Output: Set F of n – 1 imbalanced classifiers, and 

semi-ranked T of data point t labeled with 

ranks {0, 1, …, n – 1}. 

1. for rank r (0 <= r < n – 1), remove from X any x 

labeled with r’ (r’ < r). 

2.      Re-label any x within rank r” (r”>r) as non-

r. 

3.     Train an imbalanced binary classifier fr(x) on 

the re-labeled X, and set F as )}({ xfF r . 

4. end for 

5. Given t in T, for 0 <= r < n – 1, apply fr(t), end 

for. 

6. Label t with r*, the highest rank predicted. 

7. Set the ranking score of t as r* + Cfr*(t), where 

Cfr*(t) is prediction confidence of fr*(t). 

8. Sort T per the ranking scores, and return T. 

Table 1: Algorithm for solving Subtask B. 

A cost matrix is used to represent the differing 

cost of each type of misclassification (Elkan, 

2001). Typically, each row in the matrix is used to 

represent the predicted label and each column cor-

responds to the actual label of gold standard. The 

matrix entry Cij is the cost of predicting the ith la-

bel when the jth label is actually correct. In gen-

eral, Cij > Cjj when i ≠ j, i.e. a correct prediction is 

less costly than an incorrect prediction. Usually the 

entries Cjj along the main diagonal will all be zero. 

For a classifier that can output the full probabil-

ity distribution over all class labels, prediction con-

fidence is defined as the difference between the es-

timated probability of the true class and that of the 

most likely predicted class other than the true class. 

By tuning prediction confidence for one class, we 

can easily balance the weight distribution between 

this class and other classes. Tuning the cost matrix 

and prediction confidence could be done via opti-

mizing a given performance measurement on a 

held-out development set or by cross-validation. 

Since our goal is to provide computer assistance to 

human experts in humor analysis, we chose macro-

average recall as the performance measurement to 

be optimized. The parameters for imbalanced clas-

sification could be tuned in a pipeline way, i.e. for 

each classifier fr(x) we first tuned the cost sensitive 

matrix and then tuned the prediction confidence. 

Though Subtask A aims to predict among a pair 

of tweets which is funnier, its evaluation requires a 

system to return all tweet pairs with different hu-

mor degrees for a given hashtag. More generally, a 

                                                      
4 http://www.cs.waikato.ac.nz/ml/weka/downloading.html 

pairwise comparison problem with n predefined 

ranks of data points could be solved simply by the 

algorithm in Table 2, once the semi-ranking results 

have been obtained for Subtask B. 

Input: Semi-ranked set T of data point t labeled 

with ranks {0, 1, …, n – 1}. 

Output: Set of tweet pairs P = {(ti, tj)| i > j, 0 < i < 

n, 0 <= j < n – 1}. 

1. for i = n – 1; i > 0: 

2.      for j = n – 2; j >= 0: 

3.          )},{( ji ttPP  . 

4.      end for 

5. end for 

6. Return P. 

Table 2: Algorithm for solving Subtask A. 

    The algorithm in Table 2 depends on the pre-

dicted ranks, thus it will result in better recall of 

data pairs with different ranking degrees, and hu-

man experts will have more choices. However, bet-

ter precision or F-measure could be achieved by ex-

ploiting the semi-ranking order and limiting the 

number of data points in each rank as required by 

the concrete task. For example, the number in rank 

2 is 1, and in rank 1 it is 9 for a given hashtag in 

SemEval-2017 Task 6. 

4 Experiment and Results 

This task is a 3-partite problem that could be 

solved via the algorithms given in Table 1 and 2. 

Using Java and Naïve Bayes Multinomial (NBM) 

classification of Weka 3.74 (Witten et al, 2011), 

we did the experiment with the training and trial 

data as training set. As for classification features, 

our present research simply chose word n-grams 

with n = 1, 2, and 3. By optimizing the macro-av-

erage recall of an NBM classifier on the training 

set with all original class labels, 3200 word types 

were kept before vectorization. Figure 3 gives 

some results of a part of the optimizing process. 

The star denotes the optimized point. For tuning 

the cost matrix and prediction confidence, we 

used 10-fold cross validation. The parameter val-

ues of the largest macro-average recall and the 

least standard deviation were returned for training 

final NBM classifiers on the whole training set 

and predicting for the final test set. 

    Table 3 lists the results of tuning cost matrix 

and prediction confidence. We first tuned the cost 

matrices, and the best macro-average recalls are 

marked with 1 in Table 3. 
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Figure 3: Selecting word n-gram types before 

vectorization. 

NBM Classifiers 0 vs non-0 1 vs non-1 

Positive Class 0 1 

Negative Class 1 2 

Cost of False Positive 1 1 

Cost of False Negative 46 5 

Macro-average Recall1 0.698±0.11 0.617±0.14 

Negative Confidence 0.01 0.96 

Macro-average Recall2 0.713±0.09 0.623±0.12 

Table 3: Tuning results for cost matrix and pre-

diction confidence 

 

(a) 0 vs non-0 

 

(b) 1 vs non-1 

Figure 4: Tuning the cost of false negative. 

Figure 4 gives parts of the cost matrix tuning 

process nearby the optimization points (denoted 

with stars). To make the tuning less expensive, we 

fixed the cost for false positive as 1, and only 

tuned the cost for false positive. Then, with the 

optimized cost matrices for NBM classifiers, we 

tuned the confidence for predicting negative 

items, and the best macro-average recalls are 

marked with 2 in Table 3. Figure 5 gives parts of 

the prediction confidence tuning process near the 

optimization points (denoted with stars). We fi-

nally trained our system on the whole training set 

with the tuned parameters, and applied this system 

on the evaluation set. For Subtask A, our submis-

sion is ranked 10th, with a micro-averaged accu-

racy of 0.187. For Subtask B, our submission is 

ranked 3rd, with an edit distance of 0.924. 

 

(c) 0 vs non-0 

 

(d) 1 vs non-1 

Figure 5: Tuning prediction confidence 

5 Conclusion 

For detecting humor, we assume that the distribu-

tion of humorous and non-humorous texts in a lan-

guage is naturally imbalanced. Instead of aiming at 

an automatic humor analysis system, our goal for 

solving SemEval-2017 Task 6 is to provide com-

puter assistance to human experts. Therefore, 

macro-average recall was employed as the major 

measurement for training. We approached Subtask 

B as a sequence of imbalanced classification prob-

lems, and optimized our system per the macro-av-

erage recall. Subtask A was then solved via the 

Semi-Ranking results. In future research, we plan 

to employ more classification features and other 

imbalanced machine learning techniques. 
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Abstract

This paper describes the Duluth system

that participated in SemEval-2017 Task 6

#HashtagWars: Learning a Sense of Hu-

mor. The system participated in Subtasks

A and B using N-gram language models,

ranking highly in the task evaluation. This

paper discusses the results of our system

in the development and evaluation stages

and from two post-evaluation runs.

1 Introduction

Humor is an expression of human uniqueness

and intelligence and has drawn attention in di-

verse areas such as linguistics, psychology, phi-

losophy and computer science. Computational

humor draws from all of these fields and is

a relatively new area of study. There is

some history of systems that are able to gener-

ate humor (e.g., (Stock and Strapparava, 2003),

(Özbal and Strapparava, 2012)). However, hu-

mor detection remains a less explored and chal-

lenging problem (e.g., (Mihalcea and Strapparava,

2006), (Zhang and Liu, 2014), (Shahaf et al.,

2015), (Miller and Gurevych, 2015)).

SemEval-2017 Task 6 (Potash et al., 2017) also

focuses on humor detection by asking participants

to develop systems that learn a sense of humor

from the Comedy Central TV show, @midnight

with Chris Hardwick. Our system ranks tweets ac-

cording to how funny they are by training N-gram

language models on two different corpora. One

consisting of funny tweets provided by the task

organizers, and the other on a freely available re-

search corpus of news data. The funny tweet data

is made up of tweets that are intended to be hu-

morous responses to a hashtag given by host Chris

Hardwick during the program.

2 Background

Training Language Models (LMs) is a straight-

forward way to collect a set of rules by utilizing

the fact that words do not appear in an arbitrary

order; we in fact can gain useful information about

a word by knowing the company it keeps (Firth,

1968). A statistical language model estimates the

probability of a sequence of words or an upcom-

ing word. An N-gram is a contiguous sequence of

N words: a unigram is a single word, a bigram is a

two-word sequence, and a trigram is a three-word

sequence. For example, in the tweet

tears in Ramen #SingleLifeIn3Words

“tears”, “in”, “Ramen” and “#Sin-

gleLifeIn3Words” are unigrams; “tears in”,

“in Ramen” and “Ramen #SingleLifeIn3Words”

are bigrams and “tears in Ramen” and “in Ramen

#SingleLifeIn3Words” are trigrams.

An N-gram model can predict the next word

from a sequence of N-1 previous words. A tri-

gram Language Model (LM) predicts the condi-

tional probability of the next word using the fol-

lowing approximation:

P (wn|wn−1
1 ) ≈ P (wn|wn−2, wn−1) (1)

The assumption that the probability of a word

depends only on a small number of previous words

is called a Markov assumption (Markov, 2006).

Given this assumption the probability of a sen-

tence can be estimated as follows:

P (wn
1 ) ≈

n∏
k=1

P (wk|wk−2, wk−1) (2)

In a study on how phrasing affects memorabil-

ity, (Danescu-Niculescu-Mizil et al., 2012) take a

language model approach to measure the distinc-

tiveness of memorable movie quotes. They do this
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by evaluating a quote with respect to a “common

language” model built from the newswire sec-

tions of the Brown corpus (Kucera and Francis,

1967). They find that movie quotes which are less

like “common language” are more distinctive and

therefore more memorable. The intuition behind

our approach is that humor should in some way be

memorable or distinct, and so tweets that diverge

from a “common language” model would be ex-

pected to be funnier.

In order to evaluate how funny a tweet is, we

train language models on two datasets: the tweet

data and the news data. Tweets that are more prob-

able according to the tweet data language model

are ranked as being funnier. However, tweets that

have a lower probability according to the news lan-

guage model are considered the funnier since they

are the least like the (unfunny) news corpus. We

relied on both bigrams and trigrams when training

our models.

We use KenLM (Heafield et al., 2013) as our

language modeling tool. Language models are

estimated using modified Kneser-Ney smoothing

without pruning. KenLM also implements a back-

off technique so if an N-gram is not found, KenLM

applies the lower order N-gram’s probability along

with its back-off weights.

3 Method

Our system1 estimated tweet probability using N-

gram LMs. Specifically, it solved the comparison

(Subtask A) and semi-ranking (Subtask B) sub-

tasks in four steps:

1. Corpus preparation and pre-processing: Col-

lected all training data into a single file. Pre-

processing included filtering and tokeniza-

tion.

2. Language model training: Built N-gram lan-

guage models using KenLM.

3. Tweet scoring: Computed log probability for

each tweet based on trained N-gram language

model.

4. Tweet prediction: Based on the log probabil-

ity scores.

• Subtask A – Given two tweets, compare

and predict which one is funnier.

1https://xinru1414.github.io/HumorDetection-
SemEval2017-Task6/

• Subtask B – Given a set of tweets associ-

ated with one hashtag, rank tweets from

the funniest to the least funny.

3.1 Corpus Preparation and Pre-processing

The tweet data was provided by the task orga-

nizers. It consists of 106 hashtag files made up

of about 21,000 tokens. The hashtag files were

further divided into a development set trial dir

of 6 hashtags and a training set of 100 hashtags

train dir. We also obtained 6.2 GB of English

news data with about two million tokens from the

News Commentary Corpus and the News Crawl

Corpus from 2008, 2010 and 20112. Each tweet

and each sentence from the news data is found on

a single line in their respective files.

3.1.1 Preparation

During the development of our system we trained

our language models solely on the 100 hashtag

files from train dir and then evaluated our per-

formance on the 6 hashtag files found in trial dir.

That data was formatted such that each tweet was

found on a single line.

3.1.2 Pre-processing

Pre-processing consists of two steps: filtering and

tokenization. The filtering step was only for the

tweet training corpus. We experimented with vari-

ous filtering and tokenziation combinations during

the development stage to determine the best set-

ting.

• Filtering removes the following elements

from the tweets: URLs, tokens starting with

the “@” symbol (Twitter user names), and to-

kens starting with the “#” symbol (Hashtags).

• Tokenization: Text in all training data was

split on white space and punctuation

3.2 Language Model Training

Once we had the corpora ready, we used the

KenLM Toolkit to train the N-gram language mod-

els on each corpus. We trained using both bigrams

and trigrams on the tweet and news data. Our lan-

guage models accounted for unknown words and

were built both with and without considering sen-

tence or tweet boundaries.

2http://www.statmt.org/wmt11/featured-translation-
task.html
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3.3 Tweet Scoring

After training the N-gram language models, the

next step was scoring. For each hashtag file that

needed to be evaluated, the logarithm of the proba-

bility was assigned to each tweet in the hashtag file

based on the trained language model. The larger

the probability, the more likely that tweet was ac-

cording to the language model. Table 1 shows an

example of two scored tweets from hashtag file

Bad Job In 5 Words.tsv based on the tweet data

trigram language model. Note that KenLM reports

the log of the probability of the N-grams rather

than the actual probabilities so the value closer to

0 (-19) has the higher probability and is associated

with the tweet judged to be funnier.

3.4 Tweet Prediction

The system sorts all the tweets for each hashtag

and orders them based on their log probability

score, where the funniest tweet should be listed

first. If the scores are based on the tweet lan-

guage model then they are sorted in ascending or-

der since the log probability value closest to 0 indi-

cates the tweet that is most like the (funny) tweets

model. However, if the log probability scores are

based on the news data then they are sorted in de-

scending order since the largest value will have the

smallest probability associated with it and is there-

fore least like the (unfunny) news model.

For Subtask A, the system goes through the

sorted list of tweets in a hashtag file and com-

pares each pair of tweets. For each pair, if the

first tweet was funnier than the second, the system

would output the tweet ids for the pair followed

by a “1”. If the second tweet is funnier it outputs

the tweet ids followed by a “0”. For Subtask B,

the system outputs all the tweet ids for a hashtag

file starting from the funniest.

4 Experiments and Results

In this section we present the results from our de-

velopment stage (Table 2), the evaluation stage

(Table 3), and two post-evaluation results (Ta-

ble 3). Since we implemented both bigram and

trigam language models during the development

stage but only results from trigram language mod-

els were submitted to the task, we evaluated

bigram language models in the post-evaluation

stage. Note that the accuracy and distance mea-

surements listed in Table 2 and Table 3 are defined

by the task organizers (Potash et al., 2017).

Table 2 shows results from the development

stage. These results show that for the tweet data

the best setting is to keep the # and @, omit sen-

tence boundaries, be case sensitive, and ignore to-

kenization. While using these settings the trigram

language model performed better on Subtask B

(.887) and the bigram language model performed

better on Subtask A (.548). We decided to rely

on trigram language models for the task evalua-

tion since the advantage of bigrams on Subtask A

was very slight (.548 versus .543). For the news

data, we found that the best setting was to per-

form tokenization, omit sentence boundaries, and

to be case sensitive. Given that trigrams performed

most effectively in the development stage, we de-

cided to use those during the evaluation.

Table 3 shows the results of our system dur-

ing the task evaluation. We submitted two runs,

one with a trigram language model trained on the

tweet data, and another with a trigram language

model trained on the news data. In addition, after

the evaluation was concluded we also decided to

run the bigram language models as well. Contrary

to what we observed in the development data, the

bigram language model actually performed some-

what better than the trigram language model. In

addition, and also contrary to what we observed

with the development data, the news data proved

generally more effective in the post–evaluation

runs than the tweet data.

5 Discussion and Future Work

We relied on bigram and trigram language mod-

els because tweets are short and concise, and often

only consist of just a few words.

The performance of our system was not con-

sistent when comparing the development to the

evaluation results. During development language

models trained on the tweet data performed bet-

ter. However during the evaluation and post-

evaluation stage, language models trained on the

news data were significantly more effective. We

also observed that bigram language models per-

formed slightly better than trigram models on the

evaluation data. This suggests that going forward

we should also consider both the use of unigram

and character–level language models.

These results suggest that there are only slight

differences between bigram and trigram models,

and that the type and quantity of corpora used to

train the models is what really determines the re-
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The hashtag: #BadJobIn5Words

tweet id tweet score

705511149970726912 The host of Singled Out #Bad-

JobIn5Words @midnight

-19.923433303833008

705538894415003648 Donut receipt maker and sorter

#BadJobIn5Words @midnight

-27.67446517944336

Table 1: Scored tweets according to the trigram LM. The log probability scores computed based on the

trigram LM are shown in the third column.

DataSet N-gram # and

@ re-

moved

Sentence

Bound-

aries

Lowercase Tokenization Subtask A

Accuracy

Subtask B

Distance

tweets trigram False False False False 0.543 0.887

tweets bigram False False False False 0.548 0.900

tweets trigram False True True False 0.522 0.900

tweets bigram False True True False 0.534 0.887

news trigram NA False False True 0.539 0.923

news bigram NA False False True 0.524 0.924

news trigram NA False False False 0.460 0.923

news bigram NA False False False 0.470 0.900

Table 2: Development results based on trial dir data. The settings we chose to train LMs are in bold.

DataSet N-gram # and

@ re-

moved

Sentence

Bound-

aries

Lowercase Tokenization Subtask A

Accuracy

Subtask B

Distance

tweets trigram False False False False 0.397 0.967

tweets bigram False False False False 0.406 0.944

news trigram NA False False True 0.627 0.872

news bigram NA False False True 0.624 0.853

Table 3: Evaluation results (bold) and post-evaluation results based on evaluation dir data. The trigram

LM trained on the news data ranked 4th place on Subtask A and 1st place on Subtask B.

sults.

The task description paper (Potash et al., 2017)

reported system by system results for each hash-

tag. We were surprised to find that our perfor-

mance on the hashtag file #BreakUpIn5Words in

the evaluation stage was significantly better than

any other system on both Subtask A (with accu-

racy of 0.913) and Subtask B (with distance score

of 0.636). While we still do not fully understand

the cause of these results, there is clearly some-

thing about the language used in this hashtag that

is distinct from the other hashtags, and is some-

how better represented or captured by a language

model. Reaching a better understanding of this re-

sult is a high priority for future work.

The tweet data was significantly smaller than

the news data, and so certainly we believe that this

was a factor in the performance during the evalu-

ation stage, where the models built from the news

data were significantly more effective. Going for-

ward we plan to collect more tweet data, particu-

larly those that participate in #HashtagWars. We

also intend to do some experiments where we cut

the amount of news data and then build models to

see how those compare.

While our language models performed well,

there is some evidence that neural network models

can outperform standard back-off N-gram models

(Mikolov et al., 2011). We would like to experi-

ment with deep learning methods such as recurrent

neural networks, since these networks are capable

of forming short term memory and may be better

suited for dealing with sequence data.

388



References

Cristian Danescu-Niculescu-Mizil, Justin Cheng, Jon
Kleinberg, and Lillian Lee. 2012. You had me at
hello: How phrasing affects memorability. In Pro-
ceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics: Long Papers
- Volume 1. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, ACL ’12, pages 892–
901.

J. Firth. 1968. A synopsis of linguistic theory 1930-
1955. In F. Palmer, editor, Selected Papers of J. R.
Firth, Longman.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics. Sofia, Bulgaria,
pages 690–696.

Henry Kucera and W. Nelson Francis. 1967. Compu-
tational Analysis of Present-day American English.
Brown University Press, Providence, RI, USA.

A. A. Markov. 2006. An example of statistical inves-
tigation of the text Eugene Onegin concerning the
connection of samples in chains. Science in Context
19(4):591–600.

Rada Mihalcea and Carlo Strapparava. 2006. Learn-
ing to laugh (automatically): Computational models
for humor recognition. Computational Intelligence
22(2):126–142.
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Abstract

In this paper we present a deep-learning
system that competed at SemEval-2017
Task 6 “#HashtagWars: Learning a Sense
of Humor”. We participated in Subtask A,
in which the goal was, given two Twitter
messages, to identify which one is fun-
nier. We propose a Siamese architecture
with bidirectional Long Short-Term Mem-
ory (LSTM) networks, augmented with an
attention mechanism. Our system works
on the token-level, leveraging word em-
beddings trained on a big collection of un-
labeled Twitter messages. We ranked 2nd

in 7 teams. A post-completion improve-
ment of our model, achieves state-of-the-
art results on #HashtagWars dataset.

1 Introduction

Computational humor (Stock and Strapparava,
2003) is an area in computational linguistics and
natural language understanding. Most computa-
tional humor tasks focus on the problem of humor
detection. However SemEval-2017 Task 6 (Potash
et al., 2017) explores the subjective nature of hu-
mor, using a dataset of Twitter messages posted
in the context of the TV show “@midnight”. At
each episode during the segment “Hashtag Wars”,
a topic in the form of a hashtag is given and view-
ers of the show post funny tweets including that
hashtag. In the next episode, the show selects the
ten funniest tweets and a final winning tweet.

In the past, computational humor tasks have
been approached using hand-crafted features
(Hempelmann, 2008; Mihalcea and Strapparava,
2006; Kiddon and Brun, 2011; Yang et al., 2015).
However, these approaches require a laborious
feature-engineering process, which usually leads
to missing or redundant features, especially in the
case of humor, which is hard to define and con-

sequently hard to model. Recently, approaches us-
ing neural networks, that perform feature-learning,
have shown great results (Chen and Lee, 2017;
Potash et al., 2016; Bertero and Fung, 2016a,b)
outperforming the traditional methods.

In this paper, we present a deep-learning system
that we developed for subtask A - “Pairwise Com-
parison”. The goal of the task is, given two tweets
about the same topic, to identify which one is fun-
nier. The labels are applied using the show’s rel-
ative ranking. This is a very challenging task, be-
cause humor is subjective and the machine learn-
ing system must develop a sense of humor similar
to that of the show, in order to perform well.

We employ a Siamese neural network, which
generates a dense vector representation for each
tweet and then uses those representations as fea-
tures for classification. For modeling the Twit-
ter messages we use Long Short-Term Mem-
ory (LSTM) networks augmented with a context-
aware attention mechanism (Yang et al., 2016).
Furthermore, we perform thorough text prepro-
cessing that enables our neural network to learn
better features. Finally, our approach does not rely
on any hand-crafted features.

2 System Overview

2.1 External Data and Word Embeddings

We collected a big dataset of 330M English Twit-
ter messages, which is used (1) for calculating
word statistics needed for word segmentation and
spell correction and (2) for training word embed-
dings. Word embeddings are dense vector repre-
sentations of words (Collobert and Weston, 2008;
Mikolov et al., 2013), capturing their semantic and
syntactic information. We leverage our big Twitter
dataset to train our own word embeddings, using
GloVe (Pennington et al., 2014). The word em-
beddings are used for initializing the weights of
the first layer (embedding layer) of our network.

390



2.2 Text Preprocessing 1

For preprocessing the text we perform the follow-
ing steps: tokenization, spell correction, word nor-
malization, word segmentation (for splitting hash-
tags) and word annotation (with special tags).
Tokenizer. Our tokenizer is able to identify most
emoticons, emojis, expressions like dates (e.g.
07/11/2011, April 23rd), times (e.g. 4:30pm,
11:00 am), currencies (e.g. $10, 25mil, 50e),
acronyms, censored words (e.g. s**t), words with
emphasis (e.g. *very*) and more. This way we
keep all these expressions as one token, so later
we can normalize them, or annotate them (with
special tags) reducing the vocabulary size and en-
abling our model to learn more abstract features.
Postprocessing. After the tokenization we add
an extra postprocessing step, where we perform
spell correction, word normalization, word seg-
mentation (for splitting a hashtag to its constituent
words) and word annotation. We use the Viterbi
algorithm in order to perform spell correction (Ju-
rafsky and Martin, 2000) and word segmenta-
tion (Segaran and Hammerbacher, 2009), utiliz-
ing word statistics (unigrams and bigrams) from
our big Twitter dataset. Finally, we lowercase all
words, and replace URLs, emails and user handles
(@user), with special tags.

2.3 Recurrent Neural Networks

In computational humor tasks, the most popular
approaches that utilize neural networks involve,
Convolutional Neural Networks (CNN) (Chen and
Lee, 2017; Potash et al., 2016; Bertero and Fung,
2016a) and Recurrent Neural Networks (RNN)
(Bertero and Fung, 2016b). We model the text of
the Twitter messages using RNNs, because CNNs
have no notion of order, therefore losing the in-
formation of the word order. However, RNNs are
designed for processing sequences, where the or-
der of the elements matters. An RNN performs
the same computation, ht = fW (ht−1, xt), on ev-
ery element of a sequence, where ht is the hidden
state at time-step t, and W the weights of the net-
work. The hidden state at each time-step depends
on the previous hidden states. As a result, RNNs
utilize the information of word order and are able
to handle inputs of variable length.

RNNs are difficult to train (Pascanu et al.,
2013), because of the vanishing and exploding
gradients problem, where gradients may grow or

1github.com/cbaziotis/ekphrasis

decay exponentially over long sequences (Bengio
et al., 1994; Hochreiter et al., 2001). We overcome
this limitation by using one of the more sophisti-
cated variants of the regular RNN, the Long Short-
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997), which introduces a gating
mechanism, that ensures proper gradient propaga-
tion through the network.

2.3.1 Attention Mechanism
An RNN can generate a fixed representation for
inputs of variable length. It reads each element
sequentially and updates its hidden state, which
holds a summary of the processed information.
The hidden state at the last time-step, is used as
the representation of the input. In some cases, es-
pecially in long sequences, the RNN might not be
able to hold all the important information in its fi-
nal hidden state. In order to amplify the contri-
bution of important elements (i.e. words) in the
final representation, we use an attention mecha-
nism (Rocktäschel et al., 2015), that aggregates all
the intermediate hidden states using their relative
importance (Fig. 1).
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Figure 1: Regular RNN and RNN with attention.

3 Model Description

In our approach, we adopt a Siamese architecture
(Bromley et al., 1993), in which we create two
identical sub-networks. Each sub-network reads
a tweet and generates a fixed representation. Both
subnetworks share the same weights, in order to
project both tweets to the same vector space and
thus be able to make a meaningful comparison be-
tween them. The Siamese sub-networks involve
the Embedding layer, BiLSTM layer and Atten-
tion layer.

The network has two inputs, the sequence of
words in the first tweet X1 = (x1

1, x
1
2, ..., x

1
T1

),
where T1 the number of words in the first tweet,
and the sequence words of the second tweet X2 =
(x2

1, x
2
2, ..., x

2
T2

), where T2 the number of words of
the second tweet.

391



𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

…

…

ℎ𝑇1
1 ℎ𝑇1

1ℎ3
1 ℎ3

1ℎ2
1 ℎ2

1ℎ1
1 ℎ2

1

B
iL

ST
M

Shared weights

…

𝑥1
1 𝑥2

1 𝑥3
1 𝑥𝑇1

1

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

…

…

ℎ𝑇2
2 ℎ𝑇2

2ℎ3
2 ℎ3

2ℎ2
2 ℎ2

2ℎ1
2 ℎ2

2

…

𝑥1
2 𝑥2

2 𝑥3
2 𝑥𝑇2

2

Classification

E
m

b
ed

d
in

g
A

tt
en

ti
o

n

Fully-Connected (tanh)

𝑎1
1 𝑎2

1 𝑎3
1 𝑎𝑇1

1

𝑟

𝑢ℎ 𝑎1
2 𝑎2

2 𝑎3
2 𝑎𝑇2

2
𝑢ℎ

Figure 2: Siamese Bidirectional LSTM with context-aware attention mechanism.

Embedding Layer. We use an Embedding layer
to project the words to a low-dimensional vector
space RE , where E is the size of the Embedding
layer. We initialize the weights of the Embedding
layer using our pre-trained word embeddings.
BiLSTM Layer. An LSTM takes as input the
words of a tweet and produces the word annota-
tions H = (h1, h2, ..., hT ), where hi is the hidden
state of the LSTM at time-step i, summarizing all
the information of the sentence up to xi. We use
bidirectional LSTM (BiLSTM) in order to get an-
notations for each word that summarize the infor-
mation from both directions of the message. A
bidirectional LSTM consists of a forward LSTM−→
f that reads the sentence from x1 to xT and a
backward LSTM

←−
f that reads the sentence from

xT to x1. We obtain the final annotation for each
word xi, by concatenating the annotations from
both directions,

hi =
−→
hi ‖ ←−hi , hi ∈ R2L (1)

where ‖ denotes the concatenation operation and
L the size of each LSTM.
Context-Attention Layer. An attention mecha-
nism assigns a weight ai to each word annota-
tion, which reflects its importance. We compute
the fixed representation r of the whole message as
the weighted sum of all the word annotations using
the attention weights. We use a context-aware at-
tention mechanism as in (Yang et al., 2016). This
attention mechanism introduces a context vector
uh, which can be interpreted as a fixed query, that
helps to identify the informative words and it is
randomly initialized and jointly learned with the
rest of the attention layer weights. Formally,

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (2)

ai =
exp(e>i uh)∑T
t=1 exp(e

>
t uh)

,
T∑

i=1

ai = 1 (3)

r =
T∑

i=1

aihi, r ∈ R2L (4)

where Wh, bh and uh are the layer’s weights.
Fully-Connected Layer. Each Siamese subnet-
work produces a fixed representation for each
tweet, r1 and r2 respectively, that we concatenate
to produce the final representation r.

r = r1 ‖ r2, r ∈ R4L (5)

We pass the vector r, to a fully-connected feed-
forward layer with a tanh (hyperbolic tangent) ac-
tivation function. This layer learns a non-linear
function of the input vector, enabling it to perform
the complex task of humor comparison.

c = tanh(Wcr + bc) (6)

Output Layer. The output c of the comparison
layer is fed to a final single neuron layer, that
performs binary classification (logistic regression)
and identifies which tweet is funnier.

3.1 Regularization
At first we adopt the simple but effective tech-
nique of dropout (Srivastava et al., 2014), in which
we randomly turn-off a percentage of the neu-
rons of a layer in our network. Dropout pre-
vents co-adaptation of neurons and can also be
thought as a form of ensemble learning, because
for each training example a subpart of the whole
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network is trained. Additionally, we apply dropout
to the recurrent connections of the LSTM as sug-
gested in (Gal and Ghahramani, 2016). Moreover,
we add L2 regularization penalty (weight decay)
to the loss function to discourage large weights.
Also, we stop the training of the network, after the
validation loss stops decreasing (early-stopping).
Lastly, we apply Gaussian noise and dropout at the
embedding layer. As a result, the network never
sees the exact same sentence during training, thus
making it more robust to overfitting.

3.2 Training
We train our network to minimize the cross-
entropy loss, using back-propagation with
stochastic gradient descent and mini-batches of
size 256, with the Adam optimizer (Kingma and
Ba, 2014) and we clip the gradients at unit norm.

In order to find good hyper-parameter values
in a relative short time, compared to grid or ran-
dom search, we adopt the Bayesian optimization
(Bergstra et al., 2013) approach. The size of the
embedding layer is 300, the size of LSTM lay-
ers is 50 (100 for BiLSTM) and the size of the
tanh layer is 25. We insert Gaussian noise with
σ = 0.2 and dropout of 0.3 at all layers. Moreover
we apply dropout 0.2 at the recurrent connections
of the LSTMs. Finally, we add L2 regularization
of 0.0001 at the loss function.

4 Results

Subtask A Results. The official evaluation met-
ric of Subtask A is micro-averaged accuracy. Our
team ranked 2nd in 7 teams, with score 0.632.
A post-completion bug-fix improved significantly
the performance of our model (Table 2).

training testing
hashtags 106 6

tweet pairs 109309 48285

Table 1: Dataset Statistics for Subtask A.

System Acc Micro Avg
HumorHawk 0.675
DataStories (official) 0.632
Duluth 0.627

DataStories (fixed) 0.711

Table 2: The Results of our submitted and fixed
models, evaluated on the official Semeval test set.
The updated model would have ranked 1st.

#HastagWars Dataset Results. Furthermore, we
compare the performance of our system on the
#HastagWars dataset (Potash et al., 2016). Ta-
ble 3 shows that our improved model outperforms
the other approaches. The reported results are the
average of 3 Leave-One-Out runs, in order to be
comparable with (Potash et al., 2016). Figure 3
shows the detailed results of our model on the
#HastagWars dataset, with the accuracy distribu-
tion over the hashtags.

System Acc Micro Avg
LSTM (token) (Potash et al., 2016) 0.554 (± 0.0085)
CNN (char) (Potash et al., 2016) 0.637 (± 0.0074)
DataStories (fixed) 0.696 (± 0.0075)

Table 3: Comparison on #HastagWars dataset.
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Figure 3: Detailed results on #HastagWars dataset.

Experimental Setup. For developing our models
we used Keras (Chollet, 2015), Theano (Theano
Dev Team, 2016) and Scikit-learn (Pedregosa
et al., 2011). We trained our neural networks on a
GTX750Ti(4GB), with each model taking approx-
imately 30 minutes to train. Our source code is
available to the research community2.

5 Conclusion

In this paper we present our submission at
SemEval-2017 Task 6 “#HashtagWars: Learning
a Sense of Humor”. We participated in Subtask A
and ranked 2nd out of 7 teams. Our neural network
uses a BiLSTM equipped with an attention mech-
anism in order to identify the most informative
words. The network operates on the word level,
leveraging word embeddings trained on a big col-
lection of tweets. Despite the good results of our
system, we believe that a character-level network
will perform even better in computational humor
tasks, as it will be able to capture the morpholog-
ical characteristics of the words and possibly to
identify word puns. We would like to explore this
approach in the future.

2https://github.com/cbaziotis/
datastories-semeval2017-task6
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2015. Reasoning about entailment with neural at-
tention. arXiv preprint arXiv:1509.06664 .

Toby Segaran and Jeff Hammerbacher. 2009. Beautiful
Data: The Stories Behind Elegant Data Solutions.
"O’Reilly Media, Inc.".

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research 15(1):1929–1958.

Oliviero Stock and Carlo Strapparava. 2003. Getting
serious about the development of computational hu-
mor. In Proceedings of IJCAI. pages 59–64.

Theano Dev Team. 2016. Theano: A Python frame-
work for fast computation of mathematical expres-
sions. arXiv e-prints abs/1605.02688.

394



Diyi Yang, Alon Lavie, Chris Dyer, and Eduard H.
Hovy. 2015. Humor Recognition and Humor An-
chor Extraction. In Proceedings of EMNLP. pages
2367–2376.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of NAACL-HLT . pages 1480–1489.

395



Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 396–400,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

TakeLab at SemEval-2017 Task 6: #RankingHumorIn4Pages
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Abstract

This paper describes our system for hu-
mor ranking in tweets within the SemEval
2017 Task 6: #HashtagWars (6A and 6B).
For both subtasks, we use an off-the-shelf
gradient boosting model built on a rich
set of features, handcrafted to provide the
model with the external knowledge needed
to better predict the humor in the text.
The features capture various cultural ref-
erences and specific humor patterns. Our
system ranked 2nd (officially 7th) among
10 submissions on the Subtask A and 2nd
among 9 submissions on the Subtask B.

1 Introduction

While extremely interesting, understanding humor
expressed in text is a challenging natural language
problem. Besides standard ambiguity of natu-
ral language, humor is also highly subjective and
lacks an universal definition (Mihalcea and Strap-
parava, 2005). Moreover, humor should almost
never be taken at face value, as its understanding
often requires a broader context – external knowl-
edge and common sense. On top of that, what is
funny today might not be funny tomorrow, as hu-
mor goes hand in hand with ever-changing trends
of popular culture.

Even though there has been some work on hu-
mor generation (Petrović and Matthews, 2013;
Valitutti et al., 2013), most work has been con-
cerned with humor detection, a task of classify-
ing whether a given text snippet is humorous (Mi-
halcea and Strapparava, 2005; Kiddon and Brun,
2011; Yang et al., 2015; Chen and Lee, 2017).
However, this research was mostly focused on a
simple binary detection of humor.

In this paper, we describe a system for rank-
ing humor in tweets, which we participated with

in the SemEval-2017 Task 6 (Potash et al., 2017).
It comprised two subtasks, one dealing with pre-
dicting which tweet out of two is more humorous,
and other with ranking a set of tweets by their
humorousness. Even though these tasks can be
both posed and tackled differently, we straightfor-
wardly used the obtained pairwise classifications
from the first task in coming up with ranked lists
for the second. Our system uses a standard gra-
dient boosting classifier (GB) based on a rich set
of features and collections of external knowledge.
We ranked 2nd among 10 submissions (7th offi-
cially) at the Subtask 6A, and 2nd among 9 sub-
missions at the Subtask 6B.

2 Task Description

The dataset provided by the task organizers com-
prises the tweets collected from many episodes
of the Comedy Central show @midnight.1 This
game show is based around contestants and view-
ers providing humorous and witty tweets in re-
sponse to a given topic (hashtag), which are then
ranked by their humorousness. The compiled
dataset consists of 11,685 tweets grouped into 106
hashtags. Each group is further split into three
bins: the most humorous tweet (denoted 1), nine
less humorous tweets (denoted 2), and a varying
number of the least humorous tweets (denoted 0).
The test set consists of 749 tweets grouped into 6
hashtags not present in the train set.

The task is divided into subtasks 6A and 6B. In
the first subtask, participants must recognize the
more humorous tweet of the two, whereas the sec-
ond subtask asks for a complete tripartite ranking
of all tweets under a given hashtag. This basically
means that the order of the tweets is not important
as long they are placed in the correct bin. For more
details consult (Potash et al., 2017).

1http://www.cc.com/shows/-midnight
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3 Model

We tackle both subtasks with a single base model.
For the subtask A, we trained a model that predicts
which tweet of the given two is more humorous,
and then used this information to rank the tweets
for the subtask B. More specifically, we counted
how many times a tweet was more humorous than
other tweets, and ranked the tweets by that num-
ber. Note that this resulted in a complete ranking,
which we reorganized into bins (which is possi-
ble as the cardinality of the two out of three bins
is known). In the following sections, we describe
our rich set of features and model optimization.

3.1 Features

We used Twitter-specialized preprocessing tools.
More precisely, we first tokenize the dataset
and then obtain the part-of-speech (POS) tags
with Twokenizer.2 This tool also accounts for
the normalization of the elongated vowels (e.g.,
“heeeeello”→“hello”). For dependency parsing,
we use TweeboParser.3 We lemmatize the ob-
tained words using the NLTK toolkit (Bird et al.,
2009). In the end, we obtain a 140-dimensional
feature vector of a tweet.4 Below we describe the
features grouped into categories (number of fea-
tures per group given in parentheses).

Cultural reference features (96). By inspect-
ing the dataset, we noticed that, at least within
the @midnight game show, most jokes are based
solely on taking the names of famous people,
movies, TV series, and other culture references,
and modifying them in an unexpected, yet humor-
ous way. To this end, we acquired a number of
collections covering such references, so that our
model could recognize them within the tweets.
The collections comprise, among others, movie ti-
tles, song names, book titles, TV series titles, car-
toon titles, people names and their professions, na-
tionality, and birth year (Yu et al., 2016) (Table 1).
To obtain the features, we first calculate the tf-
idf-weighted bag-of-words (BoW) vectors of all
tweets and all items in the acquired collections.
Then, for each collection, we construct a single
feature that denotes the maximum cosine similar-

2https://github.com/brendano/
ark-tweet-nlp/

3https://github.com/ikekonglp/
TweeboParser

4Note that this has nothing to do with the character limit
on Twitter, which is coincidentally also 140.

Collection Number of items

Movie titles 6,609
Song names 3,820
Book titles 191
TV series titles 228
Cartoon titles 183
People information 10,951
One-line jokes 2,868
Curse words 165

Table 1: External knowledge collections we used
in the model.

ity between a given tweet’s vector and those of
the items from the collection. We also construct a
one-hot-encoded vector of professions of a person
mentioned in the text (the resource covers 88 dif-
ferent occupations). In the case no person is men-
tioned in a tweet, this vector is set to a zero vector.
Additionally, we specifically check whether there
is a USA citizen mentioned in a tweet and fetch
an average Google Trends5 rank of all the named
entities found within a tweet.

Binary and count-based features (15). Besides
simple tweet length in characters, we also measure
the common noun, proper noun, pronoun, adjec-
tive, and verb to token ratios. Analogously, we
measure the punctuation count and punctuation to
character ratio. Besides this, we detect whether
time and place deixes occur in a tweet (Zhang
and Liu, 2014) using a precompiled list of deixes.
Furthermore, we used binary features that denote
whether the tweet contains a exclamation mark,
negation, hashtag, or a URL. On top of these fea-
tures, we calculated how much times single words
are repeated in a tweet.

Readability-based features (3). Our intuition
tells us that good jokes “flow”: they are catchy and
easily pronounceable. To capture this, we used the
features that gauge tweet readability. First, we em-
ploy the Flesch reading-ease test (Flesch, 1948).
Secondly, we follow the work of Zhang and Liu
(2014) and extract all the alliteration chains (se-
quences of at least two words that start with the
same phone). We construct the alliteration feature
as a total length of alliteration chains divided by
the number of tweet tokens. Lastly, we measure
the vowels to characters ratio.

5https://trends.google.com/trends/
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Humor-specific features (25). As the simplest
feature in this category, we measure the num-
ber of tokens between the root of a dependency-
parsed sentence and furthest node pointing to it.
With this feature we hope to capture punchlines,
whose common characteristic is that they are usu-
ally found at the end of a sentence.

Additionally, by examining the dataset, we no-
ticed that humor often arises from the use of a
modifier that does not seem to fit with the word
it modifies. For instance, in the case of “Co-
nan the Apologizer” (orig. “Conan the Barbar-
ian”), the tweet is humorous because Conan is
never attributed with such a trait, as he never apol-
ogizes. To detect this disparity, we measure the
cosine similarity of skip-gram (SG) embeddings
(Mikolov et al., 2013) between certain parts of a
tweet: the root and the subject, the root and the
object, and the root and all of its modifiers. In the
last case, we sum all the similarities. We use the
freely-available pre-trained vectors.6

To detect puns, we use a simple heuristic – a
tweet contains a pun if it matches in all but one
word with any of the items from our collections.
We also acquired a collection of one-line jokes
and curse words (Table 1). For one-line jokes,
we realized that it would be unreasonable to ex-
pect having a complete joke within a tweet. To ac-
count for this, we simply counted how many words
from the collection of one-line jokes are present in
a tweet. This way we hope to capture the char-
acteristic words found in one-line jokes. Lastly,
we map the tweet’s hashtag to a predefined set
of humor patterns, which we manually compiled
out of all the hashtags from the dataset: Movie,
Song, Book, Cartoon, Show, Sci*Fi, Celeb, Food,
*Words, Add*, Make*, If*, Before*, *Because,
One*letter, Ruin*, Sexy*, y* (where * denotes a
wildcard). We construct a one-hot-encoded vec-
tor of these patterns, which is set to zero if a new
hashtag could not match to any of these patterns.

Sentiment-based features (1). We used the out-
put of model for sentiment classification of tweets
(Lozić et al., 2017) as one of our features.

3.2 Model Optimization

Considering that we tackle both subtasks using a
binary classification model, we construct the in-
stances by concatenating feature vectors of both

6https://code.google.com/archive/p/
word2vec/

tweets in a pair. The pairs are constructed as a
Cartesian product between all the tweets in all dif-
ferent bin pairings. Note that this results in an
extremely large number of instances, as there are
1 · 9 + 1 · (n− 10) + 9 · (n− 10) different pairs,
where n denotes the number of tweets under a
given hashtag. Additionally, to help the model
learn the symmetric predictions, we include these
pairs’ symmetric counterparts as well, which dou-
bles the total number.

Due to resource constraints, we decided to start
off with a variety of readily-available models and
rule out those that perform badly in our rough pre-
liminary evaluation. Specifically, we trained a se-
lection of models with their default hyperparame-
ters on the train set and evaluated them on the trial
set. Surprisingly, a single model, gradient boost-
ing (GB) with variance loss, performed the best, so
we decided to use it in as our base model. We used
a GB implementation of the scikit-learn package
(Pedregosa et al., 2011). We ran a fine-grained
5-fold cross-validation over two GB hyperparam-
eters: number of estimators and maximum tree
depth. As we are working with tweets grouped
into hashtags, the folds actually contained whole
hashtags. Additionally, note that we used a ran-
dom sample of 80% of pairs for training in order
to reduce the computation costs.

4 Evaluation

The subtask 6A was evaluated in terms of accu-
racy (higher is better), whereas the subtask 6B was
evaluated in terms of a metric inspired by edit dis-
tance. The metric captures how many moves the
tweet must make to fall into a correct bin (lower is
better). This metric was normalized by the max-
imum possible edit distance. Both metrics were
micro-averaged across hashtags.

4.1 Feature Analysis

A gradient boosting model allowed us to effort-
lessly acquire the list of feature importances. We
report the top ten most relevant features, accord-
ing to the model, in Figure 1. Most notably, five
cultural reference features found their spot within
this list. This confirmed our earlier intuition that,
at least within the @midnight game show, most
jokes are based on culture references, which are
slightly transformed to induce a comical feel.
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Figure 1: Top ten most important features, accord-
ing to the trained GB model.

4.2 Model Variants

The two models we submitted for the subtask 6A
are effectively identical. The only thing that makes
them different is the size of the hyperparameter
search space used model optimization: the second
model used a more fine-grained grid of values and
thus expectedly performed better. Our best (unof-
ficial) model, denoted TakeLab-2, ranked 2nd (of-
ficially 7th) among 10 submissions with the ac-
curacy of 0.641. Other participants’ scores can
be found in Table 2. We also included our offi-
cial submissions (TakeLab-official-1 and TakeLab-
official-2 along their non-official counterparts.7

As mentioned earlier, to obtain the tripartite
ranking for the subtask 6B, we used the pairwise
classifications obtained by the model used in the
subtask 6A. This brought us to the distance metric
value of 0.908, placing us at the 2nd place out of 9
submissions. Additionally, we experimented with
LambdaMART algorithm to see how a full-fledged
learning-to-rank algorithm would perform at this
subtask. To that end, we explored two different
variants of the model: one using all the described
features (denoted LambdaMART-all) and one only
the top ten features according to the model we
used in subtask 6A (denoted LambdaMART-10).
In comparison to the models we submitted, it is in-
triguing to see that both of these models perform
only slightly worse. What is more, model variant
trained using only the top ten features would rank
third among all submissions.

7Unfortunately, we accidentally swapped the labels in the
submission file so we had to unofficially submit a fixed file.

Team name Accuracy

HumorHawk-2 0.675
TakeLab-2 0.641
HumorHawk-1 0.637
DataStories-1 0.632
Duluth-2 0.627
TakeLab-official-1 0.597
SRHR 0.523
SVNIT@SemEval 0.506
TakeLab-1 0.403
Duluth-1 0.397
TakeLab-official-2 0.359
QUB 0.187

Table 2: Final rankings on the subtask 6A. Our
submissions are bolded.

Team name Distance

Duluth-2 0.872
TakeLab-1 0.908
LambdaMART-10 0.912
QUB-1 0.924
QUB-2 0.924
SVNIT@SemEval-2 0.938
TakeLab-2 0.944
LambdaMART-all 0.946
SVNIT@SemEval-1 0.949
Duluth-1 0.967
# WarTeam-1 1.000

Table 3: Final rankings on the subtask 6B. Our
submissions are bolded.

5 Conclusion

We described the system for humor detection
which we participated with in the SemEval-2017
Task 6 (subtasks A and B). The gist of our system
lies in an off-the-shelf gradient boosting model
built on a rich set of handcrafted features. Know-
ing that humor understanding requires a broader
context that also asks for external knowledge, we
manually compiled a series of features that can
capture the cultural references in a tweet – celebri-
ties, movies, TV series, books, and so on. Be-
sides that, we also included pronounciation-based,
as well as humor-specific features that can recog-
nize one-line jokes and puns, hoping to capture
the humor patterns used throughout the @mid-
night game show. Future work includes exper-
iments with full-fledged learning-to-rank models
and a more detailed investigation of linguistically-
motivated humor features, both backed up by ex-
haustive cross-dataset analyses.
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Sasa Petrović and David Matthews. 2013. Unsuper-
vised joke generation from big data. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL 2013). Sofia, Bul-
garia, pages 228–232.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2017. SemEval-2017 Task 6: #HashtagWars:
Learning a sense of humor. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017). Vancouver, Canada, pages 49–
57.

Alessandro Valitutti, Hannu Toivonen, Antoine
Doucet, and Jukka M. Toivanen. 2013. “Let every-
thing turn well in your wife”: Generation of adult
humor using lexical constraints. In Proceedings
of the 51st Annual Meeting of the Association
for Computational Linguistics (ACL 2013). Sofia,
Bulgaria, pages 243–248.

Diyi Yang, Alon Lavie, Chris Dyer, and Eduard H.
Hovy. 2015. Humor recognition and humor an-
chor extraction. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2015). Lisbon, Portugal, pages
2367–2376.

Amy Zhao Yu, Shahar Ronen, Kevin Hu, Tiffany Lu,
and César A Hidalgo. 2016. Pantheon 1.0, a manu-
ally verified dataset of globally famous biographies.
Scientific data 3.

Renxian Zhang and Naishi Liu. 2014. Recognizing hu-
mor on Twitter. In Proceedings of the 23rd ACM In-
ternational Conference on Information and Knowl-
edge Management (CIKM 2014). ACM, Shanghai,
China, pages 889–898.

400



Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 401–406,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

SRHR at SemEval-2017 Task 6: Word Associations for Humour
Recognition

Andrew Cattle Xiaojuan Ma
Hong Kong University of Science and Technology
Department of Computer Science and Engineering

Clear Water Bay, Hong Kong
{acattle,mxj}@cse.ust.hk

Abstract

This paper explores the role of semantic
relatedness features, such as word asso-
ciations, in humour recognition. Specif-
ically, we examine the task of infer-
ring pairwise humour judgments in Twit-
ter hashtag wars. We examine a va-
riety of word association features de-
rived from the University of Southern
Florida Free Association Norms (USF)
(Nelson et al., 2004) and the Edinburgh
Associative Thesaurus (EAT) (Kiss et al.,
1973) and find that word association-
based features outperform Word2Vec sim-
ilarity, a popular semantic relatedness
measure. Our system achieves an ac-
curacy of 56.42% using a combination
of unigram perplexity, bigram perplex-
ity, EATtweet-avg

difference, USFmax
forward, EATword-avg

difference,
USFword-avg

difference, EATmin
forward, USFtweet-max

difference , and
EATmin

backward.

1 Introduction

What makes something funny? Humour is very
personal; what is funny to one person may not be
funny to another. Yet, there are still certain works
which seem to have widespread appeal, from co-
median Louis C.K. to sitcom The Big Bang The-
ory. What makes these works more humorous to
the average person than similar ones? A good
place to start might be with the show @midnight
and their nightly Hashtag Wars segment. Each
night viewers are given a prompt in the form of
a Twitter hashtag and asked to tweet their funni-
est responses. Given two such tweets, how can we
decide which is funnier?

This paper largely focuses on semantic
relatedness-based features and their application in
humour recognition. It is reasonable to assume

that a punchline should be related to a setup; that
is to say, a tweet’s relevance to its hashtag prompt
should be apparent. Similarly, it is reasonable
to assume that punchlines should have a certain
amount of unexpectedness; in other words,
funnier tweets should be harder to guess. As
such, it follows that semantic relation strength in
general should serve as a barometer for humour
where weaker relations are less understandable
and stronger relations are more obvious (Cattle
and Ma, 2016). Moreover, we hypothesize that
the interplay between this understandability and
unexpectedness should provide an even more
powerful indication of humour.

2 Previous Work

Early work on computational humour focused
more on humour generation in specific contexts,
such as punning riddles (Binsted and Ritchie,
1994; Ritchie et al., 2007), humorous acronyms
(Stock and Strapparava, 2003), or jokes in the
form of “I like my X like I like my Y” (Petrovic
and Matthews, 2013). Labutov and Lipson (2012)
offered a slightly more generalized approach using
Semantic Script Theory of Humour.

Recently, humour recognition has gained in-
creasing attention. Taylor and Mazlack (2004)
presented a method for recognizing wordplay in
“Knock Knock” jokes. Mihalcea and Strapparava
(2005) used stylistic features, such as alliteration
and antonymy, to identify humorous one-liners.
Mihalcea and Pulman (2007) expanded on this ap-
proach, finding that human-centeredness and neg-
ative sentiment are both useful in not only identi-
fying humorous one-liners, but also distinguishing
satirical news articles from genuine ones. Related
to humor recognition, irony identification (Davi-
dov et al., 2010; Tsur et al., 2010; Reyes et al.,
2012) typically uses n-gram and sentiment fea-
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tures to distinguish ironic from non-ironic tweets.
Shahaf et al. (2015) and Radev et al. (2016) ex-

amine humour recognition as a ranking task. Both
works aim to identify the funnier of a pair of car-
toon captions taken from submissions to The New
Yorker’s Cartoon Caption Contest1. Each week,
New Yorker readers are presented “a cartoon in
need of a caption” and encouraged to submit their
own humorous suggestions. Shahaf et al. (2015)
found that simpler grammatical structures, less re-
liance on proper nouns, and shorter joke phrases
all lead to funnier captions. Radev et al. (2016)
showed that in addition to human-centeredness
and sentiment, high LexRank score was a strong
indication of humour, where LexRank is a graph-
based text summarization technique introduced in
Erkan and Radev (2004).

Cattle and Ma (2016) noted that cartoon cap-
tion contests and hashtag wars are very similar in
that they both involve short, humorous texts writ-
ten as a response to an external stimulus. Further-
more, Cattle and Ma (2016) explored the role of
semantic relatedness between setups and punch-
lines in perceived humour and found USF Free
Association Norm- (Nelson et al., 2004) and Nor-
malized Google Distance-based features (Cilibrasi
and Vitanyi, 2007) to be useful in identifying fun-
nier tweets. However, the results of Cattle and Ma
(2016) were based on a small dataset of only four
hashtag prompts, inferred humour judgments from
Twitter likes and retweets, and relied on human
annotations to identify both setups and punchlines.

3 System Definition

3.1 Dataset

We performed all training and testing on the
dataset introduced in Potash et al. (2017) specifi-
cally for this task. The dataset consists of response
tweets to 112 hashtags created by @midnight. The
tweets are separated into files according to their
respective hashtags, each hashtag file containing
an average of 114 tweets. Each tweet includes a
label specifying whether it was deemed to be fun-
niest, in the top ten, or neither for that particular
hashtag according to the @midnight staff. Potash
et al. (2017) further divides the hashtags into three
sets: Trial, Training, and Evaluation containing
five, 101, and six hashtags, respectively.

1http://contest.newyorker.com/

3.2 Preprocessing and Baseline Features

Before feature extraction, tweets went through a
preprocessing procedure. Each tweet was low-
ercased and then tokenized and POS tagged us-
ing Tweet NLP (Gimpel et al., 2011; Owoputi
et al., 2013). English stop words were removed
along with any punctuation, discourse markers
(e.g. “RT”), interjections, emoticons, and URLs
according to Tweet NLP’s POS tags. Further-
more, prepositions, postpositions, subordinating
conjunctions, coordinating conjunctions, verb par-
ticles, and predeterminers were also removed as
these tended to be closed-class words (Gimpel
et al., 2011) which do not affect the word-level se-
mantic relationships this paper focuses on. Any
references to the @midnight Twitter account or
the relevant hashtag prompt were also removed.
Each hashtag prompt was tokenized according
to the hashtag segmentations included with the
dataset. English stop words were removed along
with any single digit numbers and the words “in”
and “words”. This was to omit the collocation
“in # words”, a common type of hashtag prompt,
which does not affect semantic meaning.

Following the model of Shahaf et al. (2015),
unigram and bigram bag-of-words features were
extracted for each tweet. Furthermore, both un-
igram and bigram perplexities were calculated
based on a simple language model created us-
ing n-gram counts from the Rovereto Twitter N-
Gram Corpus (Herdağdelen, 2013). For simplic-
ity, our language model uses add-one smooth-
ing, although we intend to explore more complex
smoothing techniques in future works. These fea-
tures were intended to serve as a baseline for se-
mantic relatedness-based features.

3.3 Semantic Relatedness Features

The results of Cattle and Ma (2016) suggest that
University of Southern Florida Free Association
Norm-based features are useful in humour recog-
nition. Given two words, A and B, the USF
Free Association Norms (USF) report the forward
strength, i.e. proportion of participants who, when
given word A, produce word B as their first reac-
tion (Nelson et al., 2004). The USF dataset was
represented as a graph where each node U referred
to a word in the vocabulary and each edge from
U to V had a weight proportional to the negative
log of the forward strength form word U to word
V. By representing the forward strengths as their
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negative logs, finding the shortest path between
two nodes using Dijkstra’s Algorithm is equiva-
lent to finding the path with the maximal product
of forward strengths. Using this information we
can easily estimate the forward strength between
any two words in the USF vocabulary.

Word association is unidirectional; given the
word “beer” a participant might say “glass” but
given “glass” they might not say “beer” (Ma,
2013). Thus, we collect both USFforward, rep-
resenting how strongly the words in the hash-
tag prompt are associated with the words in the
tweet’s content, and USFbackward, representing
how strongly the tweet’s content is associated with
the hashtag. These can be roughly interpreted as
how easy a punchline is to guess given only the
setup and how easy a punchline is to understand
in context, respectively. Unlike Cattle and Ma
(2016), which used human annotations to limit
their scope to only punch words, we consider all
hashtag-word/tweet-word pairs. We record the
maximum, minimum, and average values for each
feature across all such pairs.

Since we expect tweets which are relatively un-
expected, i.e. low USFforward, but also relatively
easy to understand, i.e. high USFbackward, to be
deemed funnier, we also collect USFdifference, the
difference between the two values. USFdifference
is calculated both at word-level, e.g. USFword-max

difference
refers to the maximal difference for a single word,
and tweet-level, e.g. USFtweet-max

difference refers to the dif-
ference between USFmax

forward and USFmax
backward.

In addition to USF association-based features,
we also extract an identical set of features in the
same manner but using the association strengths
reported in the Edinburgh Associative Thesaurus
(EAT) (Kiss et al., 1973).

To test the effectiveness of association-based
features, we also collected the maximum, min-
imum, and average Word2Vec (Mikolov et al.,
2013) cosine similarities across all hashtag-
word/tweet-word pairs to serve as a semantic-
feature baseline. We used Google’s pre-trained
Word2Vec embeddings2.

3.4 Classifier

Features were extracted for each tweet following
the methodology presented in the previous sec-
tions. Next, for each hashtag, tweet pairs were
generated such that the two tweets had different

2https://code.google.com/archive/p/word2vec/

humour judgment labels, i.e. one of the tweets is
judged funnier according to the gold standard rat-
ings. Each tweet pair then became two ordered
training examples; one where the funnier of the
two tweets was on the left and one where the fun-
nier tweet was on the right, with appropriate train-
ing labels. For each training example, the left
tweet’s feature vector was concatenated with that
of the right tweet’s as well as the difference be-
tween the two. These training vectors were then
used to train a Random Forest Classifier using
scikit-learn3, a popular Python machine learning
library, using default settings and 100 estimators.

4 Results and Discussion

Feature selection experiments were performed us-
ing Training data for training and Trial data
as a validation set to identify the best per-
forming features. Using these features, we
trained a new classifier on a combination of
Training and Trial data and evaluated its per-
formance on Evaluation data. The results in
Table 1 show that the highest performing fea-
tures in the validation test were EATtweet-avg

difference,
USFmax

forward, EATword-avg
difference, USFword-avg

difference, EATmin
forward,

USFtweet-max
difference , and EATmin

backward. The results using
only these features are reported as Best Features.
We also evaluated the performance of two more
feature combinations: best features plus perplex-
ity and n-gram features, as Best Features+, and
best feature plus perplexity features only, as Best
Features+ (no n-gram).

Interestingly, although n-gram features on their
own performed no better than chance in both val-
idation and evaluation tests, their addition to the
Best Features resulted in a large 8% point gain
in validation tests compared to the same features
minus n-grams (p=0.02 for paired t-test on file-
level accuracies). However, their addition resulted
in a drop in performance in evaluation tests, al-
though this result was not statistically significant.
Considering the dataset contains under 13,000
unique tweets, this extreme variation in perfor-
mance might be due to n-gram features overfitting
on the small dataset. By comparison, Shahaf et al.
(2015) found n-grams alone offered a 55% accu-
racy on the similar task of selecting the funnier
of two cartoon captions but their dataset contained
over four times as many unique documents.

Another problem facing n-gram features is that
3http://scikit-learn.org/
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Features Accuracy %
Trial Evaluation

ba
se

lin
e

n-grams 50.42 50.20
unigram perplexity 53.05 50.27
bigram perplexity 54.29 53.78
Word2Vec Sim 50.72 50.76

B
es

tF
ea

tu
re

s

EATtweet-avg
difference 57.40 46.54

USFmax
forward 55.15 48.33

EATword-avg
difference 54.80 46.18

USFword-avg
difference 54.80 51.63

EATmin
forward 53.84 47.29

USFtweet-max
difference 52.44 50.58

EATmin
backward 51.94 44.33

Best Features 53.42 52.40
Best Features+ 61.51 53.72
Best Features+ (no n-gram) 53.39 56.42

Table 1: Accuracy by feature on Trial and Evalu-
ation data

compared to cartoon captions, hashtag wars have
a higher incidence of novel word-forms, typically
in service of a pun, which occur only a few times
for a particular hashtag prompt and never again.
E.g. ”HELLMFAO. #SpookyBands @midnight”,
or ”Purrassic Park #CatBooks @Midnight”. Sim-
ple n-gram models, such as the one used in this
paper, are ill-equipped to deal with these types of
out-of-vocabulary words.

Compared to Word2Vec, association-based fea-
tures proved more discerning. One possible expla-
nation for this is that word association is a more
flexible relatedness measure than similarity. It is
hard to find examples of similar concepts which
are not also associated, but easy to find examples
of associated concepts which are not similar. E.g.
”red” and ”green” would be similar in that they
are both colours and associated in that they ap-
pear together at Christmas. However, ”green” and
”grass” are associated in that grass is green but the
two words are very different.

Another possible explanation is that word asso-
ciations are unidirectional while most similarity or
distance metrics are not. The fact that four of the
top seven best features are some variation of asso-
ciation difference seems to support our hypothesis
that the interplay between a joke’s unexpectedness
and its understandability serves as a useful indica-
tion of humour.

Cattle and Ma (2016) noted that their USF per-
formance was hurt by a lack of coverage. This
seems to be the case for us as well. Less than 65%

of tweets contained a valid USFforward strength,
with valid USFbackward and USFdifference strengths
appearing in only 70% and less than 60%, respec-
tively. By comparison, almost 95% of tweets con-
tained a valid Word2Vec similarity. EAT showed
slightly better coverage with valid EATforward and
EATbackward strengths each appearing in almost
75% of tweets and EATdifference appearing in just
under 70%. This may explain why EAT features
outperformed USF in the validation tests. This
was expected given that EAT contains twice as
many words as USF and four times as many edges.

In order to avoid using human annotations, such
as those in Cattle and Ma (2016), USF, EAT,
and Word2Vec features were calculated across all
hashtag-word/tweet-word pairs. Even though the
bag-of-words was heavily filtered by POS to leave
only words which carry more word-level seman-
tic meaning, this is a shotgun-like approach which
likely added noise to the data. This may explain
why only two of the top seven word association
features use min values. The punchline makes up
only a small part of the tweet and it is expected that
the remainder would not show any strong associ-
ations. Some kind of automatic punchline identi-
fication would help in this respect but may exac-
erbate the aforementioned coverage issue faced by
USF and EAT.

5 Conclusion and Future Work

Humour recognition in general is a very dif-
ficult task and humour recognition in hashtag
wars is no exception. The majority of features
tested performed only slightly better than chance
if better than chance at all. Our optimal result
was only a 56.42% accuracy on Evaluation data
and was obtained using only the features uni-
gram perplexity, bigram perplexity, EATtweet-avg

difference,
USFmax

forward, EATword-avg
difference, USFword-avg

difference, EATmin
forward,

USFtweet-max
difference , and EATmin

backward. Although our ac-
curacy is fairly low we believe semantic related-
ness features, and word association-based features
in particular, are worthy of further study.

Our system could be improved by using auto-
matic punchline detection to cut down on the noise
in our word association features. Furthermore, a
larger vocabulary or even the ability to automati-
cally infer association strength would increase the
usefulness of word association features. Finally, a
larger dataset may be needed to rule out the effi-
cacy of n-gram features.
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Abstract 

This paper presents the participation of 

#WarTeam in Task 6 of SemEval2017 with 

a system classifying humor by comparing 

and ranking tweets. The training data con-

sists of annotated tweets from the 

@midnight TV show. #WarTeam’s system 

uses a neural network (TensorFlow) hav-

ing inputs from a Naïve Bayes humor clas-

sifier and a sentiment analyzer. 

1 Introduction 

One of the most recent direction in Artificial In-

telligence is related to humor and, in recent years, 

comedy based computing such as Manatee 

(Gustin, 2014), the joke writing computer, 

STANDUP - System to Augment Non-Speakers’ 

Dialogue Using Puns (Waller et al., 2009); SASI
 
 

the sarcasm-detector (Davidov et al., 2010), or 

DeviaNT (Kiddon and Brun, 2011) were devel-

oped, with more or less success (Leybovich 

2017). If the well-hidden structure of humor, 

from which are derived all uncertainties, would 

be uncovered, it would have great applicability in 

social networks and human computer interactive 

systems. In time, research has been made and 

progress is undeniable. However, most recent 

studies are concerned with a binary perspective 

over humor where two main features are ignored: 

its continuous nature and subjectivity. 

Our objectives in Task 6 of SemEval 2017 

(Potash et al., 2017) were: (1) to build an applica-

tion able to score the degree of humor in tweets 

from the Midnight TV show, the Hashtag War 

section and (2) to discover ways to automatically 

determine amusement and how to quantify it. 

The paper is structured in 5 sections: Section 2 

discusses existing approaches to humor detection 

and Section 3 presents the methodology of our 

system. Section 4 briefly analyses the obtained 

results, before Section 5 drafting some conclu-

sions and further work. 

2 State of the Art  

In the area of identifying, describing and evaluat-

ing humor, the majority of studies succeeded only 

to describe if something is funny or not. The actu-

al tendency is to move forward to something more 

specific, namely to the value or the degree of hu-

mor. Currently, studies are mainly concerned with 

the binary evaluation of humor, whether it is fun-

ny or not. Their object of study is different as 

some of them focused on evaluating humor in 

videos and images, while others in texts expressed 

in natural language. 

As for the studies related to identifying humor 

in pictures (Chandrasekaran et al., 2016), theories 

in this area suggest that humor’s key components 

are qualities such as unexpectedness, incongruity, 

pain, as observed by analyzing a database of 6,400 

funny and not funny images.  

The linguistic side of this computational ap-

proach identifies the mechanisms for humor de-

tection with a formal model of the semantic and 

syntactic regularities underlying some of the sim-

pler types of punning riddles (Mulder and Nijholt, 

2002). 

Barbieri and Saggion (Barbieri and Saggion, 

2014) represents the task as a classification prob-

lem, applying supervised machine learning meth-

ods taking into account a group of features: fre-

quency, written-spoken style uses; intensity of ad-
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verbs and adjectives; structure (length, punctua-

tion, emoticons, links), sentiments (gap between 

positive and negative terms); common vs. rare 

synonyms use;  ambiguity (measure of possible 

ambiguities). In a part of their research, they treat 

irony and humor as a single class called figurative 

language and, by using specially designed humor 

characteristics, obtain accuracy around 76%.  

A similar direction is investigated in (Yang et 

al., 2015), where they first formulate the task as a 

traditional text classification problem, to further 

apply Random Forest. At the same time, semantic 

structures behind humor are analyzed in terms of 

meaning incongruity, ambiguity, phonetic style 

and personal affect. A simple and effective meth-

od of Maximal Decrement is proposed. The pho-

netic style (alliteration, rhyme, word repetition 

etc.) of a joke is regarded as being at least as im-

portant as its content.    

Several studies agree that humor has at its basis 

incongruity. In (Mihalcea et al., 2010), models are 

analyzed based on their features:  

(1) semantic relatedness, where the intuition is 

that the correct punch line will have a minimum 

relatedness with respect to the set-up: knowledge-

based metrics and corpus-based metrics (vector 

space model and pointwise mutual information), 

based on word co-occurrence over very large cor-

pora, and domain fitness obtained from WordNet 

domains; and 

(2) joke-specific features: polysemy and latent 

semantic analysis trained on joke data that con-

tains one-linears (short sentences with comic      

effects, simple syntax, rhetoric devices and crea-

tive language constructions). As the authors con-

fess, the difficulty in detecting incongruity is that 

it has to satisfy to opposite requirements, namely 

to be coherent but to produce a surprising effect. 

Using a combined model consisting of an SVM 

learning system trained on a combination of 

knowledge-based, corpus-based, and joke-specific 

features, they obtained a precision of 84%.   

The most common and efficiently used text 

classifiers are Naive Bayes and Support Vector 

Machines (Mihalcera and Pulman, 2007).  

The first one is used to estimate the probability 

of a category using joint probabilities. The second 

ones are binary classifiers that seek to find the 

hyperplane that best separates a set of positive ex-

amples from a set of negative examples, with 

maximum margin. 

Our approach proposes the use of neural net-

works as an interface between a Naïve Bayes clas-

sifier and a sentiment analyzer, trained on the data 

provided by SemEval 2017 task 6 organizers. 

3 Methodology  

#WildDev’s team developed a system for classify-

ing humor by comparing and ranking a set of 

tweets on the basis of a collection of hashtags 

from @midnight show. Our approach considered 

using two machine learning techniques: neural 

networks and Naïve Bayes.  

The format of the trial and training data was es-

tablished by the task organizers (Potash et al., 

2017), having the following structure:  

 

“720293211374104578 Honey, I lost the house. 

#VegasMovies @midnight 0” 

 

with a tweet ID, the text of the tweet, the hashtag 

it related to in the #HashtagWar at @midnight 

show, and a score. 

Each tweet in a set of tweets is evaluated with a 

score of 0, 1, or 2, where 2 corresponds to the 

funniest tweet in the set, 1 corresponds to a tweet 

in the top 10 funniest tweets, and 0 corresponds to 

a tweet not in the top 10 funniest tweets (most of 

the tweets in a file). This way, the continuous na-

ture of humor can be investigated. 

The architecture of the #WarTeam is presented 

in figure 1 and includes four modules: a pre-

processing task; a Naïve Bayes classification algo-

rithm for identifying humorous vs. non-humorous 

instances; a simple, dictionary-based sentiment 

analyzer and a neural network supervised algo-

rithm. Each specific module is further detailed be-

low.  

3.1 Pre-processing  

The first module consists in a pre-processing 

phase, a component responsible with cleaning 

each tweet before passing it to the machine learn-

ing algorithms. The goal of this module is to re-

move unneeded data which might have a bad im-

pact on the learning algorithm. 

The pre-processor module is a JAVA standalone 

application that receives as input a file with multi-

ple tweets, one per line, and returns a list with 

processed tweets. Several rules are applied in the 

process of cleaning tweets. The most important 

one is removing frequent hashtags. 

We consider a hashtag to be frequent when it 

appears in at least two of the tweets given as in-

put. This rule was established due to our belief  
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    Figure 1. System 

 

that humor, in the sense of the TV show 

@midnight from Comedy Central, from which the 

training data was collected, arises mostly from 

new, creative content. 

If the hashtag is unique, the pre-processor will 

try to split it into separate words (this rule applies 

only for hashtags written with camel case).  

After all hashtags have been processed and any 

other irrelevant data removed (e.g links, punctua-

tion), the tweets are lemmatized and each word is 

replaced with the corresponding lemma. This will 

help the learning algorithm find more matches in 

the list of tweets, than it would if word forms were 

used.  

This module uses two language processing li-

braries: Stanford parser (Klein and Manning, 

2003) for tokenization and WordNet
1
 for finding a 

word’s lemma.  

3.2 Naïve Bayes 

Two machine learning algorithms were used to 

extract humor from tweets: a Naïve Bayes and a 

neural network, trained on the data provided by 

SemEval 2017 Task 6 organizers.  

The first solution we adopted was to train bina-

ry Naïve Bayes algorithms on the training data, 

for each category of scores. As features for the 

Naïve Bayes classifiers, we used data from the 

pre-processing module (lemmas) 

However, the classifiers turned out to be rather bi-

ased, since only one most funny tweet (score 2) 

and top ten funniest tweets (score 1) are annotated 

for each set of tweets, and the majority of tweets 

have the score 0.  

 

 

 

                                                      
1 Java WordNet Library from https://sourceforge.net/ 

projects/jwordnet/ 

Architecture 

3.3 Sentiment analyzer 

Trying to improve the results of the classifier, 

we developed a further module responsible for at-

taching a polarity score to each word in the tweet: 

"<word>" : <polarity_score>, 

This simple sentiment analyzer used a manual-

ly acquired dictionary of about 2500 lemmas an-

notated with a sentiment score ranging from -5 

(corresponding to the extreme negative sentiment) 

to +5 (the extreme positive one). The words not 

included in this list were considered neutral and 

received the polarity_score 0. 

Using a python program, the input tweets and 

the dictionary of polarity scores, a list of word 

pairs with corresponding scores was generated. 

"<word1>  <word2>" : <score>, 

The main idea behind this approach is that there 

are contrastive bigrams more frequently indicating 

humor, such as “black milk”. 

3.4 Neural network 

The output of the Naïve Bayes classifier, along 

with the scores generated by the sentiment ana-

lyzer, are inputs for a neural network algorithm. 

Additionally, a manually generated corpus of ce-

lebrity names was also used as input.  

"<name>" : <score>, 

This was motivated b the observation that tweets 

containing celebrity names were considered more 

attractive.  

A neural network with 101 neurons was trained 

to rate the tweets in their final form. This algo-

rithm can be used for a file or only for one tweet. 

Thus, each tweet will have a score from the dif-

ferent machine learning algorithms that represents 

a value on the ‘funny’ scale (greater value = fun-

nier), in the [0,1] interval. Based on these scores, 

the tweets are ordered and the first tweet is award-

ed the final score 2, the next 9 tweets receive 1, 

and the rest a score of 0. 

Input 

tweets 

Pre-

processing 

 

Naïve Bayes 

Sentiment 

analyzer 

Neural 

network 

 

Output 
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4 Evaluation 

The running time for the pre-processing phase is 

less than 2.5 seconds and for the neural network 

and rating algorithms is less than 7.0 seconds per 

file for 101 neurons. The size of the created cor-

puses are: polarity scores dictionary with about 

2500 words, bigram lists with about 2000 word 

pairs, and the celebrities corpus with 50 names. 

The implemented neural network algorithm re-

turns a label for every tweet provided as input. 

Testing the algorithm using training data provided 

(10 fold cross validation), the accuracy of the al-

gorithm proved to be 10286 of 11325 tweets cor-

rectly identified (mostly the ones with a 0 score). 

5 Conclusions 

Classifying and ranking humor is certainly a chal-

lenging task. The major challenge comes from the 

subjective nature of humor and the influence of 

the cultural background on identifying humorous 

situations.  

#Warteam participated in SemEval 2017 Task 6 

with a system combining Naïve Bayes and neural 

networks. This participation was an excellent way 

to consolidate natural language skills, while being 

involved in an international competition.  

For a first try, the results are satisfying, given the 

fact that our algorithm succeeded to identify hu-

mor rules similar to the ones identified by human 

while looking through training data.  

Although our system needs improvements, the 

research interest for this field was open and pro-

gress was done. Taking this into consideration, the 

improvements we consider for our system im-

plies: better scoring algorithm to provide higher 

credibility to either of the two learning algorithms 

we used for each individual file, not at a whole as 

we currently do; improve running time for the 

neural network, enrich the corpora using assisted 

automatic web crawling techniques, but also use 

an API to identify positive and negative senti-

ments.  

But the most challenging research direction yet 

to be investigated is how to incorporate cultural 

background when classifying tweets for their hu-

mor. 
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Abstract 

This paper describes the system developed 

for SemEval 2017 task 6: #HashTagWars -

Learning a Sense of Humor. Learning to 

recognize sense of humor is the important 

task for language understanding applica-

tions. Different set of features based on 

frequency of words, structure of tweets 

and semantics are used in this system to 

identify the presence of humor in tweets. 

Supervised machine learning approaches, 

Multilayer perceptron and Naïve Bayes are 

used to classify the tweets in to three lev-

els of sense of humor. For given Hashtag, 

the system finds the funniest tweet and 

predicts the amount of funniness of all the 

other tweets. In official submitted runs, we 

have achieved 0.506 accuracy using multi-

layer perceptron in subtask-A and 0.938 

distance in subtask-B. Using Naïve bayes 

in subtask-B, the system achieved 0.949 

distance. Apart from official runs, this sys-

tem have scored 0.751 accuracy in sub-

task-A using SVM. 

1 Introduction 

Humor is an integral aspect of human beings that 

requires self-awareness, spontaneity, linguistic 

sophistication and empathy. Generating and rec-

ognizing humor is not an easy task to be carried 

out by machines. Generating and understanding 

humor can be useful in many NLP tasks. 

(Azizinezhad & Hashemi, 2011) have described 

the use of humor as the pedagogical tool for lan-

guage learners, as it helps to keep students inter-

ested and motivated. Moreover, recognizing hu-

mor is also important in sentiment analysis and 

opinion mining because it can be useful to get the 

actual meaning out of figurative sentence. 

Research on modeling humor  such as (Barbieri 

& Saggion, 2014)(Raz, 2012)is focused on classi-

fying humor into binary classes as humor and 

non-humor. In (Reyes, Rosso, & Buscaldi, 2012), 

humor is modeled by a binary classifier as well as 

by a multi-class classifier. It classifies different 

figurative sentences into humor, irony, politics, 

technology and general sentences. But all these 

approaches ignore the continuous nature of hu-

mor. Hence in task 6 of SemEval 2017 HashTag 

Wars: Learning a sense of humor (Potash, 

Romanov, & Rumshisky,2016), humor in tweet 

should be  modeled in its continuous form instead 

of binary. The participating groups are asked to 

predict the amount of funniness of the tweet for 

particular hashtag according to gold labels of 

tweet. Tweets are labeled with 0, 1, or 2. 0 corre-

sponds to tweet not in top 10. 1 corresponds to 

tweet in top 10 but not winning tweet and 2 corre-

sponds to winning tweet. There are two subtasks: 

A) pairwise comparison- a task of predicting 

which tweet is funnier from given two tweets ac-

cording to gold labels of tweets. In given pair of 

tweets, the tweet with higher label is said to be 

funnier. B) Semi-ranking- a task to predict ranking 

of tweets from funniest to least funny for given 

file of tweets for a hashtag. 

The remainder of this paper is structured as fol-

lows: In section 2, description about overall sys-

tem architecture is given. It covers pre-processing 

stage, feature extraction, simple machine learn-

ings approaches for classification and comparator 

for ranking of tweets. Section 3 describes the re-

sults of experiments carried out for subtask A and 

subtask B by our system followed by conclusion 

in section 4. 

2 System Architecture 

This section describes the system architecture 

submitted for subtask A and B of HashTagWars by 

the team SVNIT @ SemEval.  
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As shown in Figure 1, our system uses simple set 

of features adapted from (Barbieri & Saggion, 

2014) and classifier from weka1 toolkit. 

 
Figure 1: System Architecture of 

SVNIT@SemEval for HashTag Wars 

In the next subsections, different stages of our 

system for obtaining results of subtask A and B 

are described. 

2.1 Pre-processing 

In this stage, the systems takes individual tweets 

and perform cleaning steps. It removes the refer-

ences to tweeter username such as @midnight and 

also processes hash tags. It removes the hash tag 

from the given tweet and replaces it with corre-

sponding word. E.g. consider tweet in dataset, 

“See Cats Run. @midnight #CatBooks”. Here 

#CatBooks is replaced with “Cat Books”.  

2.2 Feature Extraction 

After pre-processing of the given tweet, three main 

set of features are extracted to detect the humor lev-

el: 1) Incongruity features; 2) ambiguity features; 

and 3) stylistic features. Incongruity features 

checks incongruous or incompatible words in text. 

E.g. clean desk is a sign of cluttered desk drawer.  

Here we use 3 frequency related features of in-

congruity, and 3 written spoken features. These 

                                                      
1 http://www.cs.waikato.ac.nz/ml/weka/  

features are implemented with the help of ANC2 

(American National Corpus). Ambiguity features 

are important to capture humor in the text as hu-

mor is found in two cases: 1) when text has differ-

ent interpretation and 2) those interpretations are 

opposed to each other. Here 3 ambiguity related 

features are used to capture humor in text, which 

is based on WordNet. Other set of features are 

Stylistic features, which include 16 features relat-

ed to structure of the tweet and 8 features related 

to intensity of adjectives and adverbs. These fea-

tures are used to detect signatures, unexpectedness 

and style which is useful for identifying humor in 

given text (Reyes et al., 2013).  Table 1 shows 

categorization of different features used in this 

system according to incongruity, ambiguity and 

stylistic properties captured by them. These 

groups of features are described below: 

Frequency Related Features: Presence of com-

monly used words and rarest words in tweets are 

useful to detect unexpectedness and incongruity 

(Lucariello, 2007; Venour, 2013). We have used 

ANC frequency corpus for calculating these fea-

tures. There are three features in this group: 1) 

Frequency mean is the arithmetic average of fre-

quencies of all words. 2) Rarest word is the fre-

quency value of the rarest word. 3) Frequency gap 

is the difference between maximum and minimum 

frequency. For the tweet “A flashlight that doubles 

as a flesh light. @midnight #BadInventions ” , 

frequency features can be calculated as in Table 2:  

. For each POS tagged word in tweet written-

spoken frequency, written frequency and spoken 

frequency is calculated respectively as below from 
                                                      
2 The American National Corpus (http://www.anc.org/) is a 

massive electronic collection of American English Words 

(15 million) 
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Feature name No. of 

features 

Type 

Frequency related fea-

tures  

3 

Incongruity     

features Written Spoken Style fea-

tures 

3 

Structure related features 16 
Stylistic 

features 
Intensity related features 8 

Synonym related features 4 

Ambiguity related fea-

tures 

3 Ambiguity     

features 

Table 1:  Categorization of features based on        

incongruity, ambiguity and stylistic properties      

captured by them 

412



 
 
 

 

ANC corpus. These frequencies are used for the 

calculation of different frequency features given 

in Table 2. 

A, a: 490433, 406057, 84376 

flashlight: 38, 34, 4 

that: 98949, 51493, 47456 

doubles: 9, 9, 0 

as: 107588, 98598, 8990 

flesh: 265, 246,19 

light: 952,898, 54 

Written-Spoken style related features: In-

formal spoken English is used in many tweets. 

These features are designed to detect the Incon-

gruity caused by using spoken English in written 

text or vice versa (Barbieri and Horacio, 2014) 

(Barbieri and Horacio, 2016). There are three fea-

tures in this group: 1) Written mean is a mean of 

frequency values in written ANC corpora. 2) Spo-

ken mean is a mean of frequency values in spoken 

ANC corpora. 3) Written Spoken gap is the differ-

ence between written mean and spoken mean. The 

example of these feature is given in Table 2. 

Structure related features: This group of 

feature analyzes the structure of given tweet as in 

(Bertero and Fung, 2016). It uses different struc-

ture related features: 1) length is the number of 

characters in the tweet. 2) Number of words. 3) 

Word length mean is the mean of word length. 4-

7)  Number of verbs, nouns, adjectives and ad-

verbs. 8-11) Ratio of above four to total number 

of words. 6) Number of commas, full stops, el-

lipsis, exclamation marks and quotation marks. 

Intensity related features: We have used 

Potts (2011) intensity scores to calculate the inten-

sity of adjectives and adverbs. This group of fea-

tures includes 1) adjective total is the sum of all 

the adjectives scores. 2) Adjective mean is adjec-

tive total divided by number of adjectives. 3) Ad-

jective max is the maximum adjective score. 4) 

Adjective gap is the difference between adjective 

max and adjective mean. Similarly, 5) Adverb to-

tal 6) adverb mean 7) adverb max and 8) adverb 

gap is calculated. 

Synonyms related features: Some of the hu-

morous tweets convey two messages at the same 

time (Veale 2004). To identify such a tweet we 

used this group of features.  There are four fea-

tures in this group. To calculate these features sys-

tem finds synonyms of all the words using Word-

Net (Miller 1995) and sorts them according to 

their ANC frequencies.  

This group of features includes 1) synonyms 

lower mean is the mean of all the synonyms low-

er. Synonym lower is number of synonyms of 

word whose frequency is lower than the word’s 

frequency. 2) Synonym lower gap is the difference 

between word lowest synonym and synonyms 

lower mean. Word lowest synonym is maximum 

of synonyms lower. 3) Synonyms greater mean is 

the mean of all the synonyms greater. Synonym 

greater is number of synonyms of word whose 

frequency is greater than the word’s frequency. 4) 

Synonym greater gap is the difference between 

word greatest synonym and synonyms greater 

mean. Word greatest synonym is minimum of 

synonyms greater. For the tweet “ Dwarf Cannon. 

Oh shit, that's actually an AWESOME invention!! 

#BadInventions @midnight”, stylistic feature cal-

culation is given in Table 3. 

Feature name Value 

Frequency mean 118896.9 

Rarest word 0.0 

Frequency gap Max. frequency-

Min. frequency = 

490433.0 

Written Frequency mean 96369.0 

Spoken frequency mean 22527.9 

Written-Spoken frequency gap 73841.1 

Table 3:  Example of incongruity features calculation  

Feature name Value 

Length of tweet 77.0 

Number of Words in tweet 13.0 

Words Length Mean 4.92307 

Number of Verbs 2.0 

Number of Nouns 6.0 

Number of Adjectives 2.0 

Number of Adverbs 1.0 

Verb Ratio= Number of  Verbs /            

Total number of words 

0.15384 

Noun Ratio= Number of Nouns /         

Total number of words 

0.46153 

Adjective Ratio= Number of Adjec-

tives / Total number of words 

0.15384 

Adverb Ratio= Number of Adverbs /    

Total number of words 

0.07692 

Number of Commas 1.0 

Number of Fullstops 1.0 

Number of Ellipsis 0.0 

Number of Exclamation 2.0 

Number of Quotation 1.0 

synoLower Mean 3.18181 

synoLower Gap 33.18181 

synoGreater Mean 0.0 

Syno Greater Gap:0.0 0.0 

Table 2:  Example of Stylistic features calculation 
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Ambiguity related features: Three features 

are used to capture the aspect of Ambiguity as in 

(Bertero and Fung, 2016). Ambiguity (Bucaria, 

2004), the disambiguation of words with multiple 

meanings (Bekinschtein et al., 2011), is a crucial 

component of many humor jokes (Miller and 

Gurevych, 2015; Yang et al., 2015). Features in-

cluded are 1) synset mean: it is a mean of the 

number of synsets of each word of the tweet; 2) 

Max synset: it is a greatest number of synsets that 

a single word has. 3) Synset gap is a difference 

between max synset and synset mean. 

2.3 Classifiers and Comparator 

For classification, we have used simple learn-

ing algorithms from Weka, such as implementa-

tion of Naïve Bayes classifier and Multilayer per-

ceptron in official submission of subtask A and 

subtask B. We have also used support vector ma-

chine for subtask A and taken results other than 

official submissions.  

In subtask A, we have used Multilayer percep-

tron (MLP) for pairwise comparison, which ini-

tially classifies both the tweets into different clas-

ses (0, 1, or 2) then comparator compares the class 

label of two tweets. Tweet containing higher class 

label in the pair is considered as funnier tweet. 

Comparator uses all features and compares given 

two tweets for the level of humor. 

In subtask B, using Naïve Bayes classifier 

and multilayer perceptron tweets are classified in-

to classes among 0, 1 and 2 same as done in sub-

task A. Tweets with class 1 label are ranked ac-

cording to their probabilities of class for ranking 

in funnier to least funny tweet.  

3 Experimental Results 

In this section, we describe the experiment carried 

out for the different subtasks and the datasets pro-

vided by the organizers. The dataset is composed 

of 9658 tweets for 86 hashtags roughly collected 

over seven months of period. Table 4 represents 

the comparison of result of our system with other 

systems in subtask A and subtask B as per the re-

sults declared on SemEval portal. Scores with 

bold are best scores of respective system in that 

subtask. 

Our system has scored average in subtask A us-

ing Multilayer perceptron classifier with 0.506 ac-

curacy in official submitted runs. In the same sub-

task our system scored 0.751 accuracy, when 

evaluated with given evaluation script, which is 

higher than the highest scoring system. In subtask 

B, our system have ranked the tweets with 0.938 

distance using multilayer perceptron and with 

0.949 distance using Naïve Bayes classifier.  This 

edit distance should be as low as possible because 

it evaluate the system according to how many 

moves for each tweet need to be occur for placing 

it at right place.  

4 Conclusion 

This paper describes the participation of SVNIT at 

SemEval 2017 task 6 Hashtag wars: learning a 

sense of humor. We have participated with the 

system implemented using simplest machine 

learning algorithms and set of features for humor 

recognition. Overall our approach using described 

set of features looks promising but still there is 

wide room for improvement. We want to improve 

our machine learning part and set of features by 

doing error analysis on the achieved results. 
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Abstract

This paper describes the Duluth systems

that participated in SemEval-2017 Task 7

: Detection and Interpretation of English

Puns. The Duluth systems participated in

all three subtasks, and relied on methods

that included word sense disambiguation

and measures of semantic relatedness.

1 Introduction

Puns represent a broad class of humorous word

play. This paper focuses on two types of puns,

homographic and heterographic.

A homographic pun is characterized by an os-

cillation between two senses of a single word, each

of which leads to a different but valid interpreta-

tion:

I’d like to tell you a chemistry joke but

I’m afraid of your reaction.

Here the oscillation is between two senses of

reaction. The first that comes to mind is perhaps

that of a person revealing their true feelings about

something (how they react), but then the relation-

ship to chemistry emerges and the reader realizes

that reaction can also mean the chemical sense,

where substances change into others.

Homographic puns can also be created via com-

pounding:

He had a collection of candy that was in

mint condition.

The pun relies on the oscillation between the fla-

vor mint and the compound mint condition, where

candy interacts with mint and mint condition inter-

acts with collection.

A heterographic pun relies on a different kind of

oscillation, that is between two words that nearly

sound alike, rhyme, or are nearly spelled the same.

The best angle from which to solve a

problem is the try angle.

Here the oscillation is between try angle and tri-

angle, where try suggests that the best way to solve

a problem is to try harder, and triangle is (perhaps)

the best kind of angle.

This example illustrates one of the main chal-

lenges of heterographic puns, and that is identify-

ing multi word expressions that are used as a kind

of compound, but without being a standard or typ-

ical compound (like the very non-standard try an-

gle). One reading treats try angle as a kind of mis-

spelled version of triangle while the other treats

them as two distinct words (try and angle). There

is also a kind of oscillation between senses here,

since try angle can waver back and forth between

the geometric sense and the one of making effort.

During our informal study of both hetero-

graphic and homographic puns, we observed a

fairly clear pattern where a punned word will oc-

cur towards the end of a sentence and has a sense

that is semantically related to an earlier word, and

another sense that fits the immediate context in

which it occurs. It often seemed that the sense that

fits the immediate context is a more conventional

usage (as in afraid of your reaction) and the more

amusing sense is that which connects to an earlier

word via some type of semantic relation (chemi-

cal reaction). This is more complicated in the case

of heterographic puns since the punned word can

rely on pronunciation or spelling to create the ef-

fect (i.e., try angle versus triangle). In this work

we focused on exploiting these long distance se-

mantic relations, although in future work we plan

to consider the use of language models to identify

more conventional usages.

We used two versions of the WordNet SenseRe-

late word sense disambiguation algorithm1 : Tar-

1http://senserelate.sourceforge.net
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getWord (Patwardhan et al., 2005) and AllWords

(Pedersen and Kolhatkar, 2009). Both have the

goal of finding the assignment of senses in a con-

text that maximizes their overall semantic related-

ness (Patwardhan et al., 2003) according to mea-

sures in WordNet::Similarity2 (Pedersen et al.,

2004). We relied on the Extended Gloss

Overlaps measure (lesk) (Banerjee and Pedersen,

2003) and the Gloss vector measure (vector)

(Patwardhan and Pedersen, 2006).

The intuition behind a Lesk measure is that re-

lated words will be defined using some of the same

words, and that recognizing these overlaps can

serve as a means of identifying relationships be-

tween words (Lesk, 1986). The Extended Gloss

overlap measure (hereafter simply lesk) extends

this idea by considering not only the definitions

of the words themselves, but also concatenates the

definitions of words that are directly related via

hypernym, hyponym, and other relations accord-

ing to WordNet.

The Gloss Vector measure (hereafter simply

vector) extends this idea by representing each

word in a concatenated definition with a vector of

co-occurring words, and then creating a represen-

tation of this definition by averaging together all of

these vectors. The relatedness between two word

senses can then be measured by finding the cosine

between their respective vectors.

2 Systems

The evaluation data for each subtask was individ-

ual sentences that are independent of each other.

All sentences were tokenized so that each al-

phanumeric string was separated from any adja-

cent punctuation, and all text was converted to

lowercase. Multi-word expressions (compounds)

found in WordNet were identified.

SemEval–2017 Task 7 (Miller et al., 2017) fo-

cused on pun identification, and was divided into

three subtasks.

2.1 Subtask 1

The problem in Subtask 1 was to identify if a sen-

tence contains a pun (or not). We relied on the

premise that a sentence will have one unambigu-

ous assignment of senses, and that this should be

true even as the parameters of a word sense disam-

biguation algorithm are varied. Thus, if a sentence

has multiple possible assignments of senses based

2http://wn-similarity.sourceforge.net

on the results of different runs of a word sense dis-

ambiguation algorithm, then there is a possibility

that a pun exists. To investigate this hypothesis

we ran the WordNet::SenseRelate::AllWords algo-

rithm using four different configurations, and then

compared the four sense tagged sentences with

each other. If there were more than two differ-

ences in the sense assignments that resulted from

these different runs, then the sentence is presumed

to contain a pun.

WordNet::SenseRelate::AllWords takes mea-

sures of semantic relatedness between all the pair-

wise combinations of words in a sentence that oc-

cur within a certain number of positions of each

other (the window size), and assigns the sense

to each content word that results in the maxi-

mum relatedness among the words in that win-

dow. The assumption that underlies this method

is that words in a window will be semantically re-

lated, at least to an extent, so when choices among

word senses are made, those that are most related

to other words in the window will be selected.

The four configurations include two where the

window of context is the entire sentence (a wide

window) and another two where the window of

context is only one word to the left and one

word to the right (a narrow window). In ad-

dition these two configurations were carried out

with and without compounding of words being

performed prior to disambiguation. In all four

configurations the Gloss Vector measure Word-

Net::Similarity::vector was used as the measure

of semantic relatedness. If more than two sense

changes result from these different configurations,

then we say that a pun has occurred in the sen-

tence.

2.2 Subtask 2

In Subtask 2 the evaluation data consists of the in-

stances from Subtask 1 that contain puns. The task

is to identify the punning word.

We took two approaches to this subtask, how-

ever both were informed by our observation that

punned words often occur later in sentences. The

first (run 1) was to rely on our word sense disam-

biguation results from Subtask 1 and identify the

last word which changed senses between different

runs of the WordNet::SenseRelate::AllWords dis-

ambiguation algorithm. We relied on two of the

four configurations used in Subtask 1. We used the

narrow and wide contexts from Subtask 1 without
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finding compounds. We realized that this might

cause us to miss some cases where a pun was

created with a compound, but our intuition was

that the more common cases (especially for homo-

graphic puns) would be those without compounds.

Our second approach (run 2) was a simple base-

line where the last content word in the sentence

was simply assumed to be the punned word.

2.3 Subtask 3

The evaluation data for Subtask 3 includes hetero-

graphic and homographic instances from Subtask

2 where the word being punned has been identi-

fied. The task is to determine which two senses of

the punned word are creating the pun.

We used the word sense disambiguation algo-

rithm WordNet::SenseRelate::TargetWord, which

assigns a sense to a single word in context

(whereas AllWords assigns a sense to every word

in a context). However, both TargetWord and All-

Words have the same underlying premise, and that

is that words in a sentence should be assigned the

senses that are most related to the senses of other

words in that sentence.

We tried various combinations of TargetWord

configurations, where each would produce their

own verdict on the sense of the punned word.

We took the two most frequent senses assigned

by these variations and used them as the sense of

the punned word. Note that for the heterographic

puns there was an additional step, where alterna-

tive spellings of the target word were included in

the disambiguation algorithm. For example :

The dentist had a bad day at the orifice.

Orifice is already identified as the punned word,

and one of the intended senses would be that of an

opening, but the other is the somewhat less obvi-

ous spelling variation office, as in a bad day at the

office.

For the first variation (run 1) we used both the

local and global options from TargetWord. The

local option measures the semantic relatedness of

the target word with all of the other members of

the window of context, whereas the global op-

tion measures the relatedness among all of the

words in the window of context (not just the tar-

get word). We also varied whether the lesk or vec-

tor measure was used, if a narrow or wide win-

dow was used, and if compounds were identified.

We took all possible combinations of these varia-

tions, which resulted in 16 possible configurations.

To this we added a WordNet sense one baseline

with and without finding compounds, and a ran-

domly assigned sense baseline. Thus, there were

19 variations in our run 1 ensemble. We took this

approach with both the homographic and hetero-

graphic puns, although for the heterographic puns

we also replaced the target word with all of the

words known to WordNet that differed by one edit

distance. The premise of this was to detect mi-

nor misspellings that might enable a heterographic

pun.

For run 2 we only used the local window of

context with WordNet::SenseRelate::TargetWord,

but added to lesk and vector the Resnik measure

(res) and the shortest path (path) measure. We car-

ried out each of these with and without identifying

compounds, which gives us a total of eight differ-

ent combinations. We also tried a much more am-

bitious substitution method for the heterographic

puns, where we queried the Datamuse API in or-

der to find words that were rhymes, near rhymes,

homonyms, spelled like, sound like, related, and

means like words for the target word. This created

a large set of candidate target words, and all of

these were disambiguated to find out which sense

of which target word was most related to the sur-

rounding context.

3 Results

We review our results in the three subtasks in this

section. Table 1 refers to homographic results as

hom and heterographic as het. Thus the first run

of the Duluth systems on homographic data is de-

noted as Duluth-hom1, and the first run on het-

erographic data is Duluth-het1. The highest rank-

ing system is indicated via High-hom and High-

het. P and R as column headers stand for preci-

sion and recall, A stands for accuracy, and C is for

coverage. Rank x/y indicates that this system was

ranked x of y participating systems.

3.1 Subtask 1

Puns were found in 71% (1,271) of the hetero-

graphic and 71% of the homographic instances

(1,607). This suggests this subtask would have a

relatively high baseline performance, for example

if a system simply predicted that every sentence

contained a pun. Given this we do not want to

make too strong a claim about our approach, but

it does seem that focusing on sentences that have

multiple possible (and valid) sense assignments
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Table 1: Subtask 1, 2, 3 results

Subtask 1 P R A F1 rank

High-hom .97 .80 .84 .87 1 / 9

Duluth-hom1 .87 .78 .74 .83 2 / 9

High-het .87 .82 .78 .84 1 / 7

Duluth-het1 .87 .74 .69 .80 3 / 7

Subtask 2 P R C F1 rank

High-hom .66 .66 1.0 .66 1 / 15

Duluth-hom1 .37 .36 .99 .37 7 / 15

Duluth-hom2 .44 .44 1.0 .44 6 / 15

High-het .80 .80 1.0 .80 1 / 11

Duluth-het1 .18 .18 .99 .18 11 / 11

Duluth-het2 .53 .53 1.0 .53 4 / 11

Subtask 3 P R C F1 rank

High-hom .17 .14 .86 .16 1 / 8

Duluth-hom2 .17 .14 .86 .16 1 / 8

Duluth-hom1 .15 .15 1.0 .15 3 / 8

High-het .08 .07 .83 .08 1 / 6

Duluth-het1 .03 .03 1.0 .03 3 / 6

Duluth-het2 .001 .001 .98 .001 6 / 6

is promising for pun identification. Our method

tended to over-predict puns, reporting that a pun

occurred in 84% (1,489 of 1,780 instances) of the

heterographic data, and 80% (1,791 of 2,250 in-

stances) of the homographic.

3.2 Subtask 2

Subtask 2 consists of all the instances from Sub-

task 1 that included a pun. This leads to 1,489

heterographic puns and 1,791 homographic.

We see that our simple baseline method of

choosing the last content word as the punned word

(run 2) significantly outperformed our more elab-

orate method (run 1) of identifying which word

experienced more changes of senses across mul-

tiple variations of the disambiguation algorithm.

We can also see that run 1 did not fare very well

with heterographic puns. In general we believe

the difficulty that run 1 experienced was due to

the overall noisiness that is characteristic of word

sense disambiguation algorithms.

3.3 Subtask 3

Subtask 3 consists of 1,298 homograph instances

and 1,098 heterographic instances. We see that

for homographs our method fared very well, and

was the top ranked of participating systems. On

the other hand our heterographic approach was

not terribly successful. We believe that the idea

of generating alternative target words for hetero-

graphic puns is necessary, since without this it

would be impossible to identify one of the senses

of the punned word. However, our run 1 ap-

proach of simply using target word variations with

an edit distance of one did not capture the vari-

ations present in heterographic puns (e.g., orifice

and office have an edit distance of 2). Our run 2

approach of finding many different target words

via the Datamuse API resulted in an overwhelm-

ing number of possibilities where the intended tar-

get word was very difficult to identify.

4 Discussion and Future Work

One limitation of our approach is the uncertain

level of accuracy of word sense disambiguation al-

gorithms, which vary from word to word and do-

main to domain. Finding multiple possible senses

for a single word may signal a pun or expose the

limits of a particular WSD algorithm.

In addition, the contexts used in this evalua-

tion were all single sentences, and were relatively

short. Whether or not having more context avail-

able would help or hinder these approaches is an

interesting question.

Heterographic puns posed a host of challenges,

in particular mapping clever near spellings and

near pronunciations into the intended form (e.g.,

try angle as triangle). Simply trying to assign

senses to try angle will obviously miss the pun,

and so the ability to map similar sounding phrases

to the intended word is a capability that our sys-

tems were not terribly successful with. However,

we were better able to identify compounds in ho-

mographic puns (e.g., mint condition) since those

were written literally and could be found (if in

WordNet) via a simple subsequence search.

While our reliance on word sense disambigua-

tion and semantic relatedness served us well for

homographic puns, it was clearly not sufficient

for heterographic. Moving forward it seems im-

portant to have a reliable mechanism to map the

spelling and pronunciation variations that charac-

terize heterographic puns to their intended forms.

While dictionaries of rhyming and sound-alike

words are certainly helpful, they typically intro-

duce too many possibilities from which to make a

reliable selection. Language modeling seems like

a promising way to winnow that space, so that we

can get from a try angle to a triangle.
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Abstract

The paper presents a system for locat-
ing a pun word. The developed method
calculates a score for each word in a
pun, using a number of components, in-
cluding its Inverse Document Frequency
(IDF), Normalized Pointwise Mutual In-
formation (NPMI) with other words in the
pun text, its position in the text, part-of-
speech and some syntactic features. The
method achieved the best performance in
the Heterographic category and the second
best in the Homographic. Further analysis
showed that IDF is the most useful charac-
teristic, whereas the count of words with
which the given word has high NPMI has
a negative effect on performance.

1 Introduction

The pun is defined as “A joke exploiting the dif-
ferent possible meanings of a word or the fact that
there are words which sound alike but have dif-
ferent meanings” (Oxford University Press, 2017).
When a pun is a spoken utterance, two types of
puns are commonly distinguished: homophonic
puns, which exploit different meanings of the
same word, and heterophonic puns, in which one
or more words have similar but not identical pro-
nunciations to some other word or phrase that
is alluded to in the pun. The SemEval Task 7
(Miller et al., 2017) focused on the identification
of puns as written texts, rather than spoken ut-
terances, and hence distinguished between homo-
graphic and heterographic puns.

We participated in Subtask 2: Pun location,
which required participating systems to identify
which word is the pun. Only the cases which con-
tain exactly one pun word were given to the partic-
ipants in each of the two categories: homographic

and heterographic puns.
Our approach to identifying the pun word is to

rank words in the pun text by a score calculated as
the sum of values of eleven features. The feature
values are calculated using a combination of cor-
pus statistics and rule-based methods. The word
with the highest score is considered to be the pun
word. The method is described in detail in Sec-
tion 2. In developing the word ranking method,
we were guided by a number of intuitions, out-
lined below.

The punchline in a pun or a joke is almost al-
ways close to the end, since it is at the end that the
reader is expected to uncover the second hidden
(non-obvious) meaning of the pun. This intuition
is consistent with Ruskin’s Script-based Semantic
Theory of humour (Ruskin, 1985). The system
therefore only assigns scores to words located in
the second half of the pun text.

What makes a homographic pun humorous is
the simultaneous perception by a reader of two
conflicting meanings of the same pun word. The
pun author can achieve this by using words that
are associated with (or evoke) different senses of
the pun word. For example in “Why don’t pro-
grammers like nature? It has too many bugs” The
word “programmers” is associated with one sense
of “bugs”, but the word “nature” is associated with
another sense. We operationalize this intuition
by calculating Normalized Pointwise Mutual In-
formation (NPMI) between pairs of words to find
words that are semantically associated with each
other.

Heterographic puns often contain one or more
words that are associated with either the pun word
itself or its similarly sounding word. In the case
of “What did the grape say when it got stepped
on? Nothing - but it let out a little whine.” The
pun word “whine” has a similarly sounding word
“wine”, which is associated with the preceding
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word “grape”. To operationalize this intuition,
we used a dictionary of similarly sounding words.
If for a given word in the pun text there exists
a similarly sounding word (or words), we calcu-
late NPMI between it and each other word in the
text. We also calculate NPMI between the origi-
nal word as it appears in the pun and each other
word. We hypothesize that if a similarly sounding
word is more strongly associated (i.e. has higher
NPMI) with other words in the text, compared to
the original word, it is likely to be the pun word,
and receives an additional weight.

The pun word has to stand out from the rest of
the text and attract the reader’s attention, as it is
the realization of the joke’s punchline. One possi-
ble reason why it stands out is because it is a more
rare word compared to the surrounding words. In-
verse Document Frequency (IDF) is a measure of
how rare the word is in a corpus. The less fre-
quent the word is in a corpus, the higher is its IDF.
We hypothesize that a word, which has the highest
IDF in the second half of the text is more likely to
be the pun word than words with lower IDFs. We
thus assign an additional weight to such a word.
Furthermore, only nouns, adjectives, adverbs and
verbs are assigned scores by our system.

Sometimes, a pun word is a made up word,
e.g. “velcrows” in “There is a special species of
bird that is really good at holding stuff together.
They are called velcrows.” We assign an addi-
tional weight to words that have zero frequency
in a large corpus.

A number of intuitions were guided by the syn-
tactic structure of the text. Thus, we hypothesize
that if the pun text consists of two sentences, the
pun word is located in the second sentence, as it
is most likely to contain the punchline. Therefore,
all words in the second sentence receive an addi-
tional weight. In a similar vein, if the text contains
a comma or the words “then” or “but”, all words
following them receive additional weights. These
clues can signal a pause, a shift in the narrative or
a juxtaposition, which all precede the punchline.

2 Methodology

Each test case is tokenized and POS-tagged us-
ing Stanford CoreNLP toolkit (Manning et al.,
2014). For each word w that is either a noun,
an adjective, an adverb or a verb (henceforth re-
ferred to as content words), the IDF is calculated
as IDFw = log(N/nw), where nw is the number

of documents in the corpus containing w, and N is
the total number of documents in the corpus. For
calculating IDF we used ClueWeb09 TREC Cat-
egory B corpus (Language Technologies Institute,
2009), consisting of 50 million English webpages.
To obtain term frequencies, the corpus was in-
dexed and queried using the Wumpus Search En-
gine (Buettcher, 2007).

For each content word w, the system also cal-
culates pairwise Normalized Pointwise Mutual In-
formation (NPMI) (Bouma, 2009) with each other
content word present in the text.

NPMI(x, y) =
(

ln
p(x, y)

p(x)p(y)

)/
− ln p(x, y)

(1)

where p(x, y) is calculated as f(x, y)/N , in
which f(x, y) is the number of times y occurs
within the span of s words before or after x in
the corpus, and N is the number of word occur-
rences (tokens) in the corpus; p(x) = f(x)/N ;
p(y) = f(y)/N . The co-occurrence span size s
was set in our system to 20.

In some puns, the pun word may be hyphen-
ated, where the string after the hyphen can be
associated with other content words in the sen-
tence, for example, in “The one who invented the
door knocker got a No-bell prize.” “bell” is as-
sociated with “knocker”. To account for these
cases, we check if a word has a hyphen, ex-
tract its second half, lemmatize it, and calculate
its NPMI with all other content words present
in the text. Given a word pair (x, y), where x
is hyphenated and z is the string after the hy-
phen, calculate NPMI(x, y) and NPMI(z, y).
If NPMI(z, y) > NPMI(x, y), then assign the
NPMI(z, y) value to NPMI(x, y). We did not
experiment with calculating NPMI for the string
before the hyphen.

In heterographic puns, a word that is spelled dif-
ferently, but has similar pronunciation to a word
present in the pun, may be associated with other
words in the text. A list of 2167 similarly sound-
ing words was compiled from two publicly avail-
able resources 1,2. For each content word, the sys-
tem checks if it has at least one similarly sound-
ing word in the list, and if so, creates a set of

1http://www.zyvra.org/lafarr/hom.htm
2http://www.singularis.ltd.uk/bifroest/misc/homophones-

list.html
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f1 Number of content words in the text of the pun that have a lower NPMI with the word x than
with any of its similarly sounding words.

f2 Number of content words in the text of the pun that have a lower NPMI with the word x than
with its substring following the hyphen (for hyphenated words).

f3 1 - word x has zero frequency in the ClueWeb09 corpus.
f4 1 - word x has a similarly sounding word.
f5 Number of content words y for which NPMI(x, y) > m.
f6 1 - word x is located in the third quarter of the text; 2 - in the fourth quarter.
f7 2 - word x is located in the second sentence.
f8 1- word x is located after the earliest occurrence of a comma.
f9 1- word x is located after the earliest occurrence of “then”.
f10 1- word x is located after the earliest occurrence of “but”.
f11 1 - word x has the highest IDF in the second half of the text.

Table 1: Components of the score calculated for every content word x in the text of the pun.

Method Precision (rank) Recall (rank) F1 score (rank) Coverage (rank)
Heterographic 0.7973 (1) 0.7954 (1) 0.7964 (1) 0.9976(2)
Homographic (submission 1) 0.6526 (2) 0.6521 (2) 0.6523 (2) 0.9994 (2)
Homographic (submission 2) 0.6519 0.6503 0.6511 0.9975

Table 2: Submission results

similarly sounding words H , including the orig-
inal word. For each h ∈ H it calculates its NPMI
with each other content word in the text. Given a
word pair (x, y), where x ∈ H , NPMI(x, y) =
max
h∈H

NPMI(h, y). For each content word x in

the pun text the system counts the number of con-
tent words y for which NPMI(x, y) > m (fea-
ture f5 in Table 1), where m is set to 0.3. The
system also counts the number of content words
y, which have lower NPMI with the original word
x, than with any of its similarly sounding words
(feature f1).

For every word in the second half of the text,
the score is calculated as the sum of values of the
features presented in Table 1. The word that has
the highest score is selected to be the pun word. If
there are ties, the word closer to the end is selected.

3 Results

We made one submission in the Heterographic cat-
egory and two in the Homographic category (Ta-
ble 2). Our submission in the Heterographic cat-
egory achieved the best result among all submis-
sions, exceeding the second-best one in F1 score
by 16%. Our best submission in the Homographic
category achieved the second best result, with F1
being only 0.02% lower than that of the best sub-
mission. Our submission in the Heterographic cat-
egory and Submission 1 in the Homographic cate-
gory use all features listed in Table 1. The system
used to generate submission 2 in the Homographic
category does not use the list of similarly sounding
words, hence does not use features f1 and f4.

4 Extensions

After the submission, we noticed that puns may
consist of more than two sentences, therefore, we
modified feature f7 to assign one point to the last
sentence, instead of the second. This resulted
in slight improvement (“Submitted (corrected)” in
Table 3).

Following the submission we developed another
component (f12) to the system presented in Sec-
tion 2. We were guided by the intuition that in het-
erographic puns, word x may have the strongest
association with word y, however its similarly
sounding word h may have the strongest associ-
ation with a different word z, but the two words
z and y are not associated. For example, in “A
chicken farmer’s favorite car is a coupe.” the
word “coupe” (x) is strongly associated with “car”
(z), however its similarly sounding word “coop”
is strongly associated with “chicken” (y). The
words “chicken” and “car” however do not have
a strong association. We operationalize it as fol-
lows. When a word x has a similarly sound-
ing word h, the system finds a word z among all
content words W in text with max

z∈W
NPMI(h, z).

Similarly, for the word x the system finds a
word y among all content words W in text with
max
y∈W

NPMI(x, y). If NPMI(z, y) < t the sys-

tem adds one point to the score of the word x. Dif-
ferent t values (0.1, 0.2, 0.3, 0.4, 0.5) were evalu-
ated, with t = 0.2 showing the best results. The
addition of this new feature (row “f12 added” in
Table 3 showed some improvement.
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Method Effect on performance Precision Recall F1 score Coverage
Submitted (corrected) 0.7981 0.7962 0.7971 0.9976
f12 added + 0.8052 0.8033 0.8043 0.9976
f13 added + 0.8368 0.8348 0.8358 0.9976
f1 removed + 0.7744 0.7726 0.7735 0.9976
f2 removed 0 0.7981 0.7962 0.7971 0.9976
f3 removed 0 0.7981 0.7962 0.7971 0.9976
f4 removed + 0.7926 0.7907 0.7916 0.9976
f5 removed – 0.8407 0.8387 0.8397 0.9976
f6 removed + 0.7926 0.7907 0.7916 0.9976
f7 removed + 0.795 0.7931 0.794 0.9976
f8 removed + 0.7926 0.7907 0.7916 0.9976
f9 removed – 0.7989 0.797 0.7979 0.9976
f10 removed + 0.7965 0.7946 0.7955 0.9976
f11 removed + 0.6025 0.6011 0.6018 0.9976
f1+f4+f6+f7+f8+f10+f11+f12+f13 0.8502 0.8482 0.8492 0.9976

Table 3: Post-submission results with added/removed features (Heterographic puns)

Next, we evaluated component f13, which adds
one point to the word’s score if its IDF is above
threshold i. The i values evaluated were 2, 3, 4 and
5, with i = 3 showing the best results. Addition
of this feature (“f13 added” in Table 3) led to an
improvement of 4.9% over the submitted result.

In order to determine which features contributed
positively or negatively to performance, we re-
moved each component one by one (Table 3). The
second column in Table 3 shows the effect that the
given feature has on the overall performance, e.g.
if the removal of the feature causes drop in per-
formance, the feature has a positive effect, indi-
cated by a “+” sign. The component that has the
strongest positive contribution to the system’s per-
formance is f11, which assigns one point to the
word with the highest IDF in the second half of the
text. The component that has the strongest nega-
tive impact is f5 (number of content words with
which the given word has high NPMI). The num-
ber of words in the sentence that are more strongly
related to the word’s similarly sounding word (f1)
is also a useful component. Based on this analy-
sis, we modified the system to use only the pos-
itively contributing features (last row in Table 3,
which outperformed our submitted method in all
measures, achieving F1 score of 0.8492 (6.6% im-
provement).

5 Conclusions and future work

The paper described a method for identifying the
location of a pun word using corpus-based char-
acteristics of a word, such as its IDF and NPMI
with other words in the pun text, as well its posi-
tion in the text, part-of-speech and some syntactic
features, such as presence of comma and words

“but” and “then” prior to the given word’s occur-
rence. The method achieved the best performance
in the Heterographic category and the second best
in the Homographic. Further analysis showed that
IDF is the most useful characteristic, whereas the
count of words with which the given word has high
NPMI has a negative effect on performance.

Possible future improvements to the presented
system are proposed below. In the Homographic
pun category, some puns make use of idiomatic
expressions. The joke exploits the dual interpre-
tation of an idiomatic expression as, on the one
hand, a combination of the literal meanings of its
words, and on the other hand, its idiomatic mean-
ing. For example, in “Luggage salespeople have
to make a good case for you to buy.” it would be
useful if the system recognized the phrase “make
a good case” as an idiomatic expression.

We used a rather limited list of similarly sound-
ing words. A better way to find similarly sounding
words and phrases would be useful, especially in
those cases where a combination of words is pro-
nounced similarly to one word, e.g. “There was a
big paddle sale at the boat store. It was quite an
oar deal.”

Currently, the feature weights are selected em-
pirically. A possible avenue for future work is to
develop an automatic method for selecting the best
feature weights.
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Abstract

The article describes a model of automatic
interpretation of English puns, based on
Roget’s Thesaurus, and its implementa-
tion, PunFields. In a pun, the algorithm
discovers two groups of words that belong
to two main semantic fields. The fields be-
come a semantic vector based on which an
SVM classifier learns to recognize puns. A
rule-based model is then applied for recog-
nition of intentionally ambiguous (target)
words and their definitions. In SemEval
Task 7 PunFields shows a considerably
good result in pun classification, but re-
quires improvement in searching for the
target word and its definition.

1 Introduction

The following terminology is basic in our research
of puns. A pun is a) a short humorous genre
where a word or phrase is intentionally used in two
meanings, b) a means of expression the essence
of which is to use a word or phrase so that in
the given context the word or phrase can be un-
derstood in two meanings simultaneously. A tar-
get word is a word that appears in two meanings.
A homographic pun is a pun that “exploits dis-
tinct meanings of the same written word” (Miller
and Gurevych, 2015) (these can be meanings of
a polysemantic word or homonyms, including
homonymic word forms). A heterographic pun
is a pun in which the target word resembles an-
other word or phrase in spelling; we will call the
latter the second target word. Consider the fol-
lowing example (the Banker joke):

“I used to be a banker, but I lost inter-
est.”

The Banker joke is a homographic pun; interest
is the target word. Unlike it, the Church joke be-

low is a heterographic pun; propane is the target
word, profane is the second target word:

“When the church bought gas for their
annual barbecue, proceeds went from
the sacred to the propane.”

Our model of automatic pun analysis is based
on the following premise: in a pun, there are two
groups of words and their meanings that indicate
the two meanings of the target word. These groups
can overlap, i.e. contain the same polysemantic
words used in different meanings.

In the Banker joke, words and collocations
banker, lost interest point at the professional sta-
tus of the narrator and his/her career failure. At
the same time, used to, lost interest tell a story of
losing emotional attachment to the profession: the
narrator became disinterested. The algorithm of
pun recognition that we suggest discovers these
two groups of words based on common semes1

(Subtask 1), finds the words that belong to the both
groups, and chooses the target word (Subtask 2),
and, based on the common semes, picks up the
best suitable meaning which the target word ex-
ploits (Subtask 3). In case of heterographic puns,
in Subtask 2, the algorithm looks for the word or
phrase that appears in one group and not in the
other.

2 Subtask 1: Mining Semantic Fields

We will call a semantic field a group of words and
collocations that share a common seme. In tax-
onomies like WordNet (Kilgarriff and Fellbaum,
2000) and Roget’s Thesaurus (Roget, 2004) (fur-
ther referred to as Thesaurus) semes appear as hi-
erarchies of word meanings. Top-levels attract

1Bits of meaning. Semes are some parts of meaning
present both in the word and in its hypernym. Moving up the
taxonomy like Thesaurus or WordNet, hypernyms become
more general, and the seme connecting them to the word be-
comes more general, too.
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words with more general meanings (hypernyms).
For example, Thesaurus has six top-level Classes
that divide into Divisions that divide into Sections
and so on, down to the fifth lowest level2. Ap-
plying such dictionaries to get semantic fields (the
mentioned common groups of words) in a pun is,
therefore, the task of finding two most general
hypernyms in WordNet or two relevant Classes
among the six Classes in Thesaurus. We chose
Thesaurus, as its structure is only five levels deep,
Classes labels are not lemmas themselves, but ar-
bitrary names (we used numbers instead). Also, it
allows parsing on a certain level and insert correc-
tions (adding lemmas, merging subsections, etc.3).
After some experimentation, instead of Classes,
we chose to search for relevant Sections that are
34 subdivisions of the six Classes4.

After normalization (including change to low-
ercase; part-of-speech tagging, tokenization, and
lemmatization with NLTK tools (Bird et al.,
2009); collocation extraction5; stop-words re-
moval6), the algorithm collects Section numbers
for every word and collocation and removes dupli-
cates (in Thesaurus, homonyms proper can belong
to different subdivisions in the same or different
Sections). Table 1 shows what Sections words of
the Banker joke belong to.

Then, the semantic vector of a pun is calculated.
Every pun p is a vector in a 34-dimensional space:

pi = pi(s1i, s2i, ..., s34i)
2The hierarchical structure of WordNet is not so trans-

parent. According to WordNet documentation, it is
rather a union of four nets: nouns, verbs, adjectives,
and adverbs. Their grouping depends on the seman-
tic mark-up. Thus, it resembles a folksonomy and
its structure changes implicitly. At the same time,
the documentation mentions “forty-five lexicographer files
based on syntactic category and logical groupings” (word-
net.princeton.edu/wordnet/man/lexnames.5WN.html) which
can count as “owner-prescribed” structural subdivisions. Hy-
pernymic relations are more specific among verbs and nouns,
whereas adjectives often relate antonymically. Also, all
WordNet nouns finally relate to the synset “entity”.

3We edited Thesaurus by adding words that were absent
in it. If a word in a pun was missing in Thesaurus, the sys-
tem checked up for its hypernyms in Wordnet and added the
word to those Sections in Thesaurus that contained the hy-
pernyms. We merged some small closely-related Sections, as
well. Originally, there used to be 39 Sections. Editing was
done after experimenting with training data.

4Sections are not always immediate subdivisions of a
Class. Some Sections are grouped in Divisions.

5To extract collocations and search for them in Thesaurus,
we applied our own procedure based on the part-of-speech
analysis.

6After lemmatization, all words are analyzed in colloca-
tions, but only nouns, adjectives, and verbs compose a list of
separate words.

The value of every element ski equals the number
of words and collocations in a pun that belong to a
Section Sk. The algorithm passes from a Section
to a Section each time checking every word and
collocation wji in the bunch of extracted items li.
If a word or collocation belongs to a Section, the
value of ski increases by 1:

ski =
li∑
j=1

{1|wji ∈ Sk} ,

k = 1, 2, ..., 34, i = 1, 2, 3...

For example, the semantic vector of the Banker
joke looks as follows: see Table 2.

To test the algorithm, we, first, collected 2,484
puns from different Internet resources and, sec-
ond, built a corpus of 2,484 random sentences
of length 5 to 25 words from different NLTK
corpora (Bird et al., 2009) plus several hundred
aphorisms and proverbs from different Internet
sites. We shuffled and split the sentences into two
equal groups, the first two forming a training set
and the other two a test set. The classification
was conducted, using different Scikit-learn algo-
rithms (Pedregosa et al., 2011). We also singled
out 191 homographic puns and 198 heterographic
puns and tested them against the same number of
random sentences.

In all the preliminary tests, the Scikit-learn al-
gorithm of SVM with the Radial Basis Function
(RBF) kernel produced the highest average F-
measure results (f̄ = fpuns+frandom

2 ) for the class
of puns. Table 3 illustrates results of different al-
gorithms. The results were higher for the split
selection, reaching 0.79 (homographic) and 0.78
(heterographic) scores of F-measure. The com-
mon selection got the maximum of 0.7 for aver-
age F-measure in several tests. We are inclined to
think that higher results of split selection may be
due to a larger training set.

3 Subtask 2: Hitting the Target Word

We suggest that, in a homographic pun, the target
word is a word that immediately belongs to two
semantic fields; in a heterographic pun, the target
word belongs to at least one discovered semantic
field and does not belong to the other. However, in
reality, words in a sentence tend to belong to too
many fields, and they create noise in the search.
To reduce influence of noisy fields, we included
such non-semantic features in the model as the
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Word Section No., Section name in Thesaurus
I -
use 24, Volition In General

30, Possessive Relations
to -
be 0, Existence

19, Results Of Reasoning
a -
banker 31, Affections In General

30, Possessive Relations
but -
lose 21, Nature Of Ideas Communicated

26, Results Of Voluntary Action
30, Possessive Relations
19, Results Of Reasoning

interest 30, Possessive Relations
25, Antagonism
24, Volition In General
7, Causation
31, Affections In General
16, Precursory Conditions And Operations
1, Relation

Table 1: Semantic fields in the Banker joke

pBanker {1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 4, 2, 0, 0}
Table 2: Semantic vector of the Banker joke

Method Precision Recall F-measure
Common selection
SVM with linear kernel 0.67 0.68 0.67
SVM with polynomial kernel 0.65 0.79 0.72
SVM with Radial Basis Function (RBF) kernel 0.70 0.70 0.70
SVM with linear kernel, normalized data 0.62 0.74 0.67
Homographic puns
SVM with RBF kernel 0.79 0.80 0.79
Multinomial Naive Bayes 0.71 0.80 0.76
Logistic Regression, standardized data 0.77 0.71 0.74
Heterographic puns
SVM with RBF kernel 0.77 0.79 0.78
Logistic Regression 0.74 0.75 0.74

Table 3: Tests for pun recognition.
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tendency of the target word to occur at the end of
a sentence and part-of-speech distribution, given
in (Miller and Gurevych, 2015). A-group (WA)
and B-group (WB) are groups of words in a pun
that belong to the two semantic fields sharing the
target word. Thus, for some ski, k becomes A or
B 7. A-group attracts the maximum number of
words in a pun:

sAi = max
k

ski, k = 1, 2, ..., 34

In the Banker joke, sAi = 4, A = 30 (Posses-
sive Relations); words that belong to this group are
use, lose, banker, interest. B-group is the second
largest group in a pun:

sBi = max
k

(ski/sAi), k = 1, 2, ..., 34

In the Banker joke, sBi = 2. There are three
groups of words that have two words in them:
B1 = 19, Results Of Reasoning: be, lose; B2 =
24, Volition In General: use, interest; B3 = 31,
Affections In General: banker, interest. Ideally,
there should be a group of about three words,
and collocations, describing a person’s inner state
(used to be, lose, interest), and two words (lose,
interest) in WA are a target phrase. However, due
to the shortage of data about collocations in dic-
tionaries and weak points of collocation extrac-
tion, WB splits into several smaller groups. Con-
sequently, to find the target word, we have to ap-
peal to other word features. Testing the system on
homographic puns, we relied on the polyseman-
tic character of words. If in a joke, there is more
than one value of B, WB candidates merge into
one, with duplicates removed, and every word in
WB becomes the target word candidate: c ∈ WB .
In the Banker joke, WB is a list of be, lose, use,
interest, banker; B = {19, 24, 31}. Based on the
definition of the target word in a homographic pun,
words from WB that are also found in WA should
have a privilege. Therefore, the first value vα as-
signed to each word is the output of the Boolean
function:

vα(c) =

{
2 if(c ∈WA) ∧ (c ∈WB)
1 if(c /∈WA) ∧ (c ∈WB)

The second value vβ is the absolute frequency
of a word in the union of B1, B2 etc., including
duplicates: vβ(c) = fc(WB1 ∪WB2 ∪WB3).

7ski is always an integer; WA and WB are always lists
of words; A is always an integer, B is a list of one or more
integers.

Word form vα vβ vγ vδ vWBk

be 1 1 4 0.338 1.352
lose 2 1 9 0.338 6.084
use 2 1 2 0.338 1.352
interest 2 2 10 0.502 20.08
banker 2 1 6 0.502 6.024

Table 4: Values of the Banker joke.

The third value vγ is a word’s position in the
sentence: the closer the word is to the end, the big-
ger this value is. If the word occurs several times,
the algorithm counts the average of the sums of
position numbers.

The fourth value is part-of-speech probability
vδ. Depending on the part of speech, the word be-
longs to, it gets the following rate:

vδ(c) =



0.502 if c − Noun
0.338 if c − V erb
0.131 if c − Adjective
0.016 if c − Adverb
0.013 otherwise

The final step is to count rates using multiplica-
tive convolution and choose the word with the
maximum rate:

z1(WB) =
{
c|max

c
(vα × vβ × vγ × vδ)

}
Values of the Banker joke are illustrated in Ta-

ble 4.
In the solution for heterographic puns, we built

a different model of B-group. Unlike homo-
graphic puns, here the target word is missing in
WB (the reader has to guess the word or phrase
homonymous to the target word). Accordingly,
we rely on the completeness of the union of
WA and WB: among the candidates for WB

(the second largest groups), such groups are rel-
evant that form the longest list with WA (dupli-
cates removed). In Ex. 2 (the Church joke),
WA = go, gas, annual, barbecue, propane, and
two groups form the largest union with it: WB =
buy, proceeds + sacred, church. Every word in
WA and WB can be the target word. The privilege
passes to words used only in one of the groups.
Ergo, the first value is:

vα(c) =

{
2 if(c ∈WA)⊕ (c ∈WB)
1 otherwise

Frequencies are not calculated; values of position
in the sentence and part-of-speech distribution re-
main the same. The output of the function is:

z1(WB) =
{
c|max

c
(vα × vγ × vδ)

}

429



Word form vα vγ vδ vWAk , vWBk

propane 2 18 0.502 18.072
annual 2 8 0.131 2.096
gas 2 5 0.502 5.02
sacred 2 15 0.338 10.14
church 2 3 0.502 3.012
barbecue 2 9 0.502 9.036
go 2 12 0.338 8.112
proceeds 2 11 0.502 11.044
buy 2 4 0.338 2.704

Table 5: Values of the Church joke.

Values of the Church joke are illustrated in Ta-
ble 5.

4 Subtask 3: Mapping Roget’s
Thesaurus to Wordnet

In the last phase, we implemented an algorithm
that maps Roget’s Sections to synsets in Word-
net. In homographic puns, definitions of a word
in Wordnet are analyzed similarly to words in a
pun when searching for semantic fields the words
belong to. For example, words from the defi-
nitions of the synset interest belong to the fol-
lowing Roget’s Sections: Synset(interest.n.01)=a
sense of concern with and curiosity about some-
one or something: (21, 19, 31, 24, 1, 30, 6, 16, 3,
31, 19, 12, 2, 0); Synset(sake.n.01)=a reason for
wanting something done: 15, 24, 18, 7, 19, 11, 2,
31, 24, 30, 12, 2, 0, 26, 24, etc. When A-Section is
discovered (for example, in the Banker joke, A=30
(Possessive Relations)), the synset with the maxi-
mum number of words in its definition that belong
to A-Section becomes the A-synset. The B-synset
is found likewise for the B-group, with the excep-
tion that it should not coincide with A-synset. In
heterographic puns, the B-group is also a marker
of the second target word. Every word in the index
of Roget’s Thesaurus is compared to the known
target word using Damerau-Levenshtein distance.
The list is sorted in the increasing order, and the
algorithm begins to check what Roget’s Sections
every word belongs to, until it finds the word that
belongs to a Section (or the Section if there is only
one) in the B-group. This word becomes the sec-
ond target word.

Nevertheless, as we did not have many trial
data, but for the four examples released before
the competition, the first trials of the program on
a large collection returned many errors, so we
changed the algorithm for the B-group as follows.

Homographic puns, first run. B-synset is calcu-
lated on the basis of sense frequencies (the output

Type of pun Precision Recall F1
Ho. 0.7993 0.7337 0.7651
Change -0.0026 -0,0448 -0,0249
He. 0.7580 0.5940 0.6661
Change -0.0005 -0,0386 -0,0237

Table 7: Task 1, overlap removed.

is the most frequent sense). If it coincides with
A-synset, the program returns the second frequent
synset.

Homographic puns, second run. B-synset is cal-
culated on the basis of Lesk distance using built-in
NLTK Lesk function (Bird et al., 2009). If it coin-
cides with A-synset, the program returns another
synset based on sense frequencies, as in the first
run.

Heterographic puns, first run. The second tar-
get word is calculated based on Thesaurus and
Damerau-Levenshtein distance; words missing in
Thesaurus are analyzed as their WordNet hyper-
nyms. In both runs for heterographic puns, synsets
are calculated using the Lesk distance.

Heterographic puns, second run. The second
target word is calculated on the basis of Brown
corpus (NLTK (Bird et al., 2009)): if the word
stands in the same context in Brown as it is in
the pun, it becomes the target word. The size of
the context window is (0; +3) for verbs, (0;+2) for
adjectives; (-2;+2) for nouns, adverbs, and other
parts of speech within the sentence where a word
is used.

5 Results

Table 6 illustrates SemEval results (Miller et al.,
2017) of our system PunFields8 (Ho. - homo-
graphic, He. - heterographic).

In one of the reviews, we were prompted to
check if the training and test set overlap. The over-
lap was 742 puns (30% of the pun training set).
When we removed them and an equal number of
random sentences from the training set and recal-
cualted the result using Gold set, the result fell
within the scope of 4.5% which puts PunFields at
the same place in the scoring table. We tend to
think that the results went down not only because
of the overlap removal, but also due to the reduc-
tion of the training set by 30%. This encourages us
to state that the sematic fields hypothesis on which
we build the classification model was tested suc-
cessfully.

8https://github.com/evrog/PunFields

430



Task Precision Recall Accuracy F1
1, Ho. 0.7993 0.7337 0.6782 0.7651
1, He. 0.7580 0.5940 0.5747 0.6661
Task Coverage Precision Recall F1
2, Ho., run 1 1.0000 0.3279 0.3279 0.3279
2, Ho., run 2 1.0000 0.3167 0.3167 0.3167
2, He., run 1 1.0000 0.3029 0.3029 0.3029
2, He., run 2 1.0000 0.3501 0.3501 0.3501
3, Ho., run 1 0.8760 0.0484 0.0424 0.0452
3, Ho., run 2 1.0000 0.0331 0.0331 0.0331
3, He., run 1 0.9709 0.0169 0.0164 0.0166
3, He., run 2 1.0000 0.0118 0.0118 0.0118

Table 6: Competition results.

In comparison with the results of other systems,
PunFields showed its best performance in classi-
fication which is probably due to the following
factors. First, supervised learning algorithms like
SVM have been historically very efficient in clas-
sification tasks. Although they fail on short texts
more often than on long ones. Second, the train-
ing set was rather large (twice larger than during
experimentation). However, the results for hetero-
graphic puns are lower than even in the prelimi-
nary tests. Probably, our training set contains too
few heterographic puns, or their vectors are more
alike with random sentences (or, rather, more scat-
tered across the vector space).

The rule-based system of finding the target
word and its WordNet meaning turned out to be
less successful. Although later after fixing some
programming errors, we managed to improve the
result for Subtask 29. Furthermore, multiplying
values turned out to be a wrong decision, and the
reasons for it will be reflected in a further pub-
lication. As for Subtask 3, we tried to combine
two very different dictionaries: Roget’s Thesaurus
and Wordnet. When used in Subtask 1, Thesaurus
provided reliable information on meanings of puns
and was more or less successful in Subtask 2 (con-
sidering the mentioned improvements). But in
Subtask 3 it was very much below the baseline
results suggested by the Task Organizers. At the
same time, we did not have any experimental data
to test different variations of the algorithm before
the competition. Especially, it concerns combina-
tions of the own system with existing methods of
WordNet (Lesk and sense frequencies). Initially,

9The current result is 0.5145 for homographic puns,
0.3879 for heterographic puns.

employing Thesaurus instead of WordNet was a
solution made for convenience of parsing and ex-
perimenting with data. Further research will show
whether these dictionaries can combine and solve
issues together, or one of them should become a
more preferrable source of data.
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Abstract

The problem of detection and interpreta-
tion of English puns falls under the area
of word sense disambiguation in natural
language processing, which deals with the
sense of a word used in a sentence from
the readers’ perspective. We have tried to
design a system to identify puns from a sen-
tence by developing a cyclic dependency–
based system which is implemented based
on some rules which are actually statistical
inferences taken from a set of random data
collected from the Web.

1 Introduction
Extensive research has been done in the field of
modelling and detecting puns (Hempelmann, 2003;
Miller and Gurevych, 2015). The context or the
sense depends largely on the perspective and knowl-
edge of the reader about a particular language. For
example, in the sentence, ‘I was a banker but I
lost interest,’ the word in italics conveys two dif-
ferent meanings or ‘senses’ in the sentence. So,
the word ‘interest’ could be called a pun. A pun
is the exploitation of the various meanings of a
word or words with phonetic similarity but different
meanings.
Our system is a rule-based implementation of a

dependency network and a hidden Markov model.

2 Dataset and Preprocessing
In the present shared task (Miller et al., 2017),
participants are provided with a trial dataset and
a test dataset. No training data was supplied due
to the large cardinality of such words or contexts
in general. In case of the subtask on pun detection
(Subtask 1), the test data was subdivided into two
sets: a homographic set containing 2250 contexts,
and a heterographic set containing 1780 contexts.

On the other hand, in case of Subtask 2, another
set of data was provided and that set was also
subdivided into homographic and heterographic
sets.
For training purposes, or rather to analyze the

contexts statistically, a dataset was collected from
random sources, mostly form Project Gutenberg
and used in our present experiments. This dataset
contains 413 sentences and is not subdivided into
homographic and heterographic subsets.
The given data containing English contexts is

preprocessed and each word of a sentence is tagged
with its part of speech using NLTK, an open-source
package for NLP written in Python. For example,
the sentence, ‘I was a banker but I lost interest.’ is
tagged using the Stanford NLP parser as follows:

[(‘I’, ‘PRP’), (‘was’, ‘VBD’), (‘a’, ‘DT’),
(‘banker’, ‘NN’), (‘but’, ‘CC’), (‘I’,
‘PRP’), (‘lost’, ‘VBD’), (‘interest’, ‘NN’),
(‘.’, ‘.’)]

We also generate the parse tree for the sentence,
which looks as in Figure 1. Using such parse trees,
the clauses are identified and used for our further
tasks.

3 System Framework
We have used a hidden Markov model (Ghahra-
mani, 2001) and incorporated cyclic depen-
dency (Toutanova et al., 2003) in order to detect
points of pun occurrences in English sentences.
The probability has been calculated with respect to
each word being pun in a sentence. To calculate the
probability, the parts of speech of the words imme-
diately surrounding the target word are considered
and the probability is increased accordingly.

3.1 Features
To train the system, 413 sentences, each containing
a pun, has been analyzed. The probability of stop
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Figure 1: Parse tree for ‘I was a banker but I lost interest.’

words such as articles, prepositions, ‘be’-verbs,
conjunctions, and infinitives are assumed to be 0
as they cannot be a pun. The probability of each
part of speech being a pun is calculated from the
training data and is given in Table 1.

Part of Speech Probability
Noun 0.1538
Adjective 0.1111
Verb 0.0806
Others 1/(Sentence Length)

Table 1: Pun probability by part of speech.

Since in the task it is explicitly mentioned that
each sentencewill contain at most one pun, sentence
length in this context has been defined as the number
of words in the sentence. Each word of a smaller
sentence will have higher probability of being pun.

The concept of clauses has been used in order to
modify the probability. The clauses are extracted
from the parse tree generated by the Stanford Parser.
And clauses are classified as follows:

Type 1: Any clause that doesn’t contain any other
clauses falls under this category. A word
which belongs to this type of clause has a
pretty low probability of being pun.

Type 2: Any clause that contains only Type 1
clauses falls under this category. A word
which belongs to this type of clause has a
medium probability of being pun.

Type 3: Any clause that contains Type 1, Type 2, or
other Type 3 clauses falls under this category.

A word which belongs to this type of clause
has a very high probability of being pun.

Thus, the probability is increased according to the
occurrence of the words within the aforementioned
category of puns. Data collected from the trial set
tells that a word that belongs to the Type 3 clause
has 0.1 higher probability approximately than the
words that belong to the clauses of other types.

Furthermore, it has been observed that if a word
ends with ‘-ing’ or ‘-ed’, the probability of the word
being a pun increases by 0.01.
It has also been observed that this probability

depends on the parts of speech of the words adjacent
to the target words. This is given in Tables 2 and 3.

POS of previous word Increase Factor
Infinitive 0.02
Noun 0.01
Punctuations 0.014

Table 2: Pun probability by POS of previous word.

POS of next word Increase Factor
Infinitive 0.02
Noun 0.01
Preposition 0.01
Punctuations 0.014

Table 3: Pun probability by POS of next word.

If the word is situated at the end of the sentence
then its probability is increased by 0.02. The
probability assigned to stop words and punctuation
is 0.
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3.2 Rule Definitions
Since this system is a rule-based implementation, a
few rules are defined in order to identify the puns.
These are as follows:

Rule 1: The probability of stop words (i.e., articles,
prepositions, infinitives, and pronouns) being
puns is trivially 0. ‘Be’-verbs can also never
be a pun in any English sentence. For example,
in the sentence, ‘I am a good boy,’ the stop
words words ‘a’ and ‘am’ cannot be puns in
any case.

Rule 2: The probability of a word being a pun
increases if it is a noun. It has been seen from
the set of sentences collected from the Web
that out of 195 words which are nouns, 30
are puns. This is highest among all parts of
speech. For instance, in the sentence ‘She
thought it was a real horse, but it was a phony,’
the pun ‘phony’ is a noun.

Rule 3: If a word belongs to a higher-level clause,
then its probability of being pun increases.
That is, if a word belongs to a Type 3 clause,
its probability of being pun will be higher than
a word that belongs to a Type 2 or Type 1
clause.

Rule 4: The probability of a word being a pun
depends on the parts of speech of the words
before and after it in a wrap-around fashion.
For example, in the sentence ‘She thought it
was a real horse , but it was a phony,’ the
word just before the word ‘phony’ is ‘a’, an
article, and thus ‘phony’ will have a greater
probability of being pun than the other words
in the sentence.

Rule 5: A probability of being a pun is associated
to every part of speech, which is furnished in
Table 1.

Rule 6: It has been observed that if a word ends
with ‘-ed’ or ‘-ing’, it will have greater chance
of being a pun.

3.3 Inference from Rules
In our system, we have used rules to determine
the probability of each word in a sentence being a
pun. We have used the basic statistical formula of
determining the probability for dependent events
in this respect: P(A|B) = P(A⋂

B)/P(B) and
P(A⋃

B) = P(A) + P(B) − P(A⋂
B).

Using standard formulas related to probability we
have calculated the cumulative probability obtained
by the cumulative effect of all the rules. Since in
the task it is given that a given sentence in the test
data could contain at most one word that could be
determined a pun, we have only considered simple
cases. For a random sentence that could potentially
contain unknown number of puns, complex rules
must be developed and the dependency among the
rules to be determined.

3.4 Result
Assigning probability to each of the word of the
sentence by the rules defined in the previous sections
gives a vector whose length equals the length of the
sentence. For example the sentence ‘I was a banker
but I lost interest.’ gives the vector [0.000, 0.201,
0.000, 0.274, 0.000, 0.000, 0.261, 0.314, 0.000].
We denote this vector the pun vector.

It has been observed that if the maximum value
among the components of this pun vector is less than
or equal to 0.25, then the sentence does not contain
any pun. On the other hand, if the maximum value
among the components of the vector exceeds the
value 0.25, then the sentencemust contain a pun and
the word corresponding to the maximum-valued
component can be declared as a pun.
Applying this concept to the test data provided

by the organizers, we obtained the coverage (C),
precision (P), accuracy (A), recall (R), and F-score
(F1) shown in Tables 4 and 5.

Type P A R F1
Homo 0.7251 0.6884 0.9079 0.8063
Hetero 0.7369 0.7174 0.9402 0.8261

Table 4: Results on Subtask 1.

Type P C R F1
Homo 0.3348 1.0000 0.3348 0.3348
Hetero 0.3792 1.0000 0.3792 0.3792

Table 5: Results on Subtask 2.

4 Conclusion
In this paper we have presented a system based on a
dependency probabilistic model to detect and iden-
tify puns from a given English sentence. Undoubt-
edly, the problem will become far more complex if
the sentence contains more than one pun and the
task is to identify each of those words individually.
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In the test dataset, various non-pun words have
been identified as puns because not only the context
between pun and a non-pun is very narrow but the
structural discrimination between the pun and the
non-pun word in a sentence sometimes becomes
very difficult even considering all aspects of the
sentence including meanings and parts of speech
of individual words.
Thus identifying a pun is pretty complex task

and we believe that this model could be extended to
identify complex cases. Apart from this, solutions
to this problem will have tremendous effect in
emotions recognition and analysis.
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Özge Sevgili
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Abstract

This paper presents a system developed for
SemEval-2017 Task 7, Detection and In-
terpretation of English Puns consisting of
three subtasks; pun detection, pun loca-
tion, and pun interpretation, respectively.
The system stands on recognizing a dis-
tinctive word which has a high association
with the pun in the given sentence. The in-
tended humorous meaning of pun is iden-
tified through the use of this word. Our
official results confirm the potential of this
approach.

1 Introduction

Word Sense Disambiguation (WSD) (Navigli,
2009) is the task of determining the sense of a
word in a specific context computationally. In
the general case, a polysemous word’s a single,
specific sense is meant in a given context. How-
ever, a type of wordplay called pun suggests two
or more meanings, by exploiting multiple mean-
ings of words, or of similar-sounding words. Un-
derstanding the linguistic realization of puns and
automatically detecting and disambiguating them
are important for computational linguistics. Ma-
chine learning-based approaches are too expen-
sive and impractical for this area as these humour
constructs employ lexical-semantic anomalies and
they are hard to be found in regular training sets.
Thus, knowledge-based and unsupervised meth-
ods are prevalent. There are three tasks in the
detection and interpretation of English puns: pun
detection-the given context contains a pun or not,
pun identification-location of the pun word, and
pun disambiguation-identifying the two meanings
referred by the pun in the given context.

Current approaches to pun interpretation rely on
Lesk (1986), which considers the highest overlap

between the context and gloss in order to return the
target sense (two senses) for the pun. Miller and
Gurevych (2015) performs automatic pun disam-
biguation in a comprehensive experimental setup
for the first time using three Lesk variants along
with Random and MFS (Most Frequent Sense)
baselines. The general conclusion is that pun dis-
ambiguation results are poorer when compared
with traditional WSD and traditional WSD must
be extended with pun-specific features to increase
accuracy in this area.

Our consideration for the task of detection and
interpretation of English puns is mainly based on
the assumption that pun containing contexts in-
clude a distinctive word that can be paired with
the pun. This word has a central role in the word-
play such that the intended humorous meaning of
pun is in connection with this word. This claim
implies that this word’s association with a pun
is considerably greater than the other words’ as-
sociation scores with the pun. As the threshold
to be used here is determined using all the sen-
tences (either pun or not), the unsupervised nature
of our method is preserved. In the computation of
word association scores; we used the information-
theoretic measure, Pointwise Mutual Information
(PMI) (Church and Hanks, 1990). Our experi-
ments support this claim computationally. The re-
sults both in homographic and heterographic puns
are promising in detecting whether the given con-
text is a pun or not.

In the remainder of this paper, we describe our
system including the components for pun detec-
tion, pun location, and pun interpretation. In Sec-
tion 3 we present our performance results. Finally,
we summarize our findings and give comment on
possible future extensions.
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2 System Description

First of all, we performed exploratory analysis
on both homographic and heterographic trial
datasets. We observed that sentences containing
a pun have a distinctive word that has a high
semantic/phonetic association with the pun. In
accordance with this observation, for a sentence,
all the pairwise word associations should be
calculated to determine the most correlated word
pair. If an element of this most correlated word
pair has a second sense/spelling, it’s an evidence
of being a pun. To illustrate; in the following
sentence, ”banker-interest” word pair has the
highest correlation and the word ”interest” of
this pair has a second sense, making it a good
candidate for the pun.

I used to be a banker but I lost interest.

We used PMI to measure the association be-
tween words. PMI distinguishes the relevant
word pairs (e.g. banker-interest) from the irrele-
vant ones (e.g. used-interest) because word co-
occurrence frequencies are normalized by the in-
dividual word frequencies, as seen in 1.

pmi(w1, w2) = log2
p(w1, w2)

p(w1)p(w2)
(1)

To calculate the PMI scores, we used a subset of
Wikipedia data1. Because pun words seldom ap-
pear in Wikipedia, we added test datasets to guar-
antee words co-occur at least once and thus the
system is able to compute PMI scores for each
word pair. We calculated PMI scores using nltk
library (Bird et al., 2009)2 using bigram colloca-
tion with a window size of 20.

2.1 Pun Detection
This subtask requires deciding whether a given
sentence contains a pun or not. In order to accom-
plish this, we followed a process that consists of
the following steps:

• Converting each sentence into tokens.

• Stopword removal.

• Generating word pairs preserving word or-
der in the sentence (leaving out the reverse
of each ordered pair).

1https://dumps.wikimedia.org/enwiki/latest/enwiki-
latest-pages-articles.xml.bz2

2http://www.nltk.org/howto/collocations.html

• Calculating PMI scores for each pair and
sorting the list of scores for each sentence.

For instance, if the input of the system is the
sentence below:

They threw a party for the inventor of the
toaster. And he was toasted.

The following sorted PMI scores of word pairs
are given as output (Table 1).

Pair of words PMI score
toaster, toasted 11.6896
threw, toasted 7.9549
threw, toaster 7.8618
inventor, toasted 7.4851
inventor, toaster 7.3920
threw, inventor 3.6572
party, toasted 3.1461
party, toaster 3.0530
threw, party 1.6402
party, inventor -1.1516

Table 1: Sorted PMI scores for each pair in the
sentence.

In the realization of this subtask, we ask
whether the highest PMI score is distinctively
higher than the others. In order to answer this,
we need a global threshold value to be used for
the whole set of sentences (either pun or not). To
determine this threshold value, we used the in-
terquartile range (IQR) of the set of sorted PMI
scores of every sentence. IQR is preferred because
it is able to eliminate outliers.

To sum up, we had an IQR value for each sen-
tence and we took their median as the threshold
value because median and IQR are consistent with
each other. Our threshold value for homographic
sentences was 2.458 and for heterographic sen-
tences was 2.940. Thus, if the difference between
the highest PMI score and the succeeding one in a
sentence was higher than the threshold value, the
sentence was marked as containing a pun.

2.2 Pun Location
The main aim of the subtask is to find the location
of pun in pun containing sentences. Here we as-
sumed that the second element of the pair with the
highest PMI score in a sentence is the pun using
the observation that pun word usually is located at
the end of the sentence.
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2.3 Pun Interpretation

In this subtask, we are given the location of the pun
word and we are required to find the two relevant
senses of it. We provided a solution only for the
homographic dataset for this subtask.

In order to identify the first relevant sense in
the context, we used lesk method which predicts
the answer on the basis of the overlap between the
given sentence and the dictionary entries. It is ap-
propriate because we need a context-based predic-
tion. As an implementation detail, we used pywsd
(Tan, 2014)3 library that includes simple lesk al-
gorithm implementation.

As for the second sense of the pun word, we
again rely on our assumption that the given sen-
tence has a target word that can be paired with the
pun by its highest correlation. In order to deter-
mine this target word, we get help from pairwise
associations using PMI scores. Then, the second
sense of the pun word can be predicted by finding
the highest similar sense to this target word. This
final step requires to find all senses of the pun word
and choose the highest similar sense among them,
respectively. Here, we represented each individual
sense of pun by its synonym. We used wordnet
(Miller, 1995)4 dictionary to extract all senses and
synonyms for a given word.

To measure similarity, we used word2vec
(Mikolov et al., 2013)5 method in which words
are represented by local vectors to be used in
a computational manner. The similarity of two
words are calculated by taking cosine of vec-
tors of those words. We used the gensim library
(Řehůřek and Sojka, 2010)6 to calculate word2vec
for each word. To feed word2vec, we used, again,
Wikipedia data. Our vector size was set as 128-
dimensional and our window size was 10.

To sum up, we selected pun’s best word pair
with respect to the PMI score. Then, we took ev-
ery sense of the pun and retrieved the synonymous
words for every sense. After that, we calculated
cosine similarity between each sense and pun’s
word pair. As a result, the sense with the highest
similarity is recognized as the second suggested
meaning of pun. To illustrate, in the following
sentence, the word pair ”room - admitted” is the
most correlated with the PMI score of 0.6130:

3https://github.com/alvations/pywsd
4http://www.nltk.org/howto/wordnet.html
5https://code.google.com/p/word2vec/
6https://radimrehurek.com/gensim/models/word2vec.html

”There’s room for one more,” Tom admitted.

All senses of the pun word, namely ”admitted”,
and their synonymous words were taken. Then,
using their word vectors, cosine similarities be-
tween the synonyms and the word, ”room” were
calculated, as seen in Table 2.

word and synonym cosine similarity
room, admit -0.0113
room, accommodate 0.2292
room, accept -0.0972

Table 2: Cosine similarity values between syn-
onymous words of the senses of pun and its high-
est correlated word in the sentence.

According to the cosine similarity values, as
the second sense of pun ”accommodate” (”accom-
modate.v.04”) which means ”have room for; hold
without crowding” was chosen. As we said before,
the first sense was identified using the simple lesk
algorithm. For the above example sentence, the
algorithm returned the result ”admit.v.08” which
means ”serve as a means of entrance”.

3 Evaluation Results

Table 3 presents the official scores7 of our sys-
tem. As results show, our main success comes
from the task of pun detection. We have 0.7553
precision for homographic and 0.7725 for hetero-
graphic datasets and around 0.93 recall value for
both of them. The relatively lower precision scores
we get can be attributed to the general feature of
unsupervised methods when compared with that
of their supervised counterparts. In our implemen-
tation, there are minor errors while extracting pairs
or calculating PMI scores. In those inconvenience
cases, our system predicts randomly, for exactly
22 sentences in homographic dataset and 28 sen-
tences in heterographic one which may cause a
wrong decision.

For pun detection and pun location, our results
for heterographic sentences are better than the ho-
mographic ones. Actually, it is because our pair-
wise association is more appropriate for hetero-
graphic sentences in which two words are distinc-
tively correlated in one spelling than the others.

For pun interpretation, our results are lower than
the other subtasks. To begin with; in identifying

7system submitted after the official end of the evaluation
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dataset subtask precision recall F1
homographic pun detection 0.7553 0.9334 0.8350

pun location 0.4269 0.4250 0.4259
pun interpretation 0.0204 0.0200 0.0202

heterographic pun detection 0.7725 0.9300 0.8440
pun location 0.6592 0.6515 0.6553

Table 3: The performances of our system for three subtasks in each dataset.

the first sense of pun, we are limited by the per-
formance of simple Lesk algorithm, 50− 70%, as
Lesk (1986) explained. Therefore, another algo-
rithm for WSD may enable us to reach better re-
sults. As for disambiguating the second sense of
the pun word, we utilize synonymous words for
each sense of pun, however, there is sometimes
none or limited synonymous words for an input
sense. This may result in reaching a wrong deci-
sion.

4 Conclusion

We have described the system submitted to the
SemEval-2017 Task 7, Detection and Interpreta-
tion of English Puns. For participated system de-
scriptions and their highlighted ideas, please re-
fer to the task description paper by Miller et al.
(2017). Our system uses word association scores
based on PMI to determine a target word that can
be paired with the pun. The substantially high as-
sociation score of this target word with pun is used
as an indicator that the given sentence is a pun.
Moreover, this word can be exploited to disam-
biguate the second meaning of a pun. The eval-
uation results show that the idea of this word pair
association could reasonably accomplish the goal
of the subtasks especially the task of pun detec-
tion.

This work suggests an interesting further direc-
tion to use PMI scores in conjunction with local
vector similarities to identify pun-specific features
in WSD.
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Abstract

This paper describes the participation of
ELiRF-UPV team at task 7 (subtask 2:
homographic pun detection and subtask
3: homographic pun interpretation) of Se-
mEval2017. Our approach is based on the
use of word embeddings to find related
words in a sentence and a version of the
Lesk algorithm to establish relationships
between synsets. The results obtained are
in line with those obtained by the other
participants and they encourage us to con-
tinue working on this problem.

1 Introduction

Pun is a figure of speech that consists of a de-
liberate confusion of similar words or phrases for
rhetorical effect, whether humorous or serious. In
(Giorgadze, 2014), the author analyzed, from a
linguistic point of view, the pun as one of the cat-
egories of wordplay and its manifestation in one-
liner jokes in English. Pun is a way of using the
characteristics of the language to cause a word,
a sentence or a discourse to involve two or more
different meanings. Therefore, humorous or any
other effects created by puns depend upon the am-
biguities of these words.

Pun detection is closely related to the Word
Sense Disambiguation (WSD) problem, but in this
case we need to select two senses of the pun
(Miller and Gurevych, 2015; Miller and Turkovi,
2016).

The interpretation of puns has been subject of
study in theoretical linguistics, and has led to a
small but growing body of research in computa-
tional linguistics. In the task 7 of the SemEval
2017 competition, organizers proposed three chal-
lenges (subtasks): pun detection, pun location and
pun interpretation (Miller et al., 2017).

In this work, we present a proposal for two sub-
tasks: homographic pun location (subtask2), and
homographic pun interpretation (subtask3).

Our proposal for both subtasks lies in the hy-
pothesis that the two senses of the pun in the sen-
tence are possible thanks to the coexistence of the
pun with other words in that sentence that are se-
mantically close to the pun. According to this hy-
pothesis, our method for pun detection consists of
finding pairs of words more semantically related
in the sentence. In addition, our method for pun
interpretation is based on the detection of words
in the sentence, different from the pun, that help
to find the two senses of the pun. The selection
of these words is also based on the criterion of the
semantic proximity to the pun.

2 Subtask 2: Pun location process

Pun localization consists of identifying which
word is the pun given a sentence that contains a
pun. Our proposal is based on two hypotheses: i)
to find the most semantically related pair of words
(one of these words should be the pun); ii) the pun
should be at the end of the sentence.

Our approach to the pun location process is
made following the Algorithm 1. As a previous
step, the sentence is processed in order to elim-
inate punctuation marks and stop words, and to
convert uppercase to lowercase. As a result of this
process a set of semantically relevant tokens is ob-
tained. This process removes from the sentences
those tokens without semantics. Each token is rep-
resented by its embedding obtained from a pre-
trained word embedding model (Mikolov et al.,
2013) trained on part of Google News dataset (3
million words). The embedding dimension was
fixed to 300.

For all the pairs of tokens, the cosine distance
of their corresponding embedding representation
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is calculated. The pairs are ranked according to
this distance and the pair of less distance is se-
lected. Finally, the pun selection is performed ap-
plying two heuristics:

• First, we assume that consecutive words in
a sentence are semantically close, but the
words that help the pun to be interpretable
are not placed next to the pun. Therefore, we
do not consider those pairs that correspond to
consecutive words in the sentence.

• Second, we assume that the words that help
the pun to be interpretable are placed before
the pun in the sentence. Therefore, we se-
lected as pun the word in the pair that is situ-
ated closer to the end of the sentence.

Algorithm 1: Selection of the pun of a sen-
tence, task2
Input: s, the sentence that contains a pun
Result: wk, the word in s that we guess is the

pun

begin
k, b← -1,∞
t← remove stopwords(tokenize(s))
foreach wi ∈ t do

ei← embedding(wi)
foreach wj ∈ t: i < j − 1 do

ej ← embedding(wj)
d← cosine distance(ei, ej)
if d < b then

b, k ← d, j

if k > −1 then
return wk

else
return w|t|−1

Table 1 shows the results for the subtask 2 (Ho-
mographic pun location). Although our results
present a wide room for improvement (0.4462 for
F1), they are in line with those obtained by other
participants. We achieved the fourth place in the
competition being the best result 0.6631 for F1.

In order to test the two heuristics applied in
the pun selection, we additionally computed some
statistics comparing our results with those of the
gold standard.

We assumed that the words that help the pun
to be interpretable are placed before the pun in the

F1 0.4462
recall 0.4462
precision 0.4462
coverage 1.0000

Table 1: Results of subtask 2: Homographic pun
location.

sentence in most of the cases. The number of pairs
of tokens selected by our approach that contain the
pun is 767. In 702 of these pairs (91,5%), the pun
was the second component of the pair, and, only in
65 (8,5%) the pun was the first component. These
percentages confirm the goodness of this heuristic
for subtask 2.

We also assumed that the words that help the
pun to be interpretable are not placed next to the
pun; therefore, we did not consider as candidates
the consecutive words. If this heuristic is not ap-
plied, the number of pairs of tokens selected by
our approach that contains the pun is 672, fewer
than 767 pairs in case the heuristics was applied.
In these 672 pairs, there are 580 where the pun
is the word selected by our approach, and in 92
pairs, the selected word was the first component
of the pair, that is more than the 65 pairs in case
the heuristics was applied.

3 Subtask 3: Pun interpretation process

The process of pun interpretation is described by
Algorithm 2. The interpretation process of our
proposal is made following several steps:

• Selection of the two words semantically clos-
est to the pun.

In a similar way that stated for subtask 2
(Section 2), the sentence is processed in or-
der to eliminate punctuation marks and stop
words, and uppercase are converted to lower-
case.

Given the set of tokens, a sorted list of pairs
of different tokens is generated, where, the
first component of the pair is the pun wp and
the second component is any of the other to-
kens in the sentence whenever is not consec-
utive to the pun. For each pair of tokens, the
cosine distance of their corresponding em-
bedding representation is calculated.

We selected the two first pairs in the above
sorted list, (wp, w1), (wp, w2), that is, we se-
lected the two words in the sentence most

441



Algorithm 2: Selection of the two synsets of the pun on a sentence, task3
Input: s, the sentence that contains a pun
wp, the word in the sentence, at position p, that is the pun
Result: (sy1, sy2), the two synsets of the pun wp in the sentence s

Function get closest words (s, wp)
t← remove stopwords(tokenize(s))
w1, w2, b1, b2 ← null, null,∞,∞
ep← embedding representation(wp)
foreach wi ∈ t | (i < p− 1) ∨ (i > p + 1) do

ei← embedding representation(wi)
d← cosine distance(ep, ei)
if (d < b1) ∧ (d < b2) then

b1, b2, w1, w2 ← d, b1, wi, w1

else if d < b2 then
b2, w2 ← d, wi

return (w1, w2)
Function get context (synset)

d← get definition(synset)
w← {wi ∈tokenize(lemmatize(d)) |wi 6∈ stopword list}
foreach ei ∈ get examples(synsets) do

w ← w∪ {wi : wi ∈tokenize(lemmatize(e) |wi 6∈ stopword list)}
return w

Function synset similarity(sy1, sy2)
c1← get context(sy1)
c2← get context(sy2)
return ‖c1 ∩ c2‖

begin
wi, wj = get closest words(s, wp)
sy1, b← null,−∞
foreach syp ∈ synsets(wp) do

foreach syi ∈ synsets(wi) do
s←synset similarity(syp, syi)
if s > b then

sy1, b← syp, s

sy2, b← null,−∞
foreach syp ∈ synsets(wp) do

foreach syj ∈ synsets(wj) | syj 6= sy1 do
s←synset similarity(syp, syi)
if s > b then

sy2, b← syp, s

return (sy1, sy2)

closely related to the pun from a seman-
tic point of view. The cosine distance of
(wp, w1) is the smallest and the cosine dis-
tance of (wp, w2) is the next smaller one.

In Algorithm 2, this step corresponds to the
get closest words function.

• Generation of a bag-of-words per synset.

For each synset of the pun (wp) and for each
synset of both closest words (w1, w2), we ob-
tain a bag-of-words that includes: i) all the
lemmas in the gloss of the synset; ii) the own
name of the synset; and iii) the lemmas in
all the example sentences. Before getting the
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lemmas, the sentences are processed in or-
der to convert to lowercase and to eliminate
punctuation marks and stop-words.

This step corresponds to the get context func-
tion in Algorithm 2.

• Synsets selection.

The final goal of the subtask is to select one
pair of synsets (sy1, sy2) of the pun that rep-
resent its two different meanings in the sen-
tence. Our hypothesis is that one synset of the
pair (sy1) is related to one synset of w1 and
the other synset of the pair (sy2) is related to
one synset of w2. In a similar way that Lesk
algorithm (Lesk, 1986), we used as measure
of similarity between two synsets, the over-
lapping between the bags-of-words of both
synsets.

In this way, we select the first synset (sy1) of
the pun that maximizes the overlapping with
one synsets of w1. After that, we select other
synset of the pun (sy2, sy2 6= sy1) that maxi-
mizes the overlapping with one synset of w2.

Table 2 shows the results of subtask 3 (Homo-
graphic pun interpretation). Our results are low,
but are in line with the results of the rest of the
participants. We achieved 0.0996 for F1 (the third
place), being the best result 0.1557.

F1 0.0996
recall 0.0978
precision 0.1014
coverage 0.9646

Table 2: Results of subtask 3: Homographic pun
interpretation.

As in the subtask 2, we calculated some statis-
tics comparing our results with those of the gold-
standard. The number of correct pairs of synsets
was 127 of the 1252 analyzed sentences, however,
there were 255 additional sentences for which one
synset was correct.

4 Conclusions

In this work, we have presented our participation
at task 7 (subtask 2: homographic pun detection
and subtask 3: homographic pun interpretation) of
SemEval2017. Our approach is based on the use

of word embeddings to find related words in a sen-
tence and a version of the Lesk algorithm to estab-
lish relationships between synsets. We achieved
the fourth place in subtask 2 (Homographic pun
location) and the third place in subtask 3 (Homo-
graphic pun interpretation).

The results obtained are in line with those ob-
tained by the other participants and they encourage
us to continue working on this problem.

As future work we plan to adapt state-of-the-art
WSD techniques to tackle with the pun interpreta-
tion problem.
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Abstract

This paper describes our system partici-
pating in the SemEval-2017 Task 7, for
the subtasks of homographic pun location
and homographic pun interpretation. For
pun interpretation, we use a knowledge-
based Word Sense Disambiguation (WSD)
method based on sense embeddings. Pun-
based jokes can be divided into two parts,
each containing information about the two
distinct senses of the pun. To exploit this
structure we split the context that is input
to the WSD system into two local con-
texts and find the best sense for each of
them. We use the output of pun interpre-
tation for pun location. As we expect the
two meanings of a pun to be very dissim-
ilar, we compute sense embedding cosine
distances for each sense-pair and select the
word that has the highest distance. We
describe experiments on different methods
of splitting the context and compare our
method to several baselines. We find ev-
idence supporting our hypotheses and ob-
tain competitive results for pun interpreta-
tion.

1 Introduction

A pun is a word used in a context to evoke two
or more distinct senses for humorous effect. For
example, in the 1987 movie “The Running Man”,
Arnold Schwarzenegger’s character cuts his en-
emy Buzzsaw in half with a chainsaw, then an-
nounces: “He had to split.” The verb split is
the pun here, evoking two senses in the context:
that of leaving, and that of disintegrating into two
parts.

Recognizing and appreciating puns requires so-
phisticated feats of intelligence currently unique to

humans. A recently proposed set of artificial intel-
ligence tasks (Miller et al., 2017) challenges com-
puters to try their hand at it: pun detection (tell
whether or not a text contains a pun), pun location
(given a text with a pun, tell which word is the pun)
and pun interpretation (given a pun in context, tell
which senses it evokes).

Pun interpretation is closely related to the task
of Word Sense Disambiguation. A typical WSD
system chooses that sense of a word which fits
best in the context the word appears in. A pun
interpretation system, however, should return not
one but two different senses of a word. Miller
and Turković (2016) suggest a straightforward ex-
tension of the WSD approach to pun interpreta-
tion: choose the best scoring sense and second-
best scoring sense for the word in its context.
However, this approach does not take into account
the specific structure of pun-based jokes. In most
cases, such jokes can be divided into two parts,
where in the first part cues for one sense are con-
centrated, and in the second part, cues for another
sense. Figure 1 shows examples of such cases.

A pun interpretation system could exploit this
two-part structure by splitting the global context
of the entire joke into two local contexts and per-
forming WSD separately for each local context,
choosing the best sense for each of the two. As this
process makes each context more informative for
the respective sense, we hypothesize that it leads
to more accurate pun interpretation than the simple
approach which uses the top-scoring two senses
according to the global context.

Additionally, we believe that we can use the out-
put of our pun interpretation system for pun loca-
tion. We hypothesize that the two senses of a pun
are typically very dissimilar, as this is important
for the joke to be recognizable. We therefore at-
tempt to locate puns by selecting the polysemous
word with the most dissimilar two senses.
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The first time he put the horses on the carriage, it . . . . .went . . . . . . . .without. .a hitch.
If a priest is called a white collar worker, a nun would be a . . . . . . . .creature . . .of habit.
Television sets in . . . . . . .Britain have to . . . . .cross the . . . . . . . .English Channel.
Old . . . . . .math teachers never die, they just become irrational.
In the winter my dog . . . . . .wears his . . . . .coat, but in the summer he wears his . . . . .coat and pants.

Figure 1: Examples of pun-based jokes. The pun is typeset in boldface. Words that we judge to be cues
for one sense are marked with a dashed underline, words and n-grams that we judge to be cues for the
other sense are marked with a dotted underline. Note that the cues for the two senses tend to divide the
jokes into two non-overlapping parts.

2 Method

Similar to Miller and Gurevych (2015) we use a
knowledge-based WSD system and apply it to pun
annotation. Our method is loosely based on the
Lesk algorithm exploiting both the context of the
words and the definitions (hereafter referred to as
glosses) of the senses (Oele and van Noord, 2017).
Given a word, Lesk selects the sense whose defi-
nition has the highest number of words in com-
mon with the context. In our method, which we
call Lesk++, instead of counting the number of
words that overlap between the gloss of a sense
and its context, word and sense embeddings are
used to compute the similarity between the gloss
of a sense and the context.

2.1 Word Sense Disambiguation
Our WSD method takes sentences as input and
outputs a preferred sense for each polysemous
word. Given a sentence w1 . . . wi of i words, we
retrieve a set of word senses from the sense inven-
tory for each word w and sort them in ascending
order. Then, for each sense s of each word w, we
consider the similarity of its lexeme (the combi-
nation of a word and one of its senses (Rothe and
Schütze, 2015)) with the context and the similarity
of the gloss with the context.

For each potential sense s of word w, the cosine
similarity is computed between its gloss vector Gs

and its context vector Cw and between the context
vector Cw and the lexeme vector Ls,w. The score
of a given word w and sense s is thus defined as
follows:

Score(s, w) = cos(Gs, Cw)+cos(Ls,w, Cw) (1)

The sense with the highest score is chosen. When
no gloss is found for a given sense, only the second
part of the equation is used.

Prior to disambiguation itself, we sort the words
by the number of senses, so that the word with the

fewest senses will be considered first. The idea
behind this is that words that have fewer senses
are easier to disambiguate (Chen et al., 2014). As
the algorithm relies on the words in the context
which may themselves be ambiguous, if words in
the context have been disambiguated already, this
information can be used for the ambiguous words
that follow. We therefore use the resulting sense of
each word for the disambiguation of the following
words, starting with the “easiest” words.

Our method requires lexeme embeddings Ls,w

for each sense s. For this we use AutoEx-
tend (Rothe and Schütze, 2015) to create addi-
tional embeddings for senses from WordNet on
the basis of word embeddings. AutoExtend is an
auto-encoder that relies on the relations present
in WordNet to learn embeddings for senses and
lexemes. To create these embeddings, a neural
network containing lexemes and sense layers is
built, while the WordNet relations are used to cre-
ate links between each layer. The advantage of
their method is that it is flexible: it can take any
set of word embeddings and any lexical database
as input and produces embeddings of senses and
lexemes, without requiring any extra training data.

Ultimately, for each word W we need a vector
for the context Cw, and for each sense s of word
w we need a gloss vector Gs. The context vector
Cw is defined as the mean of all the content word
representations in the sentence: if a word in the
context has already been disambiguated, we use
the corresponding sense embedding; otherwise we
use the word embedding. For each sense s, we
take its gloss as provided in WordNet. In line
with Banerjee and Pedersen (2002), we expand
this gloss with the glosses of related meanings, ex-
cluding antonyms. Similar to the creation of the
context vectors, the gloss vector Gs is created by
averaging the word embeddings of all the content
words in the gloss.
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2.2 Pun Interpretation: the Context Had to
Split

The WSD method that we described above returns
the sense with the highest score taking into ac-
count the whole context. For pun interpretation,
we could simply adapt it to return the best and
second-best sense. However, to exploit the two-
part structure of pun-based jokes, we instead split
the context into two local contexts, run WSD for
each local context and then return the best sense
according to each of the two.

Ideally, we want to split the context so that all
cues for one sense are in one local context, and all
cues for the other sense are in the other. We there-
fore split the context so as to maximize the seman-
tic dissimilarity between both parts. For each pos-
sible split of the text into two contiguous parts, we
create a vector for each part by taking the means
of all content words, as described earlier, and com-
pute the cosine distance between both vectors. The
pair of parts with the highest distance are used as
local contexts for the WSD system.

For each polysemous word in the sentence, the
WSD system is applied twice, using a different
part of the context. The highest scoring sense for
each run is chosen. As both runs could assign the
same sense to the word, the second best sense of
the first run is chosen in this case.

2.3 Pun Location: Attracting Opposites

We attempt to locate the pun in a sentence by se-
lecting the polysemous word with the two most
dissimilar senses. In order to do this, we use the
two senses as determined by the pun interpretation
system for each ambiguous word in the sentence.
We therefore retrieve the two best senses for each
polysemous word in the sentence and compute the
cosine distance between their embeddings. The
word that has the maximum distance between its
senses is chosen as the answer.

3 Experiments

We use the sense and lexeme embeddings from
Rothe and Schütze (2015)1. They lie within the
same vector space as the pre-trained word embed-
dings by Mikolov et al. (2013)2. This model con-
tains 300-dimensional vectors for 3 million words
and phrases from the Google News dataset. Our

1http://www.cis.lmu.de/ sascha/AutoExtend/
2see https://code.google.com/p/word2vec/

sense inventory is Princeton WordNet 3.1 (Fell-
baum, 1998).

Although a pun can have two or more differ-
ent part-of-speech tags, our method does not ac-
count for this. Instead, we use the POS that was
assigned by the Stanford POS tagger (Toutanova
et al., 2003).

3.1 Development Data

For the development of our system, we gathered
and annotated a small dataset of 91 puns from the
website “Pun of the Day”3. We used instances that
have the same characteristics as in the data for the
subtasks we consider (one pun per text, one con-
tent word per pun, target exists in WordNet 3.1,
pun is homographic). From a small set of down-
loaded texts, both authors first independently se-
lected the texts that meet all of these criteria. This
was followed by a round of adjudication by dis-
cussion to determine the texts to use. We then used
a similar process to annotate each pun for its two
senses.

3.2 Pun Interpretation

We compare our pun interpretation method to
three baselines: a random baseline, a most fre-
quent sense baseline and a WSD system that does
not use context splitting. The latter was modified
to return the two senses with the highest score in-
stead of one.

In addition, we compared different ways of
splitting the context of the pun. Next to splitting
on the basis of the maximal cosine distance be-
tween two possible parts of the context we also
ran the WSD system with contexts that were split
in half and with contexts that were split at the first
punctuation symbol.

3.3 Pun Location

For pun location, we compared our system’s per-
formance to two baselines. One baseline randomly
selects one content word from the text as the pun,
and the other baseline always selects the last con-
tent word in the text as the pun. In addition, we
used the output of all experimental setups of pun
interpretation to assess the influence of the quality
of assigned senses on pun location.

3http://www.punoftheday.com/
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4 Results

Results of the experiments for pun interpretation
can be found in Table 14.

Table 1: Results for pun interpretation on the
shared task test data.

System Coverage Precision

Random baseline 98.92 7.24
MFS baseline 98.92 11.21

Lesk++, no splitting 98.23 15.45

Lesk++, split in half 98.23 16.39
Lesk++, split by punctuation 98.23 15.53
Lesk++, optimal split 98.23 15.53

Our system easily outperforms both the ran-
dom baseline and the most frequent sense base-
line. Also, if we split the context before disam-
biguating the target word, we gain higher scores
as compared to a system that selects the two best
scoring senses. We do not, however, gain higher
scores when we split the contexts on the basis of
maximum semantic dissimilarity. Instead we ob-
serve that a system that splits the context in half
performs better.

Table 2 shows results for pun location using the
output of our system for pun interpretation. Our
system scores well above our random baseline.
However, the baseline selecting the last content
word is much stronger, as the pun often appears
at the end of the joke in the data.

Table 2: Results for pun location on the shared
task test data.

Coverage Precision

Random content word 100.00 13.20
Last content word 100.00 52.96
Lesk++, optimal split 100.00 27.69

Results of the experiments for pun location us-
ing the output of our system compared to all base-
lines for pun interpretation and different splitting
setups are shown in Table 3. Using the output of
our system, with or without context splitting, per-
forms better compared to systems that use random
or most frequent output. The output of systems
that use splitting modules and the ones that do not
seem to not make a big difference for pun location.

4Lesk++, optimal split, was the submitted system. Num-
bers differ slightly due to a fixed inconsistency in how words
are handled for which only one sense could be found.

Table 3: Results for pun location on the shared
task test data.

Pun interpretation system Coverage Precision

Random baseline 100.00 17.24
MFS baseline 100.00 18.48

Lesk++, no splitting 100.00 27.75

Lesk++, split in half 100.00 27.75
Lesk++, split by punctuation 100.00 28.44
Lesk++, optimal split 100.00 27.69

5 Discussion

Our method for pun interpretation does not yet
deal with puns where each sense has a different
part of speech. A solution to this would be the use
of the senses of the word’s second best option of
a part-of-speech tagger as well. Also, our method
does not deal with phrasal verbs and multi-word
expressions.

Our method for pun location works much better
than chance, but much worse than a simple heuris-
tic exploiting the fact puns typically appear at the
end in the data. It would be interesting to see if
both methods can be combined, e.g. using con-
fidence scores and the heuristic as a fallback. It
would also be interesting to see if the heuristic can
be applied to other types of data, such as movie
scripts.

6 Conclusions

We hypothesized that the idea that pun-based
jokes can be divided into two parts, each contain-
ing information about the two distinct senses of
the pun, can be exploited for pun interpretation.
Experiments were done splitting the context that
is input to a WSD system into two parts, run WSD
for each context and return the best sense for pun
interpretation. Results of our experiments show
that, on the pun interpretation task, systems that
use such a module outperform a WSD system that
returns the two best senses. Also, our system per-
forms better compared to both the random and the
most frequent baseline.

As we expected the two meanings of a pun to be
very dissimilar, we used the output of pun inter-
pretation for pun location. Computing cosine dis-
tances between each sense-pair and select the one
that has the highest distance gains higher scores
as compared to a system that randomly selects a
content word to be the pun.
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Abstract

In this paper we describe our system cre-
ated for SemEval-2017 Task 7: Detection
and Interpretation of English Puns(Miller
et al., 2017). We tackle subtask 1, pun
detection, by leveraging features selected
from sentences to design a classifier that
can disambiguate between the presence or
absence of a pun. We address subtask 2,
pun location, by utilizing a decision flow
structure that uses presence or absence of
certain features to decide the next action.
The results obtained by our system are en-
couraging, considering the simplicity of
the system. We consider this system as
a precursor for deeper exploration on ef-
ficient feature selection for pun detection.

1 Introduction

Puns are ambiguous word pairs in language that
play on the different meaning of the word (pol-
ysemy), or utilize similarly pronounced sounds
(phonology) often for a humorous effect(Miller
and Turković, 2016). They are widely used in
written and spoken literature, intended as jokes.
The task tries to detect whether a sentence is a pun
or not (Subtask 1). If a pun is detected, we try to
detect which word in the sentence was meant as a
pun (Subtask2). For example, the sentence, “I’d
tell you a chemistry joke, but, I know I wouldn’t
get a reaction.” is a play on the word reaction,
which is a common phrase. But, including it after
chemistry, which deals with chemical reactions;
gives it a humorous intent. Another example, the
sentence, “I used to meditate a lot, but now I only
do it every now and zen.” plays on the similar pro-
nunciation of the words zen and then. Puns often
require knowledge about syntactic similarity be-
tween words and phrases like meditation and zen,

chemistry and reaction, etc.
Recently, a definite trend is noticeable in de-

veloping a system that can automatically detect
puns efficiently so that the humorous nature of the
pun can be captured. Pun detection is of high im-
portance for language modeling, machine transla-
tion and sentiment analysis task so that the actual
meaning of terms can be understood. This allows
effectively utilizing the intended meaning rather
than just the words themselves.

The absence of any unified global word knowl-
edge base makes detections of puns difficult since
automatic selection of intended meaning is hard.
There exist many Word Sense Disambiguation
(WSD) approaches, but they are inefficient in cap-
turing the word play(Miller and Gurevych, 2015).
This makes pun detection a very interesting area
to work on.

Due to the ambiguous nature of the words used,
sentences containing puns are often wrongly clas-
sified. Due to an absence of a globally used
pun dataset, all work in this area utilize self-
accumulated and tagged datasets. This makes it
difficult to compare the performance of different
approaches.

We use the SemEval2017 Task7 dataset and de-
sign a classifier system that can detect the pres-
ence and location of puns. We explain the features
selected and extracted that can efficiently detect
puns in Section 2.1.1. In Section 2.2.1, we propose
our decision flow based algorithm that utilizes fea-
tures to locate the word in the sentence that was
intended as the pun. We show and explain our re-
sults in Section 3 .

2 System Overview

We use this section to explain details of the system
we designed for the task. The task was distributed
in different subtasks and each subtask had two

449



tasks for Homographic puns and Heterographic
puns. Homographic puns play on the two distinct
meanings of a word, whereas, Heterographic puns
deal with the similar phonological pronunciation
between words. For each subtask we design a sin-
gle system, to tackle both Heterographic and Ho-
mographic puns, since in real life, we don’t find
a distinction between the two types. We try to
present a system that could identify puns, irrespec-
tive of their type.

2.1 Subtask 1: Pun Detection

In this section we present the description of the
classifier system used for detecting whether a sen-
tence contains a pun or not.

2.1.1 Feature Set

For an efficient classifier we extract the following
binary features from the sentence. The value for
each feature is either 1 or 0, denoting the presence
or absence of that feature in that sentence. We se-
lect the features that were generally found in puns.
• Homophone: Homophones are a set of words
that have the same pronunciation but different
meaning like ”knew” and ”new”. We utilize two
sources1,2 from the Internet to create a list of ho-
mophones. This list is in no way exhaustive but
covers the most frequent homophones.
• Antonym: Antonyms are pair of words that are
opposite in meaning, like ”good” and ”bad”. We
utilize the WordNet (Miller, 1995) library to check
whether the sentence contains any antonym pairs.
• Idioms: Idioms are group of words that are used
together as an expression having a specific mean-
ing. For example the phrase ”blue moon” means
something rare. We create a list of the most com-
mon idioms from the Englishclub website3.
• Homonym: Homonyms are words that have
more than one definitions. For example the word
‘fine’. We create a list of the most common
homonyms from Wikipedia4 and Alphalink5.
• word2vec similarity: We utilize the word2vec
word representations(Mikolov et al., 2013) pre-

1http://www.zyvra.org/lafarr/hom.htm
2http://www.singularis.ltd.uk/

bifroest/misc/homophones-list.html
3https://www.englishclub.com/ref/

Idioms/
4https://en.wikipedia.org/wiki/List_

of_true_homonyms
5http://home.alphalink.com.au/

˜umbidas/homonym_main.htm

trained on the 100 billion Google News words6.
We construct a set of unique pair of words from the
sentence and check the similarity score between
them. If a score higher than the threshold (set to
0.30) is obtained for any pair, we assume that a
word2vec similar word pair exists.
•WordNet similarity: We can utilize the Word-
Net (Miller, 1995) tree to calculate the distance
between two words. Similar words are relatively
closer and have high similarity score. If any pair
of words has score higher than threshold (set to
0.30) we assume that a WordNet similar pair ex-
ists.

The threshold similarity value was set by manu-
ally calculating the similarity score for some sim-
ilar words like ketchup and mustard.

2.1.2 Classification
Extracting the six binary features, described in the
previous section, from our training dataset (ex-
plained in Section 3.1.1) we train three classifiers.
• Support Vector Machine(SVM): We use an
SVM with a linear kernel, C=1, a squared-hinge
loss function, and L2 loss penalty (Pedregosa
et al., 2011).
• Naive Bayes(NB): We use Binomial variant
with Laplace smoothing parameter = 1 (Pedregosa
et al., 2011).
• Logistic Regression(LR): We use Logistic Re-
gression with L2 loss penalty, and C=1 (Pedregosa
et al., 2011).

The classifier gives an output of 1 or 0, denot-
ing the presence or absence of a pun. We use the
best-of-three approach, pooling the results of all
three classifiers and selecting the highest occur-
ring value (1 or 0).

2.2 Subtask 2: Pun Location

In this section we describe the decision flow based
algorithm to expose the word in the sentence that
represents the pun.

2.2.1 Algorithm Design
We present the decision flow algorithm used to de-
tect the pun word in the sentence in Algorithm 1.

We start by utilizing the list of homophones
and homonyms as described in Section 2.1.1. We
utilize the word2vec pre-trained vectors (Mikolov
et al., 2013) and the WordNet library (Miller,

6https://code.google.com/archive/p/
word2vec/
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1995) to calculate similarity score using calcScore
function.

Algorithm 1 Algorithm to detect location of pun
word in sentence.
Require: hph = list of homophones; hom = list

of homonym; wn = WordNet Library; w2v =
word2vec pre-trained vectors; S = Sentence to
test;

1: sHalf ← Second Half of words in S
2: sHalf ← Reverse words in sHalf
3: flag = 0
4: for word ∈ sHalf do
5: if length(word) > 3 then
6: if word ∈ (hph ∪ hom) then
7: pun← word
8: flag = 1; break;
9: end if

10: if antonym(word) ∈ S then
11: pun← word
12: flag = 1; break;
13: end if
14: end if
15: end for
16: if flag = 0 then
17: prevScore = 0
18: revS ← Reverse of words in S
19: wP ← Pairs of words ∈ revS
20: for p ∈ wP do . p = (word1, word2)

21: score← calcScore(word1, word2)
22: if score > prevScore then
23: prevScore← score
24: pun← word1
25: end if
26: end for
27: end if
28: if prevScore = 0 then
29: pun← Last word of S
30: end if

We break the sentence into its constituent
words, and check whether any word in the second
half of the sentence is a homophone/homonym.
If any such word is found, it is considered as
the pun word. If no such match is found, we
check whether any word in the second half has
an antonym (Section 2.1.1) in the sentence. If an
antonym pair is found, that word is considered as
the pun.

If no match is found then we consider the
unique pair combinations of words in the sentence
and calculate the word similarity. The word from

the back of the sentence that has the highest simi-
larity score with any other word in the sentence is
considered as the pun word. If all decisions fail,
the last word in the sentence is considered as the
pun word.

3 Experiment and Results

3.1 Subtask 1: Pun Detection

We extract features and design a classifier for Sub-
task 1.

3.1.1 Dataset
We created the dataset for the classifier by gath-
ering puns from the punoftheday7 website. The
website consists of user aggregated puns of all
types. A collection of 5316 puns were accumu-
lated.

For non-pun sentences multiple sources were
used. Sentences containing homophones and
homonyms were extracted from WordNet (Miller,
1995). We also utilized the SemEval2012 - Task
68 training dataset by taking a single sentence
from each dataset item. The BBC dataset (Greene
and Cunningham, 2006) of news articles was also
used9. We extracted the first sentence for each
news article. Compiling all these sources gave us
a set of 4848 non-pun sentences.

3.1.2 Result
We tabulate the results achieved in the SemEval
2017 Task 7 in Table 1.

Table 1: Official SemEval Results for Subtask1.
PunTask Precision Recall Accuracy F1

Homographic 0.78 0.61 0.60 0.68
Heterographic 0.79 0.62 0.61 0.69

3.1.3 Limitations
On deeper analysis of the training dataset we
found that the final testing dataset contained items
from the punoftheday7 website too. This made
multiple items from the test dataset present in our
training dataset. In total, 1145 items from the Ho-
mographic task and 715 items from the Hetero-
graphic task were present in our training set.

Due to this unfortunate coincidence, we recre-
ated our training set, eliminating all the items that

7http://www.punoftheday.com/
8https://www.cs.york.ac.uk/

semeval-2012/task6.html
9http://mlg.ucd.ie/datasets/bbc.html
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were present in the SemEval Test set. This re-
duced our dataset to 3456 puns and 4848 non-
puns. Retesting on this dataset provided us with
the following results as mentioned in Table 2:

Table 2: Recalculated Results for Subtask1.
PunTask Precision Recall Accuracy F1

Homographic 0.68 0.47 0.47 0.56
Heterographic 0.65 0.42 0.43 0.51

3.2 Subtask2: Pun Location
For this task we run the testing dataset through our
algorithm proposed in Section 2.2.1. We submit-
ted two runs for this subtask, using WordNet Path
Similarity for one run and word2vec word similar-
ity for the other.

3.2.1 Result
The results achieved using WordNet as a similarity
metric are tabulated in Table 3, whereas Table 4
tabulates the results obtained using word2vec as a
similarity measure.

Table 3: SemEval Subtask2 results using WordNet
as similarity measure.

PunTask Precision Recall F1
Homographic 0.315 0.315 0.315
Heterographic 0.357 0.357 0.357

Table 4: SemEval Subtask2 results using
word2vec as similarity measure.

PunTask Precision Recall F1
Homographic 0.341 0.341 0.341
Heterographic 0.428 0.428 0.428

4 Conclusion

Based on our submissions and the results for Se-
mEval2017 Task7, we believe that efficient feature
selection may be a feasible approach for automatic
detection of sentences containing puns. We pro-
pose to integrate language models and word sub-
stitution in future work to perform deeper analysis
on the dataset.

Even though our system was not the best one,
we do believe that the simplicity of its design is a
highly attractive feature. We selected features for
our system that are generally found in puns. We
found that some of the features like homophones
resulted in poor performance for Subtask 2. Future
work on efficient feature selection might allow us
to get much higher results.
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Abstract

This paper describes our submissions to
task 7 in SemEval 2017, i.e., Detection and
Interpretation of English Puns. We par-
ticipated in the first two subtasks, which
are to detect and locate English puns re-
spectively. For subtask 1, we presented a
supervised system to determine whether or
not a sentence contains a pun using simi-
larity features calculated on sense vectors
or cluster center vectors. For subtask 2,
we established an unsupervised system to
locate the pun by scoring each word in the
sentence and we assumed that the word
with the smallest score is the pun.

1 Introduction

A pun is a form of wordplay in which one signifier
(e.g., a word or phrase) suggests two or more
meanings by exploiting polysemy, or phonological
similarity to another signifier, for an intended
humorous or rhetorical effect. The study of puns
can be seen as a respectable research topic in
traditional linguistics and the cognitive sciences.

Semeval 2017 task 7(Miller et al., 2017) con-
tains three subtasks, i.e., pun detection, pun loca-
tion, and pun interpretation. And we participated
in the first two subtasks. The detection and
location of English puns are to determine whether
or not a sentence contains a pun and which word
is a pun respectively, which differ from traditional
word sense disambiguation (WSD). WSD is to
determine an exact meaning of the target word
in the given context. However, WSD algorithms
could provide the lexical-semantic understanding
for pun detection and location. And we adopted a
knowledge-based WSD algorithm to obtain possi-
ble senses1 for each word in the sentence.

1The sense is the gloss provided by WordNet

There are two types of puns: some are homo-
graphic puns and the others are heterographic pun-
s. A homographic pun exploits distinct meanings
of the same written word, and a heterographic pun
exploits distinct meanings of the similar but not
exactly the same spoken word. The organizer-
s provided two test datasets about homographic
puns and heterographic puns respectively for each
subtask. Since they did not provide official train-
ing datasets, we collected our own positive sam-
ples(each sentence contains a pun) from the Pun
of the Day website2, which conclude 60 homo-
graphic puns and 60 heterographic puns. Besides,
we also assembled a raw dataset of 120 negative
samples(sentences that do not contain puns) from
the Internet. Then, we combined 120 negative
samples with 60 homographic puns or 60 hetero-
graphic puns into homographic or heterographic
training dataset. Then, we did the same data
preprocessing for both training and test dataset-
s. Firstly, we performed part-of-speech(POS)
tagging using Stanford CoreNLP tools(Manning
et al., 2014). Secondly, we removed the stop
words in sentences. The words produced after this
series of processing are denoted as target words
for each sentence.

Since there are two different puns, we adopted
different methods for them to detect and locate
English puns. For homographic puns, we calculat-
ed the semantic similarity between sense vectors
of each target word in the sentence to obtain a
vector representation of a sentence and score each
target word in the sentence, and for heterographic
puns, we computed the semantic similarity be-
tween cluster center vectors of each sentence for
the same purpose.

2http://www.punoftheday.com/
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2 Homographic Puns Detection and
Location

To detect and locate homographic puns, we per-
formed exploratory analysis on training dataset.
We found that the degree of semantic similarity
between two meanings of a pun is supposed not
to be high, where the semantic similarity between
meanings is measured by calculating the distance
between sense vectors.

(Miller and Turković, 2016) makes a case for
research into computational methods for detection
of puns in running context. Inspired by their work,
for subtask 1, we presented a supervised system
using similarity features which are calculated on
sense vectors of each target word to create each
target word vector, and to obtain the vector rep-
resentation of the sentence. For subtask 2, we
located the pun by scoring each target word in the
sentence.

2.1 Pun Detection

This subtask is to determine whether or not a
given sentence contains a pun. To address this
subtask, we performed the process that consists of
the following steps:

• For each target word in the sentence, we
adopted Simplified Lesk algorithm(Kilgarriff
and Rosenzweig, 2000) with respect to its
POS to select the possible senses. Simplified
Lesk disambiguates a word by examining the
definitions3 and selecting the single sense
with the highest overlap score4. In our
case, we selected the possible senses which
overlap scores are higher than or equal to the
second highest overlap score.

• In order to obtain the sense vector for each
sense, we used 300-dimensional word vec-
tors which are pre-trained Google word vec-
tors downloaded from Internet5 to represent
each word in the sense and the simple min,
max, average pooling strategies were adopted
to concatenate sense vector representations
with dimensionality of 900.

3In our implementation, the definitions are formed by
concatenating the synonyms, gloss, and example sentences
provided by WordNet

4Overlap score is the number of words in common with
the context

5https://code.google.com/archive/p/word2vec

• For each target word in the sentence, we
calculated the similarity between its sense
vectors using six kernel functions, i.e., co-
sine similarity, manhattan distance, euclidean
distance, pearsonr distance, Spearman’s rho
distance and sigmoid function. Note that, the
instruction of sigmoid function is : Firstly,
compute the dot product of two vectors to
obtain the value of K. Secondly, update K by
K=tanh(K/D+1), where D is the dimension of
the vector. Finally, we denote K as the simi-
larity score calculated by sigmoid function.

• For each target word in the sentence, we
combined each minimum score calculated
by each kernel function into target word
vector(6-dimensional).

• In order to obtain the sentence vector(18-
dimensional), we simply adopted the min,
max, mean pooling strategies on all target
words in the sentence.

we explored two supervised machine learning
algorithms to build the classifiers: AdaBoost(AB)
and RandomForest(RF) both implemented in
scikit-learn tools6.

2.2 Pun Loaction
This subtask is to decide which word in the sen-
tence is the pun. We scored each target word by
averaging the elements of its target word vector
described in section 2.1. Finally, we assumed that
the word with the smallest score is a homographic
pun.

3 Heterographic Puns Detection and
Location

A heterographic pun corresponds to another word
with similar spoken but distinct meaning. That is
different from a homographic pun, which exploits
distinct meanings of exactly one word. There-
fore, we adopted different methods for hetero-
graphic puns. Through an artificial analysis on
heterographic puns, we found that the original
meaning of the heterographic pun differs greatly
from the meanings of other words in the sentence.
Therefore, we clustered all words in training and
test datasets in order to cluster words with high
degree of semantic similarity into the same cluster.
Firstly, we used pre-trained Google word vectors

6http://scikit-learn.org/stable
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to represent each word. Secondly, we clustered
those word vectors into 100 clusters using k-
means(k=100) clustering algorithm. Finally, we
obtained a cluster center vector(300-dimensional)
for each cluster by averaging the word vectors
belonging to this cluster. Moreover, the semantic
similarity between words in the sentence is mea-
sured by calculating the distance between cluster
center vectors.

For subtask 1, we presented a supervised system
using similarity features which are calculated on
cluster center vectors to represent a sentence. For
subtask 2, we selectively scored target word in the
sentence.

3.1 Pun Detection
To address this subtask, we used the following two
steps to implement our approach.

• We clustered the target words in a sentence
into several clusters. If the number of clusters
of all taget words in a sentence is exactly
one, we assumed that this sentence does
not contain a pun. If not, we calculated
the similarity between those cluster center
vectors using the six kernel functions adopted
in section 2.1.

• We took the min, max, and mean scores
calculated by each kernel function as a
vector representation(18-dimensional) of the
sentence.

we also explored two same classification algo-
rithms as for homographic puns detection.

3.2 Pun Loaction
To locate the pun in the sentence, we split the
location process into three steps.

• We calculated the similarity scores between a
cluster center and other cluster centers using
the six kernel functions to find the outlier
cluster, then we computed the average value
of those similarity scores as a score for each
cluster center. We chose the cluster center
with the smallest score as the outlier cluster.

• If there is only one word in the outlier cluster,
we selected this word as a pun. If not, for
each candidate word, we calculated the simi-
larity scores between the top-sense vector7 of

7Top-sense is the definition of top-scoring synset returned
by Simplified Lesk algorithm and we used the method
described in Section 2.1 to obtain top-sense vector

it and every cluster center except the outlier
one using the six kernel functions. Finally,
We calculated the average value of these
similarity scores as a score for each candidate
word.

• We supposed that the word with the smallest
score is a heterographic pun.

Particularly, if the number of clusters of all
target words in a sentence is less than three, we
could not find the outlier cluster. Therefore we
calculated the similarity scores between top-sense
vectors of target words in the sentence. We scored
each target word by averaging all the similarity
scores that are relevant to that target word.

4 Experiments

4.1 Datasets
Although organizers did not provide the training
datasets, we collected our own training datasets.
Table 1 shows the statistics of the datasets we used
in our experiments.

Pun Dataset Positive Negative Total

homographic training 60(33%) 120(67%) 180
test 1,607(71%) 643(29%) 2,250

heterographic training 60(33%) 120(67%) 180
test 1,271(71%) 509(29%) 1,780

Table 1: Statistics of datasets in training and test
data. The number in brackets are the percentages
of different classes in each dataset.

4.2 Evaluation Metrics
For both subtask 1 and 2, the three widely-used
evaluation measures precision(P), recall(R) and
F1 are adopted. Moreover, for subtask 1, ac-
curacy(Acc) is also included and for subtask 2,
coverage(C) is used. Coverage is defined as the
ratio of sentence for which a location assignment
was attempted.

4.3 Experiment on Training Data For
Subtask 1

Table 2 and 3 show the results of different al-
gorithms of subtask 1 on homographic and het-
erographic training datasets respectively. The
5-fold cross validation is performed for system
development. From Table 2 and Table 3, we
find that AdaBoost outperforms RandomForest
algorithm and the ensemble method performed
best on homographic pun. Therefore we chose the
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ensemble classifier for homographic pun and the
AdaBoost algorithm for heterographic pun.

Method Algorithm P R Acc F1

Single AB 0.7945 0.6836 0.6667 0.7349
RF 0.7814 0.6733 0.6346 0.7233

Ensemble AB+RF 0.8013 0.6955 0.6835 0.7747

Table 2: Results of subtask 1 on homographic
training dataset.

Method Algorithm P R Acc F1

Single AB 0.8401 0.8233 0.8833 0.8316
RF 0.7107 0.4833 0.77.22 0.57.59

Ensemble AB+RF 0.8880 0.4500 0.8056 0.5973

Table 3: Results of subtask 1 on heterographic
training dataset.

4.4 Results and Discussion on Test Data
Table 4 and Table 5 show the results of our systems
and the top-ranked systems provided by orga-
nizers for subtask 1 and subtask 2 respectively.
Compared with the top ranked systems, there is
much room for improvement in our work. The
reason for the poor performance may be that the
constructing method of sense vectors is simple and
straightforward, which neglects the word sequence
and the sentence structure of the sense. We find
that detecting puns at the sentence level is more
effective than locating puns at the word level, and
our systems performed better on heterographic
puns.

Pun System(rank) P R Acc F1

Homographic

ECNU(6) 0.7127 0.6474 0.5628 0.6785
PunFields(1) 0.8091 0.7785 0.7044 0.7900

Duluth(2) 0.7832 0.8724 0.7364 0.8254
UWAV(3) 0.7806 0.6067 0.5973 0.6828

Heterographic

ECNU(2) 0.7807 0.6761 0.6333 0.7247
Idiom Savant(1) 0.8704 0.8190 0.7837 0.8439

N-Hance(3) 0.7725 0.9300 0.7545 0.8440

Table 4: Performance of our systems and the top-
ranked(ranked by P) systems. The numbers in the
brackets are the official ranking

5 Conclusion

In this paper, we presented systems to detect and
locate a pun in the sentence on both homographic
and heterographic puns datasets. For homographic
puns, we calculated the semantic similarity be-
tween sense vectors of each target word in the
sentence to obtain its sentence vector and score
each target word. And for heterographic puns, we

Pun System(rank) C P R F1

Homographic

ECNU(8) 1.0000 0.3373 0.3373 0.3373
Idiom Savant(1) 0.9988 0.6636 0.6627 0.6631
UWaterloo(2) 0.9994 0.6526 0.6521 0.6523

Fermi(3) 1.0000 0.5215 0.5215 0.5215

Heterographic

ECNU(4) 1.0000 0.5681 0.5681 0.5681
UWaterloo(1) 0.9976 0.7973 0.7954 0.7964

Idiom Savant(2) 1.0000 0.6845 0.6845 0.6845
N-Hance(3) 0.9882 0.6592 0.6515 0.6553

Table 5: Performance of our systems and the top-
ranked(ranked by P) systems. The numbers in the
brackets are the official ranking

computed the semantic similarity between cluster
center vectors of each sentence for the same pur-
pose. In the future, we will explore the requisite
problem of pun interpretation, where the objection
is to determine two senses of the pun.
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Abstract

This paper describes our system for de-
tection and interpretation of English puns.
We participated in 2 subtasks related to
homographic puns achieve comparable re-
sults for these tasks. Through the paper
we provide detailed description of the ap-
proach, as well as the results obtained in
the task.

Our models achieved an F1-score of
77.65% for Subtask 1 and 52.15% for Sub-
task 2.

1 Introduction

The pun, also called paronomasia, is a form of
word play that suggests two or more meanings,
by exploiting multiple meanings of words, or of
similar-sounding words, for an intended humorous
or rhetorical effect. A pun is also a special form
of ambiguity (mostly lexical) that is consciously
used to create statements with ambiguous-distinct-
meanings. These ambiguities can arise from
the intentional use of homophonic, homographic,
metonymic, or figurative language. A homo-
graphic pun exploits distinct meanings of the same
written word, and a homophonic pun exploits dis-
tinct meanings of the same spoken word.

Examples of homographic puns.

• ”I used to be a banker but I lost interest”,

• ”Tires are fixed for a flat rate”

• ”Getting rid of your boat for another could
cause a whole raft of problems”

In the first example, the word interest is the pun
denoting interest as willingness and also as a fixed
charge for borrowing money. In the second exam-
ple, the word flat is the pun denoting flat as in a flat

tyre and flat as in flat rate. The third example, the
word raft is the pun denoting raft as a batch and
raft as a type of boat.

In the present work, we focus on homographic
puns. We present methods to a) identify a pun sen-
tence, b) identify the pun word given a pun sen-
tence and c) interpret the different word senses
of the pun word. The details of the shared task
are available at (Tristan Miller and Hempelmann,
2017)

2 Subtask 1 - Pun detection

In this task, for each sentence, the system must
decide whether it contains a pun or not. While
this task is mostly unsupervised, we cast this prob-
lem as a supervised learning classification prob-
lem. We have randomly selected part of the dataset
and manually annotated them as a pun sentence or
a non-pun. We decided to leverage on models that
try to model sequences of word vectors. We can
view the each sentence as a sequence where we
only have one label at the end. This many-to-one
mapping lends itself nicely to Recurrent Neural
Network. Due to this reason, we used a recurrent
neural network to train the classifier and generate
the model. Using this model we classify the re-
maining dataset.

We used two settings for the train and test split.
In setting 1, we used 70% of the dataset for train-
ing and 30% of the data for testing. In Setting 2,
we used 30% of the dataset for training and the
remaining 70% of the data for testing.

Recent research has shown that deep learning
methods can minimize the reliance on feature en-
gineering by automatically extracting meaningful
features from raw text (Collobert, 2012). Thus,
we propose to use distributed word embeddings
which capture lexical and semantic features as in-
put features to our neural network model.
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Figure 1: BiDirectional RNN architecture for de-
tecting puns

Distributed word embeddings map words in a
language to high dimensional real-valued vectors
in order to capture hidden semantic and syntac-
tic properties of words. These embeddings are
typically learned from large unlabeled text cor-
pora. In our work, we use the pre-trained 50 di-
mensional GloVe embeddings (Pennington et al.,
2014) which were trained on about 6B words from
the twitter using the Continuous Bag of Words ar-
chitecture.

2.1 Model

The network architecture of our model as illus-
trated in Figure 1 has the following structure

• Embedding Layer: This layer transforms
each word into embedded features. The em-
bedded features are a concatenation of the
words Distributed word embeddings. The
embedding layer acts as input to the hidden
layer.

• Hidden Layer: The hidden layer consists of a
Bi-Directional RNN. The output of the RNN
is a fixed sized representation of its input.

• Output Layer: In the output layer, the rep-
resentation learned from the RNN is passed
through a fully connected neural network
with a sigmoid output node that classifies the
sentence as a pun or a non-pun.

2.2 Performance

We train the network for 25 epochs. The follow-
ing table describes the results on the pun dataset.

Table 1 shows the performance of our classifier on
the two settings.

2.3 Discussion
While the pun classification was supposed to be an
unsupervised classification problem, we cast the
problem into a supervised classification problem
by annotating the data partially. This might be a
reason for very high precision for the Setting 1
as the classifier might have overfit the model to
a wider range of training data than in the second
setting. We used a dropout of 0.5 in Bi-Direction
RNN to avoid the overfitting problem.

3 Subtask 2 - Pun location

In this task, for each sentence containing a pun, the
system must identify the pun word. We introduce
the algorithm which takes a sentence containing a
pun as an input and returns the pun word.

3.1 Observations
Empirical observations of the puns show the fol-
lowing characteristics of the pun word

• The pun word usually appears towards the
end of the pun (Miller, 2014)

• There exists a non-pun word whose similarity
is more than a threshold, than any other word
to word similarity in the sentence.

• Stopwords and non content words can not be
puns

• The pun word will have atleast two word
senses in the wordnet corpus (Miller, 1995)

3.2 Methodology
From the examples given in section 1, we see that
the pun word interest is semantically close to the
word banker and its root bank. In the next exam-
ple, we observe that the word flat is semantically
close to the word tires because tires can go flat. In
the last example the word raft is semantically close
to the word boat as both are used as transport ob-
jects in water.

Based on the above observations, we propose
the following algorithm to identify the pun word in
a sentence having a pun. The function FIND PUN
takes a sentence containing a pun as an input and
returns the pun word discussed in Algorithm 1.
First, a list of probable pun words is generated
by removing the stopwords and punctuation in the
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Setting Train Test Precision Recall Accuracy. F1
Setting 1 70% 30% 0.9697 0.7953 0.8360 0.8738
Setting 2 30% 70% 0.8918 0.6876 0.7173 0.7765

Table 1: Performance of the pun classifier using Bidirectional RNN in 2 settings for Subtask 1

sentence. Next, all words which have less than 2
entries in the wordnet are removed. If there is only
1 word left, we return this word as a pun word.
In case multiple words are present in the proba-
ble puns list, then a list of pairs with all combina-
tion of words in the sentence with all the possible
words in the probable puns is made. For every
pair in the list of pairs, the similarity of the two
words is calculated. The similarity of two words
is also calculated by expanding the synsets of both
the words and finding the most similar pair be-
tween the pairs of every synset in word 1 with ev-
ery synset in word2.

Algorithm 1 PUN Detection Algorithm
1: INPUT Sentence
2: OUTPUT PUN word.
3: Step 1: Tokenize the input sentence.
4: Step 2: Remove punctuations and stop words
5: from the tokens.
6: Step 3: Remove tokens which have less than
7: 2 entries from the wordnet.
8: if Only one Word in list then
9: return Word(PUN word)

10: else
11: for All pair of words in sentence do
12: Bestpair=MAXSIM(Pair of words)
13: end for
14: return Word ∈ Bestpair which occurs
15: towards end of the sentence.
16: end if

The MAXSIM function takes two words as in-
put and returns the maximum similarity between
all pairs of words in their synsets. The algorithm
is described in 2.

For every possible pair between synsets1 and
synsets2, calculate the word to word similarity us-
ing the word embeddings. Return the pair which
has the maximum similarity.

For the pun example 3, the following table
shows the similarity between all pairs of the words
in the descending order of the similarity.

Algorithm 2 MAXSIM Model
1: INPUT Words={Word1, Word2}
2: Initialization MaxSimilarity=0
3: OUTPUT Maximum similarity between all

pairs of words in their synsets
4: Step 1: synsets1 = get the synsets of word1
5: Step 2: synsets2 = get the synsets of word2
6: for pairword1 in synsets1 do
7: for pairword2 in synsets2 do
8: Step 3:WordSimilarity=
9: similarity(pairword1,pairword2)

10: if MaxSimilarity ≤ WordSimilarity
then

11: a:MaxSimilarity= WordSimilarity
12: end if
13: end for
14: end for
15: Step 4:return MaxSimilarity

Word 1 Word 2 Max similarity
boat raft 0.68
boat whole 0.61

getting whole 0.5
rid whole 0.5

getting problems 0.46
getting raft 0.4

rid raft 0.4
getting boat 0.28

boat problems 0.26
boat whole 0.24
rid raft 0.23
rid whole 0.21
rid problems 0.20

Table 2: All word similarity pairs for the example
pun 3

Precision Recall Coverage. F1
0.5215 0.5215 1 0.5215

Table 3: Performance of the pun word identifica-
tion using MAXSIM for Subtask 2

In the first step, the following non content words
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are removed - of, your, for, could, cause. The
remaining words are - rid, boat, getting, whole,
problems. Table 2 shows the similarities between
all pairs of the words. The highest pair boat-raft is
returned by the maxsim function. Since the word
raft appears later in the sentence, the word raft is
identified as the pun word.

3.3 Performance

Table 2 describes the result of our teams run for
Subtask 2.

3.4 Discussion

We have observed that our algorithm maxsim has
performed decently for pun sentences which are
short in length having up to 10 words in the sen-
tence. We observed that as the length of the sen-
tence increases, there are more number of words
which are similar together and the accuracy of pun
word identification decreased.

4 Subtask 3 - Pun interpretation

In this subtask, the pun word is given and the sys-
tem has to annotate the word with the right Word-
Net sense keys. While we did not participate in
this subtask, it is trivial to extend the work done
for Subtask 2 to achieve the objective of Subtask
3.

5 Conclusion

Classifying an English sentence as a pun or not is
a non trivial task. It is much more difficult and
challenging to solve this problem as an unsuper-
vised classification task. Experimentation can be
done to use LSTMs, and BiDirectional LSTMs to
improve the performance of the classifier. Char-
acter Level Embeddings can be used as features
to capture orthographic and morphological fea-
tures of a word. word2vec embeddings from the
Google News dataset can be evaluated as alterna-
tive features for GloVe vectors. For pun identifi-
cation task, cluster based approaches can be ex-
plored specifically for the long sentences. As the
interpretation of most of the puns relies on specific
domain knowledge, additional corpora can be used
to augment our models for better performance.
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Abstract

This paper describes our system for
subtask-A: SDQC for RumourEval, task-
8 of SemEval 2017. Identifying rumours,
especially for breaking news events as they
unfold, is a challenging task due to the ab-
sence of sufficient information about the
exact rumour stories circulating on social
media. Determining the stance of Twitter
users towards rumourous messages could
provide an indirect way of identifying po-
tential rumours. The proposed approach
makes use of topic independent features
from two categories, namely cue features
and message specific features to fit a gra-
dient boosting classifier. With an accu-
racy of 0.78, our system achieved the sec-
ond best performance on subtask-A of Ru-
mourEval.

1 Introduction

In the recent years, with the increasing popular-
ity of smartphones, social media has become one
of the top sources of news. However, because
all the content is user-generated, the truth behind
such news stories may become difficult to verify.
Spread of misinformation during the event of an
emergency can potentially have negative impacts.
Although a few studies in the literature have de-
veloped rumour classification algorithms for Twit-
ter (Qazvinian et al., 2011), these studies assume
that the circulating stories about a topic or an event
are known a priori (Eg: Is Barack Obama muslim
?). On the other hand, identifying rumour stories
for breaking news events, as they unfold, is even
more challenging (Zubiaga et al., 2016b). This
is because during these early stages, the exact ru-
mour stories propagating about the event are still
unknown.

In such a scenario, studying the conversation
between users discussing the event on Twitter can
possibly give insights about the veracity of a cir-
culating rumour story (Zubiaga et al., 2016c).
By making use of the so-called ’wisdom of the
crowd’, the idea here is to understand how other
users respond to rumourous tweets. It would be
useful to identify if users may reply with an intent
to support the story, deny the rumour by providing
counter evidence or pose questions about the in-
formation stated (Zubiaga et al., 2016a). Collat-
ing the stance of other users could indirectly help
in resolving the veracity of a rumour.

The rest of this paper is organized as follows.
Section 2 is a brief overview of the task. The
features used and the modeling technique are de-
scribed in section 3. The results are analyzed in
section 4 and the conclusions from the study are
provided in section 5.

2 Task Description

The objective of subtask-A of RumourEval was to
identify the stance of Twitter users towards rumour
tweets. Given a rumourous tweet (source) and its
conversation thread, the participants were required
to classify the stance of each tweet (including the
source tweet) with respect to the underlying ru-
mour (Derczynski et al., 2017). The type of inter-
action could be one of the following:

1. Support(S): responding user supports the ve-
racity of the rumour

2. Deny(D): responding user denies the veracity
of the rumour

3. Query(Q): responding user demands addi-
tional evidence

4. Comment(C): responding user’s tweet is not
useful in determining the veracity of the ru-
mour

The training dataset consisted of 4519 tweets from
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eight breaking news stories. The test set had 1049
tweets corresponding to a mix of topics from dif-
ferent events.

3 System Description

Breaking news events, as they unfold on social
media, may not have sufficient topic-specific in-
formation that could assist in rumour identifica-
tion. For this reason, we chose to design topic in-
dependent features for the task of rumour stance
classification. Our hypothesis was that the pres-
ence of specific words in the reply tweets could
potentially be indicative of reply type.

Prior to feature extraction, the following data
pre-processing steps were carried out: (1) removal
of quoted text (reply tweets at times quote the
source tweet), (2) discarding URLs, unicode char-
acters, HTML tags, and (3) stripping out the extra
whitespaces and carriage returns in the text.

We began by manually inspecting tweet mes-
sages in the training dataset to come up with an
initial hand-curated list of word features. On fur-
ther analyzing these features, it was found that
these words could be categorized into meaningful
groups. Such ’cue words’ have previously been re-
ported to be useful in identifying an author’s cer-
tainty in journalism (Soni et al., 2014), determin-
ing veracity of rumours (Reichel and Lendvai,
2016) and detecting disagreement in online dia-
logue (Misra and Walker, 2013). As listed in Ta-
ble 1, the first five categories of the cue features
are Belief, Report, Doubt, Knowledge, Denial.
The presence of belief or knowledge words could
be indicative of a reply where the author expresses
his support. As for doubt or denial word cues, they
are more likely to be used when the replying au-
thor wishes to convey his disagreement. On the
other hand, report cue words could be present in
either a supporting tweet or a denying tweet. Ta-
ble 2 provides example tweet messages containing
different cue words and their corresponding true
class-labels from the original dataset .

Internet slang and curse words are more likely
to be present in reply tweets which are of type
’comment’. While negation words were useful
in identifying denying replies, the occurrence of
question words in the text were very informative
in capturing query type replies. We have a list of
certain other cue words, which could not be fit into
any particular category, but were useful in this 4-
class classification problem. The cue word feature

categories along with examples are shown in Table
1. In total, there were 153 such features.1

Feature Example Words

Belief
assume, believe, apparent, per-
haps, suspect, think, thought,
consider

Report
evidence, source, official,
footage, capture, assert, told,
claim, according

Doubt wonder, allege, unsure, guess,
speculate, doubt

Knowledge confirm, definitely, admit

Denial refuse, reject, rebuff, dismiss,
contradict, oppose

Curse Words &
Internet Slang

lol, rofl, lmfao, yeah, stfu, aha,
wtf, shit

Negation
Words

no, not, no one, nothing, never,
don’t, can’t, hardly

Question
Words

when, which, what, who, how,
whom, why whose

Others
irresponsible, careless, liar,
false, witness, untrue, neglect,
integrity, murder, fake

Table 1: Set of cue features and examples

Example Tweet
Cue
Word
Type

Reply
Type

@TroyBramston Source from Ray
Hadley shows confirmed same re-
port of gunman claiming there are
four packages around Sydney

Knowle-
dge/
Report

Support

@PhilSerrin Me thinks you like to
emote in suppositions. Truth is,
you don’t know what happened,
but want to speculate.

Doubt Deny

@DaveBeninger @SheilaGun-
nReid Canadian news contradicts
this

Denial Deny

@Manning Eli 1 @TheAnonMes-
sage2 I thought the same thing Belief Support

Table 2: Example tweets with cue words

Apart from the cue word features discussed
earlier, certain other tweet specific features were
also used as part of our model. These message
level features provide information about the writ-
ing style, such as the presence of punctuation
marks, Twitter-specific characters (such as #, @)
and number of words/characters in the message.
The entire list of features under this category have
been summarized in Table 3. For calculating the
sentiment polarity score, the lexicon based social
media sentiment calculator, VADER, developed
by Hutto and Gilbert (2014), was used.

1The cue word feature list used in this study is available
at https://github.com/HareeshBahuleyan/
rumour-eval/blob/master/cue_word_list.
txt
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It is to be noted that all of the features dis-
cussed in this section (except for similarity) were
extracted from the reply tweets in the dataset. The
task also required the source tweet to be classi-
fied as one of the four reply types. Since there
wasn’t enough data to train a separate model for
predicting the label of source tweets, we made an
assumption that all source tweets were ’support-
ing’ the rumour, which was the majority class in
the training set.

Feature Description
Word Count Number of words in the tweet
Capital Words Count of words in ALL CAPS
Punctuation Number of ’?’, ’!’ and ’.’
Character Count Number of characters
Sentiment VADER sentiment score

Similarity Cosine similarity between
source and reply tweets

Hashtag Count of hashtags
@user Count of @user mentions
Part-of-Speech A vector of POS tag counts

Table 3: Set of tweet features and description

The numeric features, most of which were
counts of specific characters or words, were used
for training a supervised classification algorithm,
specifically Gradient Boosting. Boosting is an ad-
ditive and iterative tree-based supervised machine
learning approach where a strong classifier is se-
quentially constructed from multiple weak learn-
ers. The XGBoost implementation of the gradi-
ent boosting algorithm was utilized in this study
(Chen and Guestrin, 2016). The hyperparameters
were tuned and set to be as follows:

1. n estimators = 100: Refers to the number of
trees to be grown to fit the model.

2. max depth = 9: Number of splits for each of
the weak learner trees.

3. sub sample = 0.8; Each tree uses a random
subset of size 80% of the original training set
size.

Baseline: We also construct a unigram model as a
baseline, which is compared against the proposed
model that uses topic independent features. Be-
cause the unigram terms are unfiltered, the base-
line model uses topic specific features as well.

4 Results

In this section, we discuss the performance of the
model with topic independent features. We also
compare it against the unigram baseline. Classifi-
cation accuracy was the evaluation metric for this
RumourEval subtask. However, since a majority

of the tweets (about 70%) in the dataset belonged
to the class label ’comment’, we also report the
macro-averaged F-score here.

The development set provided by the organizers
was the set of tweets corresponding to the topic
germanwings-crash. This was used for validating
the model and determining the best combination
of features from among the ones listed in the pre-
vious section. The results of the proposed model,
in terms of accuracy and F-score, on the develop-
ment set are shown in Table 4. The model with the
proposed set of features is observed to have a rea-
sonable accuracy and F-score for all class labels,
except for the ’deny’ label, which it found difficult
to identify.

The results on the actual test set, which was
a mix of all topics, are summarized in Table 5.
All models performed similarly in terms of accu-
racy because a large proportion of the predicted
labels belong to ’comment’ class. However, the
models with the topic independent features out-
performed the baseline unigram model in terms of
F-score. While the baseline model had an F-score
of 0.31, the best combination of the proposed fea-
tures resulted in an F-score of 0.45. The features
were chosen by running validations with different
feature combinations on the development dataset.
The highest accuracy and F-score was obtained
when the following features were discarded from
the model: @user, hashtag, similarity, sentiment,
characters. The submission with this model made
our system the one with the second best perfor-
mance for subtask A of RumourEval.

We also tried out models with features only
from one category. When the cue features alone
were used, the F-score was 0.34. On the other
hand, the model with only the message specific
features provided a higher F-score of 0.42. When
all the proposed features were used for the classifi-
cation task, it resulted in an accuracy of 0.77 with
an F-score of 0.44, suggesting that, when used in
tandem, the features yield a better result than using
only a single category of features.

5 Conclusions

This paper provides a description of our submis-
sion for subtask A of RumourEval in which the
participants were required to classify the stance
of tweets towards rumours. The proposed model
used topic independent features from two cate-
gories: cue features and message specific features.
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Features Accuracy F-score Comment Deny Query Support
Unigrams (Baseline) 0.690 0.32 0.799 0.000 0.000 0.489
Only Cue Features 0.697 0.38 0.804 0.153 0.067 0.489
Only Message Specific Features 0.718 0.46 0.802 0.000 0.428 0.621
All Proposed Features 0.729 0.51 0.813 0.153 0.450 0.617
All Features -{@user, hashtag, similar-
ity, sentiment, characters} 0.718 0.51 0.803 0.153 0.465 0.608

Table 4: Results for different feature combinations on the Development Set - Accuracy and F-score
(macro-averaged and per class)

Features Accuracy F-score Comment Deny Query Support
Unigrams (Baseline) 0.750 0.31 0.856 0.000 0.000 0.386
Only Cue Features 0.757 0.34 0.860 0.000 0.085 0.406
Only Message Specific Features 0.763 0.42 0.858 0.000 0.432 0.400
All Proposed Features 0.770 0.44 0.867 0.027 0.473 0.388
All Features -{@user, hashtag, similar-
ity, sentiment, characters} 0.780 0.45 0.869 0.052 0.494 0.397

Table 5: Results for different feature combinations on the Test Set - Accuracy and F-score (macro-
averaged and per class)

A gradient boosting classifier was implemented
for this 4-class classification problem. Our sys-
tem ranked second in terms of accuracy. For future
work, we plan to investigate if the tree structure of
the conversation could provide insights about the
reply type.
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Abstract 

This paper describes our approach for 

SemEval-2017 Task 8. We aim at detecting 

the stance of tweets and determining the 

veracity of the given rumor. We utilize a 

convolutional neural network for short text 

categorization using multiple filter sizes. 

Our approach beats the baseline classifiers 

on different event data with good F1 

scores. The best of our submitted runs 

achieves rank 1
st
 among all scores on sub-

task B. 

1 Introduction 

Rumors in social networks are widely noticed due 

to the broad success of online social media. Un-

confirmed rumors usually spark discussion before 

being verified. These have created cost for society 

and panic among people. Rather than relying on 

human observers to identify trending rumors, it 

would be helpful to detect them automatically and 

limit the damage immediately. However, identify-

ing false rumors early is a hard task without suffi-

cient evidence such as responses, retweet and fact 

checking sites. Instead of propagation structure, 

context-level patterns are more obvious and useful 

for the identification of rumors at this stage – in  

particular, observing the different patterns of 

stances amongst participants (Qazvinian et al., 

2011). 

Recent research has proposed a 4-way classifi-

cation task to encompass all the different kinds of 

reactions to rumors (Arkaitz et al., 2016). A sche-

ma of classifications including supporting, deny-

ing, querying and commenting (SDQC) is applied 

in SemEval2017 Task 8. 

In this paper, we describe a system for stance 

classification and rumor verification in tweets. For 

the first task, we are given tree-structured conver-

sations, where replies are triggered by a source 

tweet. We need to categorize the replies into one 

of the SDQC categories by reply-source pairs. The 

second task is about rumor verification. Our sys-

tem is for the closed variant – which means the 

veracity of a rumor will have to be predicted sole-

ly without external data.  

It is a challenging NLP task. Statements con-

taining sarcasm, irony and metaphor often need 

personal experience to be able to infer their 

broader context (Kreuz and Caucci, 2007). Fur-

thermore, lots of background knowledge is re-

quired to do the fact checking (Reichel and 

Lendvai, 2016). 

In this paper, we develop convolutional neural 

network models for both tasks. Our system relies 

on a supervised classifier, using text features of 

different word representation methods such as 

learning word embedding through training and 

pre-trained word embedding model like GloVe 

(Pennington et al., 2014). The experiment section 

presents our results and discusses the performance 

of our work. 

2 Related Work  

Rumor verification from online social media has 

developed into a popular subject in recent years. 

The most common features were proposed by 

Castillo (2011) who classified useful features into 
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four categories: message-based features, user-

based features, topic-based features, and propaga-

tion-based features. However, this approach is 

limited because of the data skew problem when 

false rumors are less common. Thus, most exist-

ing approaches attempt to classify truthfulness by 

utilizing information beyond the content of the 

posts – propagation structure, for example. Ke Wu 

(2015) et al., proposed a novel message propaga-

tion pattern based on the users who transmit this 

message. But most of these features are available 

only when the rumors have been responded to by 

many users. Our task, on the other hand, is to do 

the initial classification on content features which 

are available much earlier. 

3  System Overview 

Our system employs a convolutional neural net-

work mainly inspired by Kim (2014). We chose 

models by testing on LOO (Leave One Out) vali-

dation performance. LOO can be simply ex-

plained as that we test on each conversation thread 

by retraining models on the other threads. In the 

following section, our CNN Tweet Model is brief-

ly explained.  

3.1 Data Preprocessing 

Before applying the models, we need to do some 

transforms of the irregular input text. At first, we 

remove URLs and username with ‘@’ tags that do 

not contribute to sentiment analysis. In this case, 

URLs and usernames are considered as noise 

without external data. Furthermore, we convert all 

letters to lower case. Besides removal, it is worth 

mentioning that we leave important clues such as 

hashtags and some special characters. Question 

marks and exclamation marks, for example, have 

proven to be helpful (Zhao, 2015). 

3.2 Convolutional Model 

There are two steps for the process of encoding 

tweets into matrices that are then passed to the in-

put layer. This model is illustrated in Figure 1. 

First, we use word embedding to convert each 

word in the tweet into a vector. We randomly ini-

tialize the word embedding matrix. Each row of 

this matrix is a vector that represents a word in the 

vocabulary. Then we learn the embedding weights 

during the training process.  Second, we concate-

nate these word vectors to produce a matrix repre-

senting the sentence. In the matrix, each row 

represents one word in the tweet as follows: 

 𝑡𝑚 = [

𝑤𝑣1

𝑤𝑣2

⋮
𝑤𝑣𝑛

]

𝑛×𝑑

 (1) 

Where 𝑡𝑚 is a word matrix formed by the concat-

enation of each word vector. 

 

In the convolutional layer, we use tm as input 

and select a window size 𝑦 to slide over the ma-

trix. To extract local features in the region of the 

window, a filter matrix 𝑓𝑚 ∈ 𝑅𝑦×𝑑  is used to 

produce element-wise multiplication and non-

linear operations on the matrix values in the win-

dow at every position. The following is an exam-

ple of this operation: 

 𝑒𝑙𝑖 = 𝑔 (𝑓𝑚 ∙ [

𝑤𝑣𝑖

⋮
𝑤𝑣𝑖+𝑦−1

] + 𝑏)   (2) 

 

Where 𝑓𝑚 is the filter matrix. The values of the 

filter matrix will be learned by the CNN from the 

training process. 𝑏 is the bias term, 𝑔 is the non-

linear function, and 𝑒𝑙𝑖  is an element of a local 

feature vector. After we slide the window through 

the whole matrix, we get a local feature vector of 

the input tweet as: 

 𝑓𝑣 = [𝑒𝑙1, 𝑒𝑙2, ⋯ , 𝑒𝑙𝑛−𝑦+1] (3) 

Where 𝑓𝑣 ∈ 𝑅𝑛−𝑦+1 is a local feature vector with 

n-y+1 elements.  

For the purpose of dealing with continuous n 

words which may represent special meaning in 

NLP (e.g. “Boston Globe”), we use multiple win-

dow sizes to produce different feature vectors. 

Thus, the idea of a different window size applied 

to capturing features is similar to n-grams. Mean-

while, we use different filter matrices to extract 

Figure 1: Architecture of Word-Embedding Con-

volutional Model 
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different local features of the tweet in each win-

dow. 

A pooling layer is used for simplifying the in-

formation of the output from the convolutional 

layer. We extract the maximum value from each 

local feature vector to form a condensed represen-

tation vector. For every local feature vector, only 

the most important feature is extracted and noise 

is ignored. After the max-pooling operation, we 

can concatenate all maximum values of each col-

umn as follows: 

𝑣𝑡 = [
𝑚𝑎𝑥(𝑓𝑣1)

⋮
𝑚𝑎𝑥(𝑓𝑣𝑚)

] (4) 

Where 𝑣𝑡 is the global feature vector representing 

the tweet. 

Through the pooling layer, if we use the same 

window size and filter matrix on different tweets, 

we can make sure the global feature size is fixed. 

For classification, we feed the global feature 

vectors of the tweet into a fully connected layer to 

calculate the probability distribution. A softmax 

activation function is applied as follows: 

 𝑃(𝑦 = 𝑖|𝑣𝑡 , 𝑏) =
𝑒𝑤𝑇

𝑖𝑣𝑡+𝑏𝑖

∑ 𝑒
𝑤𝑇

𝑖′𝑣𝑡+𝑏
𝑖′

𝑖′=1

 (5) 

Where 𝑣𝑡 is the input vector, 𝑤𝑇
𝑖′  is the 𝑖′-th col-

umn of weight matrix 𝑊. With the probabilities 

over the four classes, we take the class with the 

maximum value as the label for the given input 

tweet. 

4  Tasks and Model Training 

During the training phase, our CNN model auto-

matically learns the values of its filters based on 

the task. 

In task A, the tweets are classified into four cat-

egories: supporting, denying, querying and com-

menting. We defined the ground truth vector p as a 

one-hot vector.  The parameter d used in the word 

embedding is 128. The number of filters in the 

convolutional layers is 128. The probability of 

dropout is set to 0.5. Adam Optimization algo-

rithm is used to optimize our network’s loss func-

tion. Moreover, there are three filter region sizes 

in our system: 2, 3 and 4, each of which has 2 fil-

ters.  

In order to deal with the imbalance of classes in 

the data, balanced mini-batching was applied. In 

the statistics, more than 64% of the instances be-

long to the commenting class. We chose 16 in-

stances with each class from training set random-

ly, which means that there are 64 instances in a 

batch.  

A voting scheme is applied to decrease the un-

certainty of training on randomly selected sam-

ples. We trained 5 models to predict the same test-

ing data and took a vote for the final prediction. 

By performing training multiple times inde-

pendently we achieved more robust results. 

 In subtask B, most of the parameter settings were 

the same as in Task A. Because the output classes 

are rumor and non-rumor, we discard the label 

“unverified”. In addition, we use the probability in 

section 3.2 to define the credibility of our answer 

c. The credibility in the interval [0, 1] is normal-

ized as: 

𝑐 =
max(𝑃(𝑦=0,1|𝑣𝑡,𝑏))

∑ 𝑃(𝑦=𝑖|𝑣𝑡,𝑏)𝑖=0,1
 (6) 

5  Evaluation 

We conduct experiments using the rumor datasets 

annotated for stance (Zubiaga et al., 2016). The 

statistics of the datasets are shown in Table 1. For 

subtask B, conversation threads are not available 

for the participants and the use of external data is 

forbidden on the closed variant. 

 

 

5.1 Baselines 

We compare our result with Lukasik’s (2016) in 

Table 2. We follow their LOO settings and test on 

the same dataset. The report includes accuracy 

(Acc) and macro average of F1 scores across all 

labels (F1) from Lukasik’s baseline. 

The results show our deep learning model is the 

best method in terms of F1 score. Especially, the 

CNN model beats all the other methods. While the 

RNN method is not performing well on this task. 

Another issue is the GloVe embedding – the pre-

training model sometimes lacks some of the vo-

cabulary from new events. Nevertheless, GloVe is 

still competitive with the CNN method for the 

Ferguson event. 

Subtask A 
Stance Support Deny Query Comment 

Training 841(20%) 333(8%) 330(8%) 2734(65%) 

Testing 94(9%) 71(7%) 106(10%) 778(74%) 

Subtask B 

Veracity True False unverified 

Training 127(47%) 50(18%) 95(35%) 

Testing 8(40%) 12(60%) 0 

Table 1: Statistics of datasets for subtask A and B. 
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5.2 Window Sizes for Filters 

Table 3 lists the results of using different window 

sizes for the filters in the tweet encoding process. 

We set different window sizes to observe the im-

pact. The experiment was performed with the 

same settings as in section 5.1 for the Ottawa 

event. We obtain the best performance when the 

window size combination is (3, 4, 5). Different 

window sizes 2, 3 and 4 correspond to the encod-

ing for the bigrams, trigrams and four-grams of 

the tweets respectively. We can see that the per-

formance decrease slightly with the window size 

increases. That is, insufficient grams can lose 

some features while too many grams can bring 

noise. 

5.3 Official Results
1
 

Our submission results to the subtask A achieve an 

accuracy of 0.701. The statistical details of each 

class are given in Table 4. We notice that the 

comment stance is the easiest to detect, since they 

take a large part of the data. The number of query 

stances are similar to support and deny, while it 

has much better precision and recall because the 

features of queries are more obvious. Likewise, 

there are some negative words in the deny stance 

                                                      
1 Results and task detail can be found on 

http://alt.qcri.org/semeval2017/task8/ 

 
as features. However, it is challenging to extract 

features of supporting which results in a poorer 

performance.  

The rank of subtask B is summarized in Table 

5. As we can see our model performs best among 

the official scores. Our code is available on github 

for anyone who has interest in further explora-

tion
2
. 

6 Conclusion 

We develop a convolutional neural network sys-

tem for detecting twitter stance and rumor veraci-

ty determination in this paper. Compared with the 

baseline approach, our system obtains good re-

sults on stance detection. In addition, on the test 

set of SemEval2017 Task8B, we ranked 2nd in the 

official evaluation run. 
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Acc F1 Acc F1 

GP 62.28 42.41 64.31 32.9 

Lang. model 53.2 42.66 49.56 34.35 
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HP Grad. 63.43 42.4 63.23 33.14 

CNN 61.74 44.9 62.31 36.49 

CNN(GloVe) 59.61 38.87 63.03 39.48 

RNN(GloVe) 52.49 38.66 51.49 32.52 

Table 2: Accuracy and F1 scores for different 

methods across datasets. The upper lines of the re-

sults are our baseline. 

Window 
Sizes 

Precision Recall F1 

3 0.39 0.42 0.40 

3,4 0.43 0.42 0.43 

2,3,4 0.43 0.40 0.42 

3,4,5 0.45 0.45 0.45 

2,3,4,5 0.44 0.45 0.44 

Table 3: results of using different window sizes. 

Stance Precision Recall Accuracy 

Support 0.19 0.20 0.20 

Deny 0.31 0.07 0.07 

Query 0.58 0.45 0.45 

Comment 0.78 0.85 0.85 

Table 4: Result on test data for subtask A. 
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Abstract 

This paper presents the results and conclu-

sions of our participation in SemEval-2017 

task 8: Determining rumour veracity and 

support for rumours. We have participated 

in 2 subtasks: SDQC (Subtask A) which 

deals with tracking how tweets orient to 

the accuracy of a rumourous story, and Ve-

racity Prediction (Subtask B) which deals 

with the goal of predicting the veracity of 

a given rumour. Our participation was in 

the closed task variant, in which the pre-

diction is made solely from the tweet it-

self. For subtask A, linear support vector 

classification was applied to a model of 

bag of words, and the help of a naïve 

Bayes classifier was used for semantic fea-

ture extraction. For subtask B, a similar 

approach was used. Many features were 

used during the experimentation process 

but only a few proved to be useful with the 

data set provided. Our system achieved 

71% accuracy and ranked 5th among 8 

systems for subtask A and achieved 53% 

accuracy with the lowest RMSE value of 

0.672 ranking at the first place among 5 

systems for subtask B. 

1 Introduction 

Over the past 15 years, and in a gradual man-

ner, social media has started to become a main 

source of news.  However, social media has also 

become a ripe ground for rumours, spreading 

them in a matter of a few minutes. A rumour is de-

fined as a claim that could be true or false. False 

rumours may greatly affect the social, economic 

and political stability of any society around the 

world, hence the need for tools to help people, es-

pecially journalists, analyze the spread of rumours 

and their effect on the society as well as determine 

their veracity. 

Twitter is a famous social media platform ca-

pable of spreading breaking news, thus most of 

rumour related research uses Twitter feed as a ba-

sis for research. 

SemEval (Semantic Evaluation) is an ongoing 

series of evaluations of computational semantic 

analysis systems. Task 8 (RumourEval) (Derczyn-

ski, et al. (2017)) is one of 12 tasks presented in 

SemEval 2017. This paper describes the system 

that we have used to participate in this task. The 

task consists of 2 subtasks: SDQC (Subtask A) 

which has the objective of tracking how other 

tweets orient to the accuracy of a rumourous story, 

and Veracity Prediction (Subtask B) for which has 

the goal to predict the veracity of a given rumour.  

Task B has two variants: an open variant and a 

closed one. We have only participated in the 

closed variant, in which the prediction should be 

made solely from the tweet itself. 

Scientific literature related to rumours on social 

media has started to emerge over the past 7 years. 

It can be categorized into 4 main categories: 1) the 

detection of the spreading of a rumour, 2) the de-

termination of the veracity of a rumour, 3) the 

analysis of the rumour propagation through a so-

cial network and 4) speech act analysis of differ-

ent online replies to the rumour.  Subtask A be-

longs to the 4th category, while subtask B belongs 

to the 2nd category. 

The rest of the paper is organized as follows: 

section 2 briefly overviews related work, section 3 

provides task description details, section 4 pro-

vides a detailed system description covering pre-

processing, feature extraction and selection, learn-

ing model and evaluation done for both subtasks A 

and B. In the end a conclusion is given with the 

future work needed.  
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2 Related Work 

Zubiaga et al. (2016), presented a methodology 

that enabled them to collect, identify and annotate 

a big data set of rumours associated with multiple 

newsworthy events, and analyzed how people ori-

ent to and spread rumours in social media. This 

data set was used for task 8 of SemEval 2017: 

RumourEval. Qazvinian et al. (2011), addressed 

the problem of automatic rumour detection in mi-

croblogs as well as identifying users that support 

or deny or question the rumour. They achieved 

this by exploring the effectiveness of 3 categories 

of features: content-based, network-based and mi-

cro-blog specific memes. Vosoughi et al. (2015), 

addressed the problem of rumour detection via a 

speech act classifier that detects assertions using 

different semantic and syntactic features in addi-

tion to a clustering algorithm to cluster groups of 

rumourous tweets talking about the same topic to-

gether. Hamidiain et al. (2015), Castillo et al. 

(2011), Vosoughi et al. (2015) and Giasemidis et 

al. (2016) addressed the issue of detecting the ve-

racity of rumours using manually selected and an-

notated rumours on Twitter using linguistic, user, 

rumour, pragmatic, content, twitter-specific and 

propagation features and the latter developed a 

software demonstration that provides a visual user 

interface to allow the user to examine the analysis. 

Chua et al. (2016), concentrated on linguistic fea-

tures such as comprehensibility, sentiment and 

writing style to predict rumour veracity, ignoring 

all non-linguistic features. Galitsky et al. (2015), 

also concentrated on linguistic features to detect 

disinformation by comparing the text to search re-

sults using the significant sentences in that text. 

Liu et al. (2015), proposed the first real time ru-

mour debunking algorithm for Twitter while Zhao 

et al. (2015), concentrated on identifying a trend-

ing rumour as early as possible without trying to 

assess its veracity. 

3 Task Description 

Below is a brief overview of each subtask. For 

more details, please refer to RumourEval (Der-

czynski, et al. (2017))  

Subtask A: The input to this task is a set of 

tweets each replying to a rumourous tweet, which 

we name the rumour source tweet. The training 

data is composed of the tweet content and its 

speech act class. A tweet can be classified to be a 

support, deny, query or a comment. 

Subtask B: The input to this task is a set of 

tweets each representing a source of a rumour. 

The training data is composed of the tweet content 

and its veracity. A tweet’s veracity can be either 

true, false or unknown. Also, a confidence value 

which is a float from 0 to 1 is required for each 

tweet. 

4 System Overview 

The systems used for both subtasks A and B 

were very similar, except that each focused on a 

different set of features. Python libraries scikit-

learn (Buitinck et al. (2013)) and NLTK (Bird et 

al., 2009) were mainly used to implement this 

work. Below are the general system specifica-

tions. All classifiers were adjusted to use their de-

fault parameters. 

4.1 Preprocessing and feature extraction 

The system depends on performing some pre-

processing on the tweets’ texts, extracting simple 

bag of words features from them, and then ex-

tracting additional higher level features from them 

as well as from the entire twitter feed provided. 

These steps were carried out with the aid of the 

NLTK Tweet Tokenizer (2015). 

Preprocessing also included the removal of stop 

words, punctuation characters and twitter specific 

words such as ‘rt’ and ‘via’. 

No further pre-processing was performed. Be-

low are some notes in this context: 

• The case of the words could be useful in 

showing the sentiment and the context of the 

word, thus all words were kept in their origi-

nal case. 

• Performing stemming or lemmatization 

caused worse performance as keeping the 

word in its original form proved to be useful.  

• Removing URLs from text yielded worse 

performance, as tweets using the same URL 

usually shared the same speech act, so the 

URL word token acted as an important fea-

ture. 

• Using bi-grams resulted in noise being added 

to the training data, causing the classifier’s 

performance to degrade. 
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4.2 Features Selection 

The following feature selection and dimension-

ality reduction methods were used on the basic 

bag of words features, before adding higher level 

features: 

• Chi-Squared Feature selection. (2010) 

• Variance Threshold Feature selection. 

(2010) 

• Truncated SVD dimensionality reduc-

tion. (2010) 

None of the above algorithms were used, as 

they all yielded worse results when the model was 

cross-validated. We attribute this to the fact that 

the number of features were not big enough. 

Additional features were manually selected by 

measuring the performance of the classifier on 

training data when adding/removing each addi-

tional feature. Features with big numerical values 

were scaled down to the range between 0 and 1. 

4.3 Additional features extraction 

Several features were extracted though not all 

of them proved useful in the classification pro-

cess. 

Below is the complete list of features which 

apply for both subtask A and B. 

• Question Existence: The relationship be-

tween a question and a query is tight. A 

question is often a query and a query is often 

a question. Also, if a tweet is a question, then 

it is highly unlikely that it is a normal com-

ment; it is more likely it is a support or a de-

nial, if not a query. Thus, being a question is 

an important feature to consider. A question 

detection module was built for this purpose.  

Below are details for this module: 

• An assumption was made that any sentence 

containing a question mark is considered a 

question.  

• In case the question mark was absent, any 

sentence classified as a question should con-

tain at least one of the following keywords 

used in WH-questions: “what, why, how, 

when, where” or in Yes/No questions: “did, 

do, does, have, has, am, is, are, can, could, 

may, would, will” as well as their negations. 

It is highly unlikely that a question does not 

have one of these words. 

• A utility classifier was used for further detec-

tion of questions; we performed speech act 

recognition using a Naive Bayes classifier on 

NLTK corpus ‘nps_chat’ (2015). On cross 

validating that classifier, we got an accuracy 

of 67%. If this utility classifier marks the 

tweet as a Yes-No question or a wh-question, 

the tweet is considered to be a question. 

• Denial term detection: We found that ex-

plicitly specifying the existence of a denial 

word within a tweet, to be a useful feature 

for generalizing over the data. The list of 

words used are: ‘not true’, ‘don’t agree’, 

‘impossible’, ‘false’, ‘shut’. 

• Support words detection: Like denial 

words, we included another feature for sig-

naling the existence of a support term.  These 

were detected based on the following list of 

common support words: ‘true’, ‘exactly’, 

‘yes’, ‘indeed’, ‘omg’, ‘know’ 

• Hashtag Existence 

• URL Existence 

• Tweet is reply: This feature specifies 

whether the tweet was a reply to another 

tweet or whether it is a source tweet. Source 

tweets are rarely queries, and not often a de-

nial or support. Most of them are normal 

comments. 

• Tweet’s words’ sentiments: Simple senti-

ment prediction was performed on each 

tweet’s text though counting the number of 

positive and negative sentiment in the tweet 

using the NLTK opinion lexicon (2015). If 

the positive words exceeded negative words, 

the feature got a value of 1, otherwise, it got 

a value of 0. If there were no sentiment 

words o or if the positive and negative words 

were equal, this feature value was set to a 

0.5. 

• Tweet sentiment: A utility classifier was 

used for further detection of sentiment. For 

setting this feature, a naïve Bayes classifier 

was trained using the NLTK movie reviews 

corpus (2015) for sentiment analysis. It 

would be better of course to train this classi-

fier using tagged tweets, which is what we 

intend to do in future work. 

• Is User verified 

• Number of followers 

• Number of user’s past tweets 

• Number of user’s friends 

• Retweet Ratio: This feature represents the 

ratio between the numbers of retweets of the 
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 Feature Type A B 

Question Existence content Y N 

Denial term detection content Y N 

Support words detection content Y N 

Hashtag existence twitter N Y 

URL existence content Y Y 

Tweet is reply twitter Y - 

Tweets’ words’ sentiments content Y N 

Tweet sentiment content N N 

Is User Verified user N N 

Number of followers user Y N 

Number of user’s past tweets user N N 

Number of user’s friends user N N 

Retweet Ratio twitter N N 

Photo Existence content N N 

Days since user creation user N N 

Source tweet user is verified user Y N 

User ‘replied to’ is verified user Y - 

Cosine similarity with root rumourous tweet content Y - 

Cosine similarity with the ‘replied to’ tweet content N - 

Percentage of replying tweets classified as 

queries, denies or support 
content - Y 

 Table 1 – Features found useful for each subtask and 

used in final evaluation. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

target tweet over the number of retweets of 

the rumour source tweet. 

• Photo Existence 

• Days since user creation: This feature rep-

resents the number of days since user ac-

count was created on Twitter. Older accounts 

may have more credibility than new ones. 

• Source tweet user is verified: This feature 

represents whether the tweeter of the rumour 

source has a verified account or not. 

The following list of features applies to sub-

task A only:  

• User ‘replied to’ is verified 

• Cosine similarity with root rumourous 

tweet and the ‘replied to’ tweet: Using the 

same words may imply more that the tweet is 

a support. 

Finally, the following features applies to 

subtask B only: 

• Percentage of replying tweets classified as 

queries, denies or support: These 3 features 

represent the percentage of tweets classified 

as different classes via the system imple-

mented for Task A, for this rumour’s source 

tweet. 

5 Evaluation 

Several scikit-learn classifiers were used during 

experimentation before deciding on the final mod-

el.  

For subtask A, the linear support vector ma-

chine classifier (Linear SVC) proved to be the 

most accurate during cross validation, however, 

logistic regression generalized the best on test da-

ta. During cross-validation the macro-averaged F1 

measure was used to evaluate the classifiers and 

choose the best amongst them, as the distribution 

of categories was clearly skewed towards com-

ments.  

For subtask B, Linear SVC proved to be the 

best in terms of accuracy and the confidence root 

mean square error (RMSE).  

Table 1 shows the features used for each sub-

task along with its type. Type ‘Content’ refers to 

the features determined from the tweet’s text, ‘us-

er’ refers to the features determined from the user 

who tweeted and his behavior, ‘twitter’ refers to 

twitter specific features used.  Table 2 compares 

the accuracy of different classifiers for each sub-

task. 

 

 

 

 

 

 

 

 

 

Classifier A B B(RMSE) 

Linear SVC 0.71 0.53 0.67 

Random Forest 0.75 0.39 0.77 

Linear SVM with SGD learning 0.72 0.5 0.73 

Logistic Regression 0.76 0.53 0.71 

Decision Tree 0.71 0.46 0.73 

Table 2 – The resultant accuracy and confidence RMSE for 

subtasks A and B 

6 Conclusion 

In this paper, we have performed a quick analy-

sis of using different pre-processing, features ex-

traction and selection, learning classifiers which 

achieved good results in the RumourEval task. For 

subtask A, a combination of different types of 

content, twitter and user specific features were 

used. For subtask B, it was clear that only content 

and twitter features were useful. User based fea-

tures didn’t enhance the performance for the latter 

subtask, thus we conclude that the identity and 

behavior of the user didn’t affect much the credi-

bility of the rumour he/she is spreading, at least 

for the data set provided. 

7 Future Work 

Additional features could be extracted that can 

play a better role in classifying each tweet or ru-

mour. On the tweet text level, better linguistic fea-

tures could be extracted. A better sentiment analy-

sis model could be employed. On the rumour lev-

el, network-based features maybe extracted such 

as the work done by Vosoughi, et. al. (2015). 

Time-based analysis could be performed to detect 

certain patterns in the change of reactions to the 

rumour. 
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Abstract

This paper describes team Turing’s sub-
mission to SemEval 2017 RumourEval:
Determining rumour veracity and support
for rumours (SemEval 2017 Task 8, Sub-
task A). Subtask A addresses the challenge
of rumour stance classification, which in-
volves identifying the attitude of Twitter
users towards the truthfulness of the ru-
mour they are discussing. Stance classi-
fication is considered to be an important
step towards rumour verification, therefore
performing well in this task is expected
to be useful in debunking false rumours.
In this work we classify a set of Twit-
ter posts discussing rumours into either
supporting, denying, questioning or com-
menting on the underlying rumours. We
propose a LSTM-based sequential model
that, through modelling the conversational
structure of tweets, which achieves an ac-
curacy of 0.784 on the RumourEval test set
outperforming all other systems in Sub-
task A.

1 Introduction

In stance classification one is concerned with de-
termining the attitude of the author of a text to-
wards a target (Mohammad et al., 2016). Targets
can range from abstract ideas, to concrete entities
and events. Stance classification is an active re-
search area that has been studied in different do-
mains (Ranade et al., 2013; Chuang and Hsieh,
2015). Here we focus on stance classification of
tweets towards the truthfulness of rumours circu-
lating in Twitter conversations in the context of
breaking news. Each conversation is defined by
a tweet that initiates the conversation and a set of
nested replies to it that form a conversation thread.
The goal is to classify each of the tweets in the

conversation thread as either supporting, denying,
querying or commenting (SDQC) on the rumour
initiated by the source tweet. Being able to detect
stance automatically is very useful in the context
of events provoking public resonance and associ-
ated rumours, as a first step towards verification of
early reports (Zhao et al., 2015). For instance, it
has been shown that rumours that are later proven
to be false tend to spark significantly larger num-
bers of denying tweets than rumours that are later
confirmed to be true (Mendoza et al., 2010; Proc-
ter et al., 2013; Derczynski et al., 2014; Zubiaga
et al., 2016b).

Here we focus on exploiting the conversational
structure of social media threads for stance clas-
sification and introduce a novel LSTM-based ap-
proach to harness conversations.

2 Related Work

Single Tweet Stance Classification Stance
classification for rumours was pioneered by
Qazvinian et al. (2011) as a binary classification
task (support/denial). Zeng et al. (2016) perform
stance classification for rumours emerging during
crises. Both works use tweets related to the same
rumour during training and testing.

A model based on bidirectional LSTM encod-
ing of tweets conditioned on targets has been
shown to achieve state-of-the-art on the SemEval-
2016 task 6 dataset (Augenstein et al., 2016).
However the RumourEval task is different as it ad-
dresses conversation threads.

Sequential Stance Classification Lukasik et al.
(2016) and Zubiaga et al. (2016a) consider the
sequential nature of tweet threads in their works.
Lukasik et al. (2016) employ Hawkes processes
to classify temporal sequences of tweets. They
show the importance of using both the textual con-
tent and temporal information about the tweets,
disregarding the discourse structure. Zubiaga et
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@user0 LOL. 5 million Muslims 
in France, what a disgrace. the 
french worm president and 
politicians killed them. tine for 
croissants now

user 3 comment

user 4

@user3 They who? Stupid and 
partial opinions like this one only 
add noise to any debate.

deny

user 3

@user4 Socialists, Antisemites, 
anti zionists - usual suspects

comment

user 0

France: 10 people dead after 
shooting at HQ of satirical 
weekly newspaper 
#CharlieHebdo, according to 
witnesses http://t.co/
FkYxGmuS58

user 1

MT @user0 France: 10 dead 
after shooting at HQ of satirical 
weekly #CharlieHebdo. If 
Zionists/Jews did this they'd be 
nuking Israel

source
support

comment

branch 1

response 1

user 2
@user0 @user5 A French 
crime of passion or another 
heathen moslem atrocity?

query

branch 2

response 3

response 2

Figure 1: Example of a conversation thread from
the dataset with three branches, two of which are
highlighted. The conversation has a tree structure,
which can be split into individual branches by tak-
ing each leaf node with all its direct parents.

al. (2016a) model the conversational structure of
source tweets and subsequent replies: as a linear
chain and as a tree. They use linear- and tree- ver-
sions of a CRF classifier, outperforming the ap-
proach by Lukasik et al. (2016).

3 Dataset

The dataset provided for this task contains Twit-
ter conversation threads associated with rumours
around ten different events in breaking news, in-
cluding the Paris shootings in Charlie Hebdo, the
Ferguson unrest, the crash of a Germanwings
plane. These events include 325 conversation
threads consisting of 5568 underlying tweets an-
notated for stance at the tweet level (breakdown
between training, testing and development sets is
shown in Table 1) (Derczynski et al., 2017).

# threads # branches # tweets
Development 25 215 281
Testing 28 772 1049
Training 272 3030 4238
Total 325 4017 5568

Table 1: Number of threads, branches and tweets
in the training, development and testing sets.

S D Q C
Development 69 11 28 173
Testing 94 71 106 778
Training 841 333 330 2734
Total 1004 415 464 3685

Table 2: Per-class distribution of tweets in the
training, development and testing sets.

Each thread includes a source tweet that initi-
ates a conversation and nested tweets responding
to either the source tweet or earlier replies. The
thread can be split into linear branches of tweets,
where a branch is defined as a chain of tweets that
starts with a leaf tweet including its direct parent
tweets, all the way up to the source tweet. Fig-
ure 1 shows an example of a conversation along
with its annotations represented as a tree struc-
ture with highlighted branches. The depth of a
tweet is the number of its parents starting from
the root node. Branches 1 and 2 in Figure 1 have
depth one whereas branch 3 has depth three. There
is a clear class imbalance in favour of comment-
ing tweets (66%) and supporting tweets (18%),
whereas the denying (8%) and querying classes
(8%) are under-represented (see Table 2). While
this imbalance poses a challenge, it is also indica-
tive of the realistic scenario where only a few users
question the veracity of a statement.

4 System Description

4.1 Features

Prior to generating features for the tweets, we per-
form a pre-processing step where we remove non-
alphabetic characters, convert all words to lower
case and tokenise texts.1 Once tweet texts are pre-
processed, we extract the following features:
• Word vectors: we use a word2vec (Mikolov

et al., 2013) model pre-trained on the Google
News dataset (300d) 2 using the gensim pack-
age (Řehůřek and Sojka, 2010).
• Tweet lexicon: (1) count of negation words3

and (2) count of swear words.4

1For implementation of all pre-processing routines we use
Python 2.7 with the NLTK package.

2We have also tried using Glove word embeddings trained
on Twitter dataset, but it lead to a decrease in performance on
both development and testing sets comparing to the Google
News word vectors

3A presence of any of the following words would be con-
sidered as a presence of negation: not, no, nobody, nothing,
none, never, neither, nor, nowhere, hardly, scarcely, barely,
don’t, isn’t, wasn’t, shouldn’t, wouldn’t, couldn’t, doesn’t

4A list of 458 bad words was taken from
http://urbanoalvarez.es/blog/2008/04/04/bad-words-list/
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[As querying] @username Weren’t you the
one who abused her?

[As supporting] ”Go online & amp; put down
’Hillary Clinton illness,’” Rudy says. Yes
– but look up the truth – not health smears
https://t.co/EprqiZhAxM

[As supporting] @username I demand you
retract the lie that people in #Ferguson were
shouting ”kill the police”, local reporting has
refuted your ugly racism

[As commenting] @FoxNews six years ago...
real good evidence. Not!

Figure 2: Examples of misclassified denying
tweets.

• Punctuation: (1) presence of a period, (2)
presence of an exclamation mark, (3) pres-
ence of a question mark, (4) ratio of capital
letters.
• Attachments: (1) presence of a URL and (2)

presence of images.
• Relation to other tweets (1) Word2Vec

cosine similarity wrt source tweet, (2)
Word2Vec cosine similarity wrt preceding
tweet, and (3) Word2Vec cosine similarity
wrt thread
• Content length: (1) word count and (2) char-

acter count.
• Tweet role: whether the tweet is a source

tweet of a conversation.
Tweet representations are obtained by averaging
word vectors in a tweet and then concatenating
with the additional features into a single vector,
at the preprocessing step. This set of features have
shown to be the best comparing to using word2vec
features on their own or any of the reduced com-
binations of these features.

4.2 Branch - LSTM Model

To tackle the task of rumour stance classificaiton,
we propose branch-LSTM, a neural network archi-
tecture that uses layers of LSTM units (Hochre-
iter and Schmidhuber, 1997) to process the whole
branch of tweets, thus incorporating structural in-
formation of the conversation (see the illustration
of the branch-LSTM on the Figure 3). The input
at each time step i of the LSTM layer is the rep-
resentation of the tweet as a vector. We record the

supporting commenting denying commenting

t1 t2 t3 t4

source 
tweet response 1 response 3response 2twe

y

c1 c4c3c2

france
people

witnesses
… +

# words
————

||
LOL

million

now
… +

# words
————

||
they
who

debate
… +

# words
————

||
socialists

antisemites

suspects
… +

# words
————

||

Figure 3: Illustration of the input/output structure
of the branch-nestedLSTM model.

output of each time step so as to attach a label to
each tweet in a branch5. This output is fed through
several dense ReLU layers, a 50% dropout layer,
and then through a softmax layer to obtain class
probabilities. We use zero-padding and masks to
account for the varying lengths of tweet branches.
The model is trained using the categorical cross
entropy loss function. Since there is overlap be-
tween branches originating from the same source
tweet, we exclude the repeating tweets from the
loss function using a mask at the training stage.
The model uses tweet representation as the mean
average of word vectors concatenated with ex-
tra features described above. Due to the short
length of tweets, using more complex models for
learning tweet representations, such as an LSTM
that takes each word as input at each time step
and returns the representation at the final time
step, does not lead to a noticeable difference in
the performance based on cross-validation experi-
ments on the training and development sets, while
taking significantly longer to train. We experi-
mented with replacing the unidirectional LSTMs
with bidirectional LSTMs but could observe no
improvements in accuracy (using cross-validation
results on the training and development set).

5 Experimental Setup

The dataset is split into training, development and
test sets by the task organisers. We determined
the optimal set of hyperparameters via testing the
performance of our model on the development set
for different parameter combinations. We used the

5For implementation of all models we used Python li-
braries Theano (Bastien et al., 2012) and Lasagne (Dieleman
et al., 2015).
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Accuracy Macro F S D Q C
Development 0.782 0.561 0.621 0.000 0.762 0.860
Testing 0.784 0.434 0.403 0.000 0.462 0.873

Table 3: Results on the development and testing sets. Accuracy and F1 scores: macro-averaged and per
class (S: supporting, D: denying, Q: querying, C: commenting).

Depth # tweets # S # D # Q # C Accuracy MacroF S D Q C
0 28 26 2 0 0 0.929 0.481 0.963 0.000 0.000 0.000
1 704 61 60 81 502 0.739 0.348 0.000 0.000 0.550 0.842
2 128 3 6 7 112 0.875 0.233 0.000 0.000 0.000 0.933
3 60 2 1 5 52 0.867 0.232 0.000 0.000 0.000 0.929
4 41 0 0 3 38 0.927 0.481 0.000 0.000 0.000 0.962
5 27 1 0 1 25 0.926 0.321 0.000 0.000 0.000 0.961
6+ 61 1 2 9 49 0.803 0.223 0.000 0.000 0.000 0.891

Table 4: Number of tweets per depth and performance at each of the depths.

Tree of Parzen Estimators (TPE) algorithm 6 to
search the parameter space, which is defined as
follows: the number of dense ReLU layers varies
from one to four; the number of LSTM layers is
one or two; the mini-batch size is either 32 or 64;
the number of units in the ReLU layer is one of
{100, 200, 300, 400, 500}, and in the LSTM layer
one of {100, 200, 300}; the strength of the L2 reg-
ularisation is one of {0.0, 1e-4, 3e-4, 1e-3} and
the number of epochs is selected from {30, 50, 70,
100}. We performed 100 trials of different param-
eter combinations optimising for accuracy on the
development set in order to choose the best com-
bination. We fixed hyperparameters to train the
model on combined training and development sets
and evaluated on the held out test set.

6 Results

The performance of our model on the testing and
development set is shown in Table 3. Together
with the accuracy we show macro-averaged F-
score and per-class macro-averaged F-scores as
these metrics account for the class imbalance. The
difference in accuracy between testing and devel-
opment set is minimal, however we see significant
difference in Macro-F score due to different class
balance in these sets. Macro-F score could be im-
proved if we used it as a metric for optimising
hyper-parameters. The branch-LSTM model pre-
dicts commenting, the majority class well, how-
ever it is unable to pick out any denying, the most-
challenging under-represented class. Most deny-

6We used the implementation of the TPE algorithm in the
hyperopt package (Bergstra et al., 2013)

Label
Prediction C D Q S

Commenting 760 0 12 6
Denying 68 0 1 2
Querying 69 0 36 1
Supporting 67 0 1 26

Table 5: Confusion matrix for testing set predic-
tions

ing instances get misclassified as commenting (see
Table 5), with only one tweet misclassified as
querying and two as supporting (Figure 2). An
increased amount of labelled data would be help-
ful to improve performance of this model. As we
were considering conversation branches, it is in-
teresting to analyse the performance distribution
across different tweet depths (see Table 4). Maxi-
mum depth/branch length in the testing set is 13
with most tweets concentrated at depths from 0
to 3. Source tweets (depth zero) are usually sup-
porting and the model predicts these very well, but
performance of supporting tweets at other depths
decreases. The model does not show a notice-
able difference in performance on tweets of vary-
ing lengths.

7 Conclusions

This paper describes the Turing system entered in
the SemEval-2017 Task 8 Subtask A. Our method
decomposes the tree structure of conversations
into linear sequences and achieves accuracy 0.784
on the testing set and sets the state-of-the-art for
rumour stance classification. In future work we
plan to explore different methods for modelling
tree-structured conversations.
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Abstract

For the competition SemEval-2017 we in-
vestigated the possibility of performing
stance classification (support, deny, query
or comment) for messages in Twitter
conversation threads related to rumours.
Stance classification is interesting since it
can provide a basis for rumour veracity as-
sessment. Our ensemble classification ap-
proach of combining convolutional neural
networks with both automatic rule min-
ing and manually written rules achieved
a final accuracy of 74.9% on the compe-
tition’s test data set for Task 8A. To im-
prove classification we also experimented
with data relabeling and using the gram-
matical structure of the tweet contents for
classification.

1 Introduction

The task of determining the veracity of a rumour is
sometimes a difficult one, even with the reasoning
power of a human being. This paper presents an
approach to an automatic analysis of discussion el-
ements with respect to rumours. Discussion struc-
ture and analysis can well play a part in a broader
effort to assess rumour veracity, and the expecta-
tion is that the results presented here is one step of
the way towards that end goal.

The research presented in this paper is a sub-
mission to SemEval-2017, Task 8 (RumourEval:
Determining rumour veracity and support for ru-
mours), Subtask A (SDQC) (Derczynski et al.,
2017). The objective of this subtask is to classify
the relation between a tweet and the rumour it is
related to in terms of support, deny, query or com-
ment.

Our approach to this classification task is build-
ing three different classifiers and combining the

predictions in an ensemble method. The general
idea is that different types of classifiers may learn
different concepts and hence complement each
other, resulting in a better prediction capability for
the joint classifier. Furthermore we tested the ac-
curacy in applying our ensemble approach to both
originally labeled and relabeled data.

The remainder of this paper is organized as fol-
lows: Section 2 describes the data given in the task
and our observations on irregularities in the data
labeling. Section 3 contains a description of the
process and used methods employed for the ex-
periments. Sections 4 and 5 describe the results
and discusses the findings. Finally, we conclude
the work in Section 6.

2 Data Inconsistencies

The data used in the SemEval-2017 Task 8A is a
subset of the PHEME data set of social media ru-
mours (Zubiaga et al., 2016).

When studying the dataset, it was discovered
that for some tweets, the annotation is somewhat
inconsistent, e.g., tweets with very similar con-
tents have sometimes received different annota-
tions. For example, despite being nearly identical
replies to the same source tweet, the first is anno-
tated with (C) and the second with (S):

I just feel sick RT @[user]: At least 12 dead in Paris
shooting. Updated story:[link]

Awful. RT @[user]: At least 12 dead in the Paris shoot-
ing. [link]

Other found issues were that tweets were some-
times labeled (Q) although they contained no
query. Some tweets were labelled with respect to
its direct predecessor in the conversation thread,
as opposed to with respect to the source tweet.
Also, some tweets were annotated (S) for simply
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expressing empathy or concern, without any input
on the veracity of the rumour.

3 Method

For solving the task we had an approach of mul-
tiple parallel data pipelines, for our workflow
schema, see Figure 1. The following sections and
subsections describe the parts of the figure.

3.1 Data Processing

Chosen parts of the raw data were extracted into
new subsets of attributes, tailored for each type
of classifier. Among the extracted data attributes
were the text content of the tweets, metadata re-
lated to the tweets (such as time of posting) and
metadata related to the users (such as number of
followers). In terms of training, development and
test data we used the data split provided by the Se-
mEval Task organizers.

To investigate whether the inconsistencies in the
annotation would affect the results of the experi-
ments, we constructed a separate data set in which
we tried to remedy the found inconsistencies.iIn
uncertain cases, the original annotation was used.

3.2 Feature Engineering

Most of the metadata attributes from the raw data
could be used as features for classification without
further processing. However, some attributes (the
text data in particular) required preprocessing and
feature engineering in order to be a useful repre-
sentation of the data.

3.2.1 Preprocessing

Tweets have limited space (only 140 characters)
and hence, symbols, abbreviations, slang and con-
tractions are used in an effort to increase the in-
formation ratio. The downside of this is that
the tweets tend to appear noisy to NLP software
and some preprocessing is usually needed. The
measures we applied were, e.g., splitting contrac-
tions and stemming the words. For the stemming
we employed the Python package “Snowballstem-
mer”. Also, in an effort to avoid training the clas-
sifiers on data that could be too context specific,
e.g., a link or a user name. We elected to remove
mentions and links, replacing them with a simple
“@” and “http://”.

3.2.2 Grammatical Representation
Generation

We investigated whether the grammatical struc-
ture could be useful as a replacement of the tweets
themselves. We chose to use a pretrained model
on the English language for the initial tweet to
Part Of Speech (POS) Tagging, i.e., Parsey Mc-
Parseface1 (Andor et al., 2016). Further; We relied
on CoNLL-U (Nivre, 2015), a unicode version of
CoNNL-X (Buchholz and Marsi, 2006) as our data
format for the POS tagging. Input tweets were not
stemmed but otherwise preprocessed.

We utilized the same rule encoding as (Feng
et al., 2012) and chose the one level neighbour-
hood semantic rules, i.e. the r̂∗ notational case,
i.e., unlexicalized production rules combined with
the grandparent node.

3.2.3 Word2vec Embeddings

We used word2vec vectors learned using the skip-
gram model which predicts the linear context of
the words surrounding the target words (Mikolov
et al., 2013)2.

3.3 Classification

In our method we used an ensemble approach con-
sisting of combining several classifiers and using
their individual strengths in the final voting.

3.3.1 CNN

In our experiments we followed (Kim, 2014)’s ar-
chitecture3. We experimented with different CNN
model versions, see all paths that lead to CNN
in Figure 1. We used a non static setting for
the word embeddings which, as previously men-
tioned, came from the pretrained word2vec cor-
pus. Due to the skewed nature of the training data
with two classes being significantly more com-
mon than the other two we adjusted the weights
to reflect this relationship, i.e., w[S, D,Q, C] =
[0.157, 0.396, 0.399, 0.048]. We used no regular-
ization.

1The environment containing the trained Parsey
McParseface model is available at docker hub as
edwtjo/syntaxnet:conll

2The pretrained corpus
GoogleNews-vectors-negative300.bin.gz
can be downloaded from https://code.google.
com/archive/p/word2vec/.

3As a starting point for the CNN-implementation we used
Denny Brick’s version of (Kim, 2014)’s Theano implementa-
tion. The code can be found at https://github.com/
dennybritz/cnn-text-classification-tf
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Figure 1: Workflow schematic for our data pipeline

3.3.2 Automatic Rule Mining
Classification through automatic rule mining was
done with the WEKA (Witten et al., 2016) im-
plementation of PART (Frank and Witten, 1998).
PART was used with the confidence factor set to
0.25 and the minimum number of instances per
rule set to 2. For this classifier the data was rep-
resented in terms of a number of metadata fea-
tures: i) Number of “.”, “?”, “!”, and negations
in the tweet. ii) Number of statuses, followers and
friends, and favourites of the user. iii) Whether
the user is verified or not. iv) Whether the tweet
was a reply or not and its conversation depth. The
conversation depth of a tweet is here defined as 0
for a source tweet, 1 for a reply to a source tweet,
and so forth.

3.3.3 Hand Written Rules
The classifier based on hand written rules (HWR)
relies on a small set of rules to classify tweets.
The rules are designed to favour precision over
recall, and were constructed through manual in-
spection of the training data. The default class
is comment. One type of rule checks if any pre-
defined key phrases are present in the tweet and
if so classifies the tweet accordingly. An exam-
ple of such a rule is: If sentence contains phrase
‘not believable’: → assign class deny The second
type of rule checks for certain combinations of oc-
currences of “@”-mentions, “#”, and urls in the
whole text, as well as “?” in the first 5 tokens of
the tweet. An example of this type of rule is: If
sentence contains an url and does not start with
an @-mention: → assign class support

3.3.4 Voting
The final prediction of the class of a data instance
is achieved through a voting procedure. As differ-
ent classifiers have different strenghts and weak-
nesses, which vary over classes as well as between
precision and recall, not all votes are counted as

equal. A vote on a certain class from a classifier
with high precision on said class is deemed more
important.

4 Results

In addition to the results on the test data, results on
the development data are also provided.

Label
original (%) our (%) diff (pp)

S 910 (20.1) 955 (21.1) +44 (+1)
D 344 (7.6) 230 (5.1) -114 (-2.5)
Q 358 (7.9) 326 (7.2) -32 (-0.7)
C 2907 (64.3) 3009 (66.6) +102 (+2.3)

Table 1: Distribution of tweets between classes us-
ing original labels and our new labels.

4.1 Relabeling
Out of 4519 tweets we relabeled 846, or about
19%. The distribution of tweets between classes
before and after relabeling is shown in Table 1.

4.2 Development Data Performance
The CNN trained using preprocessed tweet con-
tents, together with each tweets absolute time
(counting from its source tweet as point zero), and
dynamic word2vec settings reached an accuracy
of 0.715 on the development set. The PART rules
reached an accuracy of 0.701 on the development
set. The hand written rules reached an accuracy of
0.733 on the development set.

After tweaking of the voting schema to make
use of the strengths of the different methods an
accuracy of 0.758 on the development set was
reached. The best accuracy on the development
data was achieved with the following priority or-
der of votes from the classifiers: 1) CNN vote on
support, 2) HWR vote on deny or query, 3) PART
vote on query, 4) CNN vote on deny or query, 5)
HWR vote on support, 6) Default class comment.
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Precision Recall
Model Accuracy S D Q C S D Q C
HWR 0.751 0.55 0.053 0.605 0.783 0.319 0.014 0.217 0.943
PART 0.745 0.423 0.105 0.553 0.802 0.319 0.028 0.396 0.910
PARTR 0.732 0.343 0.167 0.558 0.811 0.383 0.042 0.453 0.875
CNN 0.752 0.622 0.0 0.333 0.761 0.298 0.0 0.009 0.977
CNNG 0.633 0.563 0.2 0.286 0.681 0.391 0.182 0.071 0.850
CNNR 0.745 0.538 0.0 0.333 0.758 0.298 0.0 0.009 0.968
Voting 0.749 0.5 0.05 0.525 0.812 0.372 0.014 0.5 0.896

Table 2: Results on test data set, comparison between classifiers. Subscript R after the classifier name
stands for “Relabeled” and subscript G stands for “Grammatical Representation”. The best result in each
column is marked with bold face.

4.3 Test Data Performance
Table 2 shows performance measures for our clas-
sifiers, evaluated on the test data. In the Table
we have also included the results of training both
with the new labels, marked with subscript R, and
training a CNN model with only the grammatical
representation of the tweet contents and absolute
time, marked with subscript G.

5 Discussion

The data set class distribution is rather skewed,
with the vast majority of the tweets classified as
comments. In fact, using a simple majority classi-
fier would result in an accuracy of 64.3%, i.e., the
ratio of tweets classified as comments. This might
be considered an evaluation baseline. In our ex-
periments with relabeling the data to try and rem-
edy the found inconsistencies we changed almost
one fifth of the labels. Which could indicate that
the labels are highly subjective. A reason for this
could be that the overall rumour was not given in
the data. A downside of the relabeling was that
the two largest classes, i.e., S and C, became even
more prevalent.

There was a great difference in the performance
of the models on the development and test data,
e.g., the CNN model went from an accuracy of
71.5% to 75.2%. This indicates that the devel-
opment data might not be representative for the
test data and that methods developed for this task
should take care to avoid being too domain spe-
cific.

The CNN based models show consistently best
accuracy for a few epochs, on average around 8
epochs, and after that the models become overfit-
ted. We tested with regularization to avoid overfit-
ting, but to no avail. This only prolongs the num-

ber of epochs necessary for training. Note that
we did not do experiments with more than 200
epochs. A theory is that the data set is simply so
small that it is easy to overfit a CNN-model and
the number of epochs thus must be carefully mon-
itored.

For this competition it became apparent, during
the development phase and tuning of hyper param-
eters, that the grammar structure of tweets had lit-
tle impact on the overall accuracy of the model,
see CNNG results in Table 2. There are many pos-
sible reasons for this but the most likely is that
tweets follow a very reduced grammatical struc-
ture due to their inherent shortness and as such
exhibit similar distributions over the possible out-
put classes. But, there was one class in which the
CNNG model had much better precision than all
other models, i.e., the elusive deny class.

The hand written rules performed remarkably
well considering their simplicity. A possible ex-
planation for this is of course that the person con-
structing the rules will make use of general lan-
guage and world knowledge that a machine may
not have access to. A potential problem with this
approach is that it might be difficult to signifi-
cantly improve the performance, at least without
a substantial manual effort. Some metadata and
text meta features are less intuitive for a human to
manually write rules based upon. The PART clas-
sifier could more easily handle these features and
so discover rules that would have been difficult for
a human to come up with.

The main goal of the voting procedure is to ex-
ploit the strengths of different types of classifiers.
We decided to rank votes per classifier and class,
rather than a more complex weighting scheme or
a simple majority vote. A motivation for this was
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the tendency of the classifiers to favour precision
over recall (in the case of HWR) or to be heavily
biased towards the comment class due to the class
imbalance of the data set.

6 Conclusions

The key contributions of this paper are, among
other, approaching the task of stance classification
with an ensemble method combining CNNs with
both automatic rule mining and manually written
rules. Interesting feature engineering was done by,
among other things, relabeling the data and using
the grammatical structure of the tweet contents.

Utilizing each method’s strengths the results
were weighted with a voting system developed for
the task. The submitted system achieved a final ac-
curacy of 74.9% on the competition’s test data set,
placing the team at a fourth place on the SemEval-
2017 RumourEval task 8A.
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Abstract

We describe our submissions for
SemEval-2017 Task 8, Determining
Rumour Veracity and Support for Ru-
mours. The Digital Curation Technologies
(DKT) (Rehm and Sasaki, 2016, 2015)
team at the German Research Center for
Artificial Intelligence (DFKI) participated
in two subtasks: Subtask A (determining
the stance of a message) and Subtask B
(determining veracity of a message, closed
variant). In both cases, our implementa-
tion consisted of a Multivariate Logistic
Regression (Maximum Entropy) classifier
coupled with hand-written patterns and
rules (heuristics) applied in a post-process
cascading fashion. We provide a detailed
analysis of the system performance and
report on variants of our systems that were
not part of the official submission.

1 Introduction

In today’s digital age, the social, political and eco-
nomic relevance of online media and online con-
tent is becoming more and more relevant. Accord-
ingly, the task of analysing and determining the
veracity of online content is receiving a growing
amount of attention by the NLP community. The
ability to detect whether a piece of news is fake or
not, and to do so automatically, is a very timely
language technology application (Zubiaga and Ji,
2014). Through these shared tasks, we intend to
address which linguistic and contextual features
characterise a rumour.

SemEval2017 Task 8 (Derczynski et al., 2017)
provided all participants with a dataset consisting
of tweets in response to breaking news stories. It
contains conversations responding to rumourous
tweets. These tweets have been annotated for sup-

port, deny, query or comment (SDQC). The com-
petition consisted of two subtasks:

• Subtask A: Determining whether response
tweets support, deny, query or comment
(SDQC) on rumours (source tweet)

• Subtask B: Given a tweet, determine
whether the statement is true or false (i. e.,
a rumour). This subtask featured two vari-
ants: closed (determining veracity from the
tweet alone) and open (determining veracity
from additional context). We participated in
the closed task.

Our approach to both subtasks involved extract-
ing relevant features from the provided data and
training a classifier followed by a set of heuris-
tics implemented in a cascading decision tree style
(Minguillon, 2002). These rules, applied as a post-
process, help induce a better mapping from classi-
fication results to rumour categorisation and verac-
ity detection because they take into account spe-
cific features characterising a particular class.

In this paper we seek to answer two questions
using Rumour Detection and Classification as a
case-study:

• Which features comprise the set of post-
process rules?

• What is the optimal technique to implement
these heuristics (cascading order)?

This paper is structured as follows. Section 2
gives a bird’s eye overview of our systems submit-
ted for evaluation. Section 3 describes the various
rumour detection and classification models as well
as experimental setups (not part of the official sub-
mission). Section 4 displays the results and anal-
yses them. Section 5 contains a discussion of the
task in general followed by an explanation of some
design decisions.
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Figure 1: Workflow of the DFKI-DKT System for
both tasks

Category Subtask A Subtask B

Training 4238 tweets 272 tweets

Development 281 tweets 25 tweets

Test 1049 tweets 28 tweets

Table 1: Overview of Training and Testing data

2 DFKI-DKT’s Submission Overview

Our submissions can be categorised as hybrid sys-
tems since they consist of both machine learning
and rule-based (heuristics) modules.

The first step was to extract contextual features
(tweet text) and metadata features (Twitter user ac-
count properties and message properties) from the
provided test data. We then trained a Maximum
Entropy classifier (Malouf, 2002) followed by a
set of heuristics (if-then clauses) implemented in a
cascading decision tree style (Minguillon, 2002),
see Figure 1.

2.1 Data and Tools

In terms of tools and resources we did not use any
external data. All models were trained on the pro-
vided twitter dataset. Table 1 gives an overview of
the size of the data for subtasks A and B. We im-
plemented feature vector-based text classification
models using the Mallet Machine Learning Toolkit
(McCallum, 2002) in Java. The heuristics were
implemented in the form of an experimentally de-
termined sequence of if-then decision rules writ-
ten in Python. Evaluation was performed using the
scoring scripts provided by the task organisers.

2.2 Preprocessing

We employed the standard tokenisation scripts
while extracting the feature vectors for training a
classifier. We did not implement any other pre-
processing step. In fact, it was discovered that
cleaning the tweets actually impacted the classi-
fication algorithm in a negative way. We believe
that certain as-is characteristics of the text (upper-
case, spelling errors, emoticons, etc.) help in bet-
ter distinguishing the used categories (SDQC).

2.3 Subtask A Heuristics

The classifier was trained on four classes (SDQC).
This was followed by a post-processing module
of decision rules based on linguistic patterns and
Twitter metadata. The heuristics were as follows:

• If a tweet begins with a wh-word (where,
when, how, what, why, which) and/or ends
with a question mark, then classify it as
query

• If a tweet contains a negation, then classify
it as denial

• If a tweet is a retweet, then classify it as sup-
port

• If more than 70% of the text is all uppercase,
then classify it as comment

2.4 Subtask B (closed) Heuristics

The classifier was trained on two classes (true,
false). This was followed by a post-processing
module of decision rules based on linguistic pat-
terns and Twitter metadata. The heuristics were as
follows:

• If a tweet begins with a wh-word (where,
when, how, what, why, which) and/or ends
with a question mark, then classify it as false

• If the tweet has been retweeted x number of
times, then classify it as true

• If more than 70% of the text is all uppercase,
then classify it as false

• If the tweet contains more than three @user-
names and hashtags, then classify it as false

• If the author of the tweet as more than 10000
followers, then classify it as true
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Pattern Support Query Deny Comment

RT (retweet) 7.5% 2.6% 6.2% 5.7%
@username (replies) 64.7% 95.9% 88.9% 92.1%
! (exclamation mark) 7.5% 6.7% 11.1% 12.2%
Negative emoticons 0.2% 0.3% 0.3% 1.0%
Positive emoticons 0% 0.9% 0.5% 0.2%
? (question mark) 6.7% 65.8% 14.9% 10.3%
Wh-word 6.5% 21.3% 13.4% 10.3%
”” (quotation marks) 5.2% 2.3% 6.5% 4.8%
Abusive language 2.5% 2.0% 12.9% 9.4%

Table 2: Percentage of tweets in the four categories of training data containing a specific feature.

3 Models and Experiments

In this section, we describe the details of the fea-
tures used in our models as well as the different
experimental settings.

3.1 Models

We trained three different classifiers, followed by
applying the heuristics model described in Sec-
tions 2.3 and 2.4:

• Maximum Entropy classification (MaxEnt)
(Malouf, 2002), also known as Multivariate
Logistic Regression.

• Naive Bayes classification (Frank and
Bouckaert, 2006) assumes independence of
the features while counting.

• Winnow classification (Winnow2) (Little-
stone, 1988) is similar to the perceptron
model but uses a multiplicative weight update
scheme rather than an additive method.

While we submitted only the MaxEnt model
due to time constraints, we also include the re-
sults and analysis of the performance of the Naive
Bayes and Winnow classifiers. We also computed
an ensemble classifier, i. e., a voting-based combi-
nation of the three models’ results using the fol-
lowing algorithm:

• Count the number of votes (MaxEnt, Naive
Bayes, Winnow) for each of the categories
(four for Subtask A, two for Subtask B)

• Select the category with the maximum num-
ber of votes

• If there is a tie, select the result of MaxEnt
classifier

3.2 Useful Features

For subtask A (determining the category of a mes-
sage), we compiled a list of distinctive features1

characteristic of each of the stances: support,
query, deny, comment. We conducted an investi-
gation into linguistic and context-specific patterns
that may distinguish one stance from the other. For
example, query messages almost always have a
wh-word and a question mark.

1. Message is a retweet, i. e., begins with RT

2. Message is a reply (@usernames)

3. Message contains exclamation marks

4. Message is a question (question mark or wh-
word: who/what/when/why/where/how)

5. Message contains emoticons (smileys)

6. At least 70% of the message is in uppercase

7. Message contains negations (not, doesn’t)

8. Message contains expletives or abuse

Table2 gives a snapshot of the frequency of the
patterns on the training data in each of the SQDC
categories.

3.3 Experimental Setup

The features used in the classification algorithms
consisted of a vector of the words (twitter text).
When we attempted to incorporate some of the
features described above in the classification algo-
rithm, the performance deteriorated. This led us
to implement a post-process heuristic module and
subject the results of the classification to a second

1After conducting a statistical analysis of the training
data, we also used some of these features in determining the
rumour veracity in subtask B, see Section 2.4.
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Subtask
System A B

MaxEnt+Heuristics 0.635 0.393

NaiveBayes+Heuristics 0.621 0.387
Winnow+Heuristics 0.630 0.400
Ensemble+Heuristics 0.705 0.422

Table 3: Evaluation scores of submitted system
(first row) as well as other runs of our system.

Figure 2: Prediction Accuracy of Submitted Sys-
tems in Subtask B and Subtask A

stage of assigning labels. For example, over 60%
of the messages containing a question mark were
queries. Hence any message containing a question
mark was tagged as a query.

4 Results

Table 3 shows the results of our experiments. We
submitted the MaxEnt results. However, the en-
semble method (combination of all three models)
shows a much better performance.

Figure 2 demonstrates the number of correct
categories we classified accurately (blue bar). Our
systems performed best at predicting the ”com-
ment” and ”query” in subtask A and ”false” in sub-
task B. The poor performance on ”support” in sub-
task A and ”true” in subtask B can be attributed to
our post-process framework, i.e. our rules are not
sufficiently discriminative. A work-around is to
label all tweets as ”support” and then implement
the if-then rules.

5 Discussion

In this section, we briefly touch upon a few ob-
servations from our experiments. First, the actual
twitter text should not be cleaned in any way, i. e.,
errors, misspellings, acronyms etc. contained in
the text help in the task. Using rule-based heuris-
tics derived from a statistical analysis of the char-
acteristics of the training data, helps in a post-

processing step to improve the classification per-
formance of test data.

6 Conclusion

We implemented hybrid systems, i. e., combi-
nations of statistical (classifier) and rule-based
(heuristics) modules. It can be observed that tex-
tual features and metadata benefit both tasks. In
terms of future work, we plan to implement a bet-
ter cascading model, i. e., to assign probabilities to
the heuristics.
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Abstract

This paper describes our submissions to
task 8 in SemEval 2017, i.e., Determin-
ing rumour veracity and support for ru-
mours. Given a rumoured tweet and a
plethora of replied tweets, subtask A is to
label whether these tweets are support, de-
ny, query or comment, and subtask B aim-
s to predict the veracity (i.e., true, false,
and unverified) with a confidence (in range
of 0-1) of the given rumoured tweet. For
both subtasks, we adopted supervised ma-
chine learning methods incorporating rich
features. Since the training data is imbal-
anced, we specifically designed a two-step
classifier to address subtask A .

1 Introduction

With the rapid development of social media in re-
cent years, people cannot only stay abreast of on-
going events and breaking news, but also express
their own views freely. News can spread quickly
in social media platforms through a large amount
of users, whilst those pieces of unverified infor-
mation often spawn rumours. The RumourEval
(Derczynski et al., 2017) task aims to identify how
users in social media networks regard the originat-
ing rumours and reply to them, as well as analy-
sis and determining veracity of rumoured tweet-
s. The organizer provides tree-structured con-
versations that are associated with breaking news
and consisting of originating rumoured tweets and
tweets replying to them.

There are two subtasks in RumourEval. The
propose of subtask A is, given the related break-
ing news, to predict the class (i.e., support, de-
ny, query, and comment) of the originating ru-
moured tweet (i.e., source tweet) and reactions
(i.e., replied tweets). The goal of subtask B is to

determine the veracity and confidence of the given
rumoured tweet, participants are required to return
a label of rumour as true, false or unverified, with
a confidence value in the range of 0-1.

We treated the two subtasks as multi-
classification problems, and designed multiple
effective natural language processing (NLP)
features to build classifiers to make predictions.
Besides, rumour detection is relevant to sentiment
analysis, for example, support and deny can
be viewed as positive and negative sentiment
respectively. Therefore, we solved the problem
with the aid of a number of sentiment-related
features. Due to the imbalanced characteristic
of the training data, we specifically adopted a
two-step classifier to deal with subtask A. Firstly,
tweets would be separated into two categories:
comment and non-comment, then the tweets
labeled as non-comment would be classified as
support, deny or query. On the other hand, we
directly adopted a three-classification system for
subtask B to label rumoured tweets as true, false
or unverified along with confidence.

2 System Description

For both subtask, we extracted rich features from
the training data and then built classifiers to make
predictions. For subtask A, we designed a two-
step classification system. The first step (1-step)
classifier is to discriminate comment tweets from
non-comment tweets. And the second step (2-step)
classifier is to identify whether a tweet is support,
deny or query towards the rumour if the tweet was
labeled as non-comment in the 1-step classifica-
tion. The 1-step can be viewed as determining
whether a tweet is objective (comment) or sub-
jective (non-comment). The 2-step is actually to
classify a non-comment tweet that expresses posi-
tive (support), negative (deny) or doubtful (query)
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sentiment. While for subtask B, we simply imple-
mented a three-classification system to determine
whether the given rumoured tweet is true, false or
unverified and returned a confidence of label.

2.1 Feature Engineering

In this section, we give the detail of feature engi-
neering. Five types of NLP features are designed
to capture effective information from the given
tweets.

Linguistic-informed Features

- Word N-grams: We extracted word n-grams
features (n = 1, 2) from tweets. However,
a word has various forms, therefore we also
constructed lemmatization and stem word n-
grams features (n = 1, 2). To accomplish
that, we acquired the lemmatization and stem
of words from the pending sentences, using
the Stanford CoreNLP tools1.

- NER: There are different types of words
in tweets, such as a tweet “Gunman Takes
Hostages In Sydney Cafe” that has useful in-
formation like person and location to help
to detect rumours. NER feature can effec-
tively express aforesaid information. The
12 types (i.e., DURATION, SET, NUM-
BER, LOCATION, PERSON, ORGANIZA-
TION, PERCENT, MISC, ORDINAL, TIME,
DATE, MONEY) named entities are labeled
by Stanford CoreNLP tools. We used a 12-
dimensions binary feature to indicate the en-
tities in tweet.

There are some particular elements in tweets,
that can help to predict labels of tweets. For in-
stance, hashtag and mentioned entity (e.g., “#se-
meval”, “@YouTube”) express the topic informa-
tion of the tweets, and several special punctuation
and emotions (e.g., “!”, “?”, and “:)”) reveal the
sentiment information of users.

Tweet domain Features
We collected all the hashtags and mentioned en-

tities appeared in training tweets, using unigram
feature to imply whether a tweet contained such
information.

- Punctuation: Considering that users often
use exclamation marks and question marks
to express strongly surprised and questioned

1http://stanfordnlp.github.io/CoreNLP/

feelings, we extracted 7-dimensions punctu-
ation features by recording rules of punctu-
ation marks in the tweets (i.e., whether there
is one or more question marks or exclamation
marks, whether there is a question mark or an
exclamation mark in the end of sentence).

- Emoticon: We collected 67 emoticons la-
beled with positive and negative scores from
the Internet2, and used a 67-dimensions fea-
ture to record the sentiment score of the e-
moticon in tweets.

- Event: Training data consists of plenty of
tree-structured conversations that cover eight
breaking news. We gathered several key-
words3 about these events from the Internet
to extract corresponding unigram feature.

Metadata contains important information and
can indicate the popularity of a tweet and the cred-
ibility of the author of a tweet. For example, fea-
tures like “favorite count: 1340”, “retweet count:
500” may indicate whether the tweet is being
watched; “verified: false”, “protected: true” per-
haps imply whether the author is trustworthy.

Tweet metadata Features
We extracted two types of metadata informa-

tion:

- Tweet metadata: We designed a 5-
dimensions feature that consists of tweet fa-
vorite count, retweet count, pre-retweet coun-
t (i.e., the retweet count of the last replied
tweet), create time gap (i.e., the time interval
between the tweet and previous replied tweet)
and tweet level (i.e., the layer of the tweet in
a tweet conversation flow). These numerical
characteristics are normalized by 0-1 normal-
ization.

- User metadata: In addition to the metada-
ta of a tweet, users also have some instru-
mentally valuable metadata as follows: list
count, followers count, user favourites count,
friends count, verified, protected, default pro-
file, profile use background image, and geo

2https://github.com/haierlord/resource/blob/master
/Emoticon.txt

3We enter the hashtag of source tweet on the Internet, to
collect keywords from the headlines of relevant news. For
example, we manually extracted “charlie”, “hebdo”, “attack”
and “terror” from the title “Charlie Hebdo attack: Three days
of terror - BBC News”.
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enabled. The first four are numerical features
that need normalization, and others are bina-
ry features. The aforementioned features for-
m a 9-dimensions feature.

Word Vector Features
A lot of recent studies on NLP application-

s are reported to have good performance us-
ing word vectors, such as ducument classifi-
cation (Sebastiani, 2002), parsing (Socher et al.,
2013), and question answering (Lan et al., 2016a),
We adopted two widely-used word vectors, i.e.,
GoogleW2V (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014). However, semantic
word vectors find similar words with similar
context rather than similar sentiment informa-
tion. Several recent works focused on sentimen-
t word vectors using neural network based mod-
els (Lan et al., 2016b). In this work, we also
adopted two sentiment word vectors, one is SSWE
(Tang et al., 2014) and the other is a home-made
sentiment word vector from our previous work. To
obtain the representation of a tweet, for each word
in a tweet, we concatenated the maximum, mini-
mum and mean of each dimension as a tweet vec-
tor [min-max-mean].

- GoogleW2V: We adopted the pre-trained
available 300-dimensions word vectors that
were trained on 100 billion words from
Google News by word2vec tool4

- GloVe: The 100-dimensions word vectors
we used were trained on 2 billion tweets and
supplied in GloVe5.

- SSWE: The sentiment-specific word embed-
dings were trained by using multi-hidden-
layers nerual network with a vector size of
50.

- ZSWE: The 200-dimensions home-made
sentiment word vectors were trained with
NRC140 tweet corpus by the Combined-
Sentiment Word Embedding Model.

Word-cluster Feature
To further group similar words into a small set

and to make better use of word semantic informa-
tion, we clustered all the words of tweets by k-
means algorithm. The pending words were first-
ly represented as 300-dimensions word vectors by

4https://code.google.com/archive/p/word2vec
5http://nlp.stanford.edu/projects/glove/

looking up pre-trained GoogleW2V, then grouped
into 80 clusters. Thus we adopted 80-dimensions
binary feature to mark whether the words of a cer-
tain cluster appeared in the tweet.

2.2 Learning algorithms and Evaluation
metrics

Based on above multiple features, we explored
several learning algorithms to build classifica-
tion models, e.g., Logistic Regression (LR), sup-
plied in liblinear tools6, Support Vector Machines
(SVM), Decision Trees (DT), Random Forests (R-
F), AdaBoost (ADB), and Gradient Tree Boost-
ing (GDB), implemented in scikit-learn7. We also
ensembled the effective learning algorithms using
majority vote strategy.

The official evaluation measure for both sub-
tasks is accuracy.

3 Experiments and Results

3.1 Datasets
The statistics of the datasets provided by SemEval
2017 task 8 are shown in Table 1.

Subtask A support(%) query(%) deny(%) comment(%)
train 841(19.8) 330(7.8) 333(7.9) 2, 734(64.5)
dev 69(24.6) 28(10.0) 11(3.9) 173(61.6)
test 94(9.0) 106(10.1) 71(6.8) 778(74.2)

Subtask B true(%) false(%) unverified(%) -
train 127(46.7) 50(18.4) 95(34.9) -
dev 10(40.0) 12(48.0) 3(12.0) -
test 8(28.6) 12(42.9) 8(28.6) -

Table 1: Statistics of training (train), development
(dev) and testing (test) data sets in SemEval 2017
Task 8.

The train and dev sets are associated with eight
different breaking news in English, i.e., char-
liehebdo, ebola-essien, ferguson, germanwings-
crash, ottawashooting, prince-toronto, putinmiss-
ing, and sydneysiege. They are made up of 297
Twitter conversations including 4, 519 tweets in
total. Apart from the eight original breaking news,
the test set adds two new, i.e., hillaryshealth and
save-marinajoyce, and it contains 28 conversa-
tions and 1, 049 tweets. This corpus is collect-
ed using the method described in (Zubiaga et al.,
2016).

3.2 Data Preprocessing
To deal with the informal characteristic of tweets,
we performed tweet normalization to convert elon-

6https://www.csie.ntu.edu.tw/ cjlin/liblinear/
7http://scikit-learn.org/

493



Subtask
Subtask A Subtask B

1-step 2-step -
Algorithm LR SVM DT ADB LR SVM RF ADB GDB LR SVM RF GDB

Tweet domain

Hashtag
√ √ √ √ √ √

Mentioned entity
√ √ √ √ √ √ √

Punctuation
√ √ √ √ √ √ √ √ √ √ √

Emoticon
√ √ √ √ √ √

Event
√ √ √

Metadata Tweet metadata
√ √ √ √ √ √ √

User metadata
√ √ √ √ √

Word-cluster Word-cluster
√ √ √ √ √ √ √

Linguistic

unigram
√ √ √

unigram lemma
√ √ √ √ √

unigram stem
√ √

bigram
bigram lemma

√ √
bigram stem

√
ner

√ √ √ √

Word Vector

GoogleW2V
√

GloVe
√ √ √

SSWE
√

ZSWE
√

Accuracy (%) 80.07 81.14 79.36 81.14 81.49 81.14 80.07 80.43 81.39 70.03 70.70 64.98 67.34
Ensemble (%) 83.99 80.07 71.04

Table 2: Results of feature and algorithm selection experiments for both Subtask A and Subtask B.
1-step, 2-step represent the first and second classification of subtask A respectively,

gated words and slang words into original word.
For elongated word (e.g., “sooo”), we implement-
ed a home-made application to transform it into
“so”, and for slang words, we collected a big dic-
tionary8 from the Internet to convert “LOL” into
“laugh out loud”. Then we conducted tokeniza-
tion, lemmatization and stemming with the aid of
Stanford CoreNLP tools9.

3.3 Experiments on training data

The Table 2 lists the results of the best feature
set with respect to top learning algorithms on t-
wo subtasks. Note that for subtask A, we adopted
a two-step classification. The accuracy of 1-step is
calculated on two classes (i.e., comment and non-
comment ), and that of 2-step is calculated on four
classes (i.e., support, deny, query and comment).
Since the dev set of subtask B is not enough (on-
ly 25 samples), we combined train and dev sets
and performed a 2-fold cross-validation. Further-
more, we also performed ensemble to combine the
results of top learning algorithms with their opti-
mum feature sets, which are shown as the last row
in Table 2.

From Table 2, we observe the findings as fol-
lows:
(1) Among 7 algorithms, LR and SVM consistent-
ly perform well in the three classifications. Be-
sides, ADB does a good job in two classifications
in subtask A, RF and GBD have a good perfor-

8https://github.com/haierlord/resource/blob/master/slangs
9http://stanfordnlp.github.io/CoreNLP/

mance in 2-step of subtask A and subtask B.
(2) Generally, Tweet domain, metadata and Word-
cluster features make a considerable contribution
for both subtasks, and they can achieve promising
performance with different algorithms. The pos-
sible reasons are: (a) Tweet domain features not
only contain sentiment information (e.g., Punctu-
ation and Emoticon), but also include topic in-
formation (e.g., Hashtag, Mentioned entity, and
Event). (b) The numerical characteristic (e.g,
tweet favorite count, retweet count, etc) of meta-
data can indicate that whether a tweet is being
closely watched and worthy of commenting. Bi-
nary features (e.g., friends count, is-verified, is-
protected, etc) reveal that whether the author of a
tweet is trustworthy. (c) The Word-cluster feature
provides semantic information.
(3) The performance of Linguistic-informed and
Word vector features in three classifications is
mixed. The Linguistic-informed features do not
work in the 1-step, however they contribute to the
2-step classification and subtask B. By observa-
tion, the lemmatization and stem n-gram outper-
form the original n-gram probably because that
lemmatization and stem unify the form of word-
s, thus reducing the dimension of feature and un-
necessary noise. For Word vector, GloVe slightly
outperforms other word vectors.
(4) From the algorithm comparison experiments,
the ensemble models for 1-step of subtask A
and subtask B are superior to the models using
single algorithms, different learning algorithms
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contribute differently to the classification perfor-
mance, that is why we conduct majority vote to en-
semble those effective learning algorithms. How-
ever, we directly use the LR algorithm in 2-step on
account of its best performance.

3.4 System Configuration

Based on the above experimental results, we con-
structed our submissions as follows: For subtask
A, we employed an ensemble model incorporat-
ing LR, SVM, DT, and ADB for 1-step classifica-
tion, while used LR directly for 2-step classifica-
tion. For subtask B, we also adopted an ensemble
model with LR, SVM, RF, GDB to predict label-
s of rumoured tweets, and probabilities of label-
s returned as confidence values. The parameters
of every algorithms are listed as follows: LR with
c= 1, SVM with kernel=linear, c= 0.1, RF with
n estimators= 10, ADB with n estimators= 100,
GDB with n estimators= 100, and DT with de-
fault parameters.

3.5 Results on test data

Tabel 3 shows the officially-released results of our
models and top-ranked teams. We ranked the third
for both subtasks in terms of accuracy, the second
for subtask B on the RMSE evaluation (a higher
accuracy is better, while a lower RMSE is bet-
ter). The predict results of test data are inferior
to the results of dev set, especially for subtask B.
we partly blame it for two reasons: (1) The addi-
tion of two breaking news (i.e., hillaryshealth and
save-marinajoyce). The feature set used in subtask
B can not capture unseen words in new topics, so
the model may have a limited generalizability. (2)
The test set is too small (only 28 samples).

Subtask System Accuracy(%) RMSE

Subtask A

ECNU 77.8(3) -
Turing 78.4(1) -

Uwaterloo 78.0(2) -

Subtask B

ECNU 46.4(3) 0.736(2)
NileTMRG 53.6(1) 0.672(1)

IKM 53.6(2) 0.763(3)

Table 3: Performance of our models and top-
ranked teams on both two subtasks. The numbers
in the brackets are the official rankings.

4 Conclusion

For both subtasks, we adopted supervised machine
learning methods incorporating rich features. We

adopted a two-step classifier to address subtask A
to solve the imbalance of training data, and a sim-
plified three-classification for subtask B. We orig-
inally thought that features with good generaliza-
tion performance, such as Linguistic-informed and
Word vector features would perform well in both
subtasks, but in fact that was not the case. On the
contrary, good performance can be achieved with
several features like Tweet domain and Metada-
ta features closely related with the tweets. From
the final results in test data, in the future work, we
need to build a topic independent model to achieve
better generalizability.
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Abstract

This paper describes our system partici-
pation in the SemEval-2017 Task 8 ‘Ru-
mourEval: Determining rumour veracity
and support for rumours’. The objec-
tive of this task was to predict the stance
and veracity of the underlying rumour.
We propose a supervised classification ap-
proach employing several lexical, content
and twitter specific features for learning.
Evaluation shows promising results for
both the problems.

1 Introduction

Twitter along with Facebook is widely used social
networking site which generates tons of authen-
tic and unauthentic information. The purpose of
twitter varies from people to people. Twitter has
been greatly used as a communication channel and
also as an information source (Zhao and Rosson,
2009). However, Twitter like any other social me-
dia platform does not always poses authentic in-
formation. It also brings a negative by-product
called rumour (Castillo et al., 2011; Derczynski
and Bontcheva, 2014; Qazvinian et al., 2011). Ru-
mours are the statement which cannot be verified
for its correctness. These rumours may confuse
people with the unverified information and drive
them in poor decision making. In many organiza-
tions(political, administration etc.), detection and
support for rumour invites great interest from the
concerned authorities.

Recently, researchers across the globe have
started addressing the challenges related to ru-
mours. A time sequence classification technique
has been proposed for detecting the stance against
a rumor (Lukasik et al., 2016). Zubiaga et al.
(2016) used sequence of label transitions in tree-
structured conversations for classifying stance. A

study on speech act classifier for veracity predic-
tion is proposed in (Vosoughi, 2015). One of
the earlier work reported on rumour detection and
classification had used twitter specific and content
based features for the prediction (Qazvinian et al.,
2011).

In this paper we present our proposed system
submitted as part of the SemEval-2017 shared task
on “RumourEval: Determining rumour veracity
and support for rumours”. Our system is super-
vised in nature and uses a diverse set of features
(c.f. Section 2.3) for training. The task involves
Twitter conversation thread where for every source
tweet a number of direct and nested reply tweets
are present. An example thread is depicted in Ta-
ble 1. The task defines two separate sub-problems:
A) Support, Deny, Query & Comment (SDQC)
classification and B) veracity prediction. The first
subtask checks the stance of any tweet(source or
reply) w.r.t. the underlying rumour. Reply tweet
can be direct or nested. Second subtask predicts
the veracity of a rumour i.e. true (rumour), false
(not rumour) or unverified (its veracity cannot be
verified). Further, there were two variants of the
veracity task: closed and open variants. In closed
variant, the veracity prediction has to be made
solely from the tweet text only. In addition usage
of extra data (Wikipedia article, news article etc.)
was allowed for the open variant.

The rest of the paper is organized as follows:
Section 2 presents a brief description of the pro-
posed approach. Experimental results and discus-
sion is furnished in Section 3. Finally, we con-
clude in Section 4.

2 System Overview

We adopted a supervised classification approach
for both the tasks. We use Decision Tree (DT),
Naive Bayes (NB) and Support Vector Machine
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Tweet conversation thread Stance
Src: Very good on #Putin coup by @CoalsonR: Three Scenarios For A Succession In Russia http://t.co/fotdqxDfEV Support

Rep1: @andersostlund @CoalsonR @RFERL And how Europe will behave in such a case? Deny
Rep2: @andersostlund @RFERL Putin’ll be made a tsar (and the newborn an heir). Back 2 serfdom as Zorkin suggested. Comment
Rep3: @andersostlund @CoalsonR @RFERL uhmmm botox sesions far more likely anyway Comment
Rep4: @andersostlund What are your thoughts on #WhereIsPutin? Query

Rep5: @tulipgrrl Either a simple flue, more serious illness or serious domestic political problems. Comment
Rep6: @andersostlund @tulipgrrl :mask: Deny

Table 1: Twitter conversational thread. Src: Source tweet; Rep#: Replies.

(SVM) as base classifier for prediction of verac-
ity. For stance detection, every instance consists
of a pair of source-reply tweet. We extracted fea-
tures for both the tweets and fed it to the system
for the classification. In subsequent subsections
we describe dataset, preprocessing and list of fea-
tures that we use in this work.

2.1 Dataset
The training dataset consists of 272 source tweets
for which 3966 replies tweet are present. For tun-
ing the system, validation set contains 256 replies
across 25 source tweets. Each source and reply
tweet has one of the four label for stance detection
namely, support, deny, query and comment. For
veracity prediction, each of the source tweets be-
longs to one of the three classes i.e. true, false and
unverified. The gold standard test dataset has 28
source and 1021 reply tweets. A detailed statistics
is depicted in Table 2.

2.2 Preprocessing
The distribution of different classes in the dataset
is very skewed so the first step that we perform is
to extract and over sample the under represented
class. Classes support, deny and comment were
sampled by a factor of 4, 7 and 7 respectively. Af-
terwards, we perform normalization of urls and
usernames in which all urls and username were
replaced by keyword someurl and @someuser re-
spectively.

2.3 Features
In this section we describe features that we em-
ployed for building the system. We use following
set of features for both Subtask A and B.

• Word Embedding: Word vectors has been
proved to be an efficient technique in captur-
ing semantic property of a word. We use 200-
dimension pretrained GloVe model1 for com-
puting the word embeddings. Sentence em-

1http://nlp.stanford.edu/data/glove.6B.zip

bedding is computed by concatenating em-
beddings of all the words in a tweet. We fix
the length of each tweet by padding it to the
maximum number of tokens.

• Vulgar words: Conversations on Twitter are
usually very informal and usage of vulgar
words are often in practice. The presence of
vulgar words in a sentence declines the orien-
tation of it being a fact, hence, less chances
of it being a rumour. We use a list of vul-
gars words2 3 and define a binary feature that
takes a value ‘1’ if a token is present in the
list, otherwise ‘0’.

• Twitter specific features: We use presence
and absence of following twitter specific fea-
tures in this work.

– URL and Media: The presence of
metadata indicates that the user is pro-
viding with more authentic information.
Hence less chances of it being a rumour.
For subtask A, a user reply with meta-
data suggests it to be a support or deny.

– Punctuation, Emoticons and Abbrevia-
tion.

• Word count : Rumour sentences tend to be
more elaborative and hence longer while fac-
tual data is generally short and precise. Also,
user tends to deny a claim in shorter sentence.
We, therefore, define number of words in a
sentence (excluding stop words and punctua-
tions), as a feature.

• POS tag: We use unigram and bigram POS
tags extracted from CMU’s ARK4 tool.

In addition, we also implement few of the task
specific features listed below. Subtask A: SDQC

2http://fffff.at/googles-official-list-of-bad-words/
3http://www.noswearing.com/dictionary
4http://www.cs.cmu.edu/ ark/TweetNLP/
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Dataset Overall Subtask A: SDQC Subtask B: Veracity
Source Reply Support Deny Query Comment True False Unverified

Train 272 3966 841 333 330 2734 127 50 95
Dev 25 256 69 11 28 173 10 12 3
Test 28 1021 94 71 106 778 8 12 8

Table 2: Distribution of source and reply tweets with their labels in the dataset

• Negation words: Presence of negation word
in a tweet signals it to be a denial case.
Therefore, we use a binary feature indicat-
ing the presence of negation words in the
tweet. There were 27 negation words taken
into account. The following are the list - no,
not, nobody, nothing, none, never, neither,
nor, nowhere, hardly, scarcely, barely, don’t,
isn’t, wasn’t, shouldn’t, wouldn’t, couldn’t,
doesn’t, hasn’t, haven’t, didn’t, ain’t, can’t,
doesn’t and won’t.

• Wh- words: Query usually contains Wh-
words (What, Where, Which, When, Who,
Why, Whom, Whose). We define a binary
feature that fires when a tweet contains one
of these words.

Subtask B: Veracity prediction

• Presence of Opinion words: An opinion
carrying sentence cannot be a fact, hence,
makes it a probable candidate for rumour. We
define two features based on MPQA subjec-
tivity lexicon (Wilson et al., 2005). The first
feature takes opinion word count, whereas,
the second feature checks the presence of at
least one strongly subjective token in a tweet.

• Number of adjectives: An interesting rela-
tion between presence of adjectives in a sen-
tence and its subjectivity has been explored in
(Hatzivassiloglou and Wiebe, 2000). As per
(Wiebe, 2000) the probability of a sentence
being subjective, given that there is at least
one adjective in the sentence, is 0.545. If a
sentence is objective then its chances of be-
ing a rumour is very low. Therefore, we use a
binary feature that denotes presence/absence
of adjectives in a tweet.

Since, prediction in close variants has the limi-
tation of using the tweet only, we also extracted
‘presence of media’ as a binary feature value for
the open variant only.

3 Experiments and Results

We use scikit learn machine learning package5 for
the implementation. As defined by shared task, we
use classification accuracy and micro-average ac-
curacy as evaluation metrics for SDQC and verac-
ity prediction respectively. For subtask A, we try
various feature combinations to train a SVM clas-
sifier. Table 3 reports the validation accuracy for
SDQC subtasks. As a result we select the feature
combination that performs best during the valida-
tion phase and submit it for the final prediction on
the test dataset. In veracity prediction task, we em-

Features Accuracy
A. Unigram 54.2969%
B. Unigram + POS 62.1093%
C. W.E. 61.3281%
D. (C + POS) 63.2813%
E. (D + URL and Media) 62.8906%
F. (E + Twitter Specific) 63.2813%
G. (F + Negation words) 63.2813%
H. (G + Wh-Word) 63.6719%
I. (H + Vulgar words) 64.0625%
J. (I + Punctuation) 63.6719%
K. (J + Word count) 64.0625%

Table 3: SDQC: Accuracy on Development Set

ploy three classifiers i.e. Decision Tree, SVM and
Naive Bayes to the evaluate our system. We ob-
serve that the among three classifiers performance
of Naive Bayes is comparatively better than oth-
ers as shown in Table 4. For evaluation of test
dataset we use our best classifier i.e. Naive Bayes.
Our system reports an accuracy of 64.1% for the
SDQC classification. For subtask B, we also com-
pute a confidence score for each prediction. We
obtain micro-average accuracies of 39.28% and
28.57% respectively for the open and close vari-
ants. Reported root mean squared error (RMSE)
for the two variants are 0.746 and 0.807. It should
be noted that we were the only team which submit-

5http://scikit-learn.org
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ted their system in open variant category. Table 5
depicts the evaluation result on test dataset.

Classifiers Micro-average Accuracy
Open Closed

Decision Tree 58.23% 54.54%
SVM 58.75% 59.09%
Naive Bayes 59.09% 63.0%

Table 4: Veracity: Accuracy on Development Set

Task Accuracy RMSE
Subtask A 64.1% -
Subtask B(Open) 39.28% 0.746
Subtask B(Closed) 28.57% 0.807

Table 5: Evaluation results on test set.

Further, we perform error analysis on the re-
sults. Confusion matrix for SDQC classification
is depicted in Table 6. We observe that most of
the classes were confused with the comment class.
The possible reason could be the presence of rel-
atively high number instances for the comment
‘class’. Similarly, Table 7 & 8 shows confusion
matrix for both open and closed variants of sub-
task B. Recall for ‘true’ is encouraging i.e. 75%
but the problem lies with the precision which is
merely 28% & 25% for open and close variants
respectively.

Support Deny Query Comment
Support 42 2 2 48
Deny 11 9 2 49
Query 9 7 35 55
Comment 125 35 32 586

Table 6: SDQC: Confusion Matrix on test set (S:
support, D: deny, Q: query, C: comment)

True False Unverified
True 6 2 0
False 7 5 0
Unverified 8 0 0

Table 7: Veracity (Open): Confusion Matrix on
test set

4 Conclusion

In this paper we proposed a supervised approach
for determining the support and veracity of a ru-
mour as part of the SemEval-2017 shared task on

True False Unverified
True 6 2 0
False 10 2 0
Unverified 8 0 0

Table 8: Veracity (Closed): Confusion Matrix on
test set

rumour evaluation. As base classification algo-
rithm we use Naive Bayes, Support Vector Ma-
chine and Decision Tree for building the model.
In future, we would like to explore deep learning
technique and other relevant features to further im-
prove the performance of the system.
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Abstract

This paper describes the fifth year of
the Sentiment Analysis in Twitter task.
SemEval-2017 Task 4 continues with a
rerun of the subtasks of SemEval-2016
Task 4, which include identifying the over-
all sentiment of the tweet, sentiment to-
wards a topic with classification on a two-
point and on a five-point ordinal scale, and
quantification of the distribution of sen-
timent towards a topic across a number
of tweets: again on a two-point and on
a five-point ordinal scale. Compared to
2016, we made two changes: (i) we in-
troduced a new language, Arabic, for all
subtasks, and (ii) we made available in-
formation from the profiles of the Twitter
users who posted the target tweets. The
task continues to be very popular, with a
total of 48 teams participating this year.

1 Introduction

The identification of sentiment in text is an im-
portant field of study, with social media plat-
forms such as Twitter garnering the interest of re-
searchers in language processing as well as in po-
litical and social sciences. The task usually in-
volves detecting whether a piece of text expresses
a POSITIVE, a NEGATIVE, or a NEUTRAL senti-
ment; the sentiment can be general or about a spe-
cific topic, e.g., a person, a product, or an event.

The Sentiment Analysis in Twitter task has been
run yearly at SemEval since 2013 (Nakov et al.,
2013; Rosenthal et al., 2014; Nakov et al., 2016b),
with the 2015 task introducing sentiment towards
a topic (Rosenthal et al., 2015) and the 2016 task
introducing tweet quantification and five-point or-
dinal classification (Nakov et al., 2016a).

SemEval is the International Workshop on Seman-
tic Evaluation, formerly SensEval. It is an on-
going series of evaluations of computational se-
mantic analysis systems, organized under the um-
brella of SIGLEX, the Special Interest Group on
the Lexicon of the Association for Computational
Linguistics. Other related tasks at SemEval have
explored sentiment analysis of product review and
their aspects (Pontiki et al., 2014, 2015, 2016),
sentiment analysis of figurative language on Twit-
ter (Ghosh et al., 2015), implicit event polarity
(Russo et al., 2015), detecting stance in tweets
(Mohammad et al., 2016a), out-of-context senti-
ment intensity of words and phrases (Kiritchenko
et al., 2016), and emotion detection (Strapparava
and Mihalcea, 2007). Some of these tasks fea-
tured languages other than English, such as Arabic
(Pontiki et al., 2016; Mohammad et al., 2016a);
however, they did not target tweets, nor did they
focus on sentiment towards a topic.

This year, we performed a re-run of the subtasks
in SemEval-2016 Task 4, which, in addition to the
overall sentiment of a tweet, featured classifica-
tion, ordinal regression, and quantification with
respect to a topic. Furthermore, we introduced a
new language, Arabic. Finally, we made avail-
able to the participants demographic information
about the users who posted the tweets, which we
extracted from the respective public profiles.

Ordinal Classification As last year, SemEval-
2017 Task 4 includes sentiment analysis on a five-
point scale {HIGHLYPOSITIVE, POSITIVE, NEU-
TRAL, NEGATIVE, HIGHLYNEGATIVE}, which is
in line with product ratings occurring in the corpo-
rate world, e.g., Amazon, TripAdvisor, and Yelp.
In machine learning terms, moving from a categor-
ical two-point scale to an ordered five-point scale
means moving from binary to ordinal classifica-
tion (aka ordinal regression).
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Tweet Quantification SemEval-2017 Task 4 in-
cludes tweet quantification tasks along with tweet
classification tasks, also on 2-point and 5-point
scales. While the tweet classification task is con-
cerned with whether a specific tweet expresses a
given sentiment towards a topic, the tweet quan-
tification task looks at estimating the distribu-
tion of tweets about a given topic across the
different sentiment classes. Most (if not all)
tweet sentiment classification studies within polit-
ical science (Borge-Holthoefer et al., 2015; Kaya
et al., 2013; Marchetti-Bowick and Chambers,
2012), economics (Bollen et al., 2011; O’Connor
et al., 2010), social science (Dodds et al., 2011),
and market research (Burton and Soboleva, 2011;
Qureshi et al., 2013), study Twitter with an inter-
est in aggregate statistics about sentiment and are
not interested in the sentiment expressed in indi-
vidual tweets. We should also note that quantifica-
tion is not a mere byproduct of classification, as it
can be addressed using different approaches and it
also needs different evaluation measures (Forman,
2008; Esuli and Sebastiani, 2015).

Analysis in Arabic This year, we added a new
language, Arabic, in order to encourage partici-
pants to experiment with multilingual and cross-
lingual approaches for sentiment analysis. Our ob-
jective was to expand the Twitter sentiment anal-
ysis resources available to the research commu-
nity, not only for general multilingual sentiment
analysis, but also for multilingual sentiment anal-
ysis towards a topic, which is still a largely un-
explored research direction for many languages
and in particular for morphologically complex lan-
guages such as Arabic.

Arabic has become an emergent language for
sentiment analysis, especially as more resources
and tools for it have recently become available. It
is also both interesting and challenging due to its
rich morphology and abundance of dialectal use in
Twitter. Early Arabic studies focused on sentiment
analysis in newswire (Abdul-Mageed and Diab,
2011; Elarnaoty et al., 2012), but recently there
has been a lot more work on social media, espe-
cially Twitter (Mourad and Darwish, 2013; Abdul-
Mageed et al., 2014; Refaee and Rieser, 2014;
Salameh et al., 2015), where the challenges of sen-
timent analysis are compounded by the presence
of multiple dialects and orthographical variants,
which are frequently used in conjunction with the
formal written language.

Some work studied the utility of machine trans-
lation for sentiment analysis of Arabic texts
(Salameh et al., 2015; Mohammad et al., 2016b;
Refaee and Rieser, 2015), identification of senti-
ment holders (Elarnaoty et al., 2012), and senti-
ment targets (Al-Smadi et al., 2015; Farra et al.,
2015; Farra and McKeown, 2017). We believe
that the development of a standard Arabic Twit-
ter dataset for sentiment, and particularly with re-
spect to topics, will encourage further research in
this regard.

User Information Demographic information in
Twitter has been studied and analyzed using net-
work analysis and natural language processing
(NLP) techniques (Mislove et al., 2011; Nguyen
et al., 2013; Rosenthal and McKeown, 2016). Re-
cent work has shown that user information and in-
formation from the network can help sentiment
analysis in other corpora (Hovy, 2015) and in
Twitter (Volkova et al., 2013; Yang and Eisenstein,
2015). Thus, this year we encouraged participants
to use information from the public profiles of Twit-
ter users such as demographics (e.g., age, location)
as well as information from the rest of the social
network (e.g., sentiment of the tweets of friends),
with the goal of analyzing the impact of this infor-
mation on improving sentiment analysis.

The rest of this paper is organized as follows.
Section 2 presents in more detail the five subtasks
of SemEval-2017 Task 4. Section 3 describes the
English and the Arabic datasets and how we cre-
ated them. Section 4 introduces and motivates the
evaluation measures for each subtask. Section 5
presents the results of the evaluation and discusses
the techniques and the tools that the participants
used. Finally, Section 6 concludes and points to
some possible directions for future work.

2 Task Definition

SemEval-2017 Task 4 consists of five subtasks,
each offered for both Arabic and English:

1. Subtask A: Given a tweet, decide whether
it expresses POSITIVE, NEGATIVE or NEU-
TRAL sentiment.

2. Subtask B: Given a tweet and a topic, clas-
sify the sentiment conveyed towards that
topic on a two-point scale: POSITIVE vs.
NEGATIVE.
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3. Subtask C: Given a tweet and a topic,
classify the sentiment conveyed in the
tweet towards that topic on a five-point
scale: STRONGLYPOSITIVE, WEAKLYPOS-
ITIVE, NEUTRAL, WEAKLYNEGATIVE, and
STRONGLYNEGATIVE.

4. Subtask D: Given a set of tweets about
a topic, estimate the distribution of tweets
across the POSITIVE and NEGATIVE classes.

5. Subtask E: Given a set of tweets about a
topic, estimate the distribution of tweets
across the five classes: STRONGLYPOS-
ITIVE, WEAKLYPOSITIVE, NEUTRAL,
WEAKLYNEGATIVE, and STRONGLYNEG-
ATIVE.

Languages: English and Arabic
Goal Granularity Topic

A Classification 3-point No
B Classification 2-point Yes
C Classification 5-point Yes
D Quantification 2-point Yes
E Quantification 5-point Yes

Table 1: Summary of the subtasks.

Each subtask is run for both English and Arabic.
Subtask A has been run in all previous editions of
the task and continues to be the most popular one
(see section 5.) Subtasks B-E have all been run at
SemEval-2016 Task 4 (Nakov et al., 2016a), with
variants running in 2015 (Rosenthal et al., 2015).
Table 1 shows a summary of the subtasks.

3 Datasets

Our datasets consist of tweets annotated for sen-
timent on a 2-point, 3-point, and 5-point scales.
We made available to participants all the data from
previous years (Nakov et al., 2016a) for the En-
glish training sets, and we collected new training
data for Arabic, as well as new test sets for both
English and Arabic. The annotation scheme re-
mained the same as last year (Nakov et al., 2016a),
with the key new contribution being to apply the
task and instructions to Arabic as well as provid-
ing a script to download basic user information.
All annotations were performed on CrowdFlower.
Note that we release all our datasets to the research
community to be used freely beyond SemEval.

3.1 Tweet Collection

We chose English and Arabic topics based on pop-
ular current events that were trending on Twit-
ter, both internationally and in specific Arabic-
speaking countries, using local and global Twitter
trends.1 The topics included a range of named en-
tities (e.g., Donald Trump, iPhone), geopolitical
entities (e.g., Aleppo, Palestine), and other entities
(e.g., Syrian refugees, Dakota Access Pipeline,
Western media, gun control, and vegetarianism).
We then used the Twitter API to download tweets,
along with corresponding user information, con-
taining mentions of these topics in the specified
language. We intentionally chose to use some
overlapping topics between the two languages in
order to encourage cross-language approaches.

We automatically filtered the tweets for dupli-
cates and we removed those for which the bag-of-
words cosine similarity exceeded 0.6. We then re-
tained only the topics for which at least 100 tweets
remained. The training tweets for Arabic were
collected over the period of September-November
2016 and all test tweets were collected over the
period of December 2016-January 2017.

For both English and Arabic, the topics for the
test dataset were different from those in the train-
ing and in the development datasets.

3.2 Annotation using CrowdFlower

We used CrowdFlower to annotate the new train-
ing and testing tweets. The annotators were asked
to indicate the overall polarity of the tweet (on a
five-point scale) as well as the polarity of the tweet
towards the given target topic (again, on a five-
point scale), as described in (Nakov et al., 2016a).
We also provided additional examples, some of
which are shown in Tables 2 and 3. In particu-
lar, we stressed that topic-level positive or negative
sentiment needed to express an opinion about the
topic itself rather than about a positive or a nega-
tive event occurring in the context of the topic (see
for example, the third row of Table 3).

Each tweet was annotated by at least five peo-
ple, and we created many hidden tests for qual-
ity control, which we used to reject annotations
by contributors who missed a large number of the
hidden tests. We also created pilot runs, which
helped us adjust the annotation instructions until
we found, based on manual inspection, the quality
of the annotated tweets to be satisfactory.

1https://trends24.in/
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Tweet Overall Sentiment Topic-level Sentiment
Who are you tomorrow? Will you make me smile or just
bring me sorrow? #HottieOfTheWeek Demi Lovato

NEUTRAL Demi Lovato: POSITIVE

Saturday without Leeds United is like Sunday dinner it
doesn’t feel normal at all (Ryan)

WEAKLYNEGATIVE Leeds United: HIGHLYPOSITIVE

Apple releases a new update of its OS NEUTRAL Apple: NEUTRAL

Table 2: Some English example annotations that we provided to the annotators.

Tweet Overall Sentiment Topic-level Sentiment
ÉJ
 	ª ����Ë @ ÐA 	¢ 	JË �éªK. @QË @ �éJ
�. K
Qj. �JË @ �é 	j� 	�Ë @ ��Ê¢�� ÉK.


@

Apple releases a fourth beta of its OS
NEUTRAL ÉK.


@ Apple: NEUTRAL

ù

	®Ê	mÌ'@ I. ª

�
ÊË @ ½ÊÓ PPY 	̄ Qk. ðP �èPñ¢�B@ . . . ðQ����
AÖÏ @

é�KA¢�®Ë ÉÔg. @ 	áÓ
The maestro ... the legend Roger Federer king of the back-
hand game one of his best shots

HIGHLYPOSITIVE PPY 	̄ Federer: HIGHLYPOSITIVE

�HAK. ñª�Ë@ 	àñêk. @ñK
 	àñJk. C
�
Ë @

Refugees are facing difficulties
WEAKLYNEGATIVE 	àñJk. C

�
Ë @ Refugees : NEUTRAL

Table 3: Some Arabic example annotations that we provided to the annotators.

For Arabic, the contributors tended to annotate
somewhat conservatively, and thus a very small
number of HIGHLYPOSITIVE and HIGHLYNEG-
ATIVE annotations were consolidated, despite us
having provided examples of such annotations.

3.3 Consolidating the Annotations
As the annotations are on a five-point scale, where
the expected agreement is lower, we used a two-
step procedure. If three out of the five annotators
agreed on a label, we accepted the label. Oth-
erwise, we first mapped the categorical labels to
the integer values −2, −1, 0, 1, 2. Then we
calculated the average, and finally we mapped
that average to the closest integer value. In or-
der to counter-balance the tendency of the aver-
age to stay away from the extreme values −2 and
2, and also to prefer 0, we did not use round-
ing at ±0.5 and ±1.5, but at ±0.4 and ±1.4 in-
stead. Finally, note that the values −2, −1, 0, 1,
2 are to be interpreted as STRONGLYNEGATIVE,
WEAKLYNEGATIVE, NEUTRAL, WEAKLYPOSI-
TIVE, and STRONGLYPOSITIVE, respectively.

3.4 Data Statistics
The English training and development data this
year consisted of the data from all previous edi-
tions of this task (Nakov et al., 2013; Rosenthal
et al., 2014, 2015; Nakov et al., 2016b). Unlike in
previous years, we did not set aside data to assess
progress compared to prior years. Therefore, we
allowed all data to be used for training and devel-
opment.

For evaluation, we used the newly-created data de-
scribed in the previous subsection. Tables 4 and 5
show the statistics for the English and Arabic data.
For English, we only show the aggregate statis-
tics for the training data; the breakdown from prior
years can be found in (Nakov et al., 2016a). Note
that the same tweets were annotated for multiple
subtasks, so there is overlap between the tweets
across the tasks. Duplicates may have occurred
where the same tweet was extracted for multiple
topics.

As Arabic is a new language this year, we cre-
ated for it a default train-development split of
the Arabic data for the participants to use if they
wished to do so.

3.5 Data Distribution

As in previous years, we provided the participants
with a script2 to download the training tweets
given IDs. In addition, this year we also included
in the script the option to download basic user in-
formation for the author of each tweet: user id,
follower count, status count, description, friend
count, location, language, name, and time zone.
To ensure a fair evaluation, the test set was pro-
vided via download and included the tweets as
well as the basic user information provided by the
download script. The training and the test data is
available for downloaded on our task page.3

2https://github.com/seirasto/twitter_
download

3http://alt.qcri.org/semeval2017/
task4/index.php?id=data-and-tools
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Positive Neutral Negative
Dataset Subtask Topics 2 1 0 −1 −2 Total
Train A N/A 19,902 22,591 7,840 50,333

B, D 373 14,951 1,544 4,013 20,508
C, E 200 1,020 12,922 12,993 3,398 299 30,632

Test A N/A 2375 5,937 3,972 12,284
B, D 125 2,463 — 3,722 6,185
C, E 125 131 2,332 6,194 3,545 177 12,379

Table 4: Statistics about the English training and testing datasets. The training data is the aggregate of
all data from prior years, while the testing data is new.

Positive Neutral Negative
Dataset Subtask Topics 2 1 0 −1 −2 Total
Train A N/A 743 1,470 1,142 3,355

B, D 34 885 — 771 1,656
C, E 34 1 884 1699 770 1 3,355

Test A N/A 1,514 2,364 2,222 6,100
B, D 61 1,561 — 1,196 2,757
C, E 61 13 1,548 3,343 1,175 21 6,100

Table 5: Statistics about the newly collected Arabic training and testing datasets.

4 Evaluation Measures

This section describes the evaluation measures for
our five subtasks. Note that for Subtasks B to E,
the datasets are each subdivided into a number of
topics, and the subtask needs to be carried out in-
dependently for each topic. As a result, each of
the evaluation measures will be “macroaveraged”
across the topics, i.e., we compute the measure in-
dividually for each topic, and we then average the
results across the topics.

4.1 Subtask A: Overall Sentiment of a Tweet
Our primary measure is AvgRec, or average re-
call, which is recall averaged across the POSITIVE

(P), NEGATIVE (N), and NEUTRAL (U) classes.
This measure has desirable theoretical properties
(Sebastiani, 2015), and is also the one we use as
primarily for Subtask B. It is computed as follows:

AvgRec =
1
3
(RP +RN +RU ) (1)

where RP , RN and RU refer to recall with re-
spect to the POSITIVE, the NEGATIVE, and the
NEUTRAL class, respectively. See (Nakov et al.,
2016a) for more detail.

AvgRec ranges in [0, 1], where a value of 1 is
achieved only by the perfect classifier (i.e., the
classifier that correctly classifies all items), a value
of 0 is achieved only by the perverse classifier

(the classifier that misclassifies all items), while
0.3333 is both (i) the value for a trivial classifier
(i.e., one that assigns all tweets to the same class
– be it POSITIVE, NEGATIVE, or NEUTRAL), and
(ii) the expected value of a random classifier.

The advantage of AvgRec over “standard” accu-
racy is that it is more robust to class imbalance.
The accuracy of the majority-class classifier is the
relative frequency (aka “prevalence”) of the ma-
jority class, that may be much higher than 0.5 if
the test set is imbalanced. Standard F1 is also sen-
sitive to class imbalance for the same reason. An-
other advantage of AvgRec over F1 is that AvgRec
is invariant with respect to switching POSITIVE

with NEGATIVE, while F1 is not. See (Sebastiani,
2015) for more detail on AvgRec.

We further use two secondary measures: accu-
racy and FPN1 . The latter was the primary evalu-
ation measure for Subtask A in previous editions
of the task. It is macro-average F1, calculated over
the POSITIVE and the NEGATIVE classes (note the
exclusion of NEUTRAL). This year, we demoted
FPN1 to a secondary evaluation measure. It is cal-
culated as follows:

FPN1 =
1
2
(FP1 + FN1 ) (2)

where FP1 and FN1 refer to F1 with respect to the
POSITIVE and the NEGATIVE class, respectively.
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4.2 Subtask B: Topic-Based Classification on
a 2-point Scale

As in 2016, our primary evaluation measure for
subtask B is average recall, or AvgRec (note that
there are only two classes for this subtask):

AvgRec =
1
2
(RP +RN ) (3)

We further use accuracy and F1 as secondary
measures for subtask B. Finally, as subtask B is
topic-based, we computed each metric individu-
ally for each topic, and we then averaged the result
across the topics to yield the final score.

4.3 Subtask C: Topic-based Classification on
a 5-point Scale

Subtask C is an ordinal classification (also known
as ordinal regression) task, in which each tweet
must be classified into exactly one of the classes
in C={HIGHLYPOSITIVE, POSITIVE, NEUTRAL,
NEGATIVE, HIGHLYNEGATIVE}, represented in
our dataset by numbers in {+2,+1,0,−1,−2},
with a total order defined on C.

We adopt an evaluation measure that takes the
order of the five classes into account. For instance,
misclassifying a HIGHLYNEGATIVE example as
HIGHLYPOSITIVE is a bigger mistake than mis-
classifying it as NEGATIVE or as NEUTRAL.

As in SemEval-2016 Task 4, we use macro-
average mean absolute error (MAEM ) as the
main ordinal classification measure:

MAEM (h, Te) =
1
|C|

|C|∑
j=1

1
|Tej |

∑
xi∈Tej

|h(xi)−yi|

where yi denotes the true label of item xi, h(xi)
is its predicted label, Tej denotes the set of test
documents whose true class is cj , |h(xi)− yi| de-
notes the “distance” between classes h(xi) and yi
(e.g., the distance between HIGHLYPOSITIVE and
NEGATIVE is 3), and the “M” superscript indicates
“macroaveraging”.

The advantage of MAEM over “standard”
mean absolute error, which is defined as

MAEµ(h, Te) =
1
|Te|

∑
xi∈Te

|h(xi)− yi| (4)

is that it is robust to class imbalance (which
is useful, given the imbalanced nature of our
dataset). On perfectly balanced datasets MAEM

and MAEµ are equivalent.

MAEM is an extension of macro-average recall
for ordinal regression; yet, it is a measure of er-
ror, and thus lower values are better. We also use
MAEµ as a secondary measure, in order to pro-
vide better consistency with Subtasks A and B.
These measures are computed for each topic, and
the results are then averaged across all topics to
yield the final score. See (Baccianella et al., 2009)
for more detail about MAEM and MAEµ.

4.4 Subtask D: Tweet Quantification on a
2-point Scale

Subtask D assumes a binary quantification setup,
in which each tweet is classified as POSITIVE

or NEGATIVE, and the distribution across classes
must be estimated. The difference with binary
classification is that errors of different polarity
(e.g., a false positive and a false negative for
the same class) can compensate for each other in
quantification. Quantification is thus a more le-
nient task than classification, since a perfect classi-
fier is also a perfect quantifier, but a perfect quan-
tifier is not necessarily a perfect classifier.

For evaluating binary quantification, we keep
the Kullback-Leibler Divergence (KLD) measure
used in 2016 along with additive smoothing
(Nakov et al., 2016a; Forman, 2005). KLD was
proposed as a quantification measure in (Forman,
2005), and is defined as follows:

KLD(p̂, p, C) =
∑
cj∈C

p(cj) loge
p(cj)
p̂(cj)

(5)

KLD is a measure of the error made in estimat-
ing a true distribution p over a set C of classes by
means of a predicted distribution p̂. LikeMAEM ,
KLD is a measure of error, which means that
lower values are better. KLD ranges between 0
(best) and +∞ (worst).

Note that the upper bound of KLD is not finite
since Equation 5 has predicted prevalences, and
not true prevalences, at the denominator: that is,
by making a predicted prevalence p̂(cj) infinitely
small we can makeKLD infinitely large. To solve
this problem, in computingKLD we smooth both
p(cj) and p̂(cj) via additive smoothing, i.e.,

ps(cj) =
p(cj) + ε

(
∑
cj∈C

p(cj)) + ε · |C|

=
p(cj) + ε

1 + ε · |C|

(6)
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where ps(cj) denotes the smoothed version of
p(cj) and the denominator is just a normalizer
(same for the p̂s(cj)’s); the quantity ε = 1

2·|Te| is
used as a smoothing factor, where Te denotes the
test dataset.

The smoothed versions of p(cj) and p̂(cj) are
used in place of their original versions in Equation
5; as a result, KLD is always defined and still
returns a value of 0 when p and p̂ coincide.

Like MAEM , KLD is a measure of error,
which means that lower values are better. We
further use two secondary error-based evaluation
measures: absolute error (AE), and relative abso-
lute error (RAE).

Again, the measures are computed individually
for each topic, and the results are averaged across
the topics to yield the final score.

4.5 Subtask E: Tweet Quantification on a
5-point Scale

Subtask E is an ordinal quantification task. As in
binary quantification, the goal is to compute the
distribution across classes, this time assuming a
quantification setup.

Here each tweet belongs exactly to one
of the classes in C={HIGHLYPOSITIVE, POS-
ITIVE, NEUTRAL, NEGATIVE, HIGHLYNEGA-
TIVE}, where there is a total order on C. As in
binary quantification, the task is to compute an es-
timate p̂(cj) of the relative frequency p(cj) in the
test tweets of all the classes cj ∈ C.

The measure we adopt for ordinal quantifi-
cation is the Earth Mover’s Distance (Rubner
et al., 2000), also known as the Vasers̆teı̆n met-
ric (Rüschendorf, 2001), a measure well-known in
the field of computer vision. EMD is currently
the only known measure for ordinal quantifica-
tion. It is defined for the general case in which
a distance d(c′, c′′) is defined for each c′, c′′ ∈ C.
When there is a total order on the classes in C and
d(ci, ci+1) = 1 for all i ∈ {1, ..., (C − 1)}, the
Earth Mover’s Distance is defined as

EMD(p̂, p) =
|C|−1∑
j=1

|
j∑
i=1

p̂(ci)−
j∑
i=1

p(ci)| (7)

and can be computed in |C| steps from the esti-
mated and true class prevalences.

Like KLD, EMD is a measure of error, so
lower values are better; EMD ranges between 0
(best) and |C| − 1 (worst). See (Esuli and Sebas-
tiani, 2010) for more detail on EMD.

As before, EMD is computed individually for
each topic, and the results are then averaged across
all topics to yield the final score. For more detail
on EMD, the reader is referred to (Esuli and Se-
bastiani, 2010) and to last year’s task description
paper (Nakov et al., 2016a).

5 Participants and Results

A total of 48 teams participated in SemEval-2017
Task 4 this year. As in previous years, the most
popular subtask this year was Subtask A, with 38
teams participating in the English subtask A, and 8
teams participating in the Arabic subtask A. Over-
all, there were 46 teams who participated in some
English subtask and 9 teams that participated in
some Arabic subtask. There were 28 teams that
participated in a subtask other than subtask A.
Moreover, two teams (OMAM and ELiRF-UPV)
participated in all English and in all Arabic sub-
tasks. There were 9 teams that participated in the
topic versions of the subtasks but not in subtask A,
reflecting a growing interest among researchers in
developing systems for topic-specific analysis.

5.1 Common Resources and Methods

In terms of methods, the use of deep learning
stands out in particular, and we also see an in-
crease over the last year. There were at least 20
teams who used deep learning and neural network
methods such as CNN and LSTM networks. Su-
pervised SVM and Liblinear were also very popu-
lar, with several participants combining SVM with
neural network methods or SVM with dense word
embedding features. Other teams used classifiers
such as Maximum Entropy, Logistic Regression,
Random Forest, Naı̈ve Bayes classifier, and Con-
ditional Random Fields.

Common software used included Python (with
the sklearn and numpy libraries), Java, Tensor-
flow, Weka, NLTK, Keras, Theano, and Stanford
CoreNLP. The most common external datasets
used were sentiment140 as a lexicon, pre-trained
word2vec embeddings. Many teams further gath-
ered additional tweets using the Twitter API that
were not annotated for sentiment. These were used
for distant supervision, lexicon building, and word
vector training.

In the following subsections, we present the re-
sults and the ranking for each subtask, and we
highlight the best-performing systems for each
subtask.
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# System AvgRec FPN
1 Acc

1 DataStories 0.6811 0.6772 0.6515

BB twtr 0.6811 0.6851 0.6583

3 LIA 0.6763 0.6743 0.6612

4 Senti17 0.6744 0.6654 0.6524

5 NNEMBs 0.6695 0.6585 0.6641

6 Tweester 0.6596 0.6486 0.6486

7 INGEOTEC 0.6497 0.6457 0.63311

8 SiTAKA 0.6458 0.6289 0.6439

9 TSA-INF 0.6439 0.62011 0.61617

10 UCSC-NLP 0.64210 0.62410 0.56530

11 HLP@UPENN 0.63711 0.6328 0.6468

12 YNU-HPCC 0.63312 0.61215 0.6477

SentiME++ 0.63312 0.61313 0.60123

14 ELiRF-UPV 0.63214 0.61912 0.59924

15 ECNU 0.62815 0.61313 0.63012

16 TakeLab 0.62716 0.60716 0.62814

17 DUTH 0.62117 0.60517 0.64010

18 CrystalNest 0.61918 0.59319 0.62913

19 deepSA 0.61819 0.58720 0.61617

20 NILC-USP 0.61220 0.59518 0.61716

21 Ti-Senti 0.60721 0.57722 0.62715

22 BUSEM 0.60522 0.58720 0.60322

23 EICA 0.59523 0.55524 0.59924

24 OMAM 0.59024 0.54226 0.61519

25 Adullam 0.58925 0.55225 0.61420

26 NileTMRG 0.57826 0.51532 0.60621

27 Amobee-C-137 0.57527 0.52030 0.58727

28 ej-za-2017 0.57128 0.53927 0.58228

LSIS 0.57128 0.56123 0.52134

30 XJSA 0.55630 0.51931 0.57529

31 Neverland-THU 0.55531 0.50733 0.59726

32 MI&T-Lab 0.55132 0.52229 0.56131

33 diegoref 0.54633 0.52728 0.54033

34 xiwu 0.47934 0.36534 0.54732

35 SSN MLRG1 0.43135 0.34435 0.43935

36 YNUDLG 0.34036 0.20137 0.38736

37 WarwickDCS 0.33537 0.22136 0.38237

Avid 0.33537 0.16338 0.20638

B1 All POSITIVE 0.333 0.162 0.193
B2 All NEGATIVE 0.333 0.244 0.323
B3 All NEUTRAL 0.333 0.000 0.483

Table 6: Results for Subtask A “Message Polar-
ity Classification”, English. The systems are or-
dered by average recall AvgRec (higher is better).
In each column, the rankings according to the cor-
responding measure are indicated with a subscript.
Bx indicates a baseline.

5.2 Results for Subtask A: Overall Sentiment
in a Tweet

Tables 6 and 7 show the results for Subtask A in
English and Arabic, respectively, where the teams
are ranked by macro-average recall.

For English the best ranking teams were
BB twtr and DataStories, both achieving a macro-
average recall of 0.681. Both top teams used deep
learning; BB twtr used an ensemble of LSTMs
and CNNs with multiple convolution operations,
while DataStories used deep LSTM networks with
an attention mechanism.

# System AvgRec FPN
1 Acc

1 NileTMRG 0.5831 0.6101 0.5811

2 SiTAKA 0.5502 0.5712 0.5632

3 ELiRF-UPV 0.4783 0.4674 0.5083

4 INGEOTEC 0.4774 0.4555 0.4994

5 OMAM 0.4385 0.4226 0.4308

LSIS 0.4385 0.4693 0.4456

7 Tw-StAR 0.4317 0.4167 0.4545

8 HLP@UPENN 0.4158 0.3208 0.4437

B1 All POSITIVE 0.333 0.199 0.248
B2 All NEGATIVE 0.333 0.267 0.364
B3 All NEUTRAL 0.333 0.000 0.388

Table 7: Results for Subtask A “Message Polar-
ity Classification”, Arabic. The systems are or-
dered by average recall AvgRec (higher is better).
In each column, the rankings according to the cor-
responding measure are indicated with a subscript.
Bx indicates a baseline.

Both teams participated in all English subtasks
and were also ranked in first (BB twtr) and sec-
ond (DataStories) place for subtasks B-D; BB twtr
was also ranked first for subtask E.

The top 5 teams for English were very closely
scored. The following four best-ranked teams all
used deep learning or deep learning ensembles.
Three of the top-10 scoring teams (INGEOTEC,
SiTAKA, and UCSC-NLP) used SVM classifiers
instead, with various surface, lexical, semantic,
and dense word embedding features. The use
of ensembles clearly stood out, with five of the
top-10 scoring systems (BB twtr, LIA, NNEMBs,
Tweester, and INGEOTEC) using ensembles, hy-
brid, stacking or some kind of mix of learning
methods. All teams beat the baseline on macro-
average recall; however, a few teams did not beat
the harsher average F-measure and accuracy base-
lines.

For Arabic the best-ranked team was
NileTMRG, and it achieved a score of 0.583.
They used a Naı̈ve Bayes classifier with a
combination of lexical and sentiment features;
they further augmented the training dataset to
about 13K examples using external tweets. The
SiTAKA team was ranked second with a score of
0.55. Their system used a feature-rich SVM with
lexical features and embedding representations.
Except for EliRF-UPV, who used multi-layer
neural networks (CRNNs), the remaining teams
used SVM and Naı̈ve Bayes classifiers, genetic
algorithms, or conditional random fields (CRFs).
All teams managed to beat all baselines for all
metrics.
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The difference in the absolute scores for the two
languages is probably partially due to the differ-
ence in the amount of training data available for
Arabic, which was much smaller compared En-
glish, even when external datasets were taken into
account. The results also reflect the linguistic
complexity of Arabic as it is used in social me-
dia, which is characterized by the abundant use of
dialectal forms and spelling variants. Overall, par-
ticipants preferred to focus on developing Arabic-
specific systems (varying in the extent to which
they applied Arabic-specific preprocessing) rather
than trying to leverage cross-language models that
would enable them to use English data to augment
their Arabic models.

# System AvgRec F1 Acc
1 BB twtr 0.8821 0.8901 0.8971

2 DataStories 0.8562 0.8612 0.8692

3 Tweester 0.8543 0.8563 0.8633

4 TopicThunder 0.8464 0.8474 0.8544

5 TakeLab 0.8455 0.8365 0.8406

6 funSentiment 0.8346 0.8248 0.8278

YNU-HPCC 0.8346 0.81610 0.81810

8 WarwickDCS 0.8298 0.8346 0.8435

9 CrystalNest 0.8279 0.8229 0.8278

10 Ti-Senti 0.82610 0.8307 0.8387

11 Amobee-C-137 0.82211 0.80112 0.80212

12 SINAI 0.81812 0.80611 0.80911

13 NRU-HSE 0.79813 0.78713 0.79013

14 EICA 0.79014 0.77514 0.77716

15 OMAM 0.77915 0.76217 0.76417

16 NileTMRG 0.76916 0.77415 0.78915

17 ELiRF-UPV 0.76617 0.77316 0.79013

18 DUTH 0.66318 0.60018 0.60718

19 ej-za-2017 0.59419 0.48621 0.51819

20 SSN MLRG1 0.58620 0.49420 0.51819

21 YNUDLG 0.51621 0.49919 0.49921

22 TM-Gist 0.49922 0.42822 0.44422

23 SSK JNTUH 0.48323 0.37223 0.41223

B1 All POSITIVE 0.500 0.285 0.398
B2 All NEGATIVE 0.500 0.376 0.602

Table 8: Results for Subtask B “Tweet classifi-
cation according to a two-point scale”, English.
The systems are ordered by average recall AvgRec
(higher is better). Bx indicates a baseline.

# System AvgRec F1 Acc
1 NileTMRG 0.7681 0.7671 0.7701

2 ELiRF-UPV 0.7212 0.7242 0.7342

3 ASA 0.6933 0.6704 0.6724

4 OMAM 0.6874 0.6783 0.6793

B1 All POSITIVE 0.500 0.362 0.566
B2 All NEGATIVE 0.500 0.303 0.434

Table 9: Results for Subtask B “Tweet classifi-
cation according to a two-point scale”, Arabic.
The systems are ordered by average recall AvgRec
(higher is better). Bx indicates a baseline.

5.3 Results for Subtasks B and C:
Topic-Based Classification

The results of Subtasks B and C are shown in Ta-
bles 8–11. We can see that the system scores for
subtask B are higher than those for subtask A, with
the best team achieving 0.882 accuracy for English
(compared to 0.681 for subtask A) and 0.768 for
Arabic (compared to 0.583 for subtask A). How-
ever, this is primarily due to the fact there are two
classes for subtask B, while there are three classes
for subtask A.

# System MAEM MAEµ

1 BB twtr 0.4811 0.5546

2 DataStories 0.5552 0.5434

3 Amobee-C-137 0.5993 0.58210

4 Tweester 0.6234 0.73413

5 TwiSe 0.6405 0.61612

6 CrystalNest 0.6986 0.5719

7 ELiRF-UPV 0.8067 0.58611

8 EICA 0.8238 0.5092

9 funSentiment 0.8429 0.5303

10 DUTH 0.89510 0.5445

OMAM 0.89510 0.4751

12 YNU-HPCC 0.92512 0.5678

13 NRU-HSE 0.92813 0.5577

14 YNU-1510 1.26214 0.76414

15 SSN MLRG1 1.32515 0.98515

B1 HIGHLYNEGATIVE 2.000 1.895
B2 NEGATIVE 1.400 0.923
B3 NEUTRAL 1.200 0.525
B4 POSITIVE 1.400 1.127
B5 HIGHLYPOSITIVE 2.000 2.105

Table 10: Results for Subtask C “Tweet classifi-
cation according to a five-point scale”, English.
The systems are ordered by their MAEM score
(lower is better). Bx indicates a baseline.

# System MAEM MAEµ

1 OMAM 0.9431 0.6461

2 ELiRF-UPV 1.2642 0.7872

B1 HIGHLYNEGATIVE 2.000 2.059
B2 NEGATIVE 1.400 1.065
B3 NEUTRAL 1.200 0.458
B4 POSITIVE 1.400 0.946
B5 HIGHLYPOSITIVE 2.000 1.941

Table 11: Results for Subtask C “Tweet classifi-
cation according to a five-point scale”, Arabic.
The systems are ordered by their MAEM score
(lower is better). Bx indicates a baseline.

For English the BB twtr system, ranked first,
modeled topics by concatenating the topical infor-
mation at the word level. The second-best system,
DataStories, also accounted for topics by produc-
ing topic annotations and a context-aware atten-
tion mechanism.
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# System KLD AE RAE
1 BB twtr 0.0361 0.0801 0.5981

2 DataStories 0.0482 0.0952 0.8482

3 TakeLab 0.0503 0.0963 1.0575

4 CrystalNest 0.0564 0.1045 1.2026

5 Tweester 0.0575 0.1034 1.0514

6 funSentiment 0.0606 0.1096 0.9393

7 NileTMRG 0.0777 0.1207 1.2287

8 NRU-HSE 0.0788 0.1328 1.5288

9 EICA 0.0929 0.1439 1.9229

10 THU HCSI IDU 0.12910 0.17910 2.42811

11 Amobee-C-137 0.14911 0.17910 2.16810

12 OMAM 0.16412 0.20412 2.79012

13 SSK JNTUH 0.42113 0.31413 2.98313

14 ELiRF-UPV 1.06014 0.59315 7.99115

15 YNU-HPCC 1.14215 0.59214 7.85914

B1 (0 1) 1.518 0.422 2.645
B2 macro-avg on 2016 data 0.554 0.423 6.061
B3 micro-avg on 2016 data 0.591 0.432 6.169
B4 macro-avg on 2015-6 data 0.534 0.418 6.000
B5 micro-avg on 2015-6 data 0.587 0.431 6.157

Table 12: Results for Subtask D “Tweet quan-
tification according to a two-point scale”, En-
glish. The systems are ordered by their KLD
score (lower is better). Bx indicates a baseline.

# System KLD AE RAE
1 NileTMRG 0.1271 0.1701 2.4621

2 OMAM 0.2022 0.2382 4.8352

3 ELiRF-UPV 1.1833 0.5373 11.4343

B1 (0 1) 1.518 0.422 2.645
B2 macro-avg on train-2017 0.296 0.322 6.600
B3 micro-avg on train-2017 0.295 0.321 6.692

Table 13: Results for Subtask D “Tweet quan-
tification according to a two-point scale”, Ara-
bic. The systems are ordered by their KLD score
(lower is better). Bx indicates a baseline.

funSentiment, ranked 6th and 9th for subtasks B
and C, respectively, modeled the sentiment to-
wards the topic using the left and the right context
around a topic mention in the tweet. WarwickDCS,
ranked 8th, used simple tweet-level classification,
while ignoring the topic. Overall, almost all teams
managed to outperform the majority class baseline
for subtask B, but only two teams outperformed
the NEUTRAL class baseline for subtask C.

For Arabic four teams participated in Subtask B
and two teams in Subtask C. NileTMRG was once
again ranked first for Subtask B, with a system
based on ensembles of topic-specific and topic-
agnostic models. For subtask C, OMAM also used
combinations of such models applied in succes-
sion. All teams easily outperformed the baselines
for Subtask B, but only the OMAM team managed
to do so for Subtask C.

# System EMD
1 BB twtr 0.245
2 TwiSe 0.269
3 funSentiment 0.273
4 ELiRF-UPV 0.306
5 NRU-HSE 0.317
6 Amobee-C-137 0.345
7 OMAM 0.350
8 Tweester 0.365
9 THU HCSI IDU 0.385

10 YNU-HPCC 0.447
11 DataStories 0.595
12 EICA 1.461
B1 (0 0 0 1 0) 1.123
B2 macro-avg on 2016 data 0.583
B3 micro-avg on 2016 data 0.552

Table 14: Results for Subtask E “Tweet quan-
tification according to a five-point scale”, En-
glish. The systems are ordered by their EMD
score (lower is better). Bx indicates a baseline.

# System EMD
1 OMAM 0.548
2 ELiRF-UPV 0.564

B1 (0 0 1 0 0) 0.458
B2 macro-avg on train-2017 0.440
B3 micro-avg on train-2017 0.440

Table 15: Results for Subtask E “Tweet quan-
tification according to a five-point scale”, Ara-
bic. The systems are ordered by theirEMD score
(lower is better). Bx indicates a baseline.

5.4 Results for Subtasks D and E: Tweet
Quantification

Tables 12–15 show the results for the tweet quan-
tification subtasks. The bottom of the tables report
the result of a baseline system, B1, that assigns
a prevalence of 1 to the majority class (which is
the POSITIVE class for subtask D, and the WEAK-
LYPOSITIVE/NEUTRAL class for subtask E, En-
glish/Arabic) and 0 to the other class(es).

We further show the results for a smarter “max-
imum likelihood” baseline, which assigns to each
test topic the distribution of the training tweets
(the union of TRAIN, DEV, DEVTEST) across
the classes. This is the “smartest” among the
trivial policies that attempt to maximize KLD.
For this baseline, for English we use for train-
ing either (i) the 2016 data only, or (ii) data from
both 2015 and 2016; we also experiment with
(i) micro-averaging and (ii) macro-averaging over
the topics. It turns out that macro-averaging over
2015+2016 data is the strongest baseline in terms
of KLD. For Arabic, we use the train-2017 data,
and micro-averaging works better there.
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There were 15 participating teams competing in
Subtask D: 15 for English and 3 for Arabic (these
3 teams all participated in English). As in the
other subtasks, BB twtr was ranked first in En-
glish. They achieved an improvement of .50 points
absolute in KLD over the best baseline, and a .01
improvement over the next best team, DataStories.
For Arabic, the best team was NileTMRG With im-
provement of .17 over the best baseline and of .08
over the next best team, OMAM. All but the last
two teams in English and the last team for Arabic
outperformed all baselines.

In Subtask E, there were 12 participating teams,
with OMAM and EliRF-UPV competing for both
English and Arabic. Once again, BB twtr was the
best for English, improving over the best baseline
by .31 EMD points absolute. Interestingly, this is
the first subtask where DataStories was not the
second-ranked team. BB twtr outperformed the
second-best team, TwiSe, by .02 points. For En-
glish, all but the last two teams outperformed the
baselines. However, for Arabic, none of the two
participating teams could do so.

5.5 User Information

This year, we encouraged teams to explore using
in their models information about the user who
wrote the tweet, which can be extracted from the
public user profiles of the respective Twitter users.
Participants could also try features about follow-
ing relations and the structure of the social net-
work in general, as well as could make use of other
tweets by the target user when analyzing one par-
ticular tweet. Four teams tried that: SINAI, ECNU,
TakeLab, and OMAM. OMAM and TakeLab did
not find any improvements, and ultimately decided
not to use any user information. ECNU used pro-
file information such as favorited, favorite count,
retweeted, and retweet count. They ended up 15th
in Subtask A. SINAI used the last 200 tweets from
the person’s timeline. They ranked 12th in Subtask
B. They generated a user model from the timeline
of a given target user. They built a general SVM
model on word2vec embeddings. Then, for each
user in the test set, they downloaded the last 200
tweets published by the user and classified their
sentiment using that SVM classifier. If the clas-
sified user tweets achieved an accuracy above a
threshold (0.7), the user model was applied on the
authored tweets from the test set. If not, the gen-
eral SVM model was used.

It is difficult to judge whether and by how much
user information could help the best approaches
as they did not try to use such information. How-
ever, we believe that building and using a Twit-
ter user profile is a promising research direction,
and that participants should learn how to make this
work in the future. Thus, we would like to en-
courage more teams to try to explore using this
information. We would also like to provide more
user information such as age and gender, which we
can predict automatically (Rosenthal and McKe-
own, 2016), when it is not directly available from
the user profile. Another promising direction is to
make use of “conversations” in Twitter, i.e., take
into account the replies to tweets in Twitter. For
example, previous work (Vanzo et al., 2014) has
shown that it is beneficial to model the polarity de-
tection problem as a sequential classification task
over streams of tweets, where the stream is a “con-
versation” on Twitter containing tweets, replies to
these tweets, replies to these replies, etc.

6 Conclusion and Future Work

Sentiment Analysis in Twitter continues to be a
very popular task, attracting 48 teams this year.
The task provides immense value to the senti-
ment community by providing a large accessible
benchmark dataset containing over 70,000 tweets
across two languages for researchers to evaluate
and compare their method to the state of the art.
This year, we introduced a new language for the
first time and also encouraged the use of user in-
formation. These additions drew new participants
and ideas to the task. The Arabic tasks drew nine
participants and four teams took advantage of user
information. Although a respectable amount of
participants for its inaugural year, further explo-
ration into both of these areas would be useful in
the future, such as collecting more training data for
Arabic and encouraging the use of cross-lingual
training data. In the future, we would like to in-
clude exploring additional languages, providing
further user information, and other related tasks
such as irony and emotion detection. Finally, deep
learning continues to be popular and employed by
the state of the art approaches. We expect this
trend to continue in sentiment analysis research,
but also look forward to new innovative ideas that
are discovered.
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Team ID Affiliation Country Subtasks PaperEnglish Arabic

Adullam Korea University South Korea A (Yoon et al., 2017)
Amobee C-137 Amobee USA A B C D E (Rozental and Fleischer, 2017)
ASA Al-Imam Muhammad Ibn Saud Islamic Uni-

versity.
Saudi Arabia B N/A

Avid N/A N/A A N/A
BB twtr Bloomberg USA A B C D E (Cliche, 2017)
BUSEM Bogazici University Turkey A (Ayata et al., 2017)
CrystalNest Institute of High Performance Computing

(IHPC)
Singapore A B C D (Gupta and Yang, 2017)

DataStories Data Science Lab at University of Piraeus Greece A B C D E (Baziotis et al., 2017)
deepSA National Sun Yat-sen University Taiwan A (Yang et al., 2017)
diegoref N/A N/A A N/A
DUTH Democritus University of Thrace Greece A B C (Symeonidis et al., 2017)
ECNU East China Normal University China A (Zhou et al., 2017)
EICA East China Normal University China A B C D E (Maoquan et al., 2017)
ej-sa-2017 University of Evora Portugal A B (Dovdon and Saias, 2017)
ELiRF-UPV Universitat Politécnica de Valéncia Spain A B C D E A B C D E (González et al., 2017)
funSentiment Thomson Reuters USA B C D E (Li et al., 2017)
HLP@UPENN University of Pennsylvania USA A A (Sarker and Gonzalez, 2017)
INGEOTEC CONACYT-INFOTEC/CENTROGEO Mexico A A (Miranda-Jiménez et al., 2017)
LIA LIA France A (Rouvier, 2017)
LSIS Aix-Marseille University France A A (Htait et al., 2017)
MI&T Lab Harbin Institute of Technology China A (Zhao et al., 2017)
Neverland-THU N/A N/A A N/A
NILC-USP Institute of Mathematics and Computer Sci-

ence, University of So Paulo
Brazil A (Anselmo Corrêa Júnior et al., 2017)

NileTMRG Nile University Egypt A B D A B D (El-Beltagy et al., 2017)
NNEMBs Peking University China A (Yin et al., 2017)
NRU-HSE National Research University Higher School

of Economics
Russia B C D E (Karpov, 2017)

OMAM American University of Beirut, Universiti
Teknologi Malaysia, Cairo University, New
York University Abu Dhabi, Qatar University

Egypt, Lebanon,
Malaysia, Qatar,
United Arab Emi-
rates

A B C D E A B C D E (Baly et al., 2017; Onyibe and Habash,
2017)

QUB Queen’s University Belfast Ireland A
senti17 Lip6, UPMC France A (Hamdan, 2017)
SentiME++ EURECOM France A (Troncy et al., 2017)
SINAI Universidad de Jaén Spain B (Jiménez-Zafra et al., 2017)
SiTAKA iTAKA, Universitat Rovira i Virgili; Hodei-

dah University
Spain, Yemen A A (Jabreel and Moreno, 2017)

SSK JNTUH J.N.T.U.H College of Engg Jagtial and
BVRIT Hyderabad College of Engineering
for Women

India B D N/A

SSN MLRG1 Department of CSE, SSN College of Engi-
neering

India A B C (Deborah et al., 2017)

TakeLab TakeLab, University of Zagreb Croatia A B D (Lozić et al., 2017)
THU HCSI IDU Human Computer Speech Interaction Re-

search Group, Tsinghua University
China D E

Ti-Senti N/A N/A A B N/A
TM-Gist N/A B N/A
TopicThunder N/A N/A B N/A
TSA-INF Infosys Limited India A (Deshmane and Friedrichs, 2017)
Tw-StAR Selcuk University, Universit Libre de Brux-

elles (ULB)
Belgium, Turkey A (Mulki et al., 2017)

Tweester National Technical University of Athens, Uni-
versity of Athens, “Athena” Research and In-
novation Center, Signal Analysis and Inter-
pretation Laboratory (SAIL), USC

Greece, USA A B C D E (Kolovou et al., 2017)

TwiSe University of Grenoble-Alps France C E (Balikas, 2017)
UCSC-NLP Catholic University of the Most Holy Concep-

tion
Chile A (Castro et al., 2017)

WarwickDCS Department of Computer Science, University
of Warwick

UK A B N/A

XJSA Xi’an JiaoTong University China A (Hao et al., 2017)
YNU-HPCC Yunnan University China A B C D E (Zhang et al., 2017)
YNUDLG Yunnan University China A B C (Wang et al., 2017)
TOTAL 38 23 15 15 12 8 4 2 3 2

Table 16: Alphabetical list of the participating teams, their affiliation, country, the subtasks they par-
ticipated in, and the system description paper that they contributed to SemEval-2017. Teams whose
Affiliation column is typeset on more than one row include researchers from different institutions, which
have collaborated to build a joint system submission. An N/A entry for the Paper column indicates that
the team did not contribute a system description paper. Finally, the last row gives statistics about the total
number of system submissions for each subtask.
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2016. SemEval-2016 Task 5: Aspect based sen-
timent analysis. In Proceedings of the 10th In-
ternational Workshop on Semantic Evaluation. San
Diego, California, USA, SemEval ’16, pages 19–30.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
SemEval-2015 Task 12: Aspect based sentiment

516



analysis. In Proceedings of the 9th International
Workshop on Semantic Evaluation. Denver, Col-
orado, USA, SemEval ’15, pages 486–495.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. SemEval-2014 Task 4:
Aspect based sentiment analysis. In Proceedings of
the 8th International Workshop on Semantic Evalu-
ation. Dublin, Ireland, SemEval ’14, pages 27–35.

Muhammad A. Qureshi, Colm O’Riordan, and
Gabriella Pasi. 2013. Clustering with error esti-
mation for monitoring reputation of companies on
Twitter. In Proceedings of the 9th Asia Infor-
mation Retrieval Societies Conference. Singapore,
AIRS ’13, pages 170–180.

Eshrag Refaee and Verena Rieser. 2014. Subjectiv-
ity and sentiment analysis of Arabic Twitter feeds
with limited resources. In Workshop on Free/Open-
Source Arabic Corpora and Corpora Processing
Tools. Reykjavik, Iceland, pages 16–21.

Eshrag Refaee and Verena Rieser. 2015. Benchmark-
ing machine translated sentiment analysis for Ara-
bic tweets. In Proceedings of the 2015 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Denver, Colorado, USA, NAACL-
HLT ’15, pages 71–78.

Sara Rosenthal and Kathy McKeown. 2016. Social
proof: The impact of author traits on influence
detection. In Proceedings of the First Workshop
on NLP and Computational Social Science. Austin,
Texas, USA, pages 27–36.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter, and Veselin Stoyanov.
2015. SemEval-2015 Task 10: Sentiment analy-
sis in Twitter. In Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation. Denver,
Colorado, USA, SemEval ’15, pages 451–463.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and
Veselin Stoyanov. 2014. SemEval-2014 task 9: Sen-
timent analysis in Twitter. In Proceedings of the
8th International Workshop on Semantic Evaluation.
Dublin, Ireland, SemEval ’14, pages 73–80.

Mickael Rouvier. 2017. LIA at SemEval-2017 Task
4: An ensemble of neural networks for sentiment
classification. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation. Vancou-
ver, Canada, SemEval ’17, pages 759–764.

Alon Rozental and Daniel Fleischer. 2017. Amobee
at SemEval-2017 Task 4: Deep learning system for
sentiment detection on Twitter. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation. Vancouver, Canada, SemEval ’17, pages 652–
657.

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas.
2000. The Earth Mover’s Distance as a metric for
image retrieval. International Journal of Computer
Vision 40(2):99–121.
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Abstract

This paper discusses the “Fine-Grained
Sentiment Analysis on Financial Mi-
croblogs and News” task as part of
SemEval-2017, specifically under the
“Detecting sentiment, humour, and truth”
theme. This task contains two tracks, where
the first one concerns Microblog messages
and the second one covers News Statements
and Headlines. The main goal behind both
tracks was to predict the sentiment score for
each of the mentioned companies/stocks.
The sentiment scores for each text instance
adopted floating point values in the range
of -1 (very negative/bearish) to 1 (very
positive/bullish), with 0 designating neutral
sentiment. This task attracted a total of 32
participants, with 25 participating in Track
1 and 29 in Track 2.

1 Overview

Our task is focused on Sentiment Analysis in the
domain of financial microblogs and news. Domain-
specific Sentiment Analysis has received much at-
tention within the NLP community, motivated by
the highly domain-dependent language used to ex-
press sentiment (Liu, 2012). Domain-specificity
impacts all levels of analysis. On the lexical level,
which is crucial in sentiment analysis, Liu (2012)
notes that positive words in one domain can be
negative in another, and vice versa. For instance,
Loughran and McDonald (2011a) show that many
words which are considered negative in general-
purpose polarity lexicon have a neutral meaning in
the financial domain (e.g. “liability”). This makes it
difficult to transport sentiment classifiers across do-
mains and underlines the need for domain-specific
tools.

The financial domain is a high-impact use case
for Sentiment Analysis because it has been shown

that sentiments and opinions can affect market dy-
namics (Goonatilake and Herath, 2007; de Kauter
et al., 2015). Sentiments are in some cases de-
rived from news which discuss macroeconomic fac-
tors, company-specific, or political information as
all of these can be market-relevant (Sinha, 2014).
Good news tends to lift markets and increase opti-
mism (de Kauter et al., 2015; Schuster, 2003). Ev-
idence has been found that both quantitative mea-
sures (e.g. the quantity of news, market fluctu-
ation) and qualitative indicators, (e.g. linguistic
style and tone) affect investors’ behaviour (Tet-
lock et al., 2008; Loughran and McDonald, 2011a;
Takala et al., 2014). (Bollen et al., 2011) showed
that changes in public mood reflect value shifts in
the Dow Jones Industrial Index three to four days
later.

Given the link between sentiment and market dy-
namics, the analysis of public sentiment becomes
a powerful method to predict the market reaction.
However, the accuracy of machine learning-based
sentiment analysis approaches rarely exceeds sev-
enty percent (Takala et al., 2014; Eagle Alpha,
2016). Research effort is required to overcome and
address complex linguistic issues, such as sarcasm,
irony and poorly-structured and/or colloquial lan-
guage (Eagle Alpha, 2016). In addition, text that is
short in length (such as microblog messages) can be
quite opinionated, dense in information, dependent
on the modelling of economic context and challeng-
ing to parse, due to the different vocabularies used
(Sinha, 2014). Our task is motivated by the interest
of this field and the great potential for improvement.
It aims at assessing the overall market sentiment as
well as sentiment about specific stocks and thus to
make use of their predictive power.

More specifically, the aim of organising this task
and creating this test collection was to achieve the
following goals:

1. Developing state-of-the-art on classification
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methods for sentiment analysis in the domain
of financial short texts.

2. Incentivising the creation of new lexical re-
sources for the financial domain.

3. Understanding how state-of-the-art sentiment
analysis performs on a domain-specific /
highly technical corpus.

4. Improving the understanding of linguistic phe-
nomena and the creation of semantic models
for the financial domain.

The domain of finance has unique linguistic and
semantic features, whose interpretation depends on
the formulation of semantic models which reflect
the economic and mathematical tools used by the
experts to assess financial information. More-
over, the accurate interpretation of financial text re-
quires the orchestration of large volumes of com-
mon sense and domain-specific financial/economic
knowledge. Additionally, as much of the finan-
cial discourse is mediated by terms which demand
precise definitions, many times associated with
the quantification of economic phenomena, the se-
mantic interpretation processes in the financial do-
main require fine-grained semantic interpretation
approaches.

From a linguistic standpoint, topics of interest in
this task include (but are not limited to):

• Low-level linguistic analysis tools for the fi-
nancial domain (e.g. tokenization, part-of-
speech tagging, parsing)

• Sentiment classification on financial texts;

• Understanding of linguistic phenomena asso-
ciated with financial tweets;

• New semantic models for finance;

• Construction and application of distributional
semantic models on finance;

• Sentiment compositionality;

• Machine learning approaches for sentiment
classification;

• Lexical resources for the financial domain;

2 Data

2.1 Tracks
The test collection consists of two tracks:

1. Microblog Messages derived from two
sources:

(a) StockTwits Messages: Consists of mi-
croblog messages focusing on stock mar-
ket events and assessments from investors
and traders, exchanged via the Stock-
Twits microblogging platform1. Typical
stocktwits consist of references to com-
pany stock symbols (so-called cashtags
- a stock symbol preceded by “$”, e.g.
“$AAPL” for the company Apple Inc.),
a short supporting text or references to
a link or pictures (typically containing
charts showing stock values analysis).

(b) Twitter Messages: Some stock market
discussion also takes place on the Twitter
platform2. In order to extend and diver-
sify our data sources, we extract Twitter
posts containing company stock symbols
(cashtags).

2. News Statements & Headlines Sentences
have been taken from news headlines as well
as news text. The textual content was crawled
from different sources on the Internet, such as
Yahoo Finance3. The Enterprise identification
for this track was based on company names
and abbreviations, as cashtags are not typically
used in news statements and headlines.

2.2 Corpus Creation
The corpus of statements was created by conduct-
ing random sampling and an initial filtering pro-
cess over a pool of StockTwits messages, tweets and
RSS News feeds.

While the random sampling ensured an unbiased
set of statements, the filtering mechanism aimed at
removing messages from the set microblog mes-
sages which are spam. The filtering mechanism was
based on a manual curation of the set of microblog
users which are classified as spammers. The goal
of data sampling is to come up with a most repre-
sentative and manageable amount of data for man-
ual annotation. The first step in our case is to ap-

1http://stocktwits.com/
2https://twitter.com
3http://finance.yahoo.com/
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ply a stratified random sampling by objects δ per
the smallest time unit level θ we determine (in our
case it is stock’s messages per day) to ensure that
all different objects are adequately represented in
the sample with respect to their distribution in the
population. Then, the random samples of a time-
unit level θi are pooled into a time-unit level θi+1

and randomly sampled.
The purpose of re-sampling at different time-unit

levels is to make the resulted random sample more
random, more balanced and more representative of
the entire time-span of our data. A general negative
sentiment in a certain sub-sample will be counter-
balanced by the other sub-samples.

StockTwits data have been provided by Stock-
Twits in a batch export and refer to the period from
October 2011 to June 2015. The original pool be-
fore sampling contains 27 million StockTwits, from
which 1847 messages were sampled. Twitter data
was collected between March 11th and 18th 2016
using the official Streaming APIs. Sampling was
also applied to this data and resulted in a sample of
1591 messages.

The News Statements and Headlines have been
collected from a pool of 20.000 RSS feeds in the
period between August and November 2015 (e.g.
AP News, Reuters, Handelsblatt, Bloomberg and
Forbes). A final set of about 1780 News Statements
and Headlines has been produced.

2.3 Annotation
To create the Gold Standard, the final sample has
been annotated by 3 independent financial expert
annotators using a Web platform developed for that
purpose and according to the annotations guidelines
we defined. A fourth domain expert consolidated
the ratings to create the final data set. The total
time the experts spend on annotating and consoli-
dating the data set is 120 hours (30 hours per ex-
pert). The costs of annotation and consolidation
have been covered by ICT-15-2014 Grant: 645425
(SSIX project).

Each statement (instance) is annotated with the
following information:

• Cashtag (subtask1) / Company (subtask2):
A stock company symbol (for microblogs) or
reference to a company (for news/headlines) to
which a sentiment score is assigned.

• Sentiment Score: A sentiment between -
1 (very negative/bearish) and 1 (very posi-
tive/bullish), with 0 representing neutral/no

sentiment is assigned to each cashtag or com-
pany. The sentiment is assigned from the point
of view of an investor and the sentiment anno-
tation is carried out by domain experts. Textual
data containing information implying a posi-
tive prospective trend for a company or stock,
the markets, or the economy, in general, con-
stitutes a positive sentiment, whereas infor-
mation revealing negative trends constitutes a
negative sentiment since it may impact compa-
nies, markets or the economy negatively.

• Span (subtask 1): extract of a text string in
which sentiment is expressed.

• Message (subtask 1) / Title (subtask2): Text
string in which sentiment is expressed.

• Source (subtask 1): Either ”twitter” or ”stock-
twits” dependent on the origin of the text mes-
sage.

Examples of annotated microblog messages and
news headlines are provided in Section 2.6 below.

The quality of the annotations was assessed fol-
lowing a similar methodology as proposed in Takala
et al. (2014), where inter-annotator agreements
measures for continuous data is calculated for the
sentiment classifications. Spearman’s Rank Corre-
lation on sentiment scores was calculated for each
pair of annotators, then averaged across annotator
pairs. This yielded the following results: 0.54 for
news headlines (three annotators, three pairs) and
0.69 for microblogs (four annotators, six pairs).

2.4 Gold Standard

After annotating and consolidating the data, the
gold standard for subtask 1 consists of 2510 Twit-
ter and StockTwit messages. The gold standard for
subtask 2 contains 1647 Headlines and News State-
ments.

2.5 Task Formulation

Participating systems needed to fulfil the following
task: given a text instance (microblog message in
Track 1, news statement or headline in Track 2; cp.
Section 2.1), predicting the sentiment score for each
of the companies/stocks mentioned. Sentiment val-
ues needed to be floating point values within the
range of -1 (very negative/bearish) to 1 (very pos-
itive/bullish), with 0 designating neutral sentiment.
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2.6 Examples
Below we present annotated example statements,
two for microblogs and one for news. Please note
that sentiment score agreement as per Section 2.3
is not given as annotations for these examples were
provided by a single expert. Also, the string covered
by the ’span’ is given for ease of reading.

Microblogs

Este Lauder beats on Revenues and EPS
and boosts dividend 25% - global growth in
the Middle Class trend continues. $EL $NKE
$SBUX $AAPL

• Sentiment Score:

– $EL: 0.95
– $NKE: 0.5
– $SBUX: 0.5
– $AAPL : 0.5

• Cashtag

– $EL
– $NKE
– $SBUX
– $AAPL

• Span

– $EL:
∗ (13, 38) - “beats on Revenues and

EPS”

∗ (43, 62) - “boosts dividend 25%”

∗ (65, 144) - “global growth in the Mid-
dle Class trend continues”

– $NKE, $SBUX, $AAPL:
∗ (65, 144) - “global growth in the Mid-

dle Class trend continues”

Awaiting These Sell Signals on the $SPY
&amp; $QQQ - https://t.co/GF9PRk5OUF
$TQQQ $SQQQ https://t.co/W97yN4Zb4N

• Sentiment Score:

– $SPY: -0.25
– $QQQ: -0.15
– $TQQQ: -0.15
– $SQQQ : 0.10

• Cashtag

– $SPY
– $QQQ
– $TQQQ
– $SQQQ

• Span

– $SPY:
∗ (0, 41) - “Awaiting These Sell Signals

on the $SPY”

∗ (From the blog post) - “this bearish
rising wedge for the next sell signal
in the SPY”

∗ (From the blog post) - Chart shows a
bearish rising wedge

– $QQQ, $TQQQ:
∗ The message and blog make reference

to shorting the SPY, but as but in-
dexes are strongly correlated so some
of the sentiment for SPY could be
transferred to these ETFs.

– $SQQQ:
∗ The message and blog make refer-

ence to shorting the SPY, but as in-
dexes are strongly correlated so some
of the sentiment for SPY could be
transferred to this ETF but inverted.

News Statements & Headlines

First Solar, Vivint Solar Lead Short Interest
Trend

• Sentiment Score:

– First Solar: -0.7
– Vivint Solar: -0.7

522



• Company

– First Solar
– Vivint Solar

2.7 Assessment Infrastructure & Baselines
Two classification baselines were provided:

• Random selection: Consists of a random
number generated within the sentiment range.

• SentiWordNet-based average and maxi-
mum functions: Consist of the maximum and
averaging of all the sentiment words using a
simple SentiWordNet-based lookup.

For the Microblogs test set, SentiWordNet
lexicon-based look-up (average) achieved an aver-
age score of 0.3021, while the same look-up method
using the max/min score achieved 0.2428. The ran-
dom baseline achieved 0.0148.

For the Financial Headlines test set, a SentiWord-
Net lexicon-based look-up classifier, which aver-
ages all the sentiment scores of individual lem-
matised words, achieved a score of 0.290, while
the same look-up method using a max/min score
achieved 0.2184. The random baseline achieved
0.1064.

3 Pilot Task

A pilot dataset consisting of financial social data
was collected from two on-line social networking
services, specifically Twitter and StockTwits, as
part of a pilot study carried out within the SSIX: So-
cial Sentiment analysis financial IndeXes4 project
as part of the European Horizon 2020 Research and
Innovation programme (Davis et al., 2016). A do-
main expert experienced in trading annotated 100
tweets and 100 StockTwits messages selected ran-
domly. He annotated the messages for sentiment
following the guideline of assuming the point of
view of an investor in the given stock(s) (see Sec-
tion 2.3 above).

The results from the pilot study provided valu-
able insights with regards to the distribution of sen-
timent and the need for improved filtering (Figures
3 and 2). These insights proved to be valuable when
building the data set for this task, enabling us to pro-
vide a higher-quality data collection.

The results (Figure 1) showed a relatively even
distribution of positive and negative sentiment, with
slight differences between the StockTwits and Twit-
ter sources as regards the intensity of the sentiment
.

4http://ssix-project.eu/

Figure 1: Pilot results on sentiment distribution for
StockTwits and Twitter

Figure 2
Pilot results on percentage of sentiment-containing

and irrelevant messages on Twitter.

Figure 3
Pilot results on percentage of sentiment-containing

and irrelevant messages on StockTwits.

The pilot study also pointed to the need to im-
prove the filtering phase as 25% - 36% of Twitter
and StockTwits messages, respectively, have been
deemed irrelevant (i.e. spam and/or not providing
any relevant financial sentiment) by the annotator
(figure 3 and 2). As a consequence, filtering rules
have been added to the filtering phase and the data
for the gold standard proposed in this task under-
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went additionally manual post-filtering by a domain
expert prior to sentiment annotation. This is ensur-
ing that only relevant messages are included in the
data set.

4 Evaluation

The Evaluation of the participating systems was
based on cosine similarity, in a spirit similar to
Ghosh et al. (2015). As the sentiment scores to be
predicted by systems lie on a continuous scale be-
tween -1 and 1 (cp. Section 2.5), cosine enables
us to compare the proximity between gold standard
and predicted results (conceptualized as vectors),
while not requiring exact correspondence between
the gold and predicted score for a given instance.
An instance is a message or headline which can in-
clude several entities (companies or cashtags). Co-
sine similarity is calculated according to equation
(1), where G is the vector of gold standard scores
and P is the vector of corresponding scores pre-
dicted by the system:

cosine(G,P ) =

n∑
i=1

Gi × Pi√
n∑

i=1
G2

i ×
√

n∑
i=1

P 2
i

(1)

In order to reward systems which attempt to an-
swer all problems in the gold standard, the final
score is obtained by weighting the cosine similar-
ity from (1) with the ratio of answered problems
(scored instances), given in (2) in line with Ghosh
et al. (2015).

cos weight =
|P |
|G| (2)

The equation for the final score is the product of the
cosine similarity (1) and the weight (2), given in (3).

final score = cos weight× cosine(G,P ) (3)

5 Results and Participants

Task 5 attracted a total of 32 participants: 25 teams
participated in Track 1 and 29 in Track 2, of which
22 teams addressed both tracks. The analysis and
results for each track are discussed in more detail in
the sub-sections below. Given that 19 out of the 32
participants submitted a paper with their approach
and findings, we opted to include the system analy-
sis and ranking of results of only the submitted par-
ticipants.

Analysis of the systems consisted of the follow-
ing criteria: pre-processing methods, techniques
used, external sources, data sets and/or lexica used,
tools utilised, why the adopted approach was cho-
sen and if it is (i) multilingual/cross-lingual and/or
(ii) domain dependent/independent, any issues en-
countered and how they were tackled and poten-
tially solved.

5.1 Track 1 - Microblog Messages

Figure 4 shows the results of the 25 participants
in Track 1. Results of all participants were
ranked (first column) according to the evaluation
metric (last column) described in the Section 4
- Evaluation. The second column specifies the
team’s/participant’s name. Please note that the anal-
ysis of systems discussed in this sub-section in-
cludes only the participants highlighted in yellow
since only these submitted a paper with their ap-
proach and findings.

Figure 4: Track 1 Results
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5.1.1 Pre-processing
In terms of pre-processing, all 14 participants
adopted some methods in order to clean the mi-
croblog messages before further processing. The
most common methods used were: removal of
special characters and/or punctuations, removal of
URLs and user mentions (‘@username’) and/or
substitution of certain expressions by specific words
(e.g., replace ‘full urls’ with ‘url’ and ‘company
names’ with ‘company’), stop word removal, to-
kenisation, lemmatisation and lowercase conver-
sion. Some participants also performed Named En-
tity Recognition (NER), emoticon removal, Part-of-
Speech (POS) tagging, stemming and URL resolu-
tion, besides other specific tasks, such as concate-
nation of spans to form a unified string (Nasim,
2017). NLTK5 was the tool mostly used (Seyed-
itabari et al., 2017; Deborah et al., 2017; Kumar
et al., 2017; Symeonidis et al., 2017; Jiang et al.,
2017) for pre-processing tasks, such as lemmatisa-
tion, stemming and lowercase conversion.

5.1.2 Techniques
All the techniques used by each system of the 14
participants are shown in Figure 5. Each system
was analysed and in-turn categorised under one of
the following techniques: Hybrid, Machine Learn-
ing (ML), Deep Learning (DL) and Lexicon-based
(Lex).

It is clear that most techniques were of a Hybrid
nature with the Machine Learning and Lexicon-
based approach being the most popular choice, fol-
lowed by Machine Learning-based approaches. Au-
thors of some systems experimented with multiple
approaches to find the one that fared best in the
competition. In fact, Cabanski et al. (2017) im-
plemented two-hybrid techniques (as noted above),
where the Hybrid (DL, Lex) approach produced
their best result for this track. On the other hand,
Kumar et al. (2017) implemented two Hybrid (ML,
Lex) systems, one adopting Support Vector Ma-
chine and Logistic Regression and the other adopt-
ing SVR.

The Hybrid (ML, Lex) technique by Jiang et al.
(2017) ranked first for this track, whereas the Hy-
brid (DL, Lex) technique by Ghosal et al. (2017)
ranked second. The system placing third (Deborah
et al., 2017) adopted a ML technique.

The Machine Learning-based techniques made
use of the following algorithms:

• Artificial Neural Network (ANN) - adopted by
5http://www.nltk.org/

Li (2017); Symeonidis et al. (2017); Saleiro
et al. (2017)

• Random Forests - adopted by Seyeditabari
et al. (2017); Symeonidis et al. (2017); Jiang
et al. (2017); Saleiro et al. (2017)

• Support Vector Machine (SVM) - adopted by
Seyeditabari et al. (2017); Cabanski et al.
(2017); Kumar et al. (2017); Saleiro et al.
(2017)

• Support Vector Regression (SVR) - adopted by
Zini et al. (2017); Kumar et al. (2017); Chen
et al. (2017); Jiang et al. (2017)

• Linear Regression (LiR) - adopted by Syme-
onidis et al. (2017)

• Logistic Regression (LoR) - adopted by Seyed-
itabari et al. (2017); Kumar et al. (2017)

• Naive Bayes (NB) - adopted by Seyeditabari
et al. (2017)

• Multi-Kernel Gaussian Process (MKGP) -
adopted by Deborah et al. (2017)

• XGBoost Regressor (XGB) - adopted by
Nasim (2017); Jiang et al. (2017)

• Boosted Decision Tree Regression (BDTR) -
adopted by Symeonidis et al. (2017)

• AdaBoost Regressor (ABR) - adopted by Jiang
et al. (2017)

• Bagging Regressor (BR) - adopted by Jiang
et al. (2017)

• Gradient Boosting Regressor (GBR) - adopted
by Jiang et al. (2017)

• Least Absolute Shrinkage and Selection Oper-
ator (LASSO) - adopted by Jiang et al. (2017)

The most common ML techniques used overall
–by 4 participants– were RF, SVM and SVR. The
SVR was part of the ensemble regression model
used by the system that ranked first for this track
(Jiang et al., 2017). The RF classifier was ulti-
mately used by Seyeditabari et al. (2017), since it
is the best performer in terms of tweets classifica-
tion. Regarding the ANN computational approach,
both Li (2017) and Symeonidis et al. (2017) use a
regression method, whereas Saleiro et al. (2017) use
a Multilayer Perceptron (MLP).

The Deep Learning-based techniques made use
of the following algorithms:
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Technique System

Hybrid (ML, Lex)
Nasim (2017), Seyeditabari et al. (2017), Cabanski et al. (2017),
Kumar et al. (2017), Chen et al. (2017), Jiang et al. (2017), Saleiro et al. (2017)

Hybrid (DL, Lex) Ghosal et al. (2017), Cabanski et al. (2017), Kar et al. (2017)
ML Li (2017), Zini et al. (2017), Symeonidis et al. (2017), Deborah et al. (2017)
DL Pivovarova et al. (2017)

Figure 5: Techniques used by systems in Track 1

• Convolution Neural Network (CNN) - adopted
by Pivovarova et al. (2017); Kar et al. (2017);
Ghosal et al. (2017)

• Recurrent Neural Network (RNN) : Long
Short-Term Memory (LSTM) - adopted by Ca-
banski et al. (2017); Ghosal et al. (2017)

• Bidirectional Gated Recurrent Unit (Bi-GRU)
- adopted by Kar et al. (2017)

The MLP based ensemble model in Ghosal et al.
(2017) that combines the CNN and LSTM Deep
Learning algorithms ranked second in this track. In
Cabanski et al. (2017), their best submission for
this track was provided by the RNN (as opposed to
SVR).

Lexicon-based methods made use of the follow-
ing known sentiment lexica:

• Loughran and McDonald Sentiment Word
Lists (Loughran and McDonald, 2011b) -
adopted by Nasim (2017); Seyeditabari et al.
(2017); Saleiro et al. (2017); Ghosal et al.
(2017)

• Stock Market Lexicon6 - adopted by Nasim
(2017)

• SentiWordNet7 - adopted by Cabanski et al.
(2017); Chen et al. (2017); Jiang et al. (2017)

• SenticNet 48 - adopted by Chen et al. (2017);
Kar et al. (2017)

• VADER (Hutto and Gilbert, 2014) - adopted
by Cabanski et al. (2017)

• Opinion Lexicon(Hu and Liu, 2004) - adopted
by Cabanski et al. (2017); Kumar et al. (2017);
Jiang et al. (2017); Ghosal et al. (2017)

6https://github.com/nunomroliveira/
stock_market_lexicon

7http://sentiwordnet.isti.cnr.it/
8http://sentic.net/senticnet-4.pdf

• MPQA Subjectivity Lexicon (Wilson et al.,
2009) - adopted by Kumar et al. (2017); Jiang
et al. (2017); Saleiro et al. (2017); Ghosal et al.
(2017)

• NRC Hashtag Sentiment Lexicon (Kiritchenko
et al., 2014) - adopted by Cabanski et al.
(2017); Kumar et al. (2017); Jiang et al.
(2017); Ghosal et al. (2017)

• NRC Hashtag Emotion Lexicon (Kiritchenko
et al., 2014) - adopted by Chen et al. (2017)

• NRC Hashtag Affirmative Context Sentiment
Lexicon (Kiritchenko et al., 2014) - adopted by
Chen et al. (2017); Ghosal et al. (2017)

• NRC Hashtag Negated Context Sentiment
Lexicon (Kiritchenko et al., 2014) - adopted by
Chen et al. (2017)

• NRC Word-Emotion Association Lexicon /
NRC Emotion Lexicon (Kiritchenko et al.,
2014) - adopted by (Chen et al., 2017)

• Emoticon Lexicon / Sentiment140 Lexicon9

- adopted by Chen et al. (2017); Jiang et al.
(2017); Ghosal et al. (2017)

• Sentiment140 Affirmative Context Lexicon
(Kiritchenko et al., 2014) - adopted by Ghosal
et al. (2017); Chen et al. (2017)

• Yelp Restaurant Sentiment Lexicon10 -
adopted by Chen et al. (2017)

• Amazon Laptop Sentiment Lexicon11 -
adopted by Chen et al. (2017)

• Macquarie Semantic Orientation Lexicon12 -
adopted by Chen et al. (2017)

9http://saifmohammad.com/Lexicons/
Sentiment140-Lexicon-v0.1.zip

10http://saifmohammad.com/Lexicons/Yelp-
restaurant-reviews.zip

11http://saifmohammad.com/Lexicons/
Amazon-laptop-electronics-reviews.zip

12http://saifmohammad.com/Lexicons/MSOL-
June15-09.txt.zip
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• Harvard’s General Inquirer Lexicon13 -
adopted by Jiang et al. (2017); Ghosal et al.
(2017)

• IMDB (Zhu et al., 2013) - adopted by Jiang
et al. (2017)

• AFINN14 - adopted by Jiang et al. (2017)

• Corpus of Business News (Pivovarova et al.,
2013) - adopted by Pivovarova et al. (2017)

The following three lexica listed are the ones
mostly used overall: (i) the Loughran and McDon-
ald Sentiment Word (rank 2), (ii) Opinion Lexicon
(rank 1, 2) and (iii) MPQA Subjectivity Lexicon
(rank 1, 2). An interesting observation is that the
systems that ranked first (Jiang et al., 2017) and
second (Ghosal et al., 2017) in this track utilised
all three lexicons (ranked system using the particu-
lar lexicon represented next to each name), whereby
lexica (ii) and (iii) were used by both.

Seyeditabari et al. (2017) extended Loughran
and McDonald’s word list of positive and negative
words with 10,000 financial reports containing a
summary of the company’s performances in order
to add features to the training dataset In Cabanski
et al. (2017), the authors, besides using the senti-
ment lexica identified above, also built and used a
custom Financial Sentiment Lexicon.

5.2 Track 2 - News Statements and Headlines
Figure 6 shows the results of the 29 participants in
Track 2. Results of all participants were ranked
(first column) according to the evaluation metric
(last column) described in Section 4 - Evaluation.
The second column specifies the team/participant
name. Please note that the analysis of systems dis-
cussed in this sub-section includes only the partic-
ipants highlighted in yellow, which are the partic-
ipants who submitted a paper with their approach
and findings.

5.2.1 Pre-processing
In terms of pre-processing – same as for Track 1
– all 17 participants adopted some methods in or-
der to clean the news statements and headlines be-
fore further processing. The most common meth-
ods used were: removal of numbers, special char-
acters and/or punctuations, removal of URLs and
user mentions and/or substitution of certain expres-
sions with tags (e.g. replace ‘company name’ with

13http://www.wjh.harvard.edu/˜inquirer/
14http://www2.imm.dtu.dk/pubdb/views/

publication_details.php?id=6010

Figure 6: Track 2 Results

‘〈company〉’ and ‘numbers’ with ‘〈number〉’), stop
word removal, tokenisation, lemmatisation, lower-
case conversion and NER on certain entities (e.g.,
Organisation and Person). Some participants also
performed dependency parsing, POS tagging, stem-
ming and URL resolution, besides other specific
tasks, such as filtering out all named entities and
keeping only “general” tokens given that they are
generally the ones carrying the sentiment (Rotim
et al., 2017). Same as track 1, NLTK was the tool
mostly used (Ghosal et al., 2017; Deborah et al.,
2017; Kumar et al., 2017; Symeonidis et al., 2017;
Jiang et al., 2017) for pre-processing, whereas Stan-
ford CoreNLP15 was used for performing NER,
sentence breaking and parsing. (Nasim, 2017; Ro-
tim et al., 2017; Schouten et al., 2017; Chen et al.,
2017; Jiang et al., 2017)

15http://stanfordnlp.github.io/CoreNLP/
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5.2.2 Techniques
Figure 7 shows all the techniques used by each sys-
tem of the 17 participants. Each system has been
analysed and categorised under one of the follow-
ing techniques: Hybrid, Machine Learning (ML),
Deep Learning (DL), Lexicon (Lex) and Ontology
(Ont).

Similar to track 1, the Machine Learning and a
Machine Learning/Lexicon-based Hybrid approach
were the ones mostly used (six participants). How-
ever, the techniques were more balanced in this
track, with six participants adopting a Machine
Learning-based approach. It is worth noting that
one of the systems used a Machine Learning and
Ontology-based Hybrid approach, which technique
is unique in both tracks. In this system,Schouten
et al. (2017) used the SVR algorithm with ontol-
ogy features (including features derived from ontol-
ogy reasoning), which ontology was self-designed
by the authors. Multiple techniques were used by
some authors in order to find the best one to use
in this competition within their system. Moore and
Rayson (2017) experimented with an ML and DL
algorithm respectively, with the latter performing
better. On the other hand, Cabanski et al. (2017)
implemented two-hybrid techniques, where the Hy-
brid (DL, Lex) approach produced their best result
for this track , same as for track 1.

The systems that ranked first (Mansar et al.,
2017) and second (Kar et al., 2017) both adopted a
Hybrid (DL, Lex) technique, whereas an ML tech-
nique was used by the system in rank three.

The Machine Learning-based techniques made
use of the following algorithms:

• Artificial Neural Network (ANN) - adopted by
Symeonidis et al. (2017)

• Random Forests - adopted by Symeonidis et al.
(2017); Jiang et al. (2017); Saleiro et al. (2017)

• Support Vector Machine (SVM) - adopted by
Kumar et al. (2017); Saleiro et al. (2017)

• Support Vector Regression (SVR) - adopted by
Rotim et al. (2017); Schouten et al. (2017);
Moore and Rayson (2017); John and Vech-
tomova (2017); Zini et al. (2017); Cabanski
et al. (2017); Kumar et al. (2017); Chen et al.
(2017); Jiang et al. (2017)

• Linear Regression (LiR) - adopted by John and
Vechtomova (2017); Symeonidis et al. (2017)

• Logistic Regression (LoR) - adopted by Kumar
et al. (2017)

• Multi-Kernel Gaussian Process (MKGP) -
adopted by Deborah et al. (2017)

• XGBoost Regressor (XGB) - adopted by
Nasim (2017); John and Vechtomova (2017);
Jiang et al. (2017)

• Boosted Decision Tree Regression (BDTR) -
adopted by Symeonidis et al. (2017)

• AdaBoost Regressor (ABR) - adopted by Jiang
et al. (2017)

• Bagging Regressor (BR) - adopted by Jiang
et al. (2017)

• Gradient Boosting Regressor (GBR) - adopted
by Jiang et al. (2017)

• Least Absolute Shrinkage and Selection Oper-
ator (LASSO) - adopted by Jiang et al. (2017)

As can be seen above, the most common ML
technique used within the systems was SVR by
9 participants. This was used by the system that
ranked third for this track (Rotim et al., 2017).

The Deep Learning-based techniques made use
of the following algorithms:

• Convolution Neural Network (CNN) - adopted
by Mansar et al. (2017); Pivovarova et al.
(2017); Ghosal et al. (2017); Kar et al. (2017)

• Recurrent Neural Network (RNN) : Long
Short-Term Memory (LSTM) - adopted by
Ghosal et al. (2017); Cabanski et al. (2017)

• RNN : Bidirectional Long Short-Term Mem-
ory (BLSTM) - adopted by Moore and Rayson
(2017)

• Bidirectional Gated Recurrent Unit (Bi-GRU)
- adopted by Kar et al. (2017)

The CNN algorithm was the most popular
amongst all Deep Learning-based techniques, with
both systems ranking first (Mansar et al., 2017) and
second (Kar et al., 2017) using it.

Lexicon-based methods made use of the follow-
ing known sentiment lexica:

• Loughran and McDonald Sentiment Word
Lists - adopted by Nasim (2017); Ghosal et al.
(2017); Kumar et al. (2017); Saleiro et al.
(2017)
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Technique System

Hybrid (ML, Lex)
Nasim (2017), Cabanski et al. (2017), Kumar et al. (2017),
Chen et al. (2017), Jiang et al. (2017), Saleiro et al. (2017)

Hybrid (DL, Lex)
Mansar et al. (2017), Ghosal et al. (2017),
Cabanski et al. (2017), Kar et al. (2017)

Hybrid (DL, Ont) Schouten et al. (2017)

ML
Rotim et al. (2017), Moore and Rayson (2017), John and Vechtomova (2017),
Deborah et al. (2017), Zini et al. (2017), Symeonidis et al. (2017)

DL Moore and Rayson (2017), Pivovarova et al. (2017)

Figure 7: Techniques used by systems in Track 2

• SentiWordNet - adopted by Cabanski et al.
(2017); Kumar et al. (2017); Chen et al.
(2017); Jiang et al. (2017)

• SenticNet 4 - adopted by Chen et al. (2017);
Kar et al. (2017)

• VADER - adopted by Mansar et al. (2017); Ca-
banski et al. (2017)

• Opinion Lexicon - adopted by Ghosal et al.
(2017); Cabanski et al. (2017); Kumar et al.
(2017); Jiang et al. (2017)

• MPQA Subjectivity Lexicon - adopted by
Ghosal et al. (2017)

• NRC Hashtag Sentiment Lexicon - adopted by
Cabanski et al. (2017); Nasim (2017); Ghosal
et al. (2017); Jiang et al. (2017)

• NRC Hashtag Emotion Lexicon - adopted by
Chen et al. (2017)

• NRC Hashtag Affirmative Context Sentiment
Lexicon - adopted by Ghosal et al. (2017);
Chen et al. (2017)

• NRC Hashtag Negated Context Sentiment
Lexicon - adopted by Chen et al. (2017)

• NRC Word-Emotion Association Lexicon /
NRC Emotion Lexicon - adopted by Chen
et al. (2017)

• Emoticon Lexicon / Sentiment140 Lexicon -
adopted by Ghosal et al. (2017); Jiang et al.
(2017); Chen et al. (2017)

• Sentiment140 Affirmative Context Lexicon -
adopted by Ghosal et al. (2017); Chen et al.
(2017)

• Yelp Restaurant Sentiment Lexicon - adopted
by Chen et al. (2017)

• Amazon Laptop Sentiment Lexicon - adopted
by Chen et al. (2017)

• Macquarie Semantic Orientation Lexicon -
adopted by Chen et al. (2017)

• Harvard’s General Inquirer Lexicon - adopted
by Nasim (2017); Ghosal et al. (2017); Kumar
et al. (2017); Jiang et al. (2017)

• IMDB - adopted by Jiang et al. (2017)

• AFINN - adopted by Jiang et al. (2017)

• DepecheMood Affective Lexicon (Staiano and
Guerini, 2014) - adopted by Mansar et al.
(2017)

• Amazon Product Reviews16 - adopted by John
and Vechtomova (2017)

• Financial Phrasebank (Malo et al., 2014a) -
adopted by John and Vechtomova (2017)

• Corpus of Business News - adopted by Pivo-
varova et al. (2017)

In total, four lexica listed above are the ones
mostly used (all by 4 participants each): (i) the
Loughran and McDonald Sentiment Word, (ii) Sen-
tiWordNet, (iii) Opinion Lexicon and (iv) Harvard’s
General Inquirer Lexicon. Unlike the case in track
1, none of the participants ranked first till third used
one of these four lexica.

Some authors constructed their own lexica from
external sources, such as Moore and Rayson (2017)
(rank four) who manually downloaded 189,206 fi-
nancial articles which contain 161,877,425 tokens
from Factiva17 (articles come from sources such as
Financial Times that relate to United States compa-
nies only).

16http://jmcauley.ucsd.edu/data/amazon/
17https://global.factiva.com
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5.2.3 Tools used in both tracks
Several tools were used within the participants’ sys-
tems, with the following (Figure 8) being the most
popular:

Scikit-learn is a Machine Learning kit (in Python)
that offers simple efficient tools (e.g., classification
and regression algorithms) for data mining and data
analysis. This is the tool mostly used by the par-
ticipants of our task (42% in total) to compute their
results. Similarly, Weka –a collection of machine
learning algorithms for data mining tasks– was used
by 2 participants. The Keras Deep Learning library
was used by 2 participants, whereas TensorFlow –
an open source software library for numerical com-
putation using data flow graph– was also used by 3
participants (work in Pivovarova et al. (2017) built
their implementation on top of it).

GloVe, an unsupervised learning algorithm for
obtaining vector representations of words, was used
by 6 participants for word embeddings. Word2vec
–an efficient implementation of the continuous bag-
of-words and skip-gram architectures for comput-
ing vector representations of words– was also used
for the same purpose by 4 participants.

5.3 General assessment of the task

The approaches proposed by the participating sys-
tems explored a combination of machine learning
methods using lexical features, sentiment lexical re-
sources (both generic and specific to finance) and
pre-trained word embedding models. Novel fea-
tures specific to the task included the creation of
a domain-specific ontology (Schouten et al., 2017),
a stocktwits-based embedding model and distance
supervision model (Li, 2017) and domain-specific
lexica (Moore and Rayson, 2017). Moreover, due
to the emphasis of the task on the sentiment clas-
sification on a continuous scale, many approaches
targeted regression-based models.

With the exception of Cabanski et al. (2017),
few approaches explicitly tackled the problem of
compositionality (Sales et al., 2016), valency shift-
ing (Malo et al., 2014a), and clausal disembedding
(Niklaus et al., 2016), a fact that is reflected by the
lack of submissions which explored syntactic fea-
tures.

With regard to language transportability, most ap-
proaches have a medium level of transportability,
being dependent on the translation of the sentiment
lexica, but not depending on syntactic parser.

Important specific aspects proposed by the task
remained unexplored or poorly explored, including:

(i) the use of quantitative background knowledge
(e.g. stock price, financial report data), (ii) the use
of the annotated text spans.

6 Alternative Evaluation Metric

Based on the evaluation metric as stated in Section
4, another evaluation metric has been developed
during the competition. The intention to propose
a modified way of evaluation was based on the fact
that the cosine similarity (1) is treating all predicted
scores with the same weight. This approach is not
exploiting all information given in the data set, in
specific it is not taking the link between entities and
instances into consideration.

6.1 First Modification

Therefore, we proposed an approach which is us-
ing multiple vectors (one per instance) instead of
only two. These instance vectors are containing one
score per corresponding entity. Cosine similarity
scores are calculated for each instance and added up
to then divide the sum of all similarity scores by the
number of submitted instance predictions in order
to retrieve an average cosine similarity score.

While considering this modified evaluation met-
ric a drawback, dividing the predictions on one hand
into a regression problem but on the other hand into
a classification problem, was noticed. The cosine
similarity (1) for vectors with a length of 1 is result-
ing in either +1 or -1. However, the cosine similarity
for vectors with a length greater than 1 is resulting
in a floating point value. Thus, another modifica-
tion of the initial evaluation formula has been con-
ducted.

6.2 Second Modification

The second modification of the initial evaluation
metric is also using one vector per instance con-
taining one score per corresponding entity. Those
instance vectors are populated into either a gold
standard (GS) or predicted system (PS) vector. As
both vectors are populated according to matching
instances and entities, both vectors should be the
same length. In contrast to the first modification
(6.1), the second modification is using two different
methods of evaluating the given scores dependent
on the length of a vector. For each instance vector
in GS/PS which has a length of 1, the absolute dis-
tance between both scores (4) is added to the total
similarity score (6).

s similarity(G,P ) = 1− |G0 − P0| (4)
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Tool System

scikit-learn18
Nasim (2017), Moore and Rayson (2017), John and Vechtomova (2017),
Cabanski et al. (2017), Kumar et al. (2017),
Symeonidis et al. (2017), Kar et al. (2017), Jiang et al. (2017)

word2vec19 Li (2017),Ghosal et al. (2017),
Kumar et al. (2017), Saleiro et al. (2017)

Weka20 Seyeditabari et al. (2017), Zini et al. (2017)

GloVe21 Seyeditabari et al. (2017), Mansar et al. (2017), Rotim et al. (2017),
Pivovarova et al. (2017), Ghosal et al. (2017), Kumar et al. (2017)

LIBSVM22 Rotim et al. (2017)
LIBLINEAR23 Rotim et al. (2017), Jiang et al. (2017)
Keras24 Moore and Rayson (2017), Ghosal et al. (2017)
XGBoost25 John and Vechtomova (2017), Jiang et al. (2017)
gensim26 John and Vechtomova (2017), Cabanski et al. (2017)
TensorFlow27 John and Vechtomova (2017), Pivovarova et al. (2017), Cabanski et al. (2017)

Figure 8: Tools used by systems in both tracks

For each instance vector with a length greater than
1, the cosine similarity is ”length times” added to
the total similarity score (5).

m similarity(G,P ) = |P | × cosine(G,P ) (5)

total similarity(GS,PS) =
|PS|∑
i=1

{
|PSi| = 1 s similarity(GSi, PSi)
|PSi| > 1 m similarity(GSi, PSi)

(6)

Once the similarity scores are calculated for each
instance vector and added to the total similarity, the
final score is calculated by dividing the total simi-
larity score by the number of predicted entities to
then multiply the quotient with a weight which con-
sists of the quotient of all predicted entities divided
by all possible entity predictions (7). In contrast to
the cosine weight as stated in (2), this weight is cal-
culated on an entity level.

final score(GS,PS) =
|PS|∑
i=1
|PSi|

|GS|∑
i=1
|GSi|

× total similarity(GS,PS)
|PS|∑
i=1
|PSi|

(7)

Similarity scores produced using this alternative
evaluation metric can be found in the appendix A.

6.3 Pros and Cons
On one hand, the evaluation metric as stated in 6.2
differentiating between vectors according to their
lengths avoids the regression/classification problem

as described in 6.1. In addition, it is considering
the link between instances and entities in the final
score.

On the other hand, one disadvantage of this is
approach is the linearity / non-linearity of the two
sub-methods used ((4), (5)). One could argue that
both sub-methods are not equally impacting the to-
tal score. Balancing would be one approach to re-
ducing discrepancy but also be subjectively influ-
enced.

7 Related Initiatives

A number of projects have addressed questions per-
taining to Sentiment Analysis and Finance. The
FIRST (2010-2013) FP7 European project 28 pro-
vides sentiment extraction and analysis of market
participants from social media networks in near
real-time, for detecting and predicting financial
market events, such as insights about financial mar-
ket movements and financial market abuse. The de-
veloped tool consists of a decision support model
based on Web sentiment as found within textual
data extracted from Twitter or blogs, for the finan-
cial domain.

The TrendMiner (2011-2014) FP7 European
project 29, presents an innovative and portable open-
source real-time method for cross-lingual min-
ing and summarisation of large-scale social media
streams, such as weblogs, Twitter, Facebook, etc.
One high profile case study was a financial deci-
sion support (with analysts, traders, regulators and
economists).

28http://project-first.eu/
29http://www.trendminer-project.eu/

531



StockWatcher (Micu et al., 2008) provides a cus-
tomised, aggregated view of news categorised by
different topics, where it performs sentiment anal-
ysis - positive, negative or neutral effect - on par-
ticular news messages about a particular company.
This tool enables the extraction of relevant news
items from RSS feeds concerning the NASDAQ-
100 listed companies. The sentiment of the news
messages directly affects a company’s respective
stock price.

Mirowski et al. (Mirowski et al., 2010) present
an algorithm for topic modelling, text classification
and retrieval from time-stamped documents. This
algorithm has been applied to predict the stock mar-
ket volatility using financial news from Bloomberg.
The volatility considered is estimated from daily
stock prices of a particular company.

Several data sets have been created which are
relevant in the context of our current endeavour.
(Sanders, 2011) provide the Sanders Twitter Sen-
timent corpus, consisting of 5513 tweets about four
topics/companies (Apple, Google, Microsoft, Twit-
ter). One annotator manually assigned a positive,
negative, neutral or irrelevant annotation to each
tweet, depending on the sentiment expressed to-
wards the given topic (company). This can refer
to any aspect of the company, e.g. the service at
the Apple store or the features of the iPhone in the
case of Apple Inc. The current proposal will in-
stead focus on a much larger range of companies
and evaluate them specifically with respect to their
stock market value. Furthermore, sentiment scor-
ing will be more fine-grained as it will consist of
floating-point numbers in the range of -1 (very neg-
ative/bearish) and 1 (very positive/bullish), with 0
representing neutral sentiment.

(Malo et al., 2014b) present the Financial Phrase
Bank, a resource containing around 5000 sen-
tences from English-language news about compa-
nies listed on the Helsinki stock exchange. Annota-
tions at the level of syntactic phrases assigned one
of three sentiment classes (positive, negative, neu-
tral), based on the expected influence on the stock
price. Each phrase was scored by between five and
eight annotators. In our proposed task, the senti-
ment was also assigned with a view to the stock
price or market development. However, our annota-
tion is more fine-grained, ranging on a scale from -1
to 1. Furthermore, we annotate at the target (stock
or company entity) rather than the phrase-level.

Over the years, many shared tasks in SemEval
have focused on Sentiment Analysis, exploring var-

ious angles within the field. A series of tasks
have concentrated on Sentiment Analysis in Twit-
ter (Nakov et al., 2013; Rosenthal et al., 2014;
Rosenthal and Stoyanov, 2015). They have covered
tasks such as Polarity Disambiguation, document-
and topic-level Polarity Classification, and topic-
based Sentiment Aggregation. These tasks targeted
open domains, with topics being determined us-
ing Named Entity Recognition (e.g. celebrities,
places, sports clubs). The sentiment was assigned
on two-point (positive, negative), three-point (posi-
tive, negative, neutral) or five-point (strongly pos-
itive, weakly positive, neutral, weakly negative,
strongly negative) scales. In contrast, our proposed
task aims to detect fine-grained sentiment, a scoring
company- and stock-level sentiment on a floating
point scale between -1 and 1. Furthermore, the data
in our proposed task focuses only on the financial
domain and its particular semantic challenges.

Aspect-based Sentiment Analysis has also
emerged in recent editions of SemEval (Pontiki
et al., 2014, 2015). Depending on the subtask,
entities and their aspects are provided to the
participants or need to be identified. Sentiment
for entity-aspect pairs is scored according to four
categories: positive, negative, neutral and conflict.
In terms of data, while the 2014 task focused on
isolated sentences from customer reviews, the 2015
edition dealt with full reviews. Again, our proposed
task differs in the assignment of fine-grained
sentiment, in the short nature of the text instances
and in terms of the domain.

8 Conclusions and Future Work

We presented a new task on fine-grained sentiment
analysis for the financial domain, where a senti-
ment in range (-1, 1) is assigned to entities. In
our two subtasks, we focussed on two distinct data
sources: financial microblogs (Twitter and Stock-
Twits), where the target entities are company stock
symbols (“cashtags”), and financial news headlines,
where sentiment needs to be assigned to companies.

Deep Learning (word embeddings) and more tra-
ditional Machine Learning techniques account for
the majority of contributions. Many participants
made use of sentiment lexica, both finance-specific
(e.g. the word lists from (Loughran and McDon-
ald, 2011b)) and general domain (e.g. (Hu and Liu,
2004; Wilson et al., 2009)), as well as custom lexica
created in the context of this task. A review of the
results obtained by participants shows that three of
the systems that performed best (top three in each

532



track) adopted a Hybrid (Deep Learning, Lexicon)
technique, while the other three used a Machine
Learning-based approach.

For a future edition of this task, we will focus on
enhancing the evaluation metric in the light of the
discussion in Section 6. It would be interesting to
add subtasks with different sources, perhaps broad-
ening the scope to include longer texts, such as full
news articles from financial newspapers, or Face-
book posts.
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Abstract

In this report we summarize the results
of the 2017 AMR SemEval shared task.
The task consisted of two separate yet
related subtasks. In the parsing sub-
task, participants were asked to produce
Abstract Meaning Representation (AMR)
(Banarescu et al., 2013) graphs for a set
of English sentences in the biomedical do-
main. In the generation subtask, partici-
pants were asked to generate English sen-
tences given AMR graphs in the news/fo-
rum domain. A total of five sites partici-
pated in the parsing subtask, and four par-
ticipated in the generation subtask. Along
with a description of the task and the par-
ticipants’ systems, we show various score
ablations and some sample outputs.

1 Introduction

Abstract Meaning Representation (AMR) is a
compact, readable, whole-sentence semantic an-
notation (Banarescu et al., 2013). It includes entity
identification and typing, PropBank semantic roles
(Kingsbury and Palmer, 2002), individual entities
playing multiple roles, as well as treatments of
modality, negation, etc. AMR abstracts in numer-
ous ways, e.g., by assigning the same conceptual
structure to fear (v), fear (n), and afraid (adj). Fig-
ure 1 gives an example.

In 2016 an AMR parsing shared task was held at
SemEval (May, 2016). Task participants demon-
strated several new directions in AMR parsing
technology and also validated the strong perfor-
mance of existing parsers. We sought, in 2017, to
focus AMR parsing performance on the biomed-
ical domain, for which a not insignificant but
still relatively small training corpus had been pro-
duced. While sentences from this domain are quite

(f / fear-01
:polarity "-"
:ARG0 ( s / soldier )
:ARG1 ( d / die-01

:ARG1 s ))

The soldier was not afraid of dying.
The soldier was not afraid to die.

The soldier did not fear death.

Figure 1: An Abstract Meaning Representation
(AMR) with several English renderings. Example

borrowed from Pust et al. (2015).

formal compared to some of those evaluated in last
year’s task, they are also very complex, and have
many terms unique to the domain. An example
is shown in Figure 2. We continue to use Smatch
(Cai and Knight, 2013) as a metric for AMR pars-
ing, but we perform additional ablative analysis
using the approach proposed by Damonte et al.
(2016).

Along with parsing into AMR, it is important
to encourage improvements in automatic genera-
tion of natural language (NL) text from AMR. Hu-
mans favor communication in NL. An AI that is
able to parse text into AMR at a quality level in-
distinguishable from humans may be said to un-
derstand NL, but without the ability to render its
own semantic representations into NL no human
will ever be able to appreciate this.

The advent of several systems that generate En-
glish text from AMR input (Flanigan et al., 2016b;
Pourdamghani et al., 2016) inspired us to conduct
a generation-based shared task from AMRs in the
news/discussion forum domain. For the gener-
ation subtask, we solicited human judgments of
sentence quality. We followed the precedent es-
tablished by the Workshop in Machine Transla-
tion (Bojar et al., 2016) and used the Appraise so-
licitation system (Federmann, 2012), lightly mod-
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Interestingly, serpinE2 mRNA and protein
were also markedly enhanced in human CRC
cells exhibiting mutation in
<i>KRAS </i>and <i>BRAF</i>.

(e / enhance-01 :li 2
:ARG1 (a3 / and
:op1 (n6 / nucleic-acid
:name (n / name :op1 "mRNA")

:ARG0-of (e2 / encode-01
:ARG1 p))

:op2 (p / protein
:name (n2 / name :op1 "serpinE2")))

:manner (m / marked)
:mod (a2 / also)
:location (c / cell
:ARG0-of (e3 / exhibit-01
:ARG1 (m2 / mutate-01
:ARG1 (a4 / and
:op1 (g / gene

:name (n4 / name :op1 "KRAS"))
:op2 (g2 / gene

:name (n5 / name :op1 "BRAF")))))
:mod (h / human)
:mod (d / disease
:name (n3 / name :op1 "CRC")))

:manner (i / interesting))

Figure 2: One of the simpler biomedical domain
sentences and its AMR. Note the italics markers
in the original sentence are preserved, as they are

semantically important to the sentence’s
understanding.

ified, to gather human rankings, then TrueSkill
(Sakaguchi et al., 2014) to elicit an overall system
ranking.

Since the same training data and tools are avail-
able to both subtasks (though, in the case of the
generation subtask, the utility of the Bio-AMR
corpus is unclear), we will describe all the re-
sources for both subtasks in Sections 2 and 3 but
then will handle descriptions and ablations for the
parsing and generation subtasks separately, in, re-
spectively, Sections 4 and 5. Readers interested
in only one of these subtasks should not feel com-
pelled to read the other section. We will reconvene
in Section 6 to conclude and discuss hardware, as
we continue the tradition established last year in
the awarding of trophies to the declared winners
of each subtask.

2 Data

LDC released a new corpus of AMRs
(LDC2016E25), created as part of the DARPA
DEFT program, in March of 2016. The new
corpus, which was annotated by teams at SDL,
LDC, and the University of Colorado, and su-

pervised by Ulf Hermjakob at USC/ISI, is an
extension of previous releases (LDC2015E86,
LDC2014E41 and LDC2014T12). It contains
39,260 sentences (subsuming, in turn, the 19,572
AMRs from LDC2015E86, the 18,779 AMRs
from LDC2014E41, and the 13,051 AMRs from
LDC2014T12), partitioned into training, develop-
ment, and test splits, from a variety of news and
discussion forum sources. Participants in the gen-
eration task only were provided with AMRs for
an additional 1,293 sentences for evaluation; the
original sentences were also provided, as needed,
to human evaluators during the human evaluation
phase of the generation subtask (see Section 5.2).
These sentences and their corresponding AMRs
were sequestered and never released as data
before the evaluation phase.

We also made available the Bio-AMR corpus
version 0.8, which consists of 6,452 AMR anno-
tations of sentences from cancer-related PubMed
articles, covering 3 full papers1 as well as the re-
sult sections of 46 additional PubMed papers. The
corpus also includes about 1000 sentences each
from the BEL BioCreative training corpus and the
Chicago Corpus. The Bio-AMR corpus was par-
titioned into training, development, and test splits.
An additional 500 sentences and their AMRs were
sequestered until the evaluation phase, at which
point the sentences were provided to parsing task
participants only. Table 1 summarizes the avail-
able data, including the split sizes.

3 Other Resources

We made the following resources available to par-
ticipants:

• The tokenizer (from Ulf Hermjakob) used to
produce the tokenized sentences in the train-
ing corpus.2

• The AMR specification, used by annotators
in producing the AMRs.3

• The JAMR (Flanigan et al., 2014)4 and
CAMR (Wang et al., 2015a)5 parsers, as
strong parser baselines.

1PMIDs 24651010, 11777939, and 15630473
2 http://alt.qcri.org/semeval2016/

task8/data/uploads/tokenizer.tar.gz
3 https://github.com/

kevincrawfordknight/amr-guidelines/blob/
master/amr.md

4 https://github.com/jflanigan/jamr
5 https://github.com/c-amr/camr
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Corpus Domain Train Dev Test Eval
LDC2016E25 News/Forum 36,521 1,368 1,371 N/A
Bio-AMR v0.8 Biomedical 5,452 500 500 N/A
Parsing evaluation set Biomedical N/A N/A N/A 500
Generation evaluation set (LDC2016R33) News/Form N/A N/A N/A 1,293

Table 1: A summary of data used in this task; split sizes indicate the number of AMRs per sub-corpus.

Figure 3: The Appraise interface, adapted for AMR generation evaluation.

• The JAMR (Flanigan et al., 2016b) genera-
tion system, as a strong generation baseline.

• An unsupervised AMR-to-English aligner
(Pourdamghani et al., 2014).6

• The same Smatch (Cai and Knight, 2013)
scoring script used in the evaluation.7

• A Python AMR manipulation library, from
Nathan Schneider.8

4 Parsing Sub-Task

In the parsing sub-task, participants were given
500 previously sequestered Bio-AMRs and were

6 http://isi.edu/˜damghani/papers/
Aligner.zip

7 https://github.com/snowblink14/
smatch

8 https://github.com/nschneid/
amr-hackathon

asked to produce AMR graphs. Main results and
ablative results are shown in Table 2.

4.1 Systems

Five teams participated in the task, a noticeable
decline from last year’s task, which saw eleven full
participants. One team submitted two systems for
a total of six distinct systems. Two teams were re-
peats from last year: CMU and RIGOTRIO (previ-
ously RIGA). Below are brief descriptions of each
of the various systems, based on summaries pro-
vided by the system authors. Readers are encour-
aged to consult individual system description pa-
pers or relevant conference paper descriptions for
more details.

4.1.1 The Meaning Factory
(van Noord and Bos, 2017)

This team submitted two parsers. TMF-1 is a
character-level sequence-to-sequence deep learn-
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Smatch Unlab. No WSD NER Wiki
TMF-1 0.46 0.5 0.46 0.51 0.46
TMF-2 0.58 0.63 0.58 0.58 0.4

UIT-DANGNT-CLNLP 0.61 0.65 0.61 0.66 0.35
Oxford 0.59 0.63 0.59 0.66 0.18

CMU 0.44 0.47 0.44 0.48 0.59
RIGOTRIO 0.54 0.59 0.54 0.46 0

(a) Main parsing results and four ablations

Smatch Neg. Concepts Reent. SRL
TMF-1 0.46 0 0.63 0.29 0.43
TMF-2 0.58 0.24 0.76 0.35 0.54

UIT-DANGNT-CLNLP 0.61 0.24 0.78 0.37 0.56
Oxford 0.59 0.27 0.74 0.43 0.57

CMU 0.44 0.33 0.65 0.27 0.41
RIGOTRIO 0.54 0.31 0.71 0.34 0.51

(b) Main parsing results and four other ablations

Table 2: Main parsing results: For Smatch, a mean of ten runs with ten restarts per run is shown;
standard deviation was about 0.0003 per system. For the remaining ablations, a single run was used.

ing model9 similar to that of Barzdins and Gosko
(2016), but with a number of pre- and post-
processing changes to improve results. TMF-2 is
an ensemble of CAMR (Wang et al., 2015b) mod-
els trained on different data sets and the seq-to-seq
model to find the best CAMR parse.

4.1.2 UIT-DANGNT-CLNLP
(Nguyen and Nguyen, 2017)
This team implemented two wrapper layers for
CAMR (Wang et al., 2015a). The first layer stan-
dardizes and adds additional information to in-
put sentences to eliminate the weakness of the
dependency parser observed when parsing scien-
tific quotations, figures, formulas, etc. The second
layer wraps the output data of CAMR. It is based
on a prebuilt list of (biology term–AMR structure)
pairs to fix the output data of CAMR. This makes
CAMR deal with unknown scientific concepts bet-
ter.

4.1.3 Oxford
(Buys and Blunsom, 2017)
This is a neural encoder-decoder AMR parser
modeling the alignment between graph nodes and
sentence tokens explicitly with a pointer mecha-
nism. Candidate lemmas are predicted as a pre-
processing step so that the lemmas of lexical node
labels are factored out of the graph linearization.

9 https://www.tensorflow.org/
tutorials/seq2seq/

4.1.4 CMU

This was the same JAMR parsing system used in
last year’s evaluation (Flanigan et al., 2016a). The
participants declined to submit a new system de-
scription paper.

4.1.5 RIGOTRIO
(Gruzitis et al., 2017)

This team extended their CAMR-based AMR
parser from last year’s shared task (Barzdins
and Gosko, 2016) with a gazetteer for recog-
nizing as named entities the biomedical com-
pounds frequently mentioned in the biomedical
texts. The gazetteer was populated from the pro-
vided biomedical AMR training data.

4.2 Quantitative Ablation

We made use of the analysis scripts produced by
Damonte et al. (2016) to conduct a more fine-
grained ablation of scores. As noted in that work,
Smatch provides full-sentence analysis but some
aspects of an AMR are more difficult to parse
correctly than others. The ablation study consid-
ers only (or excludes) an aspect of the AMR and
then calculates Smatch (or F1, when no heuristic
matching is needed) with that limitation in place.
Ablation scores are shown in Table 2. The abla-
tions are:10

10see Damonte et al. (2016) for more details
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• Unlabeled: All argument labels (e.g. ARG0,
location) are replaced with a single com-
mon label

• No WSD: Propbank frames indicating differ-
ent senses (such as die-01 vs die-02) are
conflated

• NER: Only named entities are scored; that is,
in both reference and hypothesis AMR, only
nodes with an incoming arc labeled name are
considered.

• Wiki: Only wikifications are scored; this is
achieved in a manner similar to NER but with
the incoming arc labeled wiki.

• Negation: Only concepts with an outgoing
polarity arc are considered. In practice
this arc is only used to indicate negation.

• Concepts: Only concepts, not relations, are
scored.

• Reentrancies: Only concepts with two or
more incoming relations are scored. Re-
entrancies occur when a concept has sev-
eral mentions in a sentence, or where an ‘in-
verted’ relation (one that ends in -of) oc-
curs, implying inverse dependency. In prac-
tice the latter is much more often the cause of
a re-entrancy.

• Semantic Role Labeling (SRL): only rela-
tions corresponding to roles in PropBank, i.e.
those named ARG0 and the like, are scored.

The ablation results show that superior perfor-
mance in Smatch correlates with superior per-
formance in the Unlabeled, No-WSD, NER, and
Concepts performance. Additionally, Figure 4,
which plots each ablation score against Smatch
and induces a linear regression, shows that six of
the eight ablation sub-metrics are well correlated
with Smatch; only wikification and negation are
not. Wikification is generally handled as a sepa-
rate process on top of overall AMR parsing; this
may explain that discrepancy. We have no great
explanation for negation’s weak correlation but
note that it is generally considered a difficult task
in semantics.

4.3 Discussion
It is interesting to note that the top-scoring sys-
tem was, as in last year’s shared task, based on

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

unlabeled
nowsd
ner
wiki
neg
concept
reent
srl

Figure 4: Relationship between each of the eight
quantitative ablation studies from Damonte et al.
(2016) and Smatch; six of the eight metrics are

well-correlated with Smatch.

CAMR (Wang et al., 2015b). It is also interest-
ing to note that, in the Oxford team’s submission,
once again, a pure neural system is nearly as good
as the CAMR system, despite having rather little
data to train on. The Oxford system appears to be
quite different from last year’s neural submission
(Foland and Martin, 2016) but nevertheless is a
strong competitor. Finally, the top-scoring system,
that of UIT-DANGNT-CLNLP, got a 0.61 Smatch,
while last year’s top scoring systems (Barzdins
and Gosko, 2016; Wang et al., 2016) scored a
0.62, practically the same score. This, despite
the fact that the evaluation corpora were quite dif-
ferent. One might expect the biomedical corpus
to be easier to parse than the news/forum corpus,
since its sentences are rather formal, and do not
use slang or incorrect syntax. On the other hand,
the sentences in the biomedical corpus are on av-
erage longer than those in the news/forum corpus
(on average 25 words in bio vs. 14.5 in news/-
forum) and the biomedical corpus contains many
unknown words, corresponding to domain termi-
nology not in general use (1-count words are 9%
of tokens in bio training, vs. 7.2% in news/forum).
The news/forum corpus has, in its forum content,
colloquialisms and writing variants that are very
difficult to automatically analyze. Perhaps the rel-
atively ‘easy’ and ‘hard’ parts of each corpus can-
celed each other out, yielding corpora that were
about the same level of difficulty to parse. Never-
theless, it is somewhat concerning that AMR pars-
ing quality appears to have stalled, as parsing per-
formance remains in the low 0.60 range.
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5 Generation Sub-Task

As AMR provides full-sentence semantics, it may
be a suitable formalism for semantics-to-text gen-
eration. This subtask explored the suitability of
that hypothesis. Given that AMRs do not capture
non-semantic surface phenomena nor some essen-
tial properties of realized text such as tense, we in-
corporated human judgments into our evaluation,
since automatic metrics against a single reference
were practically guaranteed to be inadequate.

5.1 Systems

Four teams participated in the task. We also in-
cluded a submission from Pourdamghani et al.
(2016) run by the organizer, though a priori de-
clared that submission to be non-competitive due
to a conflict of interest. Below we provide short
summaries of each team’s approach.

5.1.1 CMU
This was the JAMR generation system described
in (Flanigan et al., 2016b). The participants de-
clined to submit a system description paper.

5.1.2 Sheffield
(Lampouras and Vlachos, 2017)
This team’s method is based on inverting previous
work on transition-based parsers, and casts NLG
from AMR as a sequence of actions (e.g., insert/re-
move/rename edges and nodes) that progressively
transform the AMR graph into a syntactic parse
tree. It achieves this by employing a sequence of
four classifiers, each focusing on a subset of the
transition actions, and finally realizing the syntac-
tic parse tree into the final sentence.

5.1.3 RIGOTRIO
(Gruzitis et al., 2017)
For generation, this team’s approach was to write
transformation rules for converting AMR into
Grammatical Framework (Ranta, 2004) abstract
syntax from which semantically correct English
text can be rendered automatically. In reality the
approach worked for 10% of AMRs. For the
submission the remaining 90% AMRs were con-
verted to text using the JAMR (Flanigan et al.,
2014) tool.

5.1.4 FORGe
(Simon Mille and Wanner, 2017)
UPF-TALN’s generation pipeline comprises a se-
ries of rule-based graph-transducers, for the syn-

tacticization of the input graphs (converted to
CoNLL format) and the resolution of morphologi-
cal agreements, and an off-the-shelf statistical lin-
earization component.

5.1.5 ISI
This was an internal, non-trophy-eligible submis-
sion based on the work of Pourdamghani et al.
(2016). It views generation as phrase based
machine translation and learns a linearization of
AMR such that the result can be used in an off-
the-shelf Moses (Koehn et al., 2007) PBMT im-
plementation.

5.2 Manual Evaluation
We used Appraise (Federmann, 2012), an open-
source system for manual evaluation of machine
translation, to conduct a human evaluation of gen-
eration quality. The system asks human judges
to rank randomly selected systems’ translations of
sentences from the test corpus. This in turn yields
pairwise preference information that can be used
to effect an overall system ranking.

For the purposes of this task we needed to adapt
the Appraise system to admit nested representa-
tions of AMRs, and to be compatible with our IT
infrastructure. A screen shot is shown in Figure 3.

5.3 Scoring
We provided BLEU as a potentially helpful au-
tomatic metric but consider several metrics in-
duced over pairwise comparisons induced by man-
ual evaluation to be the “true” evaluation metric
for the purposes of trophy-awarding:

• Win+tie percentage: This is simply the per-
centage “wins” (better pairwise comparisons)
plus “ties” (equal comparisons) of the total
number of its pairwise comparisons. This
metric was largely used to induce rankings
from human judgments through WMT 2011.

• Win percentage: This is a “harsher”
version of Win+tie; the percentage is

wins
wins+ties+losses . Essentially, ties are
judged as losses. This was used in WMT
2011 and 2012.

• TrueSkill (Sakaguchi et al., 2014). This is an
adaptation of a metric developed for player
rankings in ongoing competitions such as on
Microsoft Xbox Live. The metric maintains
estimates of player (i.e., generation system)
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Win Win+Tie Trueskill BLEU

RIGOTRIO 54.91 81.49 1.07 18.82
CMU 50.36 72.48 0.85 19.01

FORGe 43.64 57.43 0.45 4.74
ISI 26.05 38.39 -1.19 10.92

Sheffield 8.38 21.16 -2.20 3.32

Table 3: Main generation results: The three
manually-derived metrics agree on the systems’

relative rankings.

Win Win+Tie Trueskill
RIGOTRIO 53.00 79.98 1.03

CMU 50.02 71.91 0.819
FORGe 44.49 58.57 0.458

ISI 26.40 38.60 -1.172
Sheffield 9.46 22.84 -2.132

Table 4: Human judgments of generation results
after self-judgments are removed: The results are

fundamentally the same

ability as Gaussian distributions and rewards
events (i.e., pairwise rankings of outputs)
that are unexpected, such as a poorly ranked
player outperforming a highly-ranked player,
more than expected events.

We note that the three metrics derived from hu-
man pairwise rankings agree with the relative or-
dering of the submitted systems’ abilities on the
evaluation data, while the BLEU metric does not.
It is not terribly surprising the BLEU does not cor-
relate with human judgment; it was designed for a
very different task.

Since the participants in this task were also
judges in the human evaluation, we were some-
what concerned that implicit bias might lead to a
skewing of the results, even though system identi-
fication was not available during evaluation. We
thus removed all judgments that involved self-
scoring and recalculated results. The results,
shown in Table 4, show little difference from the
main results.

5.4 Qualitative Analysis

The generation task was quite challenging, as gen-
eration from AMR is still a nascent field. Table 5
shows an example of a single AMR and the con-
tent generated by each system for it, along with the
number of wins, ties, and losses per system by the
human evaluations (note: not all segments were

scored for all systems, and not all systems received
the same number of comparisons). Some system-
atic errors, such as incorporating label text into the
generation, could lead to improvements, as could
a stronger language model; generated output is of-
ten disfluent.

6 Conclusion

Both biomedical AMR parsing and generation
from AMRs appear to be challenging tasks; per-
haps too challenging, as the number of participants
in either subtask was significantly lower than the
participation rate from a year ago. However, we
observed that AMR parsing quality on the seem-
ingly more difficult biomedical domain was no
worse than that observed on the news/forum do-
main. In fact, the same fundamental technology
that dominated in last year’s evaluation once again
reigned supreme. A concern that Smatch was too
coarse a metric to evaluate AMRs was not borne
out, as scores in an ablation study tracked well
with the overall Smatch score. We are pleased
to award the parsing trophy to the UIT-DANGNT-
CLNLP team, which added domain-specific mod-
ification to the strong CAMR (Wang et al., 2015b)
parsing platform.

On the generation side, it seems that there is still
a long way to go to reach fluency. We note that
BLEU, which is often used as a generation metric,
is woefully inadequate compared to human eval-
uation. We hope the analysis presented here will
lead to better generation systems in the future. It
was clear from the human evaluations, however,
that the RIGOTRIO team prevailed and will re-
ceive the generation trophy.
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(a / and
:op1 (r / remain-01
:ARG1 (c / country :wiki "Bosnia_and_Herzegovina"

:name (n / name :op1 "Bosnia"))
:ARG3 (d / divide-02

:ARG1 c
:topic (e / ethnic)))

:op2 (v / violence
:time (m / match-03

:mod (f2 / football)
:ARG1-of (m2 / major-02))

:location (h / here)
:frequency (o / occasional))

:time (f / follow-01
:ARG2 (w / war-01

:time (d2 / date-interval
:op1 (d3 / date-entity :year 1992)
:op2 (d4 / date-entity :year 1995)))))

Source Text W T L
Reference following the 1992-1995 war bosnia remains ethnically divided

and violence during major football matches occasionally occurs
here.

RIGOTRIO following the 1992 1995 war, bosnia has remained an ethnic di-
vide, and the major football matches occasionally violence in here.

1 2 1

CMU following the 1992 1995 war , bosnia remains divided in ethnic
and the occasional football match in major violence in here

2 0 0

FORGe Bosnia and Herzegovina remains under about ethnic the Bosnia
and Herzegovina divide and here at a majored match a violence.

0 0 4

ISI following war between 1992 and 1995 , the country :wiki
bosnia and herzegovina bosnia remain divided on ethnic and vi-
olence in football match by major here from time to time

3 0 1

Sheffield Remain Bosnia ethnic divid following war 920000 950000 major
match footbal occasional here violency

0 2 0

Table 5: Examples of an AMR from the Generation subtask and each system’s generation for it (W = #
wins, T = # ties, L = # losses in human evaluation).
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Abstract

We describe the SemEval task of extract-
ing keyphrases and relations between them
from scientific documents, which is cru-
cial for understanding which publications
describe which processes, tasks and ma-
terials. Although this was a new task, we
had a total of 26 submissions across 3 eval-
uation scenarios. We expect the task and
the findings reported in this paper to be
relevant for researchers working on under-
standing scientific content, as well as the
broader knowledge base population and
information extraction communities.

1 Introduction

Empirical research requires gaining and maintain-
ing an understanding of the body of work in spe-
cific area. For example, typical questions re-
searchers face are which papers describe which
tasks and processes, use which materials and how
those relate to one another. While there are re-
view papers for some areas, such information is
generally difficult to obtain without reading a large
number of publications.

Current efforts to address this gap are search en-
gines such as Google Scholar,1 Scopus2 or Seman-
tic Scholar,3 which mainly focus on navigating au-
thor and citations graphs.

The task tackled here is mention-level iden-
tification and classification of keyphrases, e.g.
Keyphrase Extraction (TASK), as well as extract-
ing semantic relations between keywords, e.g.
Keyphrase Extraction HYPONYM-OF Informa-
tion Extraction. These tasks are related to the
tasks of named entity recognition, named entity

1https://scholar.google.co.uk/
2http://www.scopus.com/
3https://www.semanticscholar.org/

classification and relation extraction. However,
keyphrases are much more challenging to identify
than e.g. person names, since they vary signifi-
cantly between domains, lack clear signifiers and
contexts and can consist of many tokens. For this
purpose, a double-annotated corpus of 500 pub-
lications with mention-level annotations was pro-
duced, consisting of scientific articles of the Com-
puter Science, Material Sciences and Physics do-
mains.

Extracting keyphrases and relations between
them is of great interest to scientific publishers as
it helps to recommend articles to readers, high-
light missing citations to authors, identify poten-
tial reviewers for submissions, and analyse re-
search trends over time. Note that organising
keyphrases in terms of synonym and hypernym re-
lations is particularly useful for search scenarios,
e.g. a reader may search for articles on informa-
tion extraction, and through hypernym prediction
would also receive articles on named entity recog-
nition or relation extraction.

We expect the outcomes of the task to be rele-
vant to the wider information extraction, knowl-
edge base population and knowledge base con-
struction communities, as it offers a novel appli-
cation domain for methods researched in that area,
while still offering domain-related challenges.

Since the dataset is annotated for three tasks
dependent on one another, it could also be used
as a testbed for joint learning or structured pre-
diction approaches to information extraction (Kate
and Mooney, 2010; Singh et al., 2013; Augenstein
et al., 2015; Goyal and Dyer, 2016).

Furthermore, we expect the task to be interest-
ing for researchers studying tasks aiming at under-
standing scientific content, such as keyphrase ex-
traction (Kim et al., 2010b; Hasan and Ng, 2014;
Sterckx et al., 2016; Augenstein and Søgaard,
2017), semantic relation extraction (Tateisi et al.,
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2014; Gupta and Manning, 2011; Marsi and
Öztürk, 2015), topic classification of scientific ar-
ticles (Ó Séaghdha and Teufel, 2014), citation con-
text extraction (Teufel, 2006; Kaplan et al., 2009),
extracting author and citation graphs (Peng and
McCallum, 2006; Chaimongkol et al., 2014; Sim
et al., 2015) or a combination of those (Radev and
Abu-Jbara, 2012; Gollapalli and Li, 2015; Guo
et al., 2015).

The expected impact of the task is an interest
of the above mentioned research communities be-
yond the task due to the release of a new corpus,
leading to novel research methods for information
extraction from scientific documents. What will
be particularly useful about the proposed corpus
are annotations of hypernym and synonym rela-
tions on mention-level, as existing hypernym and
synonym relation resources are on type-level, e.g.
WordNet.4 Further, we expect that these methods
will directly impact industrial solutions to making
sense of publications, partly due to the task organ-
isers’ collaboration with Elsevier.5

2 Task Description

The task is divided into three subtasks:

A) Mention-level keyphrase identification

B) Mention-level keyphrase classification.
Keyphrase types are PROCESS (including
methods, equipment), TASK and MATE-
RIAL (including corpora, physical materials)

C) Mention-level semantic relation extraction
between keyphrases with the same keyphrase
types. Relation types used are HYPONYM-
OF and SYNONYM-OF.

We will refer to the above subtasks as Subtask A,
Subtask B, and Subtask C respectively.

A shortened (artificial) example of a data in-
stance for the Computer Science area is displayed
in Example 1, examples for Material Science and
Physics are included in the appendix. The first part
is the plain text paragraph (with keyphrases in ital-
ics for better readability), followed by stand-off
keyphrase annotations based on character offsets,
followed relation annotations.

4https://wordnet.princeton.edu/
5https://www.elsevier.com/

Example 1.
Text: Information extraction is the process of
extracting structured data from unstructured text,
which is relevant for several end-to-end tasks, in-
cluding question answering. This paper addresses
the tasks of named entity recognition (NER), a sub-
task of information extraction, using conditional
random fields (CRF). Our method is evaluated on
the ConLL-2003 NER corpus.

ID Type Start End
0 TASK 0 22
1 TASK 150 168
2 TASK 204 228
3 TASK 230 233
4 TASK 249 271
5 PROCESS 279 304
6 PROCESS 306 309
7 MATERIAL 343 364

ID1 ID2 Type
2 0 HYPONYM-OF
2 3 SYNONYM-OF
5 6 SYNONYM-OF

3 Resources for SemEval-2017 Task

3.1 Corpus
A corpus for the task was built from ScienceDi-
rect6 open access publications and was available
freely for participants, without the need to sign a
copyright agreement. Each data instance consists
of one paragraph of text, drawn from a scientific
paper.

Publications were provided in plain text, in ad-
dition to xml format, which included the full text
of the publication as well as additional metadata.
500 paragraphs from journal articles evenly dis-
tributed among the domains Computer Science,
Material Sciences and Physics were selected.

6http://www.sciencedirect.com/
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The training data part of the corpus consists of
350 documents, 50 for development and 100 for
testing. This is similar to the pilot task described
in Section 5, for which 144 articles were used for
training, 40 for development and for 100 testing.

We present statistics about the dataset in Ta-
ble 1. Notably, the dataset contains many long
keyphrases. 22% of all keyphrases in the train-
ing set consist of words of 5 or more tokens.
This contributes to making the task of keyphrase
identification very challenging. However, 93% of
those keyphrases are noun phrases7, which is valu-
able information for simple heuristics to identify
keyphrase candidates. Lastly, 31% of keyphrases
contained in the training dataset only appear in it
once, systems will have do generalise to unseen
keyphrases well.

3.2 Annotation Process

Mention-level annotation is very time-consuming,
and only a handful of semantic relations such as
hypernymy and synonymy can be found in each
publication. We therefore only annotate para-
graphs of publications likely to contain relations.

We originally intended to identify suitable doc-
uments by automatically extracting a knowledge
graph of relations from a large scientific dataset
using Hearst-style patterns (Hearst, 1991; Snow
et al., 2005), then using those to find potential re-
lations in a distinct set of documents, similar to
the distant supervision (Mintz et al., 2009; Snow
et al., 2005) heuristic. Documents containing a
high number of such potential relations would
then be selected. However, this requires auto-
matically learning to identify keyphrases between
which those potential relations hold, and requires
relations to appear several times in a dataset for
such a knowledge graph to be useful.

In the end, this strategy was not feasible due to
the difficulty of learning to detect keyphrases au-
tomatically and only a small overlap between rela-
tions in different documents. Instead, keyphrase-
dense paragraphs were detected automatically us-
ing a coarse unsupervised approach (Mikolov
et al., 2013) and those likely to contain relations
were selected manually for annotation.

For annotation, undergraduate student volun-
teers studying Computer Science, Material Sci-
ence or Physics were recruited using UCL’s stu-

7Parts of speech are determined automatically, using the
nltk POS tagger

dent newsletter, which reaches all of its students.
Students were shown example annotations and the
annotation guidelines, and if they were still inter-
ested in participating in the annotation exercise,
afterwards asked to select beforehand how many
documents they wanted to annotate. Approxi-
mately 50% of students were still interested, hav-
ing seen annotated documents and read annotation
guidelines. They were then given two weeks to an-
notate documents with the BRAT tool (Stenetorp
et al., 2012), which was hosted on an Amazon EC2
instance as a web service. Students were compen-
sated for annotations per document. Annotation
time was estimated as approximately 12 minutes
per document and annotator, on which basis they
were paid roughly 10 GBP per hour. They were
only compensated upon completion of all annota-
tions, i.e. compensation was conditioned on an-
notating all documents. The annotation cost was
covered by Elsevier. To develop annotation guide-
lines, a small pilot annotation exercise on 20 doc-
uments was performed with one annotator after
which annotation guidelines were refined.8

We originally intended for student annotators
to triple annotate documents and apply majority
voting on the annotations, but due to difficulties
with recruiting high-quality annotators we instead
opted to double-annotate documents, where the
second annotator was an expert annotator. Where
annotations disagreed, we opted for the expert’s
annotation. Pairwise inter-annotator agreement
between the student annotator and the expert anno-
tator measured with Cohen’s kappa is shown in Ta-
ble 2. The * indicates annotation quality decreased
over time, ending with the annotator not complet-
ing annotating all documents. To account for this,
documents for which no annotations are given are
excluded from computing inter-annotator agree-
ment. Out of the annotators completing the an-
notation exercise, Cohen’s kappa ranges between
0.45 and 0.85, with half of them having a substan-
tial agreement of 0.6 or higher. For future itera-
tions of this task, we recommend to invest signifi-
cant efforts into recruiting high-quality annotators,
perhaps with more pre-annotation quality screen-
ing.

8Annotation guidelines were available to task partici-
pants, they can be found here: https://scienceie.
github.io/resources.html
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Characteristic
Labels Material, Process, Task
Topics Computer Science, Physics, Material Science
Number all keyphrases 5730
Number unique keyphrases 1697
% singleton keyphrases 31%
% single-word mentions 18%
% mentions, word length >= 3 51%
% mentions, word length >= 5 22%
% mentions, noun phrases 93%
Most common keyphrases ‘Isogeometric analysis’, ‘samples’, ‘calibration process’,‘Zirconium alloys’

Table 1: Characteristics of SemEval 2017 Task 10 dataset, statistics of training sets

Student Annotator IAA
1 0.85
2 0.66
3 0.63
4 0.60
5 0.50
6 0.48
7 0.47
8 0.45
9* 0.25
10* 0.22
11* 0.20
12* 0.15
13* 0.06

Table 2: Inter-annotator agreement between the
student annotator and the expert annotator, mea-
sured with Cohen’s Kappa

4 Evaluation

SemEval 2017 Task 10 offers three different eval-
uation scenarios:

1) Only plain text is given (Subtasks A, B, C).

2) Plain text with manually annotated keyphrase
boundaries are given (Subtasks B, C).

3) Plain text with manually annotated
keyphrases and their types are given
(Subtask C).

We refer to the above scenarios as Scenario 1, Sce-
nario 2, and Scenario 3 respectively.

4.1 Metrics
Keyphrase identification (Subtask A) has tradi-
tionally been evaluated by calculating the ex-
act matches with the gold standard. There is
existing work for capturing semantically similar
keyphrases (Zesch and Gurevych, 2009; Kim

et al., 2010a), however since these are captured us-
ing relations, similar to the pilot task on keyphrase
extraction (Section 5) we evaluate keyphrases,
keyphrase types and relations with exact match
criteria. The output of systems is matched ex-
actly against the gold standard. The traditionally
used metrics of precision, recall and F1-score are
computed and the micro-average of those metrics
across publications of the three genres are calcu-
lated. These metrics are also calculated for Sub-
tasks B and C. In addition, for Subtasks B and
C, participants are given the option of using text
manually annotated with keyphrase mentions and
types.

5 Pilot Task

A pilot task on keyphrase extraction from scien-
tific documents was run by other organisers at Se-
mEval 2010 (Kim et al., 2010b). The task was
to extract a list of keyphrases representing key
topics from scientific documents, i.e. similar to
the first part of our proposed Subtask A, only on
type-level. Participants were allowed to submit
up to 3 runs and were required to submit a list
of 15 keyphrases for each document, ranked by
the probability of being reader-assigned phrases.
Data was collected from the ACM Digital Library
for the research areas Distributed Systems, Infor-
mation Search and Retrieval, Distributed Artifi-
cial Intelligence Multiagent Systems and Social
and Behavioral Sciences Economics. Participants
were provided with 144 training, 40 development
and 100 test articles, each set containing a mix
of articles of the different research areas. The
data was provided in plain text, converted from
pdf with pdftotext. Publications were annotated
with keyphrases by 50 Computer Science students
and added to author-provided keyphrases required
by the journals they were published in. Guide-
lines were for the keyphrases to exactly appear

549



anywhere in the text of the paper, in reality 15%
of annotator-provided keyphrases did not, as well
as 19% of author-provided keyphrases. The num-
ber of author-specified keywords was 4 on aver-
age, whereas annotators identified 12 on average.
Returned phrases are considered correct if they are
exact matches of either the annotator- or author-
assigned keyphrases, allowing for minor syntactic
variations (A of B→ B A ; A’s B→ A B). Preci-
sion, recall and F1 is calculated for the top 5, top
10 and all keywords. 19 systems were submitted
to the task, the best one achieving an F1 of 27.5%
on the combined author-assigned and annotator-
assigned keywords.

Lessons learned from the task were that perfor-
mance varies depending on how many keywords
are to be extracted, the task organisers recom-
mend against fixing a threshold for a number of
keyphrases to extract lead. They further recom-
mend a more semantically-motivated task, taking
into account synonyms of keyphrases instead of
requiring exact matches. Both of those recommen-
dations will be taken into account for future task
design. To fulfill the latter, we will ask annotator
to assign types to the identified keywords (process,
task, material) and identify semantic relations be-
tween them (hypernym, synonym).

6 Existing Resources

As part of the FUSE project with IARPA, we cre-
ated a small annotated corpus of 100 noun phrases
generated from the titles and abstracts derived
from the Web Of Science corpora9 of the domains
Physics, Computer Science, Chemistry and Com-
puter Science. These corpora cannot be distributed
publicly and were made available by the IARPA
funding agency. Annotation was performed by 3
annotators using 14 fine-grained types, including
PROCESS.

We measured inter-annotator agreement among
the three annotators for the 14 categories using
Fleiss’ Kappa. The k value was found to be 0.28
which implies that there was fair agreement be-
tween them, however distinguishing between the
fine-grained types added significantly to the an-
notation time. Therefore we only use three main
types for the SemEval 2017 Task 10.

9http://thomsonreuters.
com/en/products-services/
scholarly-scientific-research/
scholarly-search-and-discovery/
web-of-science.html

There are some existing keyphrase extraction
corpora, however, they are not similar enough to
the proposed task to justify reuse. Below is a de-
scription of existing corpora.

The SemEval 2010 Keyphrase Extraction cor-
pus (Kim et al., 2010b)10 consists of a handful of
document-level keyphrases per article. In contrast
to the task proposed, the keyphrases are annotated
on type-level and not further classified as process,
task or material and semantic relations are not an-
notated. Further, the domains considered are dif-
ferent and mostly sub-domains of Computer Sci-
ence.

The corpus released by Tateisi et al. (2014)11

contains sentence-level fine-grained semantic an-
notations for 230 publication abstracts in Japanese
and 400 in English. In contrast to what we pro-
pose, the annotations are more fine-grained and
annotations are only available for abstracts.

Gupta and Manning (2011) studied keyphrase
extraction from ACL Anthology articles, applying
a pattern-based bootstrapping approach based on
15 016 documents and assigning the types FO-
CUS, TECHNIQUE and DOMAIN. Performance
was evaluated on 30 manually annotated docu-
ments. Although the latter corpus is related to
what we propose, manual annotation is only avail-
able for a small number of documents and only for
the Natural Language Processing domain.

The ACL RD-TEC 2.0 dataset (QasemiZadeh
and Schumann, 2016) consists of 300 ACL An-
thology abstracts annotated on mention-level with
seven different types of keyphrases. Unlike our
dataset, it does not contain relation annotations.
Note that this corpus was created at the same time
as the one SemEval 2017 Task 10 dataset and thus
we did not have the chance to build on it. A more
in-depth comparison between the two datasets as
well as keyphrase identification and classification
methods evaluated on them can be found in Au-
genstein and Søgaard (2017).

6.1 Baselines
We frame the task as a sequence-to-sequence pre-
diction task. We preprocess the files by splitting
documents into sentences and tokenising them
with nltk, then aligning span annotations from
.ann files to tokens. Each sentence is regarded
as one sequence. We then split the task into the

10https://github.com/snkim/
AutomaticKeyphraseExtraction

11https://github.com/mynlp/ranis
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three subtasks, keyphrase boundary identification,
keyphrase classification and relation classification
and add three output layers. We predict the fol-
lowing types, for the three subtasks respectively:
Subtask A: tA = O,B, I for tokens being outside,
at the beginning, or inside a keyphrase
Subtask B: tB = O,M, P, T for tokens being out-
side a keyphrase, or being part of a material, pro-
cess or task
Subtask C: tC = O,S,H for Synonym-of and
Hyponym-of relations. For Subtask A and B, we
predict one output label per input token. For Sub-
task C we predict a vector for each token, that
encodes what the relationship between that token
and every other token in the sequence is for the
first token in each keyphrase. After predictions
for tokens are obtained, these are converted back
to spans and relations between them in a post-
processing step.

We report results for two simple models: one to
estimate the upper bound, that converts .ann files
into instances, as described above, then converts
them back into .ann files. Next, to estimate a lower
bound, a random baseline, that for each token as-
signs a random label for each of the subtasks.

The upper bound span-token-span round-trip
conversion performance, an F1 of 0.84, shows that
we already lose a significant amount of perfor-
mance due to sentence splitting and tokenisation
alone. The random baseline further shows hard
especially the keyphrase boundary identification
task is and as a result the overall task, since the
subtasks depend on one another. For Subtask A,
a random baseline achieves an F1 of 0.03. The
overall tasks gets easier if keyphrase boundaries
are given, resulting in F1 of 0.23 for keyphrase
classification, and if keyphrase types are given, an
F1 of 0.04 are achieved with the random baseline
for Subtask C.

7 Summary of Participating Systems

In this section, we summarise the outcome of
the competition. For more details please re-
fer to the respective system description papers
and the task website https://scienceie.
github.io/.

We had three subtasks, described in Sec 2,
which were grouped together in three evaluation
scenarios, described in Sec 4. The competition
was hosted in CodaLab12 in two phases: (i) de-

12https://competitions.codalab.org/

velopment phase and (ii) testing phase. Fifty four
teams participated in the development phase, and
out of them twenty six teams participated in the fi-
nal competition. One of the major success of the
competition is due to such wide participation and
application of various different techniques start-
ing from neural networks, supervised classifica-
tion with careful feature engineering to simple rule
based methods. We present a summary of ap-
proaches used by task participants below.

7.1 Evaluation Scenario 1

In this scenario teams need to solve all three sub-
tasks A, B, and C; where no annotation informa-
tion was given. Some teams participated only in
Subtask A, or B; but the overall micro F1 perfor-
mance across subtasks is considered for the rank-
ing of the teams. Seventeen teams participated in
this scenario. The F1 scores range from 0.04 to
0.43. Complete results are given in Table 3.

Various different types of methods have been
applied by different teams with various levels of
supervision. The best three teams TTI COIN,
TIAL UW, and s2 end2end have used recurrent
neural network (RNN) based approaches to ob-
tain F1 scores of 0.38, 0.42 and 0.43 respectively.
However, TIAL UW, and s2 end2end, by using a
conditional random fields (CRF) layer on top of
RNNs achieve a higher F1 in Subtask A compared
to TTI COIN.

The fourth team PKU ICL with an F1 of 0.37
found classification models based on random for-
est and support vector machines (SVM) useful
with carefully engineered feature such as TF-IDF
over a very large external corpus, IDF weighted
word-embeddings etc, along with an existing tax-
onomy. SciX on the other hand used noun phrase
chunking and trained an SVM classifier on pro-
vided training data to classify phrases, and used a
CRF to predict labels of the phrases. CRF based
methods with parts-of-speech (POS) tagging and
orthographic features such as presence of symbols
and capitalisation have been tried by several teams
(NTNU, SZTE-NLP, WING-NUS) and they lead-
ing to a reasonable performance (F1: 0.23, 0.26,
and 0.27, respectively).

Noun phrase extraction with length constraint
by HCC-NLP, and using a global list of keyphrases
by NITK IT PG are found not to perform satis-
factorily (F1: 0.16 and 0.14 respectively). The

competitions/15898
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Teams Overall A B C
s2 end2end (Ammar et al., 2017) 0.43 0.55 0.44 0.28
TIAL UW 0.42 0.56 0.44
TTI COIN (Tsujimura et al., 2017) 0.38 0.5 0.39 0.21
PKU ICL (Wang and Li, 2017) 0.37 0.51 0.38 0.19
NTNU-1 (Marsi et al., 2017) 0.33 0.47 0.34 0.2
WING-NUS (Prasad and Kan, 2017) 0.27 0.46 0.33 0.04
Know-Center (Kern et al., 2017) 0.27 0.39 0.28
SZTE-NLP (Berend, 2017) 0.26 0.35 0.28
NTNU (Lee et al., 2017b) 0.23 0.3 0.24 0.08
LABDA (Segura-Bedmar et al., 2017) 0.23 0.33 0.23
LIPN (Hernandez et al., 2017) 0.21 0.38 0.21 0.05
SciX 0.2 0.42 0.21
IHS-RD-BELARUS 0.19 0.41 0.19
HCC-NLP 0.16 0.24 0.16
NITK IT PG 0.14 0.3 0.15
Surukam 0.1 0.24 0.1 0.13
GMBUAP (Flores et al., 2017) 0.04 0.08 0.04
upper bound 0.84 0.85 0.85 0.77
random 0.00 0.03 0.01 0.00

Table 3: F1 scores of teams participating in Scenario 1 and baseline models for Overall, Subtask A,
Subtask B, and Subtask C. Ranking of the teams is based on overall performance measured in Micro F1.

former is surprising, as keyphrases are with an
overwhelming majority noun phrases, the latter
not as much, many keyphrases only appear once
in the dataset (see Table 1). GMBUAP further
tried using empirical rules obtained by observ-
ing the training data for Subtask A, and a Naive
Bayes classifier trained on provided training data
for Subtask B. Such simple methods on their own
prove not to be accurate enough. Attempts of such
give us additional insight about the hardness of the
problem and applicability of simple methods to the
task.

7.2 Evaluation Scenario 2

In this scenario teams needed to solve sub-tasks
B, and C. Partial annotation was provided to the
teams, that is, solution to the Subtask A. Four
teams participated in this scenario with F1 cores
ranging from 0.43 to 0.64. Please refer to Table 4
for complete result.

Except MayoNLP, other three teams partici-
pated only in Subtask B. Although ranking is done
based on overall performance, but in this scenario

13After the end of the evaluation period, team
UKP/EELECTION discovered those results were based
on training on the development set. For training on the
training set, their results are: 0.69 F1 overall and 0.72 F1 for
Subtask B only

rankings are consistent in each category. BUAP
with the worst F1 score for Subtask B (0.45),
is still better than the best team in Scenario 1
s2 end2end for Subtask B (0.44). Partial annota-
tion or accuracy for Subtask A proves to be crit-
ical, reinforcing again that identifying keyphrase
boundaries is the most difficult part of the shared
task.

Unlike the Scenario 1, in this case the top
two teams used classifiers with lexical features
(F1: 0.64) as well as neural networks (F1: 0.63).
The first team MayoNLP used SVM with rich
feature sets like n-grams, lexical features, or-
thographic features, whereas the second team
UKP/EELECTION used used three different neu-
ral network approaches and subsequently com-
bined them via majority voting. Both these meth-
ods perform quite similarly. However, a CRF
based approach and an SVM with simpler fea-
ture sets attempted by the two teams LABDA and
BUAP are found to be less effective in this sce-
nario.

MayoNLP applied a simple rule based method
for synonym-of relation extraction, and Hearst
patterns for hyponym-of relation detection. The
rules for synonym-of detection is based on pres-
ence of phrases such as in terms of, equivalently,
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Teams Overall B C
MayoNLP (Liu et al., 2017) 0.64 0.67 0.23
UKP/EELECTION (Eger et al., 2017)13 0.63 0.66
LABDA (Segura-Bedmar et al., 2017) 0.48 0.51
BUAP (Alemán et al., 2017) 0.43 0.45
upper bound 0.84 0.85 0.77
random 0.15 0.23 0.01

Table 4: F1 scores of teams participating in Scenario 2 and baseline models for Overall, Subtask B,
and Subtask C. Ranking of the teams is based on overall performance measured in Micro F1. Teams
participating in Scenario 2 received partial annotation with respect to Subtask A.

Teams Overall
MIT (Lee et al., 2017a) 0.64
s2 rel (Ammar et al., 2017) 0.54
NTNU-2 (Barik and Marsi, 2017) 0.5
LaBDA (Suárez-Paniagua et al., 2017) 0.38
TTI COIN rel (Tsujimura et al., 2017)15 0.1
upper bound 0.84
random 0.04

Table 5: F1 scores of teams participating in Sce-
nario 3 and baseline models. Teams participating
in Scenario 3 received partial annotation with re-
spect to Subtask A, and Subtask B. Ranking of the
teams is based on overall performance measured
in Micro F1.

which are called etc in the text between two
keyphrases. Interestingly, the RNN based ap-
proach of s2 end2end in Scenario 1 performs bet-
ter than MayoNLP without using partial annota-
tion of Subtask A.

7.3 Evaluation Scenario 3

In this scenario, teams need to solve only Subtask
C. Partial annotations were provided to the teams
for Subtask B and C. Five teams participated in
this scenario, and F1 scores ranged from 0.1 to
0.64. Please refer to Table 5 for complete result.

Neural network (NN) based models are found to
perform better than other methods in this scenario.
The best method by MIT uses a convolutional NN
(CNN). The other method uses two phases of NN
and found to be reasonably effective (F1: 0.54).

On the other hand, application of supervised
classification with five different classifiers (SVM,
decision tree, random forest, multinomial naive

15After the end of the evaluation period, team
TTI COIN rel discovered a bug in preprocessing, lead-
ing to low results. Their overall result after having corrected
for that error is a Macro F1 of 0.48.

Bayes and k-nearest neighbour) using three differ-
ent feature selection techniques (chi square, deci-
sion tree, and recursive feature elimination) found
close accuracy (F1: 0.5) with the top performing
ones.

LaBDA also use a CNN based method. How-
ever, the rule based post-processing and argument
ordering strategy applied by MIT seemed to give
additional advantage as also observed by them.

However most of the teams in this scenario out-
perform, all teams from other scenarios (who did
not have access to partial information for Subtask
B, and C) in relation prediction. This also asserts
the significance of accuracy on Subtask A, and B
in order to perform accurately on Subtask C.

8 Conclusion

In this paper, we present the setup and discuss
participating systems of SemEval 2017 Task 10
on identifying and classifying keyphrases and re-
lations between them from scientific articles, to
which 26 systems were submitted. Successful
systems vary in their approaches. Most of them
use RNNs, often in combination with CRFs as
well as CNNs, however the system performing
best for evaluation scenario 1 uses an SVM with
a well-engineered lexical feature set. Identify-
ing keyphrases is the most challenging subtask,
since the dataset contains many long and infre-
quent keyphrases, and systems relying on remem-
bering them do not perform well.
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Abstract

This task proposes a challenge to support
the interaction between users and appli-
cations, micro-services and software APIs
using natural language. It aims to support
the evaluation and evolution of the discus-
sions surrounding the application natural
language processing techniques within the
context of end-user natural language pro-
gramming, under scenarios of high lexical
and semantic heterogeneity.

1 Introduction

The specific syntax of traditional programming
languages and the user effort associated with find-
ing, understanding and integrating multiple inter-
faces within a software development task, defines
the intrinsic complexity of programming. De-
spite the widespread demand for automating ac-
tions within a digital environment, even the ba-
sic software development tasks require previous
(usually extensive) software development exper-
tise. Domain experts processing data, analysts au-
tomating recurrent tasks, or a businessman testing
an idea on the web depend on the mediation of
programmers to materialise their demands, inde-
pendently of the simplicity of the task to be ad-
dressed and on the availability of existing services
and libraries.

Recent advances in natural language process-
ing bring the opportunity of improving the interac-
tion between users and software artefacts, support-
ing users to program tasks using natural language-
based communication. This ability to match users’
actions intents and information needs to formal
actions within an application programming inter-
face (API), using the semantics of natural lan-
guage as the mediation layer between both, can
drastically impact the accessibility of software de-

velopment. Despite the fact that some software
development tasks with stricter requirements will
always depend on the precise semantic definition
of programming languages, there is a vast spec-
trum of applications with softer formalisation re-
quirements. This subset of applications can be de-
fined and built with the help of natural language
descriptions.

This SemEval task aims to develop the state-of-
the-art discussions and techniques concerning the
semantic interpretation of natural language com-
mands and user action intents, bridging the seman-
tic gap between users and software artefacts. The
practical relevance of the challenge lies in the fact
that addressing this task supports improving the
accessibility of programming (meaning a system-
atic specification of computational operations) to a
large spectrum of users which have the demand for
increasing automation within some specific tasks.
Moreover, with the growing availability of soft-
ware artefacts, such as APIs and services, there
is a higher demand to support the discoverabil-
ity of these resources, i.e. devising principled se-
mantic interpretation approaches to semantically
match interface descriptions with the intent from
users.

The proposed task also intersects with demands
from the field of robotics, as part of the human-
robot interaction area, which depends on a sys-
tematic ability to address user commands that lie
beyond navigational tasks.

From the point-of-view of computational lin-
guistics, this challenge aims to catalyse the dis-
cussions in the following dimensions:

• Semantic parsing of natural language com-
mands;

• Semantic representation of software inter-
faces;
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• Statistical and ontology-based semantic
matching techniques;

• Compositional models for natural language
command interpretation (NLCI);

• Machine learning models for NLCI;

• API/Service composition and associated
planning techniques;

• Linguistic aspects of user action intents.

2 Commands & Programming in
Natural Language

The use of natural language to instruct robots and
computational systems, in general, is an active re-
search area since the 70’s and 80’s (Maas and Sup-
pes, 1985; Guida and Tasso, 1982) (and within ref-
erences). Initiatives vary over a large spectrum of
application domains including operating system’s
functions (Manaris and Dominick, 1993), web ser-
vices choreography (Englmeier et al., 2006), mo-
bile programming by voice (Amos Azaria, 2016),
domain-specific natural programming languages
(Pane and Myers, 2006), industrial robots (Sten-
mark and Nugues, 2013) and home care assistants.

The variability of domains translates into a wide
number of research communities comprising dif-
ferent foci and being expressed by distinct terms
such as natural language interfaces, end-user de-
velopment, natural programming, programming
by example and trigger-action development. Some
of these terms embrace wide domains, also includ-
ing non-verbal (visual) approaches.

2.1 Semantic Parsing & Matching

The interpretation of natural language commands
is typically associated with the task of parsing the
natural language input to an internal representa-
tion of the target system. This internal represen-
tation is usually associated with a n-ary predicate-
argument structure which represents the interface
for an action within the system. The identification
of which action the command refers to and its po-
tential parameters are at the centre of this task.

Taking as an example the natural language com-
mand:

Please convert US$ 475 to the Japanese
currency and send this value to John
Smith by SMS.

We can conceptualise the challenges involved
in the command interpretation process in three di-
mensions: command chunking, term type identi-
fication and semantic matching. The chunking
dimension comprises the identification of terms
and segments in the original sentence that can po-
tentially map to the system actions and parame-
ters. The example command embodies two ac-
tions: converting currency and sending SMS. For
the first action, the command interpreter needs to
identify the currencies involved in the transaction
and the financial amount (term type identification).

Other semantic interpretation processes might
be involved. In the case of the second action, be-
sides identifying John Smith as the message’s re-
ceiver, the interpreter also needs to resolve the co-
reference of this value to the currency conversion
result and instantiate it as a parameter in the con-
tent of the message. This first level of interpre-
tation of the command would generate an output
such as:

SEQUENCY {
ACTION: [ convert currency ]
PARAMS: [US$ 475] - [(to) Japanese
currency]

ACTION: [ send sms ]
PARAMS: [this value] - [(to) John
Smith]
}

The matching process corresponds to the map-
ping between terms from the user vocabulary to
the terms used in the internal representation of the
system (the API). In the given example, the system
should find an action that can convert currencies
and another that can send SMS messages.

In the example, depending on the parametri-
sation of the command interface, the value [US$
475] needs to be split into two parameters, and
these parts, mapped to the internal vocabulary of
the system (US$ need to be interpreted as USD
while Japanese currency needs to be translated to
JPY. For the second action, similarly, John Smith
will be used to retrieve a phone number from a
user personal data source.

The final execution command is the result of
the matching processing, as shown below:

ACTION ENDPOINT: [action id]
PARAMS:
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Figure 1: An overview of the task.

from: “USD”
to: “JPY”
from amount: 475

The task can be addressed using different
semantic interpretation abstractions: shallow
parsing, lambda-calculus-based semantic parsing
(Artzi et al., 2014), compositional-distributional
models (Freitas and Curry, 2014; Freitas, 2015),
information retrieval approaches (Sales et al.,
2016). Additionally, pre-processing techniques
such as clausal disembedding (Niklaus et al.,
2016) and co-reference resolution are central com-
ponents within the task.

While approaches and test collections empha-
sising the shallow parsing aspect of the problem
are more present in the literature (Section 3), oth-
ers focusing on a semantic matching process in-
volving a broader vocabulary gap (Furnas et al.,
1987) are less prevalent. Part of this can be ex-
plained by the domain-specific nature of previous
works (e.g. focus on spatial commands (Dukes,
2014)).

In contrast, this task emphasises the creation
of a test collection targeting an open domain sce-
nario, with a large-scale set of target actions, as-
sessing the ability of command interpretation ap-
proaches to address a larger vocabulary gap. This
scenario aims to instantiate a real use case for end-

user natural language programming, since the ac-
tion knowledge base used in the test collection
maps to real-world APIs and so a semantic inter-
preter developed over this test collection can be-
come a concrete end-user programming environ-
ment.

3 Similar Initiatives

Most of the applications related to the parsing of
natural language commands are within the context
of human-robot interaction. The Human Robot In-
teraction Corpus (HuRIC) describes a list of spo-
ken commands between humans and robots. It
is composed of three datasets which were devel-
oped under the context of three different events.
They are annotated using Frame Semantics to-
gether with Holistic Spatial Semantics (Bastianelli
et al., 2014).

Artzi et al. (2014) and Tellex et al. (2014) give
a more focused contribution in the interpretation
of spatial elements. In both cases, the vocabulary
variability is more constrained. Similar vocabu-
lary variability assumptions are present in Thoma-
son et al. (2015) and Azaria et al. (2016).

In 2014, SemEval hosted a task related to the
parsing of natural language spatial commands
(Dukes, 2014), also targeting a robotics scenario.
More specifically, the task proposed the parsing of
commands to move a robot arm that moved objects
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within a spatial region.
The proposed task can be contrasted with these

previous initiatives in the following dimensions:
(i) more comprehensive knowledge base of ac-
tions, (ii) generic (open domain) user program-
ming scenarios and (iii) exploration of the inter-
action between actions and user personal informa-
tion (Section 4).

The work that has more similarity with this test
collection is the problem defined by Quirk et al.
(2015) under the ifttt.com platform, which targets
the creation of an if-then receipt from a natural
language description provided by the user. The
first difference between the two tasks is the fact
that, while the program structure is limited to if-
then recipes in Quirk et al., other more complex
structures are supported in this task. Secondly, in
the case of Quirk et al., the task requires only the
mapping of the actions that comprise the recipe,
keeping aside the instantiation of the parameter
values, while our proposed task emphasises both.
Finally, the presence of these two characteristics
introduces the challenge of mapping co-references
and metonymy within the task.

4 Task Definition

The task comprises 210 scenarios which consist
of a total of 438 natural language commands. Fig-
ures 1 and 2 depicts an overview of the task. A sce-
nario is a set of sentences that defines a program
in natural language. The excerpt below shows an
example of a scenario:

“When a message from Enrico Hernan-
dez arrives, get the necklace price; Con-
vert it from Chilean Pesos to Euro; If it
costs less than 100 EUR, send to him
a message asking him to buy it; If not,
write saying I am not interested.”

Associated with each scenario, there is a pro-
gram which is composed of actions from the Ac-
tion Knowledge Base (Action KB). In addition
to the actions, the program also uses If and
Foreach constructors, having the same seman-
tics commonly expressed in programming lan-
guages to define the execution flow.

Like a programming language function, an ac-
tion can have input parameters and return values.
Table 1 shows examples of natural language com-
mands describing scenarios.

Natural language scenario commands
If a receive a deposit from John Sanders in my bank
account, send this message to him: “Hello John,
thanks for your gift, I receive your deposit of some
money to me, thanks a lot, buddy.”
Send an email to Mark asking him for the picture we
took in Munich. When I receive the answer, get the
attached image and publish it on my Flickr account
with the tags #munich, #germany, #my-love
Find “Bachianas N.5 of Villa-Lobos” on Youtube.
Get the link and send to my mum.
List tweets containing #ChampionsLeague.
Find a picture of Darth Vader on Flickr. Post this text
to my friends on Facebook with the picture of Darth
Vader: May The Force Be With Us Next Friday!!!
Search on eBay for the iPhone 7 with the maximum
price of 700 Euro and send the result list by e-mail to
my wife.
Message Dr Brown by email, asking a suitable day for
a meeting; When I receive the information, sent to my
wife by email;
Search for a picture of Yoda. Attach that image in a
Facebook post and write this: Friends, let’s go to the
cinema to the see Star Wars on Friday.
When I receive an email from Helena, get the attach-
ment. Print it and write to Mr Sanders by Skype: Hi
Mr Sanders, the document is in the printer.
If someone reports a problem in GitHub, send the
problem title by Skype to John, if the project name
is FinanceSystem. For all other systems, send a mes-
sage to the Tech Manager.
If Manchester United wins, put Thriller of Michael
Jackson in Spotify “celebrations” playlist and call me
to say “we are the champions, my friends”.
Open the door always when reached Central Park.
Get a quote about science. Get a photo of Paris. At-
tach the photo in an email, write the quote and send
to maria@hotmail.com.
Get the translation of the hashtag #sqn. Convert it to
a QR code and send to my Skype account.

Table 1: Examples of natural language commands
describing scenarios.

The values of the parameters map to constants
(e.g. integer numbers, string values) or to tags,
which represent returning data from previously ex-
ecuted actions. There are two types of tags.

• <returnX> The return tag represents the
content returned by the action X, where X is
a sequential identifier.

• <item> The item tag is used only in the con-
text of Foreach constructors. It represents an
iterated item.

Both types of tags have some additional naming
assumptions in order to simplify the syntax of the
generated program. Examples of valid tags are:

• <return1> - meaning the data returned by
the first action in the scenario.
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• <item>.url - represent the attribute url of
the item.

In addition to the scenarios, the test collection
consists of:

• Action KB: The set of available API func-
tions along with their respective documen-
tation. The information describing the API
functions does not follow a strict pattern.
While some documentation has rich natural
language descriptions or show usage exam-
ples, others are succinct and just contain the
frame and parameter names. The same oc-
curs concerning data format, data type and re-
turning data. This test collection reflects the
variability and heterogeneity that we find in
real-world APIs.

• User KB: A personal user information
dataset, which is necessary to make com-
mands more natural by supporting co-
reference resolution. It allows commands
like “Call John”, once the system can iden-
tify the proper phone number from the User
KB.

An example excerpt of the User KB is described
below:

[
{

"name": "Maria Alice",
"address": "Rua Central, 35,

Rio de Janeiro,
Brasil",

"facebook": "malice",
"group": "classmates",
"mail": "maria@alice.com.br",
"phone": "555 111 222",
"skype": "maria.alice",
"tags": "my wife",
"twitter": "malice"

},
{

"name": "John Sanders",
"address": "7 North Avenue,

New York, USA",
"facebook": "jsanders",
"group": null,
"mail": "john@fam.com",
"phone": "111 555 777",
"skype": "johnjohn",
"tags": null,

id action name(params*)
700000 make a payment(invoice)
600603 send an email(attachment url)
700002 read file content(file)
700003 extract content(info)
503679 convert(to)
700005 get contacts(group)
600490 upload public photo from url(tags)
700006 search image on Flickr(query)
700007 search video on YouTube(query)
600431 create a link post(link url)
601733 post a tweet with image(image url)
700008 tweets from search(search for)
502328 directions(starting)
600352 new item from search(search terms)
600979 share a link(image url)
700009 create calendar item(which day?)
600761 print document(document url)
601535 post message(user name)
500797 convert-file(file)
700011 any new post by someone(user)
600591 any new issue(user)
601206 new article in section(section)
600187 add a bitlink(url)
601732 post a tweet(tweet text)
601888 picture of the day(section)
600840 add photo to album(album name)
600408 new final score(team)
601684 new story from section(which section?)
600596 create an issue(body)
601791 air quality changed(device)
503062 search(depart-date)
502335 check(text)
600326 take snapshots(which camera?)
503155 get-top-definition(hashtag)

Table 2: Examples of action frames used in the
scenarios.

"twitter": "jsanders"
},
...

]

The natural language scenarios, Action KB
and User KB are all described using JSON as
a serialisation format. The Action KB is com-
posed of about 3800 micro-services from Mashape
(mashape.com) and 1900 actions and triggers
from the ifttt.com platform. APIs from
Mashape and ifttt.com are public, and their
instantiation for the challenge was approved by the
platform owners.

Table 2 shows examples of action frames used
in the dataset and Table 3 shows metrics about the
scenarios, actions and the associated natural lan-
guage commands, showing the natural language
signature of the test collection.
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metric training test total
# of scenarios 179 31 210
avg # of sentences per scenario 2.72 2.35 2.66
# of actions 374 64 438
avg # of actions per scenario 2.08 2.06 2.08
avg # of params per action 1.59 1.22 1.52
# of conditionals in actions 53 14 67
# of co-references in actions 124 17 141
# of metonymy in actions 94 11 105

Table 3: Metrics about the scenarios, actions and the associated natural language command.

4.1 Annotation
The scenarios containing the natural language
commands were created using high-level task de-
scriptions. These high-level task descriptions were
sent to a crowdsourcing platform (CrowdFlower),
in which workers were requested to express in nat-
ural language the commands which entail the sce-
nario descriptions. Motivated by those scenario
descriptions, the users proposed a set of com-
mands which addresses the specification.

The excerpt below shows an example of a sce-
nario description:

You are arranging a meeting with some
people in Andre’s office. Adamantios is
coming for that meeting, but he does not
know how to drive in Passau. Addition-
ally, you do not know where the office is.

One possible output for that description is:

• Ask Andre for the address of his office;

• Make a map from the university to it;

• Send the map to Adamantios including driv-
ing directions.

For each scenario description, in average ten
workers were invited to suggest the natural lan-
guage commands. The crowdsourcing process
was followed by a data curation process which dis-
carded 70% of the commands due to low quality
issues. The other part of the sample was reviewed
to correct misspelling and adjusted to comply with
the task requirements while preserving the original
syntactic structure and vocabulary.

5 Analysis of The Task Complexity

The task aims to explore vocabulary and syn-
tactic structure variation within the natural lan-

guage commands. It also targets the orches-
tration of different natural language processing
techniques, including syntactic parsing, semantic
role labelling, fine-grained semantic approxima-
tion and co-reference resolution.

5.1 Semantic approximation

Different actions and parameters can be expressed
using distinct lexicalizations (synonymy) and ab-
straction levels. For example:

“If someone reports a problem in
GitHub, send the problem’s headline by
Skype to John.”

In the examples, the action in the knowledge
base is expressed as “any new issue”, while in-
tended “headline” in the returned value is ex-
pressed as “Issue Title”. Given the context, it
is expected the system to be able to identify the
equivalence between the pairs of terms (problem,
issue) and (title, headline).

5.2 Syntactic variation

Additionally, interpreters are expected to cope
with syntactic variation.

“If Manchester United wins, call me.”

“Get ready to call me in the case of vic-
tory of Manchester United.”

5.3 Co-reference and metonymy resolution

The first type of resolution needed is the pronomi-
nal co-reference, where a pronoun refers to a con-
stant which was previously mentioned within the
context of the same scenario. The metonymy reso-
lution consists of using the reference to an attribute
or type to refer to a constant or to a different at-
tribute of a constant. For example:
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Figure 2: The scenario creation workflow.

“If an issue is created, send its content
to the Tech Manager.”

This excerpt shows both cases. The bold its
makes reference to an issue, while Tech Manager
is a metonymy for the Tech Manager’s email (san-
dra@andrade.com.br according to the user KB).

6 Evaluation

The final dataset contains commands and their as-
sociated mappings to the Action KB. Given a com-
mand in natural language, it is expected that the
participating systems provide:

• The correct action;

• The correct mapping of text chunks in the
natural commands to parameters;

The participating systems were evaluated con-
sidering four criteria:

1. Resolved individual actions ignoring param-
eter values;

2. Resolved individual actions considering pa-
rameter values;

3. Resolved scenarios ignoring parameter val-
ues;

4. Resolved scenarios considering parameter
values.

Criteria 1 and 2 are quantified by using preci-
sion and recall, while 3 and 4 are quantified by the

percentage of the total number of scenarios which
were addressed.

Participating teams were allowed to use exter-
nal linguistic resources and external tools such as
taggers and parsers.

7 Participants and Results

Initially, nine teams demonstrated interest in the
tasks, but only one participated in the challenge.

Kubis et al. (2017) proposed the EUDAMU
system, which implements an action ranking
model based on TF/IDF and a type matching sys-
tem.

The EUDAMU system is composed of a
pipeline divided into six steps. It starts by pre-
processing the dataset using three tools (NLTK,
Core-NLP and SyntaxNet). In the pre-processing
step, natural language commands are tokenized
and each token is enriched with its lemma, part-
of-speech and named entity labels. Addition-
ally, it also adds the constituent and dependency
structures associated with the commands. The fi-
nal pre-processing step annotates the commands
with types which supports the system to resolve
co-references between the actions and references
from the User KB. The same procedure (with the
exception of the last step) is applied for the Action
KB.

The preprocessing phase is followed by the Dis-
course Tagger, which is responsible for individu-
alising the command from the paragraph descrip-
tion of the scenario. The team implemented this
component using a rule-based approach. The next
step is Action Ranker, which applies a TF-IDF
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Criterion Metric Value

Individual actions solved ignoring parameter values
precision 0.5490
recall 0.7066

Individual actions solved considering parameter values
precision 0.0533
recall 0.0533

Scenarios solved ignoring parameter values accuracy 41.93%
Scenarios solved considering parameter values accuracy 0%

Table 4: Results from Kubis et al.

model to rank the actions. The model was indexed
using all textual content present in the Action KB,
plus the actions which were mapped with in the
training mappings file. The next step is the Ref-
erence Matcher that is designed to identify which
output of a given action act as the parameters of
a subsequent action. The next step is the Param-
eter Matcher. It infers parameter and value types
which can serve as a support to the action match-
ing process. Finally, based on the knowledge gen-
erated and stored in the previous steps, the rule-
based Statement Mapper provides a list of up to
10 elements of possible matching action instances.
Additional details of the proposed method can be
found in the original paper (Kubis et al., 2017).
Table 4 shows its results.

While the proposed solution has a high re-
call for the number of resolved actions, it fails
mainly in providing the correct value for all the
required parameters. Two types of linguistic set-
tings showed to be more challenging:

• Description of commands split into two sen-
tences. For example:

“Get the price of the book The In-
telligent Investor. If it costs less
than 25 Euros, buy it.”

where “25 Euros” is the parameter value of
the action defined in the first sentence.

• Capturing actions with more specific/fine-
grained semantics. For example:

“Once I have bet my running dis-
tance target of the week, set my
current weight as 100 Kg in Fitbit.”

where the system ignored the temporal
expression“of the week” and suggested
the “Daily step goal achieved” instead of
“Weekly distance goal reached” action. A
second example of the same case is expressed
in the command:

“Suspend the execution of my Sam-
sung washer.”

where the term “Samsung” was ignored when
selecting actions.

8 Summary

In the Semeval 2017 Task 11 we developed a
test collection to support the creation of seman-
tic interpretation methods for end-user program-
ming environments. The test collection focuses on
the following features in comparison with existing
approaches: (i) open domain, (ii) large syntactic
and vocabulary variability, (iii) dependent of co-
reference and metonymy resolution. Moreover, as
the test collection uses APIs available on the open
web, it can be used to build real end-user pro-
gramming environments. While there is space for
the improvement of the precision and recall on the
identification of the command actions, the main
challenge remains in the matching of the parame-
ters between natural language commands and the
API.
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André Freitas. 2015. Schema-agnostic queries over
large-schema databases: a distributional semantics
approach. PhD Thesis.

Andre Freitas and Edward Curry. 2014. Natural
language queries over heterogeneous linked data
graphs: A distributional-compositional semantics
approach. In Proceedings of the 19th International
Conference on Intelligent User Interfaces. ACM,
New York, NY, USA, IUI ’14, pages 279–288.
https://doi.org/10.1145/2557500.2557534.

George W. Furnas, Thomas K. Landauer, Louis M.
Gomez, and Susan T. Dumais. 1987. The
vocabulary problem in human-system com-
munication. Commun. ACM 30(11):964–971.
https://doi.org/10.1145/32206.32212.

Giovanni Guida and Carlo Tasso. 1982. Nli: a
robust interface for natural language person-
machine communication. International Jour-
nal of Man-Machine Studies 17(4):417 – 433.
https://doi.org/http://dx.doi.org/10.1016/S0020-
7373(82)80042-4.

Marek Kubis, Pawel Skorzewski, and Tomasz Zi-
etkiewicz. 2017. EUDAMU at SemEval-2017 Task
11: Action ranking and type matching for end-user
development. In ”Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017)”. Association for Computational Linguistics.

Robert Elton Maas and Patrick Suppes.
1985. Natural-language interface for an
instructable robot. International Journal
of Man-Machine Studies 22(2):215 – 240.
https://doi.org/http://dx.doi.org/10.1016/S0020-
7373(85)80071-7.

Bill Z. Manaris and Wayne D. Dominick.
1993. Nalige: a user interface manage-
ment system for the development of natural
language interfaces. International Journal
of Man-Machine Studies 38(6):891 – 921.
https://doi.org/http://dx.doi.org/10.1006/imms.1993.1042.

Christina Niklaus, Bernhard Bermeitinger, Siegfried
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Abstract

Clinical TempEval 2017 aimed to answer
the question: how well do systems trained
on annotated timelines for one medical con-
dition (colon cancer) perform in predict-
ing timelines on another medical condition
(brain cancer)? Nine sub-tasks were in-
cluded, covering problems in time expres-
sion identification, event expression identi-
fication and temporal relation identification.
Participant systems were evaluated on clin-
ical and pathology notes from Mayo Clinic
cancer patients, annotated with an exten-
sion of TimeML for the clinical domain. 11
teams participated in the tasks, with the
best systems achieving F1 scores above
0.55 for time expressions, above 0.70 for
event expressions, and above 0.30 for tem-
poral relations. Most tasks observed about
a 20 point drop over Clinical TempEval
2016, where systems were trained and eval-
uated on the same domain (colon cancer).

1 Introduction

The TempEval shared tasks have, since 2007, pro-
vided a focus for research on temporal information
extraction (Verhagen et al., 2007, 2010; UzZaman
et al., 2013). In recent years the community has
moved toward testing such information extraction
systems on clinical data, to address a common need
of doctors and clinical researchers to search over
timelines of clinical events like symptoms, diseases,
and procedures. In the Clinical TempEval shared
tasks (Bethard et al., 2015, 2016), participant sys-
tems have competed to identify critical components
of the timeline of a clinical text: time expressions,
event expressions, and temporal relations. For ex-
ample, Figure 1 shows the annotations that a system
is expected to produce when given the text:

April 23, 2014: The patient did not have
any postoperative bleeding so we’ll re-
sume chemotherapy with a larger bolus
on Friday even if there is slight nausea.

Clinical TempEval 2017 introduced a new aspect
to this problem: domain adaptation. Whereas in
Clinical TempEval 2015 and 2016, systems were
both trained and tested on notes from colon cancer
patients, in 2017, systems were trained on colon
cancer patients, but tested on brain cancer patients.
The diseases, symptoms, procedures, etc. vary
widely across these two patient populations, and
the doctors treating these different kinds of cancer
make a variety of different linguistic choices when
discussing such patients. As a result, systems that
participated in Clinical TempEval 2017 were faced
with a much more challenging task than systems
from 2015 or 2016.

2 Data

The Clinical TempEval corpus was based on a set
of clinical notes and pathology reports from 200
colon cancer patients and 200 brain cancer patients
at the Mayo Clinic. These notes were manually
de-identified by the Mayo Clinic to replace names,
locations, etc. with generic placeholders, but time
expressions were not altered. The notes were
then manually annotated by the THYME project
(thyme.healthnlp.org) using an extension
of ISO-TimeML for the annotation of times, events
and temporal relations in clinical notes (Styler,
IV et al., 2014b). This extension includes addi-
tions such as new time expression types (e.g., PRE-
POSTEXP for expressions like postoperative), new
EVENT attributes (e.g., DEGREE=LITTLE for ex-
pressions like slight nausea), and an increased fo-
cus on temporal relations of type CONTAINS (a.k.a.
INCLUDES).

The annotation procedure was as follows:
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TIMEX3

CLASS=DATE

April 23, 2014 : The patient did not have any

TIMEX3

CLASS=PREPOSTEXP

postoperative

EVENT

TYPE=N/A

DEGREE=N/A

POLARITY=NEG

MODALITY=ACTUAL

DOCTIMEREL=BEFORE

bleeding so we’ll

EVENT

TYPE=ASPECTUAL

DEGREE=N/A

POLARITY=POS

MODALITY=ACTUAL

DOCTIMEREL=AFTER

resume

EVENT

TYPE=N/A

DEGREE=N/A

POLARITY=POS

MODALITY=ACTUAL

DOCTIMEREL=AFTER

chemotherapy with a larger

EVENT

TYPE=N/A

DEGREE=N/A

POLARITY=POS

MODALITY=ACTUAL

DOCTIMEREL=AFTER

bolus on

TIMEX3

CLASS=DATE

Friday even if there is slight

EVENT

TYPE=N/A

DEGREE=LITTLE

POLARITY=POS

MODALITY=HYPOTHETICAL

DOCTIMEREL=AFTER

nausea .

CONTAINS

CONTAINSCONTAINS

Figure 1: Example Clinical TempEval annotations

1. Annotators identified time and event expres-
sions, along with their attributes

2. Adjudicators revised and finalized the time
and event expressions and their attributes

3. Annotators identified temporal relations be-
tween pairs of events and events and times

4. Adjudicators revised and finalized the tempo-
ral relations

More details on the corpus annotation process are
documented in Styler, IV et al. (2014a).

Because the data contained incompletely de-
identified clinical data (the time expressions were
retained), participants were required to sign a data
use agreement with the Mayo Clinic to obtain the
raw text of the clinical notes and pathology re-
ports.1 The event, time and temporal relation an-
notations were distributed separately from the text,
in an open source repository2 using the Anafora
standoff format (Chen and Styler, 2013).

Each corpus (colon cancer and brain cancer)
was split into three portions: Train (50%), Dev
(25%) and Test (25%). Patients were sorted by
patient number (an integer arbitrarily assigned by
the de-identification process) and stratified across
these splits. Table 1 shows the number of doc-
uments, event expressions (EVENT annotations),
time expressions (TIMEX3 annotations) and narra-
tive container relations (TLINK annotations with
TYPE=CONTAINS attributes) in the Train, Dev, and
Test portions of each corpus.

1Details on the data use agreement process can be found
at: http://thyme.healthnlp.org/

2https://github.com/stylerw/thymedata

The raw text of both the colon cancer and brain
cancer corpora were already released as part of
Clinical TempEval 2015 and 2016, as were the
time, event, and temporal relation annotations for
the colon cancer corpus. However, none of the
annotations for the brain cancer corpus were previ-
ously released.

Clinical TempEval 2017 ran several phases of
evaluation, where different data were released for
training and testing sets3.

Trial This phase replicated the Clinical TempEval
2016 setup: systems were expected to train on
the colon cancer Train and Dev sets, and were
tested on the colon cancer Test set. This phase
was organized primarily to allow participants to
validate the format of their system output.

Unsupervised Domain Adaptation In this phase,
systems were expected to train on all the colon
cancer annotations (released in previous Clinical
TempEvals) and were tested on the annotations
of the brain cancer Test set. No brain cancer
annotations were provided for training, though
systems were free to use the raw brain cancer
text if they had a way to do so.

Supervised Domain Adaptation This phase re-
leased annotations for the first 10 patients in
the brain cancer Train data (Train-10 in Table 1).
Systems were expected to train on these brain
cancer annotations, in addition to the colon can-
cer annotations provided previously, and were

3All releases were made at the CodaLab site:
https://competitions.codalab.org/
competitions/15621
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Colon Cancer Brain Cancer
Train Dev Test Train-10 Train Dev Test

Documents 293 147 151 30 298 149 148
TIMEX3s 3833 2078 1952 350 3527 1498 1552
EVENTs 38890 20974 18990 2557 26210 11162 11510
TLINKs with TYPE=CONTAINS 11150 6163 5894 624 3938 1641 1759

Table 1: Number of documents, event expressions, time expressions and narrative container relations in
Train, Dev, and Test portions of the THYME data. All colon cancer data was released as part of Clinical
TempEval 2015 and 2016. The Train-10 column is the data from the first 10 patients of the brain cancer
Train data, which was the only additional training data released in Clinical TempEval 2017.

tested on the annotations of the brain cancer Test
set. Systems were again free to use all the raw
brain cancer text if they had a way to do so.

Note that across all phases, the only brain cancer
data released was the Train-10 set. The remainder
of the brain cancer data was reserved for future
evaluations.

3 Tasks

Nine tasks were included (the same as those of
Clinical TempEval 2015 and 2016), grouped into
three categories:

• Identifying time expressions (TIMEX3 annota-
tions in the THYME corpus) consisting of the
following components:

– The span (character offsets) of the expression
in the text

– Class: DATE, TIME, DURATION, QUANTI-
FIER, PREPOSTEXP, or SET

• Identifying event expressions (EVENT annota-
tions in the THYME corpus) consisting of the
following components:

– The span (character offsets) of the expression
in the text

– Contextual Modality: ACTUAL, HYPOTHETI-
CAL, HEDGED, or GENERIC

– Degree: MOST, LITTLE, or N/A
– Polarity: POS or NEG

– Type: ASPECTUAL, EVIDENTIAL, or N/A

• Identifying temporal relations between events
and times, focusing on the following types:

– Relations between events and the document
creation time (BEFORE, OVERLAP, BEFORE-
OVERLAP, or AFTER), represented by DOC-
TIMEREL annotations.

– Narrative container relations (Pustejovsky and
Stubbs, 2011), which indicate that an event or
time is temporally contained in (i.e., occurred
during) another event or time, represented by
TLINK annotations with TYPE=CONTAINS.

4 Evaluation Metrics

All of the tasks were evaluated using the standard
metrics of precision (P ), recall (R) and F1:

P =
|S ∩H|
|S| R =

|S ∩H|
|H| F1 =

2 · P ·R
P + R

where S is the set of items predicted by the system
and H is the set of items annotated by the humans.
Applying these metrics only requires a definition
of what is considered an “item” for each task.

• For evaluating the spans of event expressions
or time expressions, items were tuples of (be-
gin, end) character offsets. Thus, systems only
received credit for identifying events and times
with exactly the same character offsets as the
manually annotated ones.

• For evaluating the attributes of event expressions
or time expressions – Class, Contextual Modal-
ity, Degree, Polarity and Type – items were tu-
ples of (begin, end, value) where begin and end
are character offsets and value is the value that
was given to the relevant attribute. Thus, sys-
tems only received credit for an event (or time)
attribute if they both found an event (or time)
with the correct character offsets and then as-
signed the correct value for that attribute.

• For relations between events and the document
creation time, items were tuples of (begin, end,
value), just as if it were an event attribute. Thus,
systems only received credit if they found a
correct event and assigned the correct relation
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(BEFORE, OVERLAP, BEFORE-OVERLAP, or
AFTER) between that event and the document
creation time.

• For narrative container relations, items were tu-
ples of ((begin1, end1), (begin2, end2)), where
the begins and ends corresponded to the charac-
ter offsets of the events or times participating in
the relation. Thus, systems only received credit
for a narrative container relation if they found
both events/times and correctly assigned a CON-
TAINS relation between them.

For narrative container relations, the P and R defi-
nitions were modified to take into account temporal
closure, where additional relations are determinis-
tically inferred from other relations (e.g., A CON-
TAINS B and B CONTAINS C, so A CONTAINS

C):

P =
|S ∩ closure(H)|

|S| R =
|closure(S) ∩H|

|H|
Similar measures were used in prior work (UzZa-
man and Allen, 2011) and TempEval 2013 (Uz-
Zaman et al., 2013), following the intuition that
precision should measure the fraction of system-
predicted relations that can be verified from the
human annotations (either the original human anno-
tations or annotations inferred from those through
closure), and that recall should measure the fraction
of human-annotated relations that can be verified
from the system output (either the original sys-
tem predictions or predictions inferred from those
through closure).

5 Human Agreement

We also provide two types of human agreement
on the tasks, measured with the same evaluation
metrics as the systems:

ann-ann Inter-annotator agreement between the
two independent human annotators who anno-
tated each document. This is the most commonly
reported type of agreement, and often considered
to be an upper bound on system performance.

adj-ann Inter-annotator agreement between the
adjudicator and the two independent annotators.
This is usually a better bound on system perfor-
mance in adjudicated corpora, since the models
are trained on the adjudicated data, not on the
individual annotator data.

Only F1 is reported in these scenarios since pre-
cision and recall depend on the arbitrary choice
of one annotator as human (H) and the other as
system (S).

6 Baseline Systems

Two rule-based systems were used as baselines to
compare the participating systems against.

memorize For all tasks but the narrative container
task, a memorization baseline was used.

To train the model, all phrases annotated as ei-
ther events or times in the training data were
collected. All exact character matches for these
phrases in the training data were then examined,
and only phrases that were annotated as events or
times greater than 50% of the time were retained.
For each phrase, the most frequently annotated
type (event or time) and attribute values for in-
stances of that phrase were determined.

To predict with the model, the raw text of the
test data was searched for all exact character
matches of any of the memorized phrases, pre-
ferring longer phrases when multiple matches
overlapped. Wherever a phrase match was found,
an event or time with the memorized (most fre-
quent) attribute values was predicted.

closest For the narrative container task, a proxim-
ity baseline was used. Each time expression was
predicted to be a narrative container, containing
only the closest event expression to it in the text.

7 Participating Systems

11 teams submitted a total of 28 runs, 10 for the un-
supervised domain adaptation phase, and 18 for the
supervised domain adaptation phase. All participat-
ing systems trained some form of supervised clas-
sifiers, with common features including character
n-grams, words, part-of-speech tags, and Unified
Medical Language System (UMLS) concept types.
Below is a brief description of each participating
team, and a note if they performed any more elab-
orate domain adaptation than simply adding the
extra 30 brain cancer notes to their training data.

GUIR (MacAvaney et al., 2017) combined con-
ditional random fields, rules, and decision tree
ensembles, with features including character
n-grams, words, word shapes, word clusters,
word embeddings, part-of-speech tags, syntactic
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and dependency tree paths, semantic roles, and
UMLS concept types.

Hitachi (P R et al., 2017) combined conditional
random fields, rules, neural networks, and de-
cision tree ensembles, with features including
character n-grams, word n-grams, word shapes,
word embeddings, verb tense, section headers,
and sentence embeddings.

KULeuven-LIIR (Leeuwenberg and Moens,
2017) combined support vector machines and
structured perceptrons with features including
words and part-of-speech tags. For domain
adaptation, KULeuven-LIIR tried assigning
higher weight to the brain cancer training data,
and representing unknown words in the input
vocabulary.

LIMSI-COT (Tourille et al., 2017) combined re-
current neural networks with character and word
embeddings, and support vector machines with
features including words and part-of-speech tags.
For domain adaptation, LIMSI-COT tried disal-
lowing modification of pre-trained word embed-
dings, and representing unknown words in the
input vocabulary.

NTU-1 (Huang et al., 2017) combined support vec-
tor machines and conditional random fields with
features including word n-grams, part-of-speech
tags, word shapes, named entities, dependency
trees, and UMLS concept types.

ULISBOA (Lamurias et al., 2017) combined con-
ditional random fields and rules with features
including character n-grams, words, part-of-
speech tags, and UMLS concept types.

XJNLP (Long et al., 2017) combined rules, sup-
port vector machines, and recurrent and convolu-
tional neural networks, with features including
words, word embeddings, and verb tense.

Several other teams (WuHanNLP, UNICA, UTD,
and IIIT) also competed, but did not submit a sys-
tem description.

8 Evaluation Results

Tables 2 to 4 show the results of the evaluation. In
all tables, the best system score from each column
is in bold. Systems marked with † were submitted
after the competition deadline, and are thus not
considered part of the official evaluation.

time span time span + class
Team F1 P R F1 P R

Unsupervised domain adaptation
GUIR 0.57 0.61 0.53 0.51 0.55 0.47
KULeuven-LIIR 0.56 0.72 0.46 0.53 0.68 0.43
LIMSI-COT 0.51 0.42 0.66 0.49 0.40 0.63
ULISBOA 0.48 0.44 0.54 0.43 0.39 0.48
Hitachi 0.43 0.63 0.33 - - -
baseline 0.36 0.72 0.24 0.32 0.63 0.21
WuHanNLP 0.31 0.65 0.20 0.27 0.57 0.18

Supervised domain adaptation
GUIR 0.59 0.57 0.62 0.56 0.54 0.59
LIMSI-COT 0.58 0.51 0.67 0.55 0.49 0.64
NTU-1 0.58 0.58 0.58 0.54 0.54 0.54
KULeuven-LIIR 0.56 0.57 0.55 0.54 0.55 0.53
ULISBOA 0.55 0.52 0.60 0.52 0.48 0.56
UTD 0.54 0.56 0.52 0.44 0.46 0.43
Hitachi 0.51 0.53 0.48 - - -
WuHanNLP 0.43 0.45 0.41 0.40 0.42 0.38
XJNLP† 0.41 0.33 0.52 0.35 0.29 0.45
UNICA 0.37 0.31 0.45 0.31 0.26 0.38
baseline 0.35 0.53 0.26 0.32 0.49 0.24
IIIT 0.31 0.39 0.25 0.19 0.24 0.16

Annotator agreement
ann-ann 0.81 - - 0.79 - -
adj-ann 0.86 - - 0.85 - -

Table 2: System performance and annotator agree-
ment on TIMEX3 tasks: identifying the time ex-
pression’s span (character offsets) and class (DATE,
TIME, DURATION, QUANTIFIER, PREPOSTEXP

or SET).

8.1 Time Expressions

Table 2 shows results on the time expression tasks.
The GUIR system had the top F1 in almost all time
expression tasks across both unsupervised and su-
pervised domain adaptation phases, achieving F1s
between 0.51 and 0.59. Compared to human agree-
ment, the best systems were more than 0.20 lower
than the inter-annotator agreement (and further, of
course, from the annotator-adjudicator agreement).

In Clinical TempEval 2016, for comparison,
when models were both trained and tested on colon
cancer notes, the top system achieved 0.80 F1 for
time spans, and 0.77 F1 for time types. This sug-
gests that a time expression system trained on one
clinical condition (e.g., colon cancer) can expect
a 20+ point drop when tested on another clinical
condition (e.g., brain cancer). Providing 30 anno-
tated notes in the target domain narrowed that gap
by only a few points.

The drop in performance can probably be partly
attributed to differences in time expressions across
the two corpora. For example, post-op is 26.5 times
more common in brain cancer (212 occurrences in
brain cancer data vs. 27 occurrences in colon can-
cer data), overnight is 13 times more common (148
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event span event span + modality event span + degree event span + polarity event span + type
Team F1 P R F1 P R F1 P R F1 P R F1 P R

Unsupervised domain adaptation
LIMSI-COT 0.72 0.62 0.84 0.64 0.55 0.75 0.71 0.62 0.83 0.69 0.60 0.82 0.70 0.61 0.82
GUIR 0.71 0.64 0.80 0.56 0.50 0.64 0.68 0.61 0.77 0.65 0.59 0.74 0.68 0.61 0.76
KULeuven-LIIR 0.68 0.70 0.67 0.62 0.63 0.61 0.67 0.69 0.66 0.67 0.68 0.65 0.66 0.67 0.65
ULISBOA 0.68 0.62 0.77 0.61 0.55 0.68 0.68 0.61 0.76 0.66 0.60 0.74 0.66 0.60 0.74
Hitachi 0.68 0.67 0.69 - - - - - - - - - - - -
baseline 0.63 0.65 0.61 0.55 0.57 0.54 0.62 0.64 0.60 0.58 0.60 0.56 0.60 0.62 0.59
WuHanNLP 0.62 0.59 0.66 0.55 0.52 0.58 0.61 0.58 0.65 0.6 0.57 0.63 0.60 0.57 0.63

Supervised domain adaptation
LIMSI-COT 0.76 0.69 0.85 0.69 0.63 0.78 0.75 0.68 0.84 0.75 0.68 0.83 0.75 0.68 0.83
GUIR 0.74 0.68 0.82 0.66 0.60 0.72 0.73 0.67 0.80 0.58 0.54 0.64 0.72 0.66 0.79
NTU-1 0.73 0.62 0.87 0.63 0.54 0.75 0.72 0.62 0.86 0.70 0.60 0.84 0.70 0.60 0.85
ULISBOA 0.73 0.65 0.83 0.64 0.57 0.73 0.72 0.64 0.82 0.71 0.63 0.81 0.71 0.63 0.80
KULeuven-LIIR 0.72 0.67 0.78 0.66 0.61 0.71 0.71 0.66 0.77 0.71 0.66 0.76 0.70 0.65 0.76
Hitachi 0.71 0.67 0.76 - - - - - - - - - - - -
baseline 0.70 0.67 0.74 0.62 0.59 0.65 0.69 0.66 0.73 0.66 0.62 0.69 0.68 0.65 0.72
UTD 0.66 0.62 0.71 0.57 0.53 0.61 - - - - - - - - -
WuHanNLP 0.65 0.59 0.72 0.58 0.53 0.64 0.64 0.58 0.71 0.63 0.57 0.70 0.63 0.57 0.70
IIIT 0.62 0.69 0.56 0.51 0.57 0.47 0.61 0.67 0.55 0.58 0.64 0.52 0.59 0.66 0.54
XJNLP† 0.61 0.55 0.68 0.51 0.46 0.57 0.59 0.54 0.67 0.54 0.49 0.61 0.58 0.52 0.66
UNICA 0.50 0.39 0.71 0.43 0.34 0.61 0.49 0.38 0.70 0.47 0.37 0.66 0.47 0.37 0.67

Annotator agreement
ann-ann 0.79 - - 0.72 - - 0.78 - - 0.78 - - 0.76 - -
adj-ann 0.87 - - 0.84 - - 0.86 - - 0.86 - - 0.85 - -

Table 3: System performance and annotator agreement on EVENT tasks: identifying the event expression’s
span (character offsets), contextual modality (ACTUAL, HYPOTHETICAL, HEDGED or GENERIC), degree
(MOST, LITTLE or N/A), polarity (POS or NEG) and type (ASPECTUAL, EVIDENTIAL or N/A).

in brain vs. 11 in colon), and intraoperative is 2.3
times more common (156 in brain vs. 68 in colon).
Formatting is also different across the corpora. For
example, POST-OP (all capitals) occurs 161 times
in all the brain cancer data, but never occurs with
this capitalization in any of the colon cancer data.

8.2 Event Expressions

Table 3 shows results on the event expression tasks.
The LIMSI-COT system achieved the best F1 on
all event expression tasks for both the unsupervised
and supervised domain adaptation phases, achiev-
ing around 0.70 F1 for most subtasks in the unsu-
pervised setting, and around 0.75 F1 in the super-
vised setting. Compared to human agreement, the
LIMSI-COT system ranged between 0.06 and 0.09
below the inter-annotator agreement.

In Clinical TempEval 2016, for comparison, the
top system achieved F1s of 0.92, 0.87, 0.91, 0.90,
and 0.89 for event spans, modality, degree, polarity,
and type, respectively. This suggests that, much
like for time expressions, an event expression sys-
tem trained on one clinical condition (e.g., colon
cancer) can expect a 20+ point drop when tested
on another clinical condition (e.g., brain cancer).
Providing 30 annotated notes in the target domain
again narrows the gap by only a few points.

The drop in performance can again probably be
attributed to differences across the two corpora.
Even more so than time expressions, event expres-
sions for brain cancer are very different from event
expressions for colon cancer. For example, cran-
iotomy, glioma, glioblastoma, oligoastrocytoma,
aphasia, and temozolomide all occur as events more
than 150 times in the brain cancer data, but do not
occur as events even once in the colon cancer data.

8.3 Temporal Relations

Table 4 shows performance on the temporal rela-
tion tasks. The LIMSI-COT system had the top F1
in almost all of the temporal relation tasks in both
the unsupervised and supervised domain adapta-
tion settings, achieving above 0.50 F1 in linking
events to the document creation time, and above
0.30 F1 for linking events to their narrative con-
tainers. Compared to humans, the LIMSI-COT
system was more than 0.30 below inter-annotator
agreement for narrative container relations, but
above inter-annotator agreement (though still be-
low annotator-adjudicator agreement) on document
time relations when using the additional target do-
main (brain cancer) training data.

In Clinical TempEval 2016, for comparison, the
top system achieved F1s of 0.76 for document time
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To document time Narrative containers
F1 P R F1 P R

Unsupervised domain adaptation
LIMSI-COT 0.51 0.44 0.60 0.33 0.28 0.40
KULeuven-LIIR 0.49 0.50 0.48 0.32 0.33 0.30
GUIR 0.40 0.36 0.45 0.34 0.52 0.25
Hitachi 0.45 0.44 0.45 0.23 0.23 0.22
baseline 0.38 0.39 0.37 0.14 0.39 0.08
ULISBOA 0.41 0.37 0.45 - - -
WuHanNLP 0.41 0.39 0.43 - - -

Supervised domain adaptation
LIMSI-COT 0.59 0.53 0.66 0.32 0.25 0.43
KULeuven-LIIR 0.56 0.52 0.61 0.28 0.23 0.35
GUIR 0.50 0.45 0.55 0.25 0.59 0.16
NTU-1 0.49 0.42 0.59 0.26 0.20 0.37
Hitachi 0.52 0.49 0.55 0.16 0.11 0.27
baseline 0.46 0.43 0.48 0.14 0.27 0.09
WuHanNLP 0.46 0.42 0.51 0.12 0.16 0.09
UTD 0.45 0.42 0.48 0.11 0.08 0.16
ULISBOA 0.44 0.39 0.51 - - -
IIIT 0.36 0.40 0.33 0.05 0.03 0.08
UNICA 0.20 0.15 0.28 - - -

Annotator agreement
ann-ann 0.52 - - 0.66 - -
adj-ann 0.71 - - 0.80 - -

Table 4: System performance and annotator agree-
ment on temporal relation tasks: identifying rela-
tions between events and the document creation
time (DOCTIMEREL), and identifying narrative
container relations (CONTAINS).

relations, and 0.48 for narrative containers. Again
we see a major drop when training on one condition
(e.g., colon cancer) and testing on another (e.g.,
brain cancer): a 20+ point drop for document time
relations, and around a 15 point drop for narrative
containers.

9 Discussion

Clinical TempEval 2017 showed that developing
clinical timeline extraction tools that generalize
across domains is still a challenging problem. Al-
most across the board, we saw 20+ point drops in
performance when systems were trained on one
domain (colon cancer) and tested on another (brain
cancer), as compared to systems that were trained
and tested on a single domain (colon cancer, as in
Clinical TempEval 2016). And across the board,
providing a small amount of target domain (brain
cancer) training data narrowed that gap only by a
couple of points. This is an important finding be-
cause it stresses how much work remains to build
robust clinical information extraction tools that are
useful across a wide range of medical applications.

Though the focus in Clinical TempEval 2017
was on domain adaptation, only a small number of
fairly simple domain adaptation techniques were

applied by participants, probably because produc-
ing even an initial system for all the Clinical Temp-
Eval sub-tasks is already a significant effort. Two
participants (LIMSI-COT and KULeuven-LIIR,
two of the top ranking systems) included special
handling of unknown words to try to increase gen-
eralization power. Other approaches attempted by
participants included giving a heavier weight to
the target domain (brain cancer) training data, and
using pre-trained domain independent word em-
beddings. A wide variety of more sophisticated
domain adaptation techniques exist that were not
applied by participants, and we expect that some
of these will make future progress in reducing the
cross-domain performance degradation that was
observed in Clinical TempEval 2017.
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Abstract

In this paper we describe our attempt at
producing a state-of-the-art Twitter senti-
ment classifier using Convolutional Neural
Networks (CNNs) and Long Short Term
Memory (LSTMs) networks. Our sys-
tem leverages a large amount of unlabeled
data to pre-train word embeddings. We
then use a subset of the unlabeled data to
fine tune the embeddings using distant su-
pervision. The final CNNs and LSTMs
are trained on the SemEval-2017 Twitter
dataset where the embeddings are fined
tuned again. To boost performances we
ensemble several CNNs and LSTMs to-
gether. Our approach achieved first rank
on all of the five English subtasks amongst
40 teams.

1 Introduction

Determining the sentiment polarity of tweets has
become a landmark homework exercise in natural
language processing (NLP) and data science
classes. This is perhaps because the task is easy to
understand and it is also easy to get good results
with very simple methods (e.g. positive - negative
words counting). The practical applications of
this task are wide, from monitoring popular
events (e.g. Presidential debates, Oscars, etc.) to
extracting trading signals by monitoring tweets
about public companies. These applications
often benefit greatly from the best possible
accuracy, which is why the SemEval-2017 Twitter
competition promotes research in this area. The
competition is divided into five subtasks which
involve standard classification, ordinal classifi-
cation and distributional estimation. For a more
detailed description see (Rosenthal et al., 2017).

In the last few years, deep learning techniques
have significantly out-performed traditional meth-
ods in several NLP tasks (Chen and Manning,
2014; Bahdanau et al., 2014), and sentiment anal-
ysis is no exception to this trend (Rojas-Barahona,
2016). In fact, previous iterations of the Se-
mEval Twitter sentiment analysis competition
have already established their power over other
approaches (Nakov et al., 2016; Severyn and Mos-
chitti, 2015; Deriu et al., 2016). Two of the most
popular deep learning techniques for sentiment
analysis are CNNs and LSTMs. Consequently,
in an effort to build a state-of-the-art Twitter
sentiment classifier, we explore both models and
build a system which combines both.

This paper is organized as follows. In sec. 2
we describe the architecture of the CNN and the
LSTM used in our system. In sec. 3 we expand
on the three training phases used in our system.
In sec. 4 we discuss the various tricks that were
used to fine tune the system for each individual
subtasks. Finally in sec. 5 we present the perfor-
mance of the system and in sec. 6 we outline our
main conclusions.

2 System description

2.1 CNN

Let us now describe the architecture of the CNN
we worked with. Its architecture is almost identi-
cal to the CNN of Kim (2014). A smaller version
of our model is illustrated on Fig. 1. The input
of the network are the tweets, which are tokenized
into words. Each word is mapped to a word vector
representation, i.e. a word embedding, such that
an entire tweet can be mapped to a matrix of size
s× d, where s is the number of words in the tweet
and d is the dimension of the embedding space
(we chose d = 200). We follow Kim (2014) zero-
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Figure 1: Architecture of a smaller version of the CNN used. Picture is taken from (Zhang and Wallace,
2015) with minor modifications.

padding strategy such that all tweets have the same
matrix dimension X ∈ Rs′×d, where we chose
s′ = 80. We then apply several convolution op-
erations of various sizes to this matrix. A single
convolution involves a filtering matrix w ∈ Rh×d

where h is the size of the convolution, meaning the
number of words it spans. The convolution opera-
tion is defined as

ci = f

∑
j,k

wj,k

(
X[i:i+h−1]

)
j,k

+ b

 (1)

where b ∈ R is a bias term and f(x) is a non-
linear function, which we chose to be the relu
function. The output c ∈ Rs′−h+1 is therefore
a concatenation of the convolution operator over
all possible window of words in the tweet. Note
that because of the zero-padding strategy we use,
we are effectively applying wide convolutions
(Kalchbrenner et al., 2014). We can use multiple
filtering matrices to learn different features, and

additionally we can use multiple convolution
sizes to focus on smaller or larger regions of the
tweets. In practice, we used three filter sizes
(either [1, 2, 3], [3, 4, 5] or [5, 6, 7] depending on
the model) and we used a total of 200 filtering
matrices for each filter size.

We then apply a max-pooling operation to each
convolution cmax = max(c). The max-pooling
operation extracts the most important feature for
each convolution, independently of where in the
tweet this feature is located. In other words, the
CNN’s structure effectively extracts the most im-
portant n-grams in the embedding space, which is
why we believe these systems are good at sentence
classification. The max-pooling operation also al-
lows us to combine all the cmax of each filter into
one vector cmax ∈ Rm where m is the total num-
ber of filters (in our case m = 3 × 200 = 600).
This vector then goes through a small fully con-
nected hidden layer of size 30, which is then in
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Figure 2: Architecture of a smaller version of the bi-directional LSTM used. Picture is inspired by Figure
1 of (Zhang and Wallace, 2015).

turn passed through a softmax layer to give the
final classification probabilities. To reduce over-
fitting, we add a dropout layer (Srivastava et al.,
2014) after the max-pooling layer and after the
fully connected hidden layer, with a dropout prob-
ability of 50% during training.

2.2 LSTM

Let us now describe the architecture of the LSTM
system we worked with. A smaller version of our
model is illustrated on Fig. 2. Its main build-
ing blocks are two LSTM units. LSTMs are part
of the recurrent neural networks (RNN) family,
which are neural networks that are constructed to
deal with sequential data by sharing their internal
weights across the sequence. For each element in
the sequence, that is for each word in the tweet,
the RNN uses the current word embedding and
its previous hidden state to compute the next hid-
den state. In its simplest version, the hidden state
ht ∈ Rm (where m is the dimension of the RNN,
which we pick to be m = 200) at time t is com-

puted by

ht = f (Wh · xt + Uh · ht−1 + bh) (2)

where xt is the current word embedding, Wh ∈
Rm×d and Uh ∈ Rm×m are weight matrices,
bh ∈ Rm is a bias term and f(x) is a non-linear
function, usually chosen to be tanh. The ini-
tial hidden state is chosen to be a vector of ze-
ros. Unfortunately this simple RNN suffers from
the exploding and vanishing gradient problem dur-
ing the backpropagation training stage (Hochre-
iter, 1998). LSTMs solve this problem by hav-
ing a more complex internal structure which al-
lows LSTMs to remember information for either
long or short terms (Hochreiter and Schmidhuber,
1997). The hidden state of an LSTM unit is com-
puted by (Zaremba et al., 2014)

ft = σ (Wf · xt + Uf · ht−1 + bf )
it = σ (Wi · xt + Ui · ht−1 + bi)
ot = σ (Wo · xt + Uo · ht−1 + bo)
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ct = ft ◦ ct−1

+it ◦ tanh (Wc · xt + Uc · ht−1 + bc)
ht = ot ◦ tanh (ct) (3)

where it is called the input gate, ft is the forget
gate, ct is the cell state, ht is the regular hidden
state, σ is the sigmoid function, and ◦ is the
Hadamard product.

One drawback from the LSTM is that it does not
sufficiently take into account post word informa-
tion because the sentence is read only in one direc-
tion; forward. To solve this problem, we use what
is known as a bidirectional LSTM, which is two
LSTMs whose outputs are stacked together. One
LSTM reads the sentence forward, and the other
LSTM reads it backward. We concatenate the hid-
den states of each LSTM after they processed their
respective final word. This gives a vector of di-
mension 2m = 400, which is fed to a fully con-
nected hidden layer of size 30, and then passed
through a softmax layer to give the final classifi-
cation probabilities. Here again we use dropout to
reduce over-fitting; we add a dropout layer before
and after the LSTMs, and after the fully connected
hidden layer, with a dropout probability of 50%
during training.

3 Training

To train those models we had access to 49,693 hu-
man labeled tweets for subtask A, 30,849 tweets
for subtasks (C, E) and 18,948 tweets for subtasks
(B, D). In addition to this human labeled data,
we collected 100 million unique unlabeled English
tweets using the Twitter streaming API. From this
unlabeled dataset, we extracted a distant dataset
of 5 million positive tweets and 5 million nega-
tive tweets. To extract this distant dataset we used
the strategy of Go et al. (2009), that is we sim-
ply associate positive tweets with the presence of
positive emoticons (e.g. “:)”) and vice versa for
negative tweets. Those three datasets (unlabeled,
distant and labeled) were used separately in the
three training stages which we now present. Note
that our training strategy is very similar to the one
used in (Severyn and Moschitti, 2015; Deriu et al.,
2016).

3.1 Pre-processing
Before feeding the tweets to any training stage,
they are pre-processed using the following proce-
dure:

• URLs are replaced by the <url> token.

• Several emoticons are replaced by the to-
kens <smile>, <sadface>, <lolface> or
<neutralface>.

• Any letter repeated more than 2 times in a
row is replaced by 2 repetitions of that letter
(for example, “sooooo” is replaced by “soo”).

• All tweets are lowercased.

3.2 Unsupervised training

We start by using the 100 million unlabeled tweets
to pre-train the word embeddings which will later
be used in the CNN and LSTM. To do so, we
experimented with 3 unsupervised learning al-
gorithms, Google’s Word2vec (Mikolov et al.,
2013a,b), Facebook’s FastText (Bojanowski et al.,
2016) and Stanford’s GloVe (Pennington et al.,
2014). Word2vec learns word vector represen-
tations by attempting to predict context words
around an input word. FastText is very similar to
Word2vec but it also uses subword information in
the prediction model. GloVe on the other hand is a
model based on global word-word co-occurrence
statistics. For all three algorithms we used the
code provided by the authors with their default set-
tings.

3.3 Distant training

The embeddings learned in the unsupervised
phase contain very little information about the sen-
timent polarity of the words since the context for
a positive word (ex. “good”) tends to be very sim-
ilar to the context of a negative word (ex. “bad”).
To add polarity information to the embeddings, we
follow the unsupervised training by a fine tuning
of the embeddings via a distant training phase. To
do so, we use the CNN described in sec. 2 and
initialize the embeddings with the ones learned in
the unsupervised phase. We then use the distant
dataset to train the CNN to classify noisy positive
tweets vs. noisy negative tweets. The first epoch
of the training is done with the embeddings frozen
in order to minimize large changes in the embed-
dings. We then unfreeze the embeddings and train
for 6 more epochs. After this training stage, words
with very different sentiment polarity (ex. “good”
vs. “bad”) are far apart in the embedding space.
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3.4 Supervised training

The final training stage uses the human labeled
data provided by SemEval-2017. We initialize
the embeddings in the CNN and LSTM models
with the fine tuned embeddings of the distant
training phase, and freeze them for the first ∼ 5
epochs. We then train for another∼ 5 epochs with
unfrozen embeddings and a learning rate reduced
by a factor of 10. We pick the cross-entropy as
the loss function, and we weight it by the inverse
frequency of the true classes to counteract the
imbalanced dataset. The loss is minimized using
the Adam optimizer (Kingma and Ba, 2014) with
initial learning rate of 0.001. The models were
implemented in TensorFlow and experiments
were run on a GeForce GTX Titan X GPU.

To reduce variance and boost accuracy, we en-
semble 10 CNNs and 10 LSTMs together through
soft voting. The models ensembled have different
random weight initializations, different number
of epochs (from 4 to 20 in total), different set
of filter sizes (either [1, 2, 3], [3, 4, 5] or [5, 6, 7])
and different embedding pre-training algorithms
(either Word2vec or FastText).

4 Subtask specific tricks

The models described in sec. 2 and the training
method described in sec. 3 are used in the same
way for all five subtasks, with a few special
exceptions which we now address. Clearly,
the output dimension differs depending on the
subtask, for subtask A the output dimension
is 3, while for B and D it is 2 and for subtask
C and E it is 5. Furthermore, for quantification
subtasks (D and E), we use the probability average
approach of Bella et al. (2010) to convert the
output probabilities into sentiment distributions.

Finally for subtasks that have a topic associated
with the tweet (B, C, D and E), we add two
special steps which we noticed improves the
accuracy during the cross-validation phase. First,
if any of the words in the topic is not explicitly
mentioned in the tweet, we add those missing
words at the end of the tweet in the pre-processing
phase. Second, we concatenate to the regular
word embeddings another embedding space of
dimension 5 which has only 2 possible vectors.
One of these 2 vectors indicates that the current

word is part of the topic, while the other vector
indicates that the current word is not part of the
topic.

5 Results

Let us now discuss the results obtained from this
system. In order to assess the performance of
each model and their variations, we first show
their scores on the historical Twitter test set of
2013, 2014, 2015 and 2016 without using any of
those sets in the training dataset, just like it was
required for the 2016 edition of this competition.
For brevity, we only focus on task A since it
tends to be the most popular one. Moreover, in
order to be consistent with historical editions of
this competition, we use the average F1 score of
the positive and negative class as the metric of
interest. This is different from the macro-average
recall which is used in the 2017 edition, but this
should not affect the conclusions of this analysis
significantly since we found that the two metrics
were highly correlated. The results are summa-
rized in Table 1. This table is not meant to be an
exhaustive list of all the experiments performed,
but it does illustrate the relative performances
of the most important variations on the models
explored here.

We can see from Table 1 that the GloVe
unsupervised algorithm gives a lower score than
both FastText and Word2vec. It is for this reason
that we did not include the GloVe variation in the
ensemble model. We also note that the absence of
class weights or the absence of a distant training
stage lowers the scores significantly, which
demonstrates that these are sound additions.
Except for these three variations, the other models
have similar scores. However, the ensemble model
effectively outperforms all the other individual
models. Indeed, while these individual models
give similar scores, their outputs are sufficiently
uncorrelated such that ensembling them gives
the score a small boost. To get a sense of how
correlated with each other these models are, we
can compute the Pearson correlation coefficient
between the output probabilities of any pairs of
models, see Table 2. From this table we can see
that the most uncorrelated models come from
different supervised learning models (CNN vs.
LSTM) and from different unsupervised learning
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System 2013 2014 2015 2016
Logistic regression on 1-3 grams baseline 0.627 0.629 0.586 0.558

CNN (word2vec, convolution size=[3,4,5]) 0.715 0.723 0.688 0.643
CNN (fasttext, convolution size=[3,4,5]) 0.720 0.733 0.665 0.640
CNN (glove, convolution size=[3,4,5]) 0.709 0.714 0.660 0.637

CNN (word2vec, convolution size=[1,2,3]) 0.712 0.735 0.673 0.642
CNN (word2vec, convolution size=[5,6,7]) 0.710 0.732 0.676 0.646

CNN (word2vec, convolution size=[3,4,5], no class weights) 0.682 0.679 0.659 0.640
CNN (word2vec, convolution size=[3,4,5], no distant training) 0.698 0.716 0.660 0.636

CNN (word2vec, convolution size=[3,4,5], no fully connected layer) 0.715 0.724 0.683 0.641
LSTM (word2vec) 0.720 0.733 0.677 0.636
LSTM (fasttext) 0.712 0.730 0.666 0.633
LSTM (glove) 0.710 0.730 0.658 0.630

LSTM (word2vec, no class weights) 0.689 0.661 0.652 0.643
LSTM (word2vec, no distant training) 0.698 0.719 0.647 0.629

LSTM (word2vec, no fully connected layer) 0.719 0.725 0.675 0.634
Ensemble model 0.725 0.748 0.679 0.648

Previous best historical scores 0.728 0.744 0.671 0.633

Table 1: Validation results on the historical test sets of subtask A. Bold values represent the best score
for a given test set. The 2013 test set contains 3,813 tweets, the 2014 test set contains 1,853 tweets, the
2015 test set contains 2,392 tweets and the 2016 test set contains 20,632 tweets. Word2vec, fasttext and
glove refer to the choice of algorithm in the unsupervised phase. No class weights means no weights
were used in the cost function to counteract the imbalanced classes. No distant training means that we
used the embeddings from the unsupervised phase without distant training. No fully connected layer
means we removed the fully connected hidden layer from the network. Ensemble model refers to the
ensemble model described in Sec. 3.4. The previous best historical scores were collected from (Nakov
et al., 2016). They do not come from a single system or from a single team; they are the best previous
scores obtained for each test set over the years.

algorithms (Word2vec vs. FastText).

For the predictions on the 2017 test set, the
system is retrained on all available training data,
which includes previous years testing data. The re-
sults of our system on the 2017 test set are shown
on Table 3. Our system achieved the best scores
on all of the five English subtasks. For subtask
A, there is actually a tie between our submission
and another team (DataStories), but note that with
respect to the other metrics (accuracy and FPN

1

score) our submission ranks higher.

6 Conclusion

In this paper we presented the system we used to
compete in the SemEval-2017 Twitter sentiment
analysis competition. Our goal was to experiment
with deep learning models along with modern
training strategies in an effort to build the best
possible sentiment classifier for tweets. The final

model we used was an ensemble of 10 CNNs and
10 LSTMs with different hyper-parameters and
different pre-training strategies. We participated
in all of the English subtasks, and obtained first
rank in all of them.

For future work, it would be interesting to ex-
plore systems that combine a CNN and an LSTM
more organically than through an ensemble model,
perhaps a model similar to the one of Stojanovski
et al. (2016). It would also be interesting to an-
alyze the dependence of the amount of unlabeled
and distant data on the performance of the models.
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System/System System 1 System 2 System 3 System 4 System 5 System 6
System 1 1.0 0.95 0.97 0.97 0.93 0.91
System 2 0.95 1.0 0.95 0.95 0.91 0.92
System 3 0.97 0.95 1.0 0.96 0.92 0.91
System 4 0.97 0.95 0.96 1.0 0.92 0.91
System 5 0.93 0.91 0.92 0.92 1.0 0.95
System 6 0.91 0.92 0.91 0.91 0.95 1.0

Table 2: Correlation matrix for the most important models. System 1: CNN (word2vec, convolution
size=[3,4,5]), System 2: CNN (fasttext, convolution size=[3,4,5]), System 3: CNN (word2vec, convolu-
tion size=[1,2,3]), System 4: CNN (word2vec, convolution size=[5,6,7]), System 5: LSTM (word2vec),
System 6: LSTM (fasttext).

Subtask Metric Rank BB twtr submission Next best submission
A Macroaveraged recall 1/38 0.681 0.681
B Macroaveraged recall 1/23 0.882 0.856
C Macroaveraged mean absolute error 1/15 0.481 0.555
D Kullback-Leibler divergence 1/15 0.036 0.048
E Earth movers distance 1/12 0.245 0.269

Table 3: Results on the 2017 test set. The 2017 test set contains 12,379 tweets. For a description of the
subtasks and metrics used, see (Rosenthal et al., 2017). For subtask A and B, higher is better, while for
subtask C, D and E, lower is better.
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Abstract

This paper describes our participation in
Task 5 track 2 of SemEval 2017 to pre-
dict the sentiment of financial news head-
lines for a specific company on a contin-
uous scale between -1 and 1. We tack-
led the problem using a number of ap-
proaches, utilising a Support Vector Re-
gression (SVR) and a Bidirectional Long
Short-Term Memory (BLSTM). We found
an improvement of 4-6% using the LSTM
model over the SVR and came fourth in
the track. We report a number of different
evaluations using a finance specific word
embedding model and reflect on the effects
of using different evaluation metrics.

1 Introduction

The objective of Task 5 Track 2 of SemEval (2017)
was to predict the sentiment of news headlines
with respect to companies mentioned within the
headlines. This task can be seen as a finance-
specific aspect-based sentiment task (Nasukawa
and Yi, 2003). The main motivations of this task
is to find specific features and learning algorithms
that will perform better for this domain as as-
pect based sentiment analysis tasks have been con-
ducted before at SemEval (Pontiki et al., 2014).

Domain specific terminology is expected to
play a key part in this task, as reporters, investors
and analysts in the financial domain will use a
specific set of terminology when discussing fi-
nancial performance. Potentially, this may also
vary across different financial domains and indus-
try sectors. Therefore, we took an exploratory ap-
proach and investigated how various features and
learning algorithms perform differently, specifi-
cally SVR and BLSTMs. We found that BLSTMs
outperform an SVR without having any knowl-
edge of the company that the sentiment is with re-
spect to. For replicability purposes, with this paper

we are releasing our source code1 and the finance
specific BLSTM word embedding model2.

2 Related Work

There is a growing amount of research being car-
ried out related to sentiment analysis within the
financial domain. This work ranges from domain-
specific lexicons (Loughran and McDonald, 2011)
and lexicon creation (Moore et al., 2016) to stock
market prediction models (Peng and Jiang, 2016;
Kazemian et al., 2016). Peng and Jiang (2016)
used a multi layer neural network to predict the
stock market and found that incorporating textual
features from financial news can improve the accu-
racy of prediction. Kazemian et al. (2016) showed
the importance of tuning sentiment analysis to the
task of stock market prediction. However, much of
the previous work was based on numerical finan-
cial stock market data rather than on aspect level
financial textual data.

In aspect based sentiment analysis, there have
been many different techniques used to predict the
polarity of an aspect as shown in SemEval-2016
task 5 (Pontiki et al., 2014). The winning system
(Brun et al., 2016) used many different linguistic
features and an ensemble model, and the runner
up (Kumar et al., 2016) used uni-grams, bi-grams
and sentiment lexicons as features for a Support
Vector Machine (SVM). Deep learning methods
have also been applied to aspect polarity predic-
tion. Ruder et al. (2016) created a hierarchical
BLSTM with a sentence level BLSTM inputting
into a review level BLSTM thus allowing them
to take into account inter- and intra-sentence con-
text. They used only word embeddings making
their system less dependent on extensive feature
engineering or manual feature creation. This sys-
tem outperformed all others on certain languages

1https://github.com/apmoore1/semeval
2https://github.com/apmoore1/semeval/

tree/master/models/word2vec_models
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on the SemEval-2016 task 5 dataset (Pontiki et al.,
2014) and on other languages performed close to
the best systems. Wang et al. (2016) also created
an LSTM based model using word embeddings
but instead of a hierarchical model it was a one
layered LSTM with attention which puts more em-
phasis on learning the sentiment of words specific
to a given aspect.

3 Data

The training data published by the organisers for
this track was a set of headline sentences from
financial news articles where each sentence was
tagged with the company name (which we treat as
the aspect) and the polarity of the sentence with re-
spect to the company. There is the possibility that
the same sentence occurs more than once if there is
more than one company mentioned. The polarity
was a real value between -1 (negative sentiment)
and 1 (positive sentiment).

We additionally trained a word2vec (Mikolov
et al., 2013) word embedding model3 on a set of
189,206 financial articles containing 161,877,425
tokens, that were manually downloaded from Fac-
tiva4. The articles stem from a range of sources
including the Financial Times and relate to com-
panies from the United States only. We trained
the model on domain specific data as it has been
shown many times that the financial domain can
contain very different language.

4 System description

Even though we have outlined this task as an as-
pect based sentiment task, this is instantiated in
only one of the features in the SVR. The following
two subsections describe the two approaches, first
SVR and then BLSTM. Key implementation de-
tails are exposed here in the paper, but we have re-
leased the source code and word embedding mod-
els to aid replicability and further experimentation.

4.1 SVR

The system was created using ScitKit learn (Pe-
dregosa et al., 2011) linear Support Vector Re-
gression model (Drucker et al., 1997). We exper-

3For reproducibility, the model can be downloaded, how-
ever the articles cannot be due to copyright and licence re-
strictions.

4https://global.factiva.com/
factivalogin/login.asp?productname=
global

imented with the following different features and
parameter settings:

4.1.1 Tokenisation
For comparison purposes, we tested whether or
not a simple whitespace tokeniser can perform just
as well as a full tokeniser, and in this case we used
Unitok5.

4.1.2 N-grams
We compared word-level uni-grams and bi-grams
separately and in combination.

4.1.3 SVR parameters
We tested different penalty parameters C and dif-
ferent epsilon parameters of the SVR.

4.1.4 Word Replacements
We tested replacements to see if generalising
words by inserting special tokens would help to
reduce the sparsity problem. We placed the word
replacements into three separate groups:

1. Company - When a company was mentioned
in the input headline from the list of compa-
nies in the training data marked up as aspects,
it was replaced by a company special token.

2. Positive - When a positive word was men-
tioned in the input headline from a list of pos-
itive words (which was created using the N
most similar words based on cosine distance)
to ‘excellent’ using the pre-trained word2vec
model.

3. Negative - The same as the positive group
however the word used was ‘poor’ instead of
‘excellent’.

In the positive and negative groups, we chose
the words ‘excellent’ and ‘poor’ following Tur-
ney (2002) to group the terms together under non-
domain specific sentiment words.

4.1.5 Target aspect
In order to incorporated the company as an as-
pect, we employed a boolean vector to represent
the sentiment of the sentence. This was done in
order to see if the system could better differentiate
the sentiment when the sentence was the same but
the company was different.

5http://corpus.tools/wiki/Unitok
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4.2 BLSTM
We created two different Bidirectional (Graves
and Schmidhuber, 2005) Long Short-Term Mem-
ory (Hochreiter and Schmidhuber, 1997) using the
Python Keras library (Chollet, 2015) with tensor
flow backend (Abadi et al., 2016). We choose an
LSTM model as it solves the vanishing gradients
problem of Recurrent Neural Networks. We used
a bidirectional model as it allows us to capture in-
formation that came before and after instead of
just before, thereby allowing us to capture more
relevant context within the model. Practically, a
BLSTM is two LSTMs one going forward through
the tokens the other in reverse order and in our
models concatenating the resulting output vectors
together at each time step.

The BLSTM models take as input a headline
sentence of size L tokens6 where L is the length
of the longest sentence in the training texts. Each
word is converted into a 300 dimension vector us-
ing the word2vec model trained over the finan-
cial text7. Any text that is not recognised by the
word2vec model is represented as a vector of ze-
ros; this is also used to pad out the sentence if it is
shorter than L.

Both BLSTM models have the following simi-
lar properties:

1. Gradient clipping value of 5 - This was to
help with the exploding gradients problem.

2. Minimised the Mean Square Error (MSE)
loss using RMSprop with a mini batch size
of 32.

3. The output activation function is linear.

The main difference between the two models is the
use of drop out and when they stop training over
the data (epoch). Both models architectures can be
seen in figure 1.

4.2.1 Standard LSTM (SLSTM)
The BLSTMs do contain drop out in both the input
and between the connections of 0.2 each. Finally
the epoch is fixed at 25.

4.2.2 Early LSTM (ELSTM)
As can be seen from figure 1, the drop out of
0.5 only happens between the layers and not the

6Tokenised by Unitok
7See the following link for detailed implementation de-

tails https://github.com/apmoore1/semeval#
finance-word2vec-model

Figure 1: Left hand side is the ELSTM model
architecture and the right hand side shows the
SLSTM. The numbers in the parenthesis represent
the size of the output dimension where L is the
length of the longest sentence.

connections as in the SLSTM. Also the epoch is
not fixed, it uses early stopping with a patience of
10. We expect that this model can generalise bet-
ter than the standard one due to the higher drop
out and that the epoch is based on early stopping
which relies on a validation set to know when to
stop training.

5 Results

We first present our findings on the best perform-
ing parameters and features for the SVRs. These
were determined by cross validation (CV) scores
on the provided training data set using cosine sim-
ilarity as the evaluation metric.8 We found that us-
ing uni-grams and bi-grams performs best and us-
ing only bi-grams to be the worst. Using the Uni-
tok tokeniser always performed better than simple
whitespace tokenisation. The binary presence of
tokens over frequency did not alter performance.

8All the cross validation results can be found here
https://github.com/apmoore1/semeval/
tree/master/results
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The C parameter was tested for three values; 0.01,
0.1 and 1. We found very little difference between
0.1 and 1, but 0.01 produced much poorer results.
The eplison parameter was tested for 0.001, 0.01
and 0.1 the performance did not differ much but
the lower the higher the performance but the more
likely to overfit. Using word replacements was ef-
fective for all three types (company, positive and
negative) but using a value N=10 performed best
for both positive and negative words. Using tar-
get aspects also improved results. Therefore, the
best SVR model comprised of: Unitok tokeni-
sation, uni- and bi- grams, word representation,
C=0.1, eplison=0.01, company, positive, and neg-
ative word replacements and target aspects.∑N

n=1 Cosine similarity(ŷn, yn)
N

(1)

The main evaluation over the test data is based
on the best performing SVR and the two BLSTM
models once trained on all of the training data. The
result table 1 shows three columns based on the
three evaluation metrics that the organisers have
used. Metric 1 is the original metric, weighted co-
sine similarity (the metric used to evaluate the final
version of the results, where we were ranked 5th;
metric provided on the task website9). This was
then changed after the evaluation deadline to equa-
tion 110 (which we term metric 2; this is what the
first version of the results were actually based on,
where we were ranked 4th), which then changed
by the organisers to their equation as presented in
Cortis et al. (2017) (which we term metric 3 and
what the second version of the results were based
on, where we were ranked 5th).

Model Metric 1 Metric 2 Metric 3
SVR 62.14 54.59 62.34
SLSTM 72.89 61.55 68.64
ELSTM 73.20 61.98 69.24

Table 1: Results

As you can see from the results table 1, the
difference between the metrics is quite substan-
tial. This is due to the system’s optimisation being
based on metric 1 rather than 2. Metric 2 is a clas-
sification metric for sentences with one aspect as

9http://alt.qcri.org/semeval2017/
task5/index.php?id=evaluation

10Where N is the number of unique sentences, ŷn is the
predicted and yn are the true sentiment value(s) of all senti-
ments in sentence n.

it penalises values that are of opposite sign (giving
-1 score) and rewards values with the same sign
(giving +1 score). Our systems are not optimised
for this because it would predict scores of -0.01
and true value of 0.01 as very close (within vec-
tor of other results) with low error whereas metric
2 would give this the highest error rating of -1 as
they are not the same sign. Metric 3 is more simi-
lar to metric 1 as shown by the results, however the
crucial difference is that again if you get opposite
signs it will penalise more.

We analysed the top 50 errors based on Mean
Absolute Error (MAE) in the test dataset specifi-
cally to examine the number of sentences contain-
ing more than one aspect. Our investigation shows
that no one system is better at predicting the senti-
ment of sentences that have more than one aspect
(i.e. company) within them. Within those top 50
errors we found that the BLSTM systems do not
know which parts of the sentence are associated to
the company the sentiment is with respect to. Also
they do not know the strength/existence of certain
sentiment words.

6 Conclusion and Future Work

In this short paper, we have described our imple-
mented solutions to SemEval Task 5 track 2, util-
ising both SVR and BLSTM approaches. Our re-
sults show an improvement of around 5% when
using LSTM models relative to SVR. We have
shown that this task can be partially represented as
an aspect based sentiment task on a domain spe-
cific problem. In general, our approaches acted
as sentence level classifiers as they take no target
company into consideration. As our results show,
the choice of evaluation metric makes a great deal
of difference to system training and testing. Future
work will be to implement aspect specific informa-
tion into an LSTM model as it has been shown to
be useful in other work (Wang et al., 2016).
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Abstract

This paper describes the submission by
the University of Sheffield to the SemEval
2017 Abstract Meaning Representation
Parsing and Generation task (SemEval
2017 Task 9, Subtask 2). We cast language
generation from AMR as a sequence of
actions (e.g., insert/remove/rename edges
and nodes) that progressively transform
the AMR graph into a dependency parse
tree. This transition-based approach re-
lies on the fact that an AMR graph can be
considered structurally similar to a depen-
dency tree, with a focus on content rather
than function words. An added benefit to
this approach is the greater amount of data
we can take advantage of to train the parse-
to-text linearizer. Our submitted run on the
test data achieved a BLEU score of 3.32
and a Trueskill score of -2.204 on auto-
matic and human evaluation respectively.

1 Introduction

Abstract meaning representation (AMR) is a for-
malism representing the meaning of a sentence (or
multiple sentences) as a directed, acyclic graph,
where each node represents a concept, and each
edge represents a relation between concepts (Ba-
narescu et al., 2013). Natural language generation
(NLG) from AMRs introduces challenges, as AMR

abstracts away from syntactic structure, function
words, or inflections. Flanigan et al. (2016) were
the first work to perform NLG from AMR; they
used a weighted combination of a tree-to-string
transducer and a language model to transform the
AMR graph into English. Later work by Song et al.
(2016) proposed segmenting the AMR graph into
fragments and generating subphrases from them,
using a set of subgraph-to-string rules. They then

cast the problem of ordering these subphrases as a
travelling salesman problem. Pourdamghani et al.
(2016) suggested linearizing the AMR graph using
a maximum entropy classifier. The linearization
is then used as input to a phrase-based machine
translation system, to produce the final sentence.

Our submission to SemEval task 9 on AMR-to-
English Generation is based on inverting previous
work on transition-based parsers (Goodman et al.,
2016a,b), which was in turn based on the previous
work of Wang et al. (2015). Beyond inverting the
transition from AMR graph to dependency tree, our
system also separates the transition in three passes.
Briefly, during the first pass we convert the AMR

concepts into content words, during the second
pass the structure of the tree is modified (e.g. by
inserting, deleting, and moving nodes and edges),
while in the third pass missing function words are
inserted, and existing words realized in their final
form. To form a natural language sentence, the de-
pendency tree needs only to be linearized; we note
that this is not part of the transition, but should
be considered a separate post-processing step. We
train a separate classifier for each pass, to learn
which action should be taken at each time-step.

2 System description

2.1 Pre-processing

During pre-processing the graph structure of the
AMR is converted to a tree by identifying each
node n with multiple incoming edges in the graph.
Each additional incoming edge is redirected to a
duplicate node n′ (as shown in the transition be-
tween stage a and b in Figure 1). These duplicate
nodes are inserted as leaves in the structure, and
maintain no edges to the n’s children. The system
randomly determines which of the incoming edges
will remain connected with n, and lets the transi-
tion system remove duplicate nodes, or move any
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of n’s descendants as required.
During training, we employ the SpaCy depen-

dency parser (Honnibal and Johnson, 2015) to
construct the dependency tree of the training sen-
tence and obtain part-of-speech tags; the dataset’s
sentences are already split into tokens. Heuristics
are used to normalize all date occurrences and nu-
meric expressions in both the sentence and depen-
dency tree, to help our system handle temporal and
numerical AMR concepts and structures. Addition-
ally, we construct a simplified version of the de-
pendency tree where articles, auxiliary words, and
punctuation, are removed. This simplified tree is
useful for the first and second phases of the transi-
tion where the focus is on content words.

2.2 Phase 1

Phase 1 is initialized with a stack σ containing all
nodes in the AMR tree, with the leaf nodes first; in
subsequent phases, σ is initialized with the nodes
of the modified tree of the previous phase. A sec-
ond stack β is initialized with the children of the
top node in σ. At each time-step the transition
system considers the current state, which consists
of the aforementioned stacks, and the tree (which
may be in any intermediate stage between an AMR

tree and a dependency tree). Each phase concludes
once σ is exhausted, with both σ and β stacks be-
ing reinitiated for the next phase as needed.

All transition actions are detailed in Table 1,
separated according to which phase they may be
applied. Some actions may appear in multiple
phases (e.g. the NextNode and NextEdge actions,
which are primarily used to traverse the σ and β
stacks) but note that their outcome may slightly
differ from phase to phase. Particularly, during
phase 1 the action NextNode is also used to mod-
ify the labels of the graph, in effect transform-
ing AMR concepts to content words. If a content
word is determined to be a verb, noun, adjective
or adverb, a parameter ln is used which consists of
the word’s stem and the appropriate part-of-speech
tag. The stem is obtained by applying Porter’s
stemmer to the AMR concept identifier.1 The in-
tuition here is that, while the stem and part-of-
speech tag may be useful in structuring the depen-
dency tree in phase 2, the inflected form of each
word can more accurately be determined after the
dependency tree is finalized (i.e. after phase 2).

The NextEdge action is used to traverse the β

1https://tartarus.org/martin/PorterStemmer/

stack, alternating with MergeNode actions. The
latter are applied when two AMR concepts should
be combined to form a single content word, e.g.
the negation concept “-” and concept “security”
combining to form the word “insecurity”. Addi-
tionally, during phase 1, certain AMR fragments
with typified structure (e.g., name, date-entity,
time) are collapsed into single nodes, and occur-
rences of wiki relations are removed. Consult
stage c of Figure 1 for an example.

2.3 Phase 2
In phase 2, the transition actions aim to transform
the structure of the tree. They are based on the ac-
tions used by Goodman et al. (2016a,b), with some
alterations due to σ being initialized by travers-
ing the tree from leaves to root, namely the In-
sert action is allowed to add a parent node above
the current one, but limited to adding only leaf
nodes as children. Similarly to Wang et al. (2015),
but unlike Goodman et al. (2016a,b), the Reat-
tach, SwapEdge, InsertParent, and InsertLeaf ac-
tions are parameterized with an edge label le. The
NextNode action in phase 2 simply traverses σ.

To improve runtime, the Reattach, InsertPar-
ent, and InsertLeaf actions are allowed only to σ0

nodes they were applied to in the training data, and
will not be considered otherwise. Similarly, labels
ln, le are limited to those observed during training.

Finally, all actions preserve full connectivity of
the tree, and any Reattach actions that would in-
troduce a cycle are not considered. To avoid con-
flicts between actions, the following restrictions
are enforced: a DeleteLeaf or ReplaceHead ac-
tion cannot delete a previously inserted node, and
vice-versa; a SwapEdge action cannot swap a pre-
viously swapped edge; a Reattach action cannot
move a previously reattached or inserted node.

Stages d, e, f , and g of Figure 1 show the in-
termediate trees produced in phase 2. The double-
bordered nodes denote nodes already visited via
NextNode actions and thus no longer in σ.

2.4 Phase 3
During phase 3, InsertParent and InsertLeaf ac-
tions are used to add any closed-set function words
(e.g. auxiliary verbs and articles) and punctuation
that are missing from the dependency tree. The
ModifyNode action is a variant of the NextNode
action, which modifies (rather than replaces) any
temporary labels with a suffix operation (i.e. “-
s”, “-ing”) that, when combined with the stem of
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Action name β status Parameters Action outcome
Phase 1: Convert AMR concepts to content words.
NextNode empty ln Set label of node σ0 to ln. Pop σ0, and initialize β.
MergeNode non-empty ln Set label of node σ0 to ln. Pop β0, and remove it from the

tree. The children of β0 are attached as children to σ0.
NextEdge non-empty - Pop β0.
Phase 2: Modify the structure of the tree.
InsertParent - ln, le Insert new node δ with label ln as the parent of σ0, via

dependency label le. Insert δ into σ.
InsertLeaf empty ln, le Insert new node δ with label ln as a child of leaf node σ0,

via dependency label le. Insert δ into σ.
NextEdge non-empty le Set label of edge (σ0, β0) to le. Pop β0.
SwapEdge non-empty le Reverse edge (σ0, β0) to (β0, σ0), and set its label to le.

β0 becomes the parent of σ0 and its subgraph, while the
previous parent of σ0 becomes the parent of β0. Pop β0.

ReplaceHead non-empty - Pop σ0, delete it from the graph. Attach β0 as a child to
the previous parent of σ0. All other children of σ0 become
children of β0. Insert β0 at the head of σ, initialize β.

DeleteLeaf empty - Pop leaf node σ0, delete it from the graph. Initialize β.
Reattach non-empty p, le Change edge (σ0, β0) to (p, β0), where p is an existing

node in the graph. p becomes the parent of β0 and its
subgraph. Pop β0, and insert p to σ.

NextNode empty - Pop σ0, and initialize β.
Phase 3: Insert function words, punctuation, and determine the proper inflection of content words.
InsertParent - ln, le Insert new node δ with label ln as the parent of σ0, via

dependency label le. Insert δ into σ.
InsertLeaf - ln, le Insert new node δ with label ln as a child of leaf node σ0,

via dependency label le. Insert δ into σ.
ModifyNode - mn Modify label of node σ0 by mn. Pop σ0, and initialize β.

Table 1: Available actions per phase, for transition-based transformation of AMR graphs to parse trees.

the label, can properly inflect the word (e.g. mod-
ify “make VB” with “-s” to construct “makes”).
Stage h of Figure 1 shows the outcome of phase 3.

2.5 Expert policy

During training, an expert policy (also known as
oracle) is constructed to determine which action
should be performed given a particular state. By
consulting the alignments between the concepts of
each AMR graph and the words of the correspond-
ing sentence in the training data, the expert policy
detects any unaligned AMR concepts to be deleted
by appropriate actions, as well as any unaligned
words in the dependency tree to be inserted; other
actions can be similarly inferred. During phases 1
and 2 we consider the simplified dependency tree,
where function words have been removed, and in
phase 3 we consider the full tree. The alignments
were provided in the dataset using the system of
Pourdamghani et al. (2014).

2.6 Post-processing

In post-processing, the dependency tree con-
structed by the transition needs to be linearized
into a sentence. Tree linearization has most com-
monly been addressed by overgenerating word se-
quences and ranking (e.g. according to a trigram
language model); however there has been a lot of
recent research studying this topic (Filippova and
Strube, 2009; He et al., 2009; Belz et al., 2011;
Bohnet et al., 2011; Zhang, 2013; Futrell and Gib-
son, 2015). Our approach in this paper is to simply
order the nodes in each subtree using a classifier,
in effect creating ordered subphrases of the tree.
The subtrees are thus incrementally ordered, in
a bottom-up approach, and subsequently formed
into a natural language sentence. Any date occur-
rences or numerical expressions that were normal-
ized during pre-processing, are restored to their
original form. It is also important to note again,
that the structure of this approach allows it to take
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Figure 1: Example transition from AMR graph to
dependency tree of the sentence “It makes one
tremble even without fear.”

advantage of additional parse-tree datasets to aug-
ment the training of the post-precessing step.

3 Results

We use the adaptive regularization of weight vec-
tors (AROW) algorithm (Crammer et al., 2013)
for all aforementioned classifiers. All the fea-
tures we use are boolean indicators and similar to
those proposed by Goodman et al. (2016a,b) and
Wang et al. (2015). All classifiers were trained
on the same corpus of AMRs released by LDC,
and created as part of tehe DARPA DEFT pro-
gram (LDC2016E25); we hope to augment the lin-
earization’s training with other dependency parse
datasets in future work. To provide further speed
improvement in testing time, we filter actions
(conditioned on specific parameters) that appear
infrequently in the training set.

Table 2 shows the ablation results of our system
on the test set of the task. For Phase 1 we calculate
the precision of the labels in the output tree com-
pared to the labels of the dependency parse, while
on phases 2 and 3 we calculate the unlabeled and
labeled attachment scores. We also include the
BLEU (Papineni et al., 2002) and Trueskill (Sak-
aguchi et al., 2014) scores achieved by our sub-
mitted run on the task’s test data. In future work,
we would like to examine the effect of error prop-
agation from phase to phase.

Precision
Phase 1 0.45

UAS LAS
Phase 2 0.16 0.11
Phase 3 0.08 0.06

BLEU Trueskill
Realization 3.32 −2.204

Table 2: Ablation results on the testing set.

4 Conclusion

We proposed a three-phase transition-based sys-
tem for transforming an AMR graph into a depen-
dency tree; the final sentence can then be acquired
via a tree linearizer. Our results suggest there is
much room for improvement; we hope to contin-
uously refine the proposed action space and ex-
pert policy, and develop and apply a more com-
plex linearizer to the constructed parse trees. Fi-
nally, we believe that by using imitation learning
algorithms, the transition sequences could be im-
proved to generalize better to unseen data.
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Abstract

This paper describes our submission for
the ScienceIE shared task (SemEval-
2017 Task 10) on entity and relation
extraction from scientific papers. Our
model is based on the end-to-end rela-
tion extraction model of Miwa and Bansal
(2016) with several enhancements such as
semi-supervised learning via neural lan-
guage models, character-level encoding,
gazetteers extracted from existing knowl-
edge bases, and model ensembles. Our of-
ficial submission ranked first in end-to-end
entity and relation extraction (scenario 1),
and second in the relation-only extraction
(scenario 3).

1 Task overview

The ScienceIE shared task (Augenstein et al.,
2017) focuses on information extraction from
scientific papers. In the end-to-end evalua-
tion scenario, participants were provided with
a paragraph and asked to extract typed entities
(Task, Material or Process) and relations
(Hyponym-of or Synonym-of) in different
scientific domains.

Running example. Consider the following in-
put sentence: “Here, we consider a radical pair
in which the first electron spin is devoid of hyper-
fine interactions, while the second electron spin in-
teracts isotropically with one spin-1 nucleus, e.g.
nitrogen.” The provided human labeled entity
annotations for this sentence include: “electron
spin” of type Process, “spin-1 nucleus” of type
Material, and “nitrogen” of type Material.
The only positive relation annotation labeled
for this sentence is: Hyponym-of(“nitrogen”,
“spin-1 nucleus”). We will use this example

throughout the paper to illustrate various parts of
our system (see Fig. 1).

2 System description

In this section, we describe the components in our
system.

Text preprocessing. We process the input text
using spaCy1 which provides sentence segmenta-
tion, tokenization, part-of-speech (POS) tagging
and labeled dependency parsing.

Label encoding. We use the BILOU tagging
scheme to encode the annotations for each of the
three entity types. For a given entity type, each
token in a sentence is labeled with: O if it does
not belong to any entity, U if it belongs to a single-
token entity, B if it is the beginning of a multi-word
entity, L if it is the end of a multi-word entity, and
I if it is inside a multi-word entity. In order to al-
low the same token to participate in multiple enti-
ties of different types, each token is assigned three
labels (one for each entity type).2

The labeled data specify two kinds of rela-
tions: a directional relation (Hyponym-of) and
an undirectional relation (Synonym-of).
In our system, we automatically convert
Hyponym-of(e2,e1) into a new label
Hypernym-of(e1,e2) when e2 follows
e1 in the sentence. We generate the label
No-relation(e1,e2) as needed in order
to have a label for each pair (e1, e2) where
e1 precedes e2 in a sentence. This encoding
allows us to only consider entity pairs in the order
in which they appear in the sentence. In other

1https://spacy.io/
2In a small number of cases, the human labels specified

at the character level did not coincide with our tokenization.
In these cases we used the human annotations to override the
tokenization. When two entity annotations of the same entity
type overlap, we only keep the longer one.
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Figure 1: Schematic diagram of the end-to-end model for entity and relation extraction. Bottom part:
the main components of the entity model (see §2.1 for details). Top part: the main components of the
relation model (see §2.2 for details).

words, all relations (including No-relation
are modeled as directional relations. In a post-
processing step, Hypernym-of(e1,e2)
relations are deterministically converted to
Hyponym-of(e2,e1) relations.

2.1 Entity model
In this section, we describe the entity model,
which is illustrated in the bottom part of Fig.
1. Given the token sequence (t1, t2, . . . , tN ), this
model predicts a sequence of BILOU labels for
each entity type.

Token representation. We first form a token
representation, xk = [ck;wk], by concatenating
a character based representation ck with a token

embedding wk. The character representation, ck,
is parameterized as a convolutional neutral net-
work (CNN) with a filter width of 3 characters.3

The token embeddings, wk, are initialized using
pre-trained GloVe word embeddings (Pennington
et al., 2014) and fine tuned during training. This
component is illustrated at the bottom of Fig. 1.

Neural language model. In addition to using
unlabeled data to learn feature representations of
individual word types, we also learn feature repre-
sentations of words in a particular context using
neural language models. Following Józefowicz

3The filter width was decided based on preliminary exper-
iments on the development set.
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et al. (2016), we feed the output of the embed-
ding layer through one or two layers of LSTMs
(Hochreiter and Schmidhuber, 1997) to embed the
history (t1, t2, . . . , tk) into a fixed dimensional
vector

−→
h LM

k , the forward LM embedding of the
token at position k. While training the parameters
of the language model, a softmax layer over words
in the vocabulary is used to predict the probability
of token tk+1.

In order to capture future context in the LM
embeddings, we also use a backward LM embed-
ding
←−
h LM

k which predicts the previous token tk−1

given the following tokens (tk, tk+1, . . . , tN ). In
our formulation, the forward and backward LMs
are independent, without any shared parameters.

In our final system, after pre-training the for-
ward and backward LMs separately, we remove
the top layer softmax and concatenate the for-
ward and backward LM embeddings to form
bidirectional LM embeddings, i.e., hLM

k =
[
−→
h LM

k ;
←−
h LM

k ], and use it in the sequence tagging
model, which is explained next. This component
is illustrated at the bottom right corner of Fig. 1.

Sequence tagging model. We employ two lay-
ers of bidirectional LSTMs, followed by a condi-
tional random field (CRF) layer to predict entity
mentions of each type (see Fig. 1). For each to-
ken position, k, the hidden state of the first bidi-
rectional LSTM layer is formed by concatenating
the hidden states from the forward and backward
LSTMs. We also concatenate the LM embeddings
hLM with the output from the first LSTM layer
before feeding it into the second LSTM layer.

The output of the second LSTM layer hk is used
to predict a score for each possible tag. To predict
token tags from hk we use a dense layer for each
entity type and compute the conditional random
field (CRF) loss (Lafferty et al., 2001) using the
forward-backward algorithm at training time, and
using the Viterbi algorithm to find the most likely
tag sequence at test time, similar to Collobert et al.
(2011). In this layer, we use different parameters
for each entity type in order to allow for overlap-
ping entities of different types.

Entity gazetteer features. We use lists of sci-
entific terms collected from the web4 and several
topics from freebase,5 and add them as features in

4We thank Peter Turney for providing this list.
5The freebase topics we used are ‘dissertation’, ‘mate-

rial’, ‘scholarly work’, ‘task’, ‘chemical element’, ‘com-

the sequence tagging model. Given an input to-
ken sequence, we found all phrases which match
one or more of the gazetteers. We encode this in-
formation at the token level using a binary feature
for each gazetteer (i.e., the number of binary fea-
tures = N× the number of gazetteers). The binary
features for each token feeds into a dense tanh
layer which is concatenated to the output of the top
LSTM layer. This component was omitted from
Fig. 1 to simplify the exposition.

2.2 Relation model
In this subsection, we describe the relation model,
which is illustrated in the top part of Fig. 1. Given
a pair of entity mention spans and their entity
types, this model predicts the relation between the
two mentions by feeding a context-sensitive rep-
resentation of the relation into a dense tanh layer,
followed by a softmax layer to predict the label.

Left and right entities. We represent each of the
left and right entities by concatenating an embed-
ding of its entity type with a hidden representation
based on the sequence tagging model.

Since many entity mentions consist of multiple
tokens, we need to compress their representations
to obtain a fixed size encoding. First, we use the
dependency tree to identify the syntactic head of
the each entity mention. If none of the words in
the entity mention qualifies as a direct or indirect
head of all other words in the entity mention, we
use the last word in the mention, which is often
the head in English. For example, ‘nucleus’ is the
head of the entity mention “spin-1 nucleus” in our
running example, because there is a direct depen-
dency where ‘nucleus’ is the head of ‘spin-1’ with
relation type ‘compound’. After identifying the
head word in an entity mention, we then use the
input to the CRF layer from the sequence tagging
model at this position, feed it into a dropout layer,
and concatenate it with the entity type embedding.
This component is second to the left in the top part
of Fig. 1.

Syntactic and sequential path. We use a bidi-
rectional LSTM layer to encode the shortest path
in a dependency tree between the heads of the left
and right entities. The input to the LSTM layer
at each node in the dependency path concatenates
four components: a context-sensitive embedding

petitive space’, ‘invention’, ‘drug’, ‘project focus’, ‘litera-
ture subject’, ‘patent’, ‘project’, ‘field of study’ and ‘indus-
try’.

594



of the word (the input to the CRF layer followed
by a dropout layer), a context-insensitive embed-
ding of the word, an embedding of the POS tag,
and an embedding of the dependency relation be-
tween this node and its direct head.

In addition to encoding the dependency path
between the two entities, we also found it useful
to encode the sequential path (i.e., the tokens be-
tween the two heads in the sentence). We again
use a bidirectional LSTM layer and use the same
four components to represent the LSTM input at
each position in the sequential path. The hidden
states at both ends of the syntactic and sequential
path are then concatenated (simple concatenation)
with the left and right entity representations. This
component is illustrated in the right most three
boxes in the top part of Fig. 1.

Relation gazetteer features. We use two pub-
licly available knowledge bases (Wikipedia and
freebase) to derive gazetteer-like features in the re-
lation model. We also encode three features as im-
plicit gazetteers to indicate whether one of the two
entities is an acronym, a suffix, or an exact copy
of the other. For a given entity pair, we compute
input binary features which indicate whether the
entity pair matches each gazetteer. The input bi-
nary features feed into a dense layer as illustrated
in the left-most box in the top part of Fig. 1.

2.3 Training

Although we combine the entity model and the re-
lation model at test time, each model is trained
separately.6 Joint training adds some practical
complexities, but may result in better results.

Hyperparameters. We use performance on de-
velopment set to guide our selection of hyperpa-
rameters. The numbers on the arrows in Fig. 1
correspond to the size of the hidden layers (or the
number of filters in the CNN module) in the best
performing single model.

We initialize the word embeddings using GloVe
(Pennington et al., 2014). For the pre-trained lan-
guage models, we use the single best forward
model from Józefowicz et al. (2016) with two
LSTM layers, and a backward LM with one LSTM
layer with 2048 hidden units and a 512 dimension
projection. These models have test set perplex-

6All parameters (including word and character embed-
dings) in each model are trained. None of the parameters
are fixed.

ity of 30.0 and 47.7 on the 1B Word Benchmark
(Chelba et al., 2014), respectively.

We use the Adam optimizer (Kingma and Ba,
2014) with learning rate of 0.001 and 0.0003 and
gradient norms clipped at 5.0 and 1.0 for the entity
and relation models, respectively. We use early
stopping by monitoring development set perfor-
mance.

Model F1

Our best model without language model 49.9
Our best model with language model 54.1
Our 15-model ensemble 55.2

Table 1: Development set entity only F1 compari-
son.

Team End-to-end Entities Relations
Ours 0.43 0.55 0.28
Team 24 0.42 0.56 -
Team 21 0.38 0.50 0.21
Team 19 0.37 0.51 0.19
Team 14 0.33 0.47 0.20

Table 2: Final test set F1 for top five teams in Sce-
nario 1, end-to-end extraction.

Ensembles. While tuning the hyperparameters
of the models, we save the models with the best re-
sults on a development set and use them to create
an ensemble. The entity model ensemble averages
the label predictions at each position, while the re-
lation model ensemble only predicts a positive re-
lation if 50% of the individual models predict the
same relation. Our final submission uses an en-
semble of 15 entity models and 8 relation models.

Differences between Scenario 1 and Scenario 3.
While training the relation model in Scenario 1,
we use both the gold entities and the entities pre-
dicted by the entity model to generate candidate
relations. In Scenario 3, only gold entities are used
to generate candidate relations for training.

To make predictions on the test set, only entities
predicted by the entity model were used to gener-
ate candidate relations in Scenario 1. In Scenario
3, only gold entities were used to generate candi-
date relations for the test set.
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3 Results

We compare three variants of our entity extraction
model on the development set in Table 1. Adding
a bidirectional LM to our sequence tagging model
amounts to an improvement of 4.2 F1, while using
an ensemble of 15 models amounts to a further im-
provement of 1.1 F1.

In Scenario 1, our submission ranked first with
F1 of 0.43%, second in the entity only subtask
(0.55% F1) and first in the relation only subtask
for end-to-end extraction (0.28% F1), as shown in
Table 2. In Scenario 3, our submission ranked sec-
ond with 0.54% F1.
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Abstract

In this paper we present our participation
to SemEval 2017 Task 12. We used a
neural network based approach for entity
and temporal relation extraction, and ex-
perimented with two domain adaptation
strategies. We achieved competitive per-
formance for both tasks.

1 Introduction

SemEval 2017 Task 12 offers 6 subtasks address-
ing medical event recognition and temporal rea-
soning in the clinical domain using the THYME
corpus (Styler IV et al., 2014). Similarly to the
two previous editions of the challenge (Bethard
et al., 2015, 2016), the first group of subtasks con-
cerns medical event (EVENT) and temporal ex-
pression (TIMEX3) extraction from raw text. In
a second group of subtasks, participants are chal-
lenged to extract containment (CONTAINS) re-
lations between EVENT and/or TIMEX3 as well
as Document Creation Time (DCT) relations be-
tween EVENT entities and documents in which
they are embedded. The novelty of the 2017 edi-
tion lies in the difference of domains between train
and test corpora. More details about the task and
the definition of each subtask can be found in
Bethard et al. (2017).

The task has been offered by SemEval over
the past two years. Concerning the first group
of subtasks, different approaches have been im-
plemented by the participants including Condi-
tional Random Fields (CRF) (AAl Abdulsalam
et al., 2016; Caselli and Morante, 2016; Chikka,
2016; Cohan et al., 2016; Grouin and Moriceau,
2016; Hansart et al., 2016) and deep learning mod-
els (Fries, 2016; Chikka, 2016; Li and Huang,
2016). Similarly, CRF and neural networks mod-
els have been used for the second group of sub-
tasks (AAl Abdulsalam et al., 2016; Cohan et al.,

2016; Lee et al., 2016). Other approaches in-
clude Support Vector Machines (SVM) (AAl Ab-
dulsalam et al., 2016; Tourille et al., 2016).

2 Methodology

The EVENT and TIMEX3 entity extraction sub-
tasks can be seen as two sequence labeling prob-
lems where each token of a given sentence is as-
signed a label. Entities can spread over several
tokens and therefore, we used the IOB format
(Inside, Outside, Beginning) for label represen-
tation. Each token can be at the beginning of
an entity (B), inside an entity (I) or outside (O).
EVENT entities are characterized by a type at-
tribute that we used in our IOB scheme resulting
in 7 possible labels. Similarly, TIMEX3 entities
are characterized by a class attribute that we used
in our IOB scheme resulting in 13 possible labels.

The container relation extraction task can be
cast as a 3-class classification problem. For each
combination E1 – E2 of EVENT and/or TIMEX3
from left to right, three cases are possible:

– E1 temporally contains E2,
– E1 is temporally contained by E2,
– there is no relation between E1 and E2.
Intra- and inter-sentence relation detection can

be seen as two different tasks with specific fea-
tures. Intra-sentence relations can benefit from
intra-sentential clues such as adverbs (e.g. during)
or pronouns (e.g. which) which are not available
at the inter-sentence level. Furthermore, past work
on the topic seems to indicate that this differentia-
tion improves overall performance (Tourille et al.,
2016). We have adopted this approach by build-
ing two separate classifiers, one for intra-sentence
relations and one for inter-sentence relations.

If we were to consider all combinations of enti-
ties within documents for inter-sentence relations,
it would result in a very large training corpus with
very few positive examples. In order to cope
with this issue, we limit our experiments to inter-
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sentence relations that do not span over more than
three sentences. By doing so, we obtain a man-
ageable training corpus size with less unbalanced
classes while keeping a good coverage.

3 Corpus Preprocessing

We preprocessed the corpus using cTAKES 3.2.2
(Savova et al., 2010), an open-source natural lan-
guage processing system for the extraction of in-
formation from electronic health records. We ex-
tracted sentence and token boundaries, as well as
token types and semantic types of the entities that
have a span overlap with a least one gold standard
EVENT entity of the THYME corpus. This infor-
mation was added to the set of gold standard at-
tributes available for EVENT entities in the corpus.

We also preprocessed the corpus using Heidel-
Time 2.2.1 (Strötgen and Gertz, 2015), a multilin-
gual domain-sensitive temporal tagger, and used
the results to further extend our feature set.

4 Models

4.1 Entity Extraction
Our approach relies on Long Short-Term Mem-
ory Networks (LSTMs) (Hochreiter and Schmid-
huber, 1997). The architecture of our model is
presented in Figure 1. For a given sequence of
tokens, represented as vectors, we compute rep-
resentations of left and right contexts of the se-
quence at every token. These representations are
computed using two LSTMs (forward and back-
ward LSTM in figure 1). Then these representa-
tions are concatenated and linearly projected to a
n-dimensional vector representing the number of
categories. Finally, as Huang et al. (2015), we add
a CRF layer to take into account the previous la-
bel during prediction. Following preliminary ex-
periments, we built one specific classifier for each
entity type (EVENT or TIMEX3).

4.2 Event Attribute and Document Creation
Time Relation Extraction

We treated each EVENT attribute (Contex-
tualModality, Degree, Polarity) extraction subtask
as a supervised classification problem. We built
a common architecture for all attributes based on
a linear SVM. Concerning DCT relation extrac-
tion subtask, we used the same architecture. We
trained a separate classifier for each of the four
subtasks based on lexical, contextual and struc-
tural features extracted from the documents:

Figure 1: Neural model for EVENT extraction.

– EVENT type attribute,
– EVENT plain lexical form,
– EVENT position within the document,
– POS tags of the verbs within the right and left

contexts of the considered entity,
– EVENT POS tag,
– type or class of the other entities that are

present within the left and right contexts,
– token unigrams and bigrams within a window

around the entity.

4.3 Temporal Relation Extraction
Similarly to our entity extraction approach, we
built a system based on LSTMs for CONTAINS re-
lation extraction. The architecture of our model
is presented in Figure 2. For a given sequence
of tokens between two entities (EVENT and/or
TIMEX3), we compute a representation by scan-
ning the sequence from left to right (forward
LSTM in Figure 2). As LSTMs tend to be biased
toward the most recent inputs, this model is biased
toward the second entity of each pair processed
by the network. To counteract this effect, we
compute the reverse representation with an LSTM
reading the sequence from right to left (backward
LSTM in Figure 2). The two final states are
then concatenated and linearly transformed into
a 3-dimensional vector representing the number
of categories (concatenation and projection in fig-
ure 2). Finally, a softmax function is applied.

4.4 Input Word Embeddings
Input vectors are built differently depending on the
subtask. For the entity extraction subtask, vec-
tors representing tokens are built by concatenat-
ing a character-based embedding and a word em-
bedding. Whether we are dealing with EVENT
or TIMEX3 entities, we add one embedding per
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Figure 2: Neural architecture for CONTAINS re-
lation extraction.

cTAKES attribute or one embedding represent-
ing the TIMEX3 class as detected by HeidelTime.
Concerning the containment relation subtask, in-
put vectors are built by concatenating a character-
based embedding, a word embedding, one embed-
ding per Gold Standard attribute and one embed-
ding for the type of DCT relations (before . . . ).

An overview of the embedding computation is
presented in Figure 3. Following Lample et al.
(2016), the character-based representation is con-
structed with a Bi-LSTM1. First, a random embed-
ding is generated for every character in the training
corpus. Token characters are then processed with a
forward and backward LSTM architecture similar
to the one of our entity extraction model. The fi-
nal character-based representation results from the
concatenation of the forward and backward repre-
sentations. Since medical terms often include pre-
fixes and suffixes derived from ancient Greek and
classical Latin (Namer and Zweigenbaum, 2004),
we believe that both entity and containment rela-
tion extractions can particularly benefit from this
character-based representation of tokens for terms
that have not been seen during training or that
don’t have a pretrained word embedding.

We use pretrained word embeddings computed
with word2vec (Mikolov et al., 2013)2 on the
Mimic 3 corpus (Johnson et al., 2016) and the
colon cancer part of the THYME corpus. In or-
der to account for unknown tokens during the test
phase, we train a special embedding UNK by re-
placing randomly some singletons with the UNK
embedding (probability of replacement = 0.5). In

1Embedding size = 8; hidden layer size = 25.
2Parameters used during computation: algorithm =

CBOW; min-count = 4; vector size = 100; window = 8.

Figure 3: Model for character-based embeddings.

the inter-sentence relation classifier, we introduce
a specific token for identifying sentence breaks.
This token is composed of one distinctive charac-
ter and it is associated to a specific word embed-
ding. Similarly to the character embeddings, we
randomly initialize one embedding per token at-
tribute value, with an embedding size of 4. All
these embeddings are then concatenated.

4.5 Network Training

We implemented the two neural networks mod-
els described in the previous section using Tensor-
Flow 0.12 (Abadi et al., 2015). We trained our
networks with mini-batch Stochastic Gradient De-
scent using Adam (Kingma and Ba, 2014)3. We
use dropout training to avoid overfitting. We apply
dropout on input embeddings with a rate of 0.5.

The optimization of hyperparameters for the at-
tribute and DCT relation extraction subtasks was
addressed by using a Tree-structured Parzen Esti-
mator approach (Bergstra et al., 2011) and applied
to the hyperparameter C of the linear SVM, the
lookup window around entities and the percentile
of features to keep. For the latter we used the
ANOVA F-value as selection criterion.

5 Domain Adaptation Strategies

We implemented two strategies for domain adap-
tation during the first phase. In the first strategy,
we blocked further training of the pretrained word
embeddings during network training. Since a large
number of medical events mentioned in the test set
are not seen during training, we believe that our
system should rely on untuned word embeddings
to make its prediction.

In the second strategy we randomly replaced
tokens that composed EVENT entities by the un-
known token4. Given the fact that our word em-

3Learning rate = 0.001; hidden layer sizes = 256.
4Replacement probability = 0.2.
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Phase 1 Phase 2

STATIC REPLACE ALL 30-30

P R F1 P R F1 P R F1 P R F1

EVENT Span .622 .843 .716 .606 .841 .705 .691 .854 .764 .660 .865 .749
EVENT Modality .553 .749 .636 .537 .745 .624 .628 .775 .694 .598 .784 .679
EVENT Degree .616 .834 .708 .600 .831 .697 .682 .843 .754 .652 .854 .739
EVENT Polarity .603 .816 .693 .588 .815 .683 .676 .835 .747 .644 .844 .731
EVENT Type .608 .823 .699 .592 .821 .688 .675 .834 .746 .641 .841 .728
EVENT All attributes .374 .507 .431 .365 .507 .425 .468 .578 .517 .440 .577 .500

TIMEX3 Span .421 .660 .514 .421 .660 .514 .510 .671 .579 .452 .621 .523
TIMEX3 Class .401 .630 .490 .401 .630 .490 .487 .641 .553 .430 .591 .498

DCT Relation .443 .599 .509 .436 .604 .506 .535 .661 .591 .511 .670 .580
CONTAINS .280 .396 .328 .264 .408 .320 .244 .438 .316 .211 .422 .282

Table 1: Results obtained by our system across our four runs. We report Precision (P), Recall (R) and
F1-measure (F1). The best F1 performance in each phase is bolded.

beddings are pretrained on the Mimic 3 corpus and
on the colon cancer part of the THYME corpus, a
number of tokens (and therefore EVENTs) of the
test part of the corpus may not have a specific word
embedding. By replacing randomly EVENT token,
we force our networks to look at other contextual
clues within the sentence. Both strategies were
applied on EVENT entity and CONTAINS relation
extraction subtasks.

Phase 2 was addressed by implementing two
strategies. In the first one, we mixed the 30 texts
about brain cancer to the 591 texts about colon
cancer. In the second one, we randomly chose
30 texts related to colon cancer and combined
them to the 30 texts about brain cancer, resulting
in a balanced training corpus. Both strategies were
applied on EVENT, TIMEX3 and CONTAINS ex-
traction subtasks.

6 Results and Discussion

Results for our four runs are presented in Table 1.
The two strategies implemented for Phase 1 yield
similar results (0.01 difference in F1-measure at
most), with only a very slight advantage for the
strategy blocking further training of the word
embeddings (STATIC strategy in the table). In
Phase 2, the two strategies also yield close results
(0.04 difference in F1-measure) for the EVENT
entity extraction and temporal relation subtasks.
However, the strategy consisting in taking all
available annotations (ALL strategy in the table)
outperforms slightly the training on a balanced
corpus, especially for the extraction of CON-
TAINS relations. The same strategy seems to
perform much better for the TIMEX3 entity ex-

traction subtask where the gap in F1-measure
reaches 0.06. This superiority agrees the general
observation that the size of the training corpus
has often a greater impact on results than its strict
matching with the target domain. Overall, in both
phases and for all strategies, results are competi-
tive for entity and temporal relation extraction.

The performance obtained by our system re-
lies in part on corpus tayloring. Some sections of
the test corpus related to medication and diet are
not to be annotated according to the annotation
guidelines. However, these sections are not for-
mally delimited within the documents. To avoid
annotating them during test time, we developed a
semi-automatic approach for detecting these sec-
tions and put them aside.

Other aspects linked to the corpus limit the per-
formance. Some sections should not be annotated
as they are duplicate of other sections found in the
corpus as a whole. However, we have no infor-
mation on how to formally identify these sections.
Furthermore, a number of temporal expressions
are annotated as SECTIONTIME or DOCTIME
entities. Detecting TIMEX3 entities instead de-
creases the precision of our model.

In future work, we plan to explore additional
strategies. For instance, adding a feature predict-
ing whether a given EVENT entity is a container or
not has proved useful in previous work (Tourille
et al., 2016), but was not implemented in our sys-
tem due to time constraints.
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Abstract

While sentiment analysis in English has
achieved significant progress, it remains a
challenging task in Arabic given the rich
morphology of the language. It becomes
more challenging when applied to Twitter
data that comes with additional sources
of noise including dialects, misspellings,
grammatical mistakes, code switching
and the use of non-textual objects to ex-
press sentiments. This paper describes
the “OMAM” systems that we developed
as part of SemEval-2017 task 4. We eval-
uate English state-of-the-art methods on
Arabic tweets for subtask A. As for the
remaining subtasks, we introduce a topic-
based approach that accounts for topic
specificities by predicting topics or do-
mains of upcoming tweets, and then us-
ing this information to predict their senti-
ment. Results indicate that applying the
English state-of-the-art method to Ara-
bic has achieved solid results without sig-
nificant enhancements. Furthermore, the
topic-based method ranked 1st in subtasks
C and E, and 2nd in subtask D.

1 Introduction

Sentiment Analysis (SA) is a fundamental prob-
lem aiming to allow machines to automatically ex-
tract subjectivity information from text (Turney,
2002), whether at the sentence or the document
level (Farra et al., 2010). This field has been

attracting attention in the research and business
communities due to the complexity of human lan-
guage, and given the range of applications that are
interested in harvesting public opinion in different
domains such as politics, stocks and marketing.

The interest in SA from Arabic tweets has in-
creased since Arabic has become a key source
of the Internet content (Miniwatts, 2016), with
Twitter being one of the most expressive social
media platforms. While models for SA from
English tweets have achieved significant success,
Arabic methods continue to lag. Opinion mining
in Arabic (OMA) is a challenging task given: (1)
the morphological complexity of Arabic (Habash,
2010), (2) the excessive use of dialects that vary
significantly across the Arab world, (3) the sig-
nificant amounts of misspellings and grammati-
cal errors due to length restriction in Twitter, (4)
the variations in writing styles, topics and expres-
sions used across the Arab world due to cultural
diversity (Baly et al., 2017), and (5) the exis-
tence of Twitter-specific tokens (hashtags, men-
tions, multimedia objects) that may have subjec-
tive information embedded in them. Further de-
tails on challenging issues in Arabic SA are dis-
cussed in (Hamdi et al., 2016).

In this paper, we present the different sys-
tems we developed as part of our participation in
SemEval-2017 Task 4 on Sentiment Analysis in
Twitter (Rosenthal et al., 2017). This task covers
both English and Arabic languages. Our systems
work on Arabic, but is submitted as part of the
OMAM (Opinion Mining for Arabic and More)
team that also submitted a system that analyzes
sentiment in English (Onyibe and Habash, 2017).
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The first system extends English state-of-the-
art feature engineering methods, and is based
on training sentiment classifiers with different
choices of surface, syntactic and semantic fea-
tures. The second is based on clustering the data
into groups of semantically-related tweets and de-
veloping a sentiment classifier for each cluster.
The third extends recent advances in deep learning
methods. The fourth is a topic-based approach for
twitter SA that introduces a mechanism to predict
the topics of tweets, and then use this information
to predict their sentiment polarity. It further allows
operating at the domain-level as a form of general-
ization from topics. We evaluate these models for
message polarity classification (subtask A), topic-
based polarity classification (subtasks B-C) and
tweet quantification (subtasks D-E). Experimen-
tal results show that English state-of-the-art meth-
ods achieved reasonable results in Arabic without
any customization, with results being in the mid-
dle of the group in subtask A. For the remaining
subtasks, the topic-based approach ranked 2nd in
subtask D and 1st in subtasks C and E.

The rest of this paper is organized as follows.
Section 2 describes previous efforts on the given
task. Section 3 presents the details of the Arabic
OMAM systems. Section 4 illustrates the perfor-
mances achieved for each subtask. We conclude
in Section 5 with remarks on future work.

2 Related Work

SA models for Arabic are generally developed by
training machine learning classifiers using differ-
ent choices of features. The most common fea-
tures are the word n-grams features that were used
to train Support Vector Machines (SVM) (Rushdi-
Saleh et al., 2011; Aly and Atiya, 2013; Shoukry
and Rafea, 2012), Naı̈ve Bayes (Mountassir et al.,
2012; Elawady et al., 2014) and ensemble clas-
sifiers (Omar et al., 2013). Word n-grams were
also used with syntactic features (root and part-of-
speech n-grams) and stylistic features (digit and
letter n-grams, word length, etc.) and achieved
good performances after applying the Entropy-
Weighted Genetic Algorithm for feature reduc-
tion (Abbasi et al., 2008). Sentiment lexicons
also provided an additional source of features that
proved useful for the task (Abdul-Mageed et al.,
2011; Badaro et al., 2014, 2015)

A framework was developed for tweets written
in Modern Standard Arabic (MSA) and containing

Jordanian dialects, Arabizi (Arabic words writ-
ten using Latin characters) and emoticons. This
framework was realized by training different clas-
sifiers using features that capture the different
linguistic phenomena (Duwairi et al., 2014). A
distant-based approach showed improvement over
existing fully-supervised models for subjectivity
classification (Refaee and Rieser, 2014a). A sub-
jectivity and sentiment analysis system for Ara-
bic tweets used a feature set that includes differ-
ent forms of the word (lexemes and lemmas), POS
tags, presence of polar adjectives, writing style
(MSA or DA), and genre-specific features includ-
ing the user’s gender and ID (Abdul-Mageed et al.,
2014). Machine translation was used to apply ex-
isting state-of-the-art models for English to trans-
lations of Arabic tweets. Despite slight accuracy
drop caused by translation errors, these models are
still considered efficient and effective, especially
for low-resource languages (Refaee and Rieser,
2014b; Mohammad et al., 2016).

We briefly mention the state-of-the-art perfor-
mances achieved in English SA. A new class of
machine learning models based on deep learn-
ing have recently emerged. These models
achieved high performances in both Arabic and
English, such as the Recursive Auto Encoders
(RAE) (Socher et al., 2011; Al Sallab et al., 2015),
the Recursive Neural Tensor Networks (Socher
et al., 2013), the Gated Recurrent Neural Net-
works (Tang et al., 2015) and the Dynamic Mem-
ory Networks (Kumar et al., 2015). These mod-
els were only evaluated on reviews documents,
and were never tested against the irregularities and
noise that exist in Twitter data. A framework
to automate the human reading process improved
the performance of several state-of-the-art mod-
els (Baly et al., 2016; Hobeica et al., 2011).

3 OMAM Systems

In this section, we present the four OMAM sys-
tems that we investigated to perform the differ-
ent subtasks of SemEval-2017 Task 4. These sys-
tems were explored during the development phase,
and those that achieved best performances for each
subtask were then used to submit the test results.

3.1 System 1: English State-of-the-Art SA

The state-of-the-art system selected from English
was the winner of SemEval-2016 Subtask C “Five-
point scale Tweet classification” in English (Ba-
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likas and Amini, 2016). To apply it for Arabic,
we derived an equivalent set of features to train a
similar model for sentiment classification in Ara-
bic tweets. The derived features are listed here:

• Word n-grams, where n ∈ [1, 4]. To account
for the morphological complexity and spar-
sity of Arabic language, lemma n-grams are
extracted since they have better generaliza-
tion capabilities than words (Habash, 2010)

• Character n-grams, where n ∈ [3, 5]

• Counts of exclamation marks, question
marks, and both marks

• Count of elongated words

• Count of negated contexts; a negated context
is any phrase that occurs between a negation
particle and the next punctuation

• Counts of positive emoticons and negative
emoticons, in addition to a binary feature in-
dicating if emoticons exist in a given tweet

• Counts of each part-of-speech tag in the tweet

• Counts of positive and negative words
based on ArSenL (Badaro et al., 2014),
AraSenti (Al-Twairesh et al., 2016) and
ADHL (Mohammad et al., 2016) lexicons

We also added two additional binary features that
indicate the presence of (1) user mentions and (2)
URL or any other media content.

3.2 System 2: Cluster-based SA
This system is based on grouping semantically-
related tweets, then training different sentiment
classifiers for each group independently. At test
time, each upcoming tweet is assigned to one
of the pre-defined clusters, and the correspond-
ing sentiment classifier is used to predict its po-
larity. Clusters are identified by applying the k-
means algorithm to cluster the word embedding
space that is generated using the skip-gram em-
bedding model (Mikolov et al., 2013). Conse-
quently, each cluster corresponds to a collection of
semantically-related word vectors, and each tweet
is assigned to the cluster whose word vectors are
most similar (closest) to the tweet’s words’ vec-
tors. Tweets that are assigned to the same cluster
are used together to train a sentiment classifier us-
ing n-gram features. We trained several classifiers
including the logistic regression, linear and non-
linear SVM, Bernoulli Naive Bayes, Multinomial

Bayes Naive. During model development, we only
tuned the number of clusters k, whereas we used
the default parameters of the different classifiers
as implemented in scikit-learn (Pedregosa et al.,
2011).

3.3 System 3: Recursive Auto Encoders

We trained the RAE deep learning model
that achieved high performances in both En-
glish (Socher et al., 2011) and Arabic (Al Sallab
et al., 2015). Briefly, the RAE model derive a sen-
tence representation by combining word embed-
dings, two at a time, following the structure of a
syntactic parse tree. The sentence representation
is then used to train a softmax sentiment classi-
fier. We followed the setup proposed by (Al Sal-
lab et al., in press 2017) by applying RAE to
morphologically tokenized text which proved to
improve the performance by reducing the lexical
sparsity of the language. We also use a broader
semantic representation of words by concatenat-
ing word embeddings trained using the skip-gram
model (Mikolov et al., 2013) with sentiment em-
beddings trained using the ArSenL sentiment lex-
icon (Badaro et al., 2014).

3.4 System 4: Topic-based SA

This system is based on the assumption that tweets
discussing a particular topic are likely to share
some unique semantic features. Figure 1 shows
the architecture of this system. It is composed of
several modules; (A) unsupervised topic classifier,
(B) supervised topic classifier, (C) supervised do-
main classifier, in addition to a (D) generic sen-
timent classifier. The idea behind this system is
that, since the test tweets may belong to topics
that are not present in the training set, the differ-
ent modules attempt to predict the topic and then
classify the tweet’s sentiment given the predicted
topic. Before running the system in Figure 1,
topic-specific and domain-specific sentiment clas-
sifiers are trained offline. Tweets belonging to
each topic or domain in the train set are used,
along with their sentiment labels, to train senti-
ment classifiers that are specific to the correspond-
ing topic or domain. These classifiers are used
with the above-mentioned modules as follows.

(M1) Unsupervised Topic Classification Since
the topic of each new tweet is unknown and can
be different from those in the training set, we aim
to discover which of the training topics is closest
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Figure 1: Architecture of the topic-based senti-
ment analysis system.

(or mostly related) to that of the tweet. This is
achieved by training an embedding model, similar
to that in System 2. Then, for each new tweet the
system checks the similarity between the vector of
each of the training topics and those of the tweet’s
words. The tweet is then assigned to the topic with
the highest similarity, and its sentiment polarity
is predicted using the sentiment classifier that is
trained using instances of that particular topic.

(M2) Supervised Topic Classification In many
cases, all similarity values turn out to be small and
close to 0. This is possible if the test tweet’s topic
is totally different from those in the train set, or
if the tweet’s words are implicitly related to the
discussed topic. In such cases, we refer to a su-
pervised topic classifier; a multi-class classifier,
where the number of classes is equal to the num-
ber of topics in the training set. The topic classifier
is trained using n-gram features extracted from all
training tweets. Once the topic of the test tweet
is predicted, its sentiment polarity is predicted us-
ing the sentiment classifier that is trained using in-
stances of that particular topic.

(M3) Supervised Domain Classification Some
topics may not have sufficient instances to train an
accurate sentiment classifier, therefore we intro-
duce the concept of “domain”; a generalized form
of the topic. A supervised domain classifier is a
multi-class classifier, where the number of classes
is equal to the number of domains in the training
set. The domain classifier is trained using n-gram
features extracted from all training tweets. Once
the domain of the test tweet is predicted, its senti-
ment polarity is predicted using the sentiment clas-
sifier that is trained using instances of that partic-
ular domain.

(M4) Direct Sentiment Classification In addi-
tion to the topic-specific and domain-specific clas-
sifiers, we also experiment with the direct senti-
ment classifier that ignores the topic information
and is trained using all tweets in the training set.

We evaluated the following sequences of these
modules: [M1 →M2 →M3], [M2 →M3], [M3]
or [M4]. For instance, in the first sequence, the
tweet’s topic is predicted using the unsupervised
module (M1), and then its polarity is predicted
using the sentiment classifier for that topic. If
no similarity was detected, we proceed to mod-
ule (M2) to predict the tweet’s topic using the
topic classifier, and then predict its sentiment us-
ing the sentiment classifier for that topic. If the
topic is rare and no sentiment classifier exists for
that topic, we proceed to module (M3) to predict
the tweet’s domain using the domain classifier, and
then predict its sentiment using the sentiment clas-
sifier for that domain.

4 Experiments and Results

In this section, we describe the experiments and
results we achieved as part of our participation in
SemEval-2017 Task 4. We describe the datasets
we used, the preprocessing steps we applied and
the performance of the different systems for each
subtask. Table 1 illustrates the design of the eval-
uation experiments, highlighting the systems that
were evaluated for each subtask. The system that
achieved the best evaluation results, for each sub-
task, was then used to submit the test results.

Subtask Systems

Message Polarity
Systems 1, 2, 3

Classification (A)

Topic-based Polarity
Systems 1, 4

Classification (B-C)

Tweet Quantification (D-E) Systems 1, 4

Table 1: Design of evaluation experiments.

4.1 Datasets and Preprocessing
To run our experiments, we used datasets provided
by the task organizers (Rosenthal et al., 2017) as
follows. During evaluation, we trained our mod-
els on the TRAIN set, and evaluated our different
systems on the DEV set. During testing, the sys-
tem that achieved the best development results is
trained using the combination of TRAIN and DEV

sets, and tested the model on the TEST set.
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For the English state-of-the-art approach (Sys-
tem 1), tweets are preprocessed by (1) replacing
mentions and URLs with special tokens, (2) ex-
tracting emoticons and emojis and replacing them
with special tokens using the emojis sentiment lex-
icon (Novak et al., 2015) and a in-home emoticons
lexicon, (3) normalizing hashtags by removing the
# symbol and the underscores that connect words
in composite hashtags, and (4) normalizing letter
repetitions (elongations). Then features are ex-
tracted by performing lemmatization and POS tag-
ging using MADAMIRA v2.1, the state-of-the-art
morphological analyzer and disambiguator in Ara-
bic (Pasha et al., 2014), that uses the Standard Ara-
bic Morphological Analyzer (SAMA) (Maamouri
et al., 2010). We only included n-grams that oc-
curred more than a pre-defined threshold t, where
t ∈ [3, 5] is tuned on the “DEV” set.

For the cluster-based SA approach (System 2),
we trained the skip-gram word embedding model
using a collection of datasets including the TRAIN

and the DEV tweets provided by the organizers,
the Qatar Arabic Language Bank (QALB) (Za-
ghouani et al., 2014) and several Arabic Twit-
ter corpora from (Nabil et al., 2015; Refaee and
Rieser, 2014b). We also used the k-means algo-
rithm to cluster the embedding space into k clus-
ters, with k ranging between 1 (no clustering) and
12. Best results during development were obtained
using k = 4 and 5.

For the RAE approach (System 3), tweets
are processed similar to System 1. We used
MADAMIRA v2.1 to perform morphological to-
kenization following the ATB scheme (Habash
and Sadat, 2006). We also used the Stanford
parser (Green and Manning, 2010) to generate the
syntactic parse trees. Since the resulting trees are
not necessarily binary, and hence cannot be used
to train recursive models, we used left-factoring to
transform the trees to the Chomsky Normal Form
(CNF) grammar that only contains unary and bi-
nary production rules.

For the topic-based approach (System 4), tweets
are preprocessed by applying normalization and
stemming using the NLTK ISRI stemmer (Taghva
et al., 2005) and stopword removal. Then, n-grams
are extracted using SKlearn TFiDFvectorizer (Pe-
dregosa et al., 2011), with a variance threshold for
feature reduction. The tweets in the training set
that is provided by the task organizers pertain to
34 topics. We came up with a list of 8 generic do-

mains that correspond to these topics, as shown in
Table 2.

Domains Topics

technology ÉK.
�
@ , 	àñ 	®K
 @ , É 	«ñ 	« , YK
ðPY	K


A, 	KñÒJ
»ñK. , Ég. ñk. ,10 	PðY	JK
ð

shopping 	àð 	PAÓ@ , ú
æ
����ñ 	«

sports PQK
YJ
 	̄ , ú
æ�J
Ó , YK
PYÓ ÈAK
P , �é 	KñÊ ��QK.
media éJ
�	�ñJ
K. , Q�. J
K. 	á���k. ,Q�KñK. ø
 PAë

religion ÐC�B@ , 	àA 	�ÓP
politics isis H. AëPB@ , ��«@X

politics me Y�

B@ , I. Êg , �éK
Pñ� , AK
Pñ� , 	à@QK
 @ , 	àA 	«ðXP@ ,PA ���.

ú
æ�J
� , �éK
Xñª�Ë@ , ��@QªË@

politics us AÓAK. ð@ , AÓAK. ð

@ ¼@PAK. , I. Ó@Q�K YËA 	KðX , 	àñ�J 	JÊ¿ ø
 PCJ
ë

Table 2: The list of 8 generalized domains corre-
sponding to the 34 topics in the training dataset.

4.2 Message Polarity Classification (A)

For this subtask, we evaluated the English state-of-
the-art approach (System 1), the cluster-based SA
approach (System 2) and RAE (System 3). The
development and test results are illustrated in Ta-
ble 3. It can be observed that System 1 achieved
the best development results, and hence was used
at the test phase. System 2 achieved slightly lower
recall and higher accuracy, which indicates the po-
tential benefits of training different sentiment clas-
sifiers for different clusters. Also, the inferior per-
formance produced by System 3 can be due to its
reliance on Arabic NLP tools, such as the syntac-
tic parser, that are trained on MSA data, whereas
the evaluation data are tweets that are likely to be
noisy in terms of containing significant amounts
of misspellings and grammatical errors.

Model Avg-R Avg-F1 Acc.

DEV

Sys 1 0.458 0.434 0.453
Sys 2 0.455 0.401 0.477
Sys 3 0.424 0.394 0.410

TEST Sys 1 0.438 0.422 0.430

Table 3: Results for subtask A (rank: #5/8).

4.3 Topic-based Polarity Classification (B-C)

For these subtasks, we evaluated the English state-
of-the-art approach (System 1) and the different
configurations of the topic-based SA approach
(System 4) as discussed in subsection 3.2. The de-
velopment and testing results for the 2-point and
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the 5-point scale predictions are illustrated in Ta-
ble 4 and 5, respectively.

System Avg-F1 Avg-R Acc.

DEV

Sys 1 0.551 0.611 0.654
Sys 4 [M1 →M2 →M3] 0.473 0.536 0.554
Sys 4 [M2 →M3] 0.487 0.553 0.569
Sys 4 [CM3 0.495 0.576 0.569
Sys 4 [M4] 0.581 0.640 0.690

TEST Sys 4 [M4] 0.678 0.687 0.679

Table 4: Results for subtask B (rank: #4/4).

System MAEM MAEµ

DEV

Sys 1 0.410 0.568
Sys 4 [M1 →M2 →M3] 0.387 0.551
Sys 4 [M2 →M3] 0.414 0.648
Sys 4 [M3] 0.436 0.665
Sys 4 [M4] 0.422 0.647

TEST Sys 4 [M1 →M2 →M3] 0.943 0.646

Table 5: Results for subtask C (rank: #1/2).

For Subtask B, it can be observed that ignor-
ing the topic and domain information achieves
highest performances. It can also be observed
that generalizing from topics to domains in Sys-
tem 4 achieves better results than working at the
topic-level only. As for Subtask C, results indi-
cate that using topic-specific sentiment classifiers,
and backing them with domain-specific sentiment
classifiers, achieves the best performance in the
competition on that subtask.

4.4 Tweet Quantification (D-E)
For these subtasks, we evaluated the English state-
of-the-art approach (System 1) and the different
configurations of the topic-based SA approach
(System 4). The development and testing results
for the 2-point and the 5-point scale quantifica-
tions are illustrated in Table 6 and 7, respectively.

System KLD AE RAE

DEV

Sys 1 0.277 0.316 2.442
Sys 4 [M1 →M2 →M3] 0.240 0.257 2.125
Sys 4 [M2 →M3] 0.319 0.668 2.783
Sys 4 [M3] 0.258 0.298 2.322
Sys 4 [M4] 0.581 0.640 0.690

TEST Sys 1 0.202 0.238 4.835

Table 6: Results for subtask D (rank: #2/3).

For both subtasks, it can be observed that ig-
noring the topic and domain information achieves
the best performances. For subtask D, using the
features from System 1 achieved best development

System EMD

DEV

Sys 1 0.436
Sys 4 [M1 →M2 →M3] 0.473
Sys 4 [M2 →M3] 0.474
Sys 4 [M3] 0.458
Sys 4 [M4] 0.426

TEST Sys 4 [M4] 0.548

Table 7: Results for subtask E (rank: #1/2).

results, and ranked 2nd in the competition. On the
other hand, for subtask E, it turns out that using the
simple n-gram features for direct sentiment classi-
fication ranked 1st in the competition.

5 Conclusion

In this paper, we evaluated the application of re-
cent state-of-the-art English models for sentiment
analysis in Arabic tweets. These systems were
used to perform all Arabic-related subtasks in
SemEval-2017 Task 4.

In some cases, such as for message polarity
classification (subtask A), the feature-based ap-
proach outperformed a RAE deep learning ap-
proach and another system that is based on cre-
ating semantic clusters for the tweets and training
a sentiment classifier for each cluster.

For topic-based polarity classification (sub-
tasks B and C) and topic-based tweet quantifica-
tion (subtasks D and E), we evaluated a system
that predicts the topic of upcoming tweets, and
then predicts their sentiment using topic-specific
sentiment classifiers. We allow this system to gen-
eralize from topics to domains. Results indicate
that ignoring the topic and the domain information
achieves better performances, with an exception
for subtask C, where using topic-specific classi-
fiers and backing them with domain-specific clas-
sifiers performs better.

As part of our future work, we will focus on de-
veloping SA models for different Arabic dialects,
and also to perform cross-regional evaluations to
confirm whether different models are needed for
different regions and dialects, or a general model
can work for any tweet regardless of its origins.
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Abstract

This paper describes our multi-view en-
semble approach to SemEval-2017 Task 4
on Sentiment Analysis in Twitter, specif-
ically, the Message Polarity Classification
subtask for English (subtask A). Our sys-
tem is a voting ensemble, where each base
classifier is trained in a different feature
space. The first space is a bag-of-words
model and has a Linear SVM as base clas-
sifier. The second and third spaces are two
different strategies of combining word em-
beddings to represent sentences and use a
Linear SVM and a Logistic Regressor as
base classifiers. The proposed system was
ranked 18th out of 38 systems considering
F1 score and 20th considering recall.

1 Introduction

Twitter is a microblogging service that has 313
million monthly active users 1. In this social me-
dia platform, users interact through short mes-
sages, so-called tweets. The company estimates
that over 500 million tweets are sent each day 2.
Despite of their size, at most 140 characters, these
messages provide rich data because users gener-
ally write about their thoughts, opinions and senti-
ments. Therefore, applications in several domains,
such as commercial (Jansen et al., 2009) and po-
litical (Tumasjan et al., 2010; Wang et al., 2012),
may benefit from the automatic classification of
sentiment in tweets.

In this paper we show that a multi-view ensem-
ble approach that leverages simple representations
of texts may achieve good results in the task of
message polarity classification. The proposed sys-
tem consists of three base classifiers, each of them

1https://about.twitter.com/company
2https://business.twitter.com/en/basics.html

with a specific text representation technique (bag-
of-words or word embeddings combination). As
base classifiers, we use Support Vector Machines
(SVM) and Logistic Regression. The proposed ap-
proach was evaluated on the SemEval-2017 Task 4
Subtask A for English and was ranked 18th out of
38 participating systems considering F1 score and
20th considering recall.

This paper is organized as follows: Section 2
describes our system, the feature spaces and the
classifiers we employed. The training and evalu-
ation datasets are presented in Section 3. In ad-
dition, Section 3 also describes the preprocess-
ing steps and some details about the word embed-
dings. We present our results in Section 4. Finally,
Section 5 outlines our conclusions and remarks on
future work.

2 System Description

The proposed system consists of a multi-view
ensemble with three base classifiers with differ-
ent text representation techniques (feature spaces),
that is, all base classifiers are trained on the same
dataset but with a different representation or fea-
ture space. The first is a Linear SVM and the
tweets are represented using bag-of-words (Sec-
tion 2.1.1). The second is another Linear SVM
and the tweets are represented by averaging the
word embeddings (Section 2.1.2). The third is a
Logistic Regressor and the tweets are represented
by averaging the weighted word embeddings (Sec-
tion 2.1.2). In these systems, a class of a given in-
stance is decided as the class which maximizes the
sums of the predicted probabilities (soft-voting).

The idea of using a multi-view ensemble is to
explore different feature spaces without the need
of combining all features in the same space, since
this combination may lead to the insertion of
noise. Moreover, there is no straightforward way
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of combining them. Other important aspect of this
technique is the possibility of assigning different
weights to each pair of classifier/features (view) or
even learn the weights by a regression method (Xu
et al., 2013).

The process of choosing the best classifier for
each feature space was done by executing a Grid
Search with state-of-art classifiers (k-NN, Deci-
sion Trees, Naive Bayes, Random Forest, Ad-
aBoost, SVM and Logistic Regression), which led
to the selection of SVM and Logistic Regression.
In the following subsections, the text representa-
tions and the classifiers are described. The com-
plete system will be made available 3.

2.1 Text representations
In this work, tweets were modeled using three
types of text representation. The first one is a
bag-of-words model weighted by tf-idf (term fre-
quency - inverse document frequency) (Section
2.1.1). The second represents a sentence by av-
eraging the word embeddings of all words (in the
sentence) and the third represents a sentence by
averaging the weighted word embeddings of all
words, the weight of a word is given by tf-idf (Sec-
tion 2.1.2).

2.1.1 Bag-of-words
The bag-of-words model is a popular approach
to represent text (documents, sentences, queries
and others) in Natural Language Processing and
Information Retrieval. In this model, a text is
represented by its set of words, this representa-
tion can be binary, in which a word receives 1
if it is in the text or 0 otherwise, considering a
predefined vocabulary. An alternative is a repre-
sentation weighted by some specific information,
such as frequency. The representation adopted
by this work is the bag-of-words weighted by tf-
idf (Salton, 1989), where each tweet is repre-
sented as tweeti = (ai1, ai2, ..., aim), where aij

is given by the frequency of term tj in the tweet i
weighted by the total number of tweets divided by
the amount of tweets containing the term tj .

2.1.2 Word embeddings
Word embeddings, a concept introduced by Ben-
gio et al. (2003), is a distributional represen-
tation of words, where each word is repre-
sented by a dense, real-valued vector. These
vectors are learned by neural networks trained

3https://github.com/edilsonacjr/semeval2017

in language modeling (Bengio et al., 2003) or
similar tasks (Collobert et al., 2011; Mikolov
et al., 2013a,b). In this work, the Word2Vec
model (Mikolov et al., 2013a,b) is used, in which
the vectors are learned by training the neural
network to perform context (skip-gram) or word
(CBOW) prediction.

In addition to capture syntactic and semantic
information, the vectors produced by Word2Vec
have geometric properties such as composition-
ality (Mikolov et al., 2013b), which allow larger
blocks of information (such as sentences and para-
graphs) to be represented by the combination of
the embeddings of the words contained in the
block. This approach has been adopted by a con-
siderable number of works in several areas, such
as question answering (Belinkov et al., 2015),
semantic textual similarity (Sultan et al., 2015),
word sense disambiguation (Iacobacci et al., 2016)
and even sentiment analysis (Socher et al., 2013).

In our work we adopted two combination ap-
proaches. The first is a simple combination, where
each tweet is represented by the average of the
word embedding vectors of the words that com-
pose the tweet. The second approach also averages
the word embedding vectors, but each embedding
vector is now weighted (multiplied) by the tf-idf
of the word it represents. A similar approach has
been used in Zhao et al. (2015).

2.2 Classifiers

For both classifiers we used the well-known Scikit-
learn (Pedregosa et al., 2011) implementation
(with default parameters).

2.2.1 Logistic Regression
Logistic Regression is a linear classifier that pre-
dicts the class probabilities of a binary classifica-
tion problem. It is also known as logit regression
because a sigmoid function outputs the class prob-
abilities. To tackle multiclass problems, the train-
ing algorithm uses the one-vs-rest approach (Mur-
phy, 2012).

2.2.2 Support Vector Machines
Support Vector Machines (SVMs) classifiers find
the decision boundary that maximizes the margin
between two classes. However, when data is in-
trinsically nonlinear, SVM classifiers cannot prop-
erly separate between classes. A possible solution
is to map the data points into a higher-dimensional
feature space. By doing so, the data becomes lin-
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early separable (Murphy, 2012). To apply the al-
gorithm to our multiclass problem, we used the
one-vs-one approach.

3 Data

To evaluate our system we used the training and
development datasets provided by the SemEval-
2017 competition (specifically Twitter2016-train
and Twitter2016-dev). For testing, in ad-
dition to the previous year’s testing datasets
(Twitter2016-test, SMS2013, Tw2014-sarcasm,
LiveJournal2014), a new dataset (Twitter2017-
test) was made available. A summary of the
datasets is given in Table 1.

Dataset Total Pos. Neg. Neut.
Twitter2016-train 6000 3094 863 2043
Twitter2016-dev 2000 844 765 391
Twitter2016-test 20632 7059 10342 3231
Twitter2017-test 12284 2375 3972 5937
SMS2013 2093 492 394 1207
Tw2014-sarcasm 86 33 40 13
LiveJournal2014 1142 427 304 411

Table 1: Datasets used in the training and evalua-
tion of the system.

Data preprocessing. Before extracting features,
the tweets were preprocessed. First, we tok-
enized the text considering HTML tags, men-
tions/usernames, URLs, numbers, words (includ-
ing hyphenated words) and emoticons. Then, the
text was set to lowercase and stopwords (words
with low semantic value such as prepositions and
articles), punctuation marks, hashtags and men-
tions/usernames were removed.

Word embeddings. We used the pre-trained
word embeddings 4, generated with the Word2Vec
model (Mikolov et al., 2013a,b) and trained on
part of Google News dataset, which is composed
of approximately 100 billion words. The model
comprises 3 million words and phrases and the
embedding vectors have 300 dimensions. Words
out of the vocabulary were disregarded and when
all words in a tweet had no pre-trained vectors, a
randomly initialized vector of 300 dimensions was
assigned.

4code.google.com/archive/p/word2vec/

4 Results

To evaluate, compare and rank the participating
systems, F1 score (average), recall (average) and
accuracy were chosen by the organizers. Our sys-
tem was ranked 18th out of 38 systems, with a
F1 score of 0.595 on the Twitter2017-test, ranked
20th considering recall (0.612) and ranked 16th
with 0.617 of accuracy. The full ranking and other
details of the competition may be found in Rosen-
thal et al. (2017).

Dataset F1 score recall accuracy
Twitter2016-test 0.523 0.527 0.542
Twitter2017-test 0.595 0.612 0.617
SMS2013 0.381 0.494 0.609
Tw2014-sarcasm 0.339 0.536 0.442
LiveJournal2014 0.573 0.569 0.588

Table 2: Results obtained by our systems in dif-
ferent evaluation datasets.

In the Twitter2016-test evaluation, only
Twitter2016-train and Twitter2016-dev were
used in training. In the rest of the evaluations,
Twitter2016-train, Twitter2016-dev, Twitter2016-
test were used. Despite of the availability of other
datasets for training, we chose to use only the
three. The results obtained by our system are
summarized in Table 2.

From the results it is possible to notice that the
system is impaired in datasets of different origin,
such as SMS2013, this may occur due to the use
of a distinct and specific vocabulary. In the case
of Tw2014-sarcasm, the major problem is that our
representations do not consider the order of words
in the sentence which can make it difficult to iden-
tify sarcasm or modifiers. In the LiveJournal2014
dataset the system remained stable even though it
is a dataset of another domain, probably because it
is similar to the Twitter datasets.

5 Conclusion and Future Work

In this paper, we presented a multi-view ensemble
approach to message polarity classification that
participated in the SemEval-2017 Task 4 on Senti-
ment Analysis in Twitter (subtask A English). Our
system was ranked 18th out of 38 participants.

The results indicated that a multi-view ensem-
ble approach that leverages simple representations
of texts may achieve good results in the task of
message polarity classification with almost no in-
tervention or special preprocessing.
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In our approach, tweets with opposite polarities
might end up with the same vector representation
in the cases they present the same words, such as
”It isn’t horrible, it’s perfect” and ”It isn’t per-
fect, it’s horrible”. To solve this problem, we
plan to combine our model with other techniques
that consider the ordering of words, such as word
n-grams. In the future, we also plan to use ap-
proaches for the normalization of informal texts in
order to capture particularities of the social media
language. In informal texts, a word or a sequence
of words can be intentionally replaced, for exam-
ple you, are and see you can be written as u, r and
cu. Because these forms are not mapped into the
original words, they are seen as different tokens.
In addition, commonly used abbreviations, such as
omg and wth, may express sentiment and their ex-
pansion could lead to model improvements. Other
improvements that may lead to a better system is
the use of word embeddings trained to capture sen-
timent information and the use of autoencoders to
generate sentence/document embeddings.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search 3(Feb):1137–1155.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

In this paper, we describe our system
implementation for sentiment analysis in
Twitter. This system combines two models
based on deep neural networks, namely a
convolutional neural network (CNN) and
a long short-term memory (LSTM) re-
current neural network, through interpola-
tion. Distributed representation of words
as vectors are input to the system, and the
output is a sentiment class. The neural net-
work models are trained exclusively with
the data sets provided by the organizers of
SemEval-2017 Task 4 Subtask A. Overall,
this system has achieved 0.618 for the av-
erage recall rate, 0.587 for the average F1
score, and 0.618 for accuracy.

1 Introduction

Analysis of digital content created and spread in
social networks are becoming instrumental in pub-
lic affairs. Twitter is one of the popular social
networks, so there are more and more researches
on Twitter recently, including sentiment analysis,
which predicts the polarity of a message.

A message submitted to Twitter is called a
tweet. Millions of tweets are created every hour,
expressing users’ views or emotions towards all
sorts of topics. Different from a document or an
article, a tweet is limited in length to 140 charac-
ters. In addition, tweets are often colloquial and
may contain emotional symbols called emoticons.

For sentiment analysis, deep learning-based ap-
proaches have performed well in recent years.
For example, convolution neural networks (CNN)
with word embeddings have been implemented for
text classification (Kim, 2014), and have achieved
state-of-the-art results in SemEval 2015 (Severyn
and Moschitti, 2015).

In this paper, we describe our system for
SemEval-2017 Task 4 Subtask A for message po-
larity classification (Rosenthal et al., 2017). It
classifies the sentiment of a tweet as positive, neu-
tral, or negative. Our system combines a CNN and
a recurrent neural network (RNN) based on long
short-term memory (LSTM) cells. We use word
embeddings in both models and interpolate them.
Our submission achieved 0.618 for average recall,
which ranked 19th out of 39 participating teams
for subtask A.

This paper is organized as follows. In Section 2,
we review previous studies on sentiment analysis
in Twitter. In Section 3, we describe data, pre-
processing steps, model architectures, and tools
used in developing our system. In Section 4, we
present the evaluation results along with our com-
ments. In Section 5, we draw conclusion and dis-
cuss future works.

2 Related Works

In this section, we briefly review the research
works of sentiment analysis in Twitter based on
deep neural networks. A one-layer convolu-
tion neural network with embeddings can achieve
high performance on sentiment analysis (Kim,
2014). In SemEval 2016, quite a few submissions
were based on neural networks. A CNN model
with word embedding is implemented for all sub-
tasks (Ruder et al., 2016). The model performs
well on three-point scale sentiment classification,
while performing poorly on five-point scale sen-
timent classification. A GRU-based model with
two kinds of embedding used for general and task-
specific purpose can be more efficient than CNN
models (Nabil et al., 2016).
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Vocab. Pos. Neu. Neg. Total
train 29039 2607 1712 713 5032
test 5939 8672 2596 17207

Table 1: Statistics of SemEval-2016.

Vocab. Pos. Neu. Neg. Total
train 38532 12844 12249 4609 29702
dev 7059 10341 3231 20632

Table 2: Statistics of SemEval-2017.

3 Experiment

3.1 Data

We use two datasets called SemEval-2016 and
SemEval-2017. Tables 1 and 2 summarize the
statistics of these datasets.

For the set of SemEval-2016, we obtain 5032
tweets for train data and 17207 tweets for test data
from twitter API, respectively. Although some of
the original tweets were not available in the be-
ginning, we still use this SemEval-2016 data set
for evaluating different models and tuning hyper-
parameters.

The SemEval-2017 is provided by task organiz-
ers. It contains SemEval data used in the years
from 2013 to 2016. We use 2013-train, 2013-
dev, 2013-test, 2014-sarcasm, 2014-test, 2015-
train, 2015-test, 2016-train, 2016-dev, and 2016-
devtest as train data. The 2017-dev data is used
for test data, which is almost the same as the 2016-
test. The models trained with SemEval-2017 data
is used for final submission.

A tweet is pre-processed before it is used in the
neural networks. First, we use a tokenizer to split
a tweet into words, emoticons and punctuation
marks. Then, we replace URLs and USERs with
normalization patterns <URL> and <USER>,
respectively. All uppercase letters are converted
to lowercase letters. Word list contains different
words in the training data, and vocabulary size is
the size of word list. During test, words not in
the word list are removed. After pre-processing,
words are converted to vectors by GloVe (Pen-
nington et al., 2014). Then the sequence of em-
bedding word vectors are input to neural networks.

3.2 System

3.2.1 CNN
The CNN model we use is the architecture used
by Kim (Kim, 2014), which consists of a non-

Figure 1: CNN architecture.

linear convolution layer, max-pooling layer, one
hidden layer, and softmax layer. Figure 1 depicts
our CNN model.

The input of this model is a pre-processed tweet,
which is treated as a sequence of words. We pad
input texts with zeros to the length n.

A pre-processed tweet w1:n is represented by
the corresponding word embedding x1:n, where xi

is the d-dimensional word vector of i-th word. The
word embedding is a parameterized function map-
ping words to vectors as a lookup table parameter-
ized by a matrix. Through word-embedding, in-
put words are embedded into dense representation,
and then feed to the convolution layer. Words out-
of-embeddings will be represented by zero vector.
And each input texts will be mapped to a n × d
input matrix.

At the convolution layer, filters of size m × d
slide over the input matrix and creates (n−m+1)
features each filter. We use k filters to create k
feature maps. Thus, the size of the convolutional
layer is k × 1× (n−m+ 1).

We apply the max pooling operation over each
feature map (Kim, 2014). After max pooling, we
use dropout by randomly drop out some activation
values while training for regularization in order
to prevent the model from overfitting (Srivastava
et al., 2014). Then we add a hidden layer to get the
appropriate representation and a dense layer with
softmax function to get probabilities for classifica-
tion.

3.2.2 RNN
Figure 2 shows our architecture of RNN-based
model, which contains input layer, embedding
layer, hidden layer and softmax layer.

At the input layer, each tweet is treated as a
sequence of words w1, w2, ..., wn, where n is the
maximum tweet length. In order to fix the length
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Figure 2: LSTM-based RNN architecture.

of tweet, we pad zero at beginning of tweets whose
length is less than n. The size of input layer is
equal to the size of word list, and each word is
represented by a one-hot vector.

At the embedding layer, each word is converted
to a word vector. We use pre-trained word vectors,
GloVe, where word vectors are stored in a matrix.
Specifically, a word in the word list is represented
by the corresponding row vector (or a leading sub-
vector), while a word not in the word list is repre-
sented by a zero vector.

At the hidden layer, we choose LSTM mem-
ory cell (Hochreiter and Schmidhuber, 1997) for
its long-range dependency. It is argued that LSTM
can get better results than simple RNN. The model
contains one hidden layer, which size is h. The
hidden states of first word to (n− 1)-th word in a
tweet connect to the hidden state of the next word.
Only the hidden state of n-th word connect to the
next (output) layer. Also, we add dropout to the
hidden layer for regularization.

At the softmax layer, output values through a
softmax function model the probabilities of three
classes. During test phase, the sentiment class
with the greatest probability is the output senti-
ment.

3.2.3 Interpolation
On SemEval-2016 data, performances of SA sys-
tems with respect to different sentiment classes
have shown significant difference. Thus, we inter-
polate them to achieve better generalisation. Af-
ter models are trained respectively, we interpolate
them with weight λ

pinterp = λ× plstm + (1− λ)× pcnn (1)

where plstm and pcnn are the probability of the
LSTM and CNN model, respectively, and pinterp
is the interpolated probability.

3.2.4 Settings

The maximum length for the tweets in SemEval-
2017 data set is n = 99. The dimension of word
vector is set to d = 100 at first, and then varied to
a few values.

For CNN model, we choose k = 50 filters with
size 3 × 100 with stride s = 1 over the input
matrix. Max pooling is applied over each feature
map. Then, we drop activations randomly with the
probability p = 0.2 and feed to the hidden layer
with size h = 20.

For RNN-based model, input size i is the size
of word list and hidden size h is 50. We drop in-
put units for input gates and recurrent connections
with same probability p = 0.2.

We have tried rectified linear units (ReLU) and
hyperbolic tangent (tanh) function for the activa-
tion function, and it seems that tanh performs bet-
ter than ReLU in our experiments. We use cross
entropy for the objective function and Adam al-
gorithm for optimization. Finally, the CNN and
LSTM models are interpolated with weight λ =
0.6 through a grid search.

3.3 Tool

The tokenizer for text pre-processing is the Hap-
pytokenizer1. All models we use in our experi-
ments are implemented using Keras2 with Tensor-
flow3 backend.

4 Result

4.1 Comparison of Representations

First, we compare one-hot representation (sparse)
and word vector representation (distributed). We
train simple RNN and LSTM-based model and
evaluate them on SemEval-2016 data. Each model
contains one hidden layer with 50 hidden units.
For models using word embeddings, the dimen-
sion of a word vector is d = 100.

The results are shown in Table 3. We can see
that word vectors work better than one-hot vectors,
except for the F1 score of RNN. We also observe
that RNN model with embedding is prone to pre-
dict negative class as positive, and LSTM model
predicts more accurately over all classes.

1http://sentiment.christopherpotts.net/tokenizing.html
2https://keras.io/
3https://www.tensorflow.org/
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RNN LSTM
sparse dist. sparse dist.

Rpos 0.634 0.867 0.726 0.807
Rneu 0.339 0.401 0.377 0.444
Rneg 0.227 0.014 0.271 0.344
Avg R 0.400 0.427 0.458 0.532
Avg F1 0.365 0.310 0.427 0.515
Acc. 0.424 0.503 0.482 0.554

Table 3: One-hot (sparse) vs. word vector (dist.).

system ID Avg R Avg F1 Acc.
RNN-50-20 0.417 0.319 0.485
RNN-100-50 0.427 0.310 0.503
RNN-200-50 0.436 0.410 0.453
LSTM-50-20 0.504 0.496 0.516
LSTM-100-50 0.532 0.515 0.554
LSTM-200-50 0.537 0.522 0.549
LSTM-200-100 0.512 0.500 0.523

Table 4: RNN vs. LSTM. The numbers in a sys-
tem ID indicate the dimension of word vector and
the number of neurons in the hidden layer.

4.2 Comparison of RNN and LSTM

Table 4 list the results of the comparison of RNN
and LSTM using SemEval-2016 data. The re-
sults of LSTM model are better than RNN model,
showing that long-range dependency within text
message is useful in sentiment analysis.

4.3 Comparison of Data Amounts

Table 5 shows the results of LSTM and CNN on
SemEval-2016 and SemEval-2017 data. As ex-
pected, various measures of performance are im-
proved with an increase in the amount of train
data.

4.4 Model Interpolation

From Table 5, we can see that CNN performs bet-
ter than LSTM on negative class, and LSTM per-
forms better than CNN on positive and neutral
classes. Thus, by combining their strengths, bet-
ter generalization can often be achieved than an
individual system.

We tune hyper-parameter λ of interpolation via
a grid search. We choose word vector size d = 100
for both models, one hidden layer with 50 hidden
neurons for LSTM model, and number of filters
k = 50 and fully connected size h = 20 for CNN
model.

Model LSTM-100-50 CNN-100-50-20
2016 2017 2016 2017

Rpos 0.807 0.729 0.824 0.697
Rneu 0.444 0.633 0.335 0.502
Rneg 0.344 0.451 0.344 0.606
Avg R 0.532 0.604 0.501 0.602
Avg F1 0.515 0.581 0.487 0.564
Acc. 0.554 0.637 0.505 0.585

Table 5: Comparison of LSTM and CNN using
different amounts of data. Here the numbers in a
CNN system ID indicate the dimension of word
vector, the number of filters, and the size of the
hidden layer.

Avg R Avg F1 Acc.
baseline 0.333 0.255 0.342

2017 LSTM 0.604 0.581 0.637
dev CNN 0.602 0.564 0.585

interpolation 0.631 0.604 0.640
2017 baseline 0.333 0.162 0.193
test interpolation 0.618 0.587 0.616

Table 6: Results on SemEval-2017 data with inter-
polation weight λ = 0.6.

Eventually, the interpolated system gets 0.618
for average recall rate on subtask A on SemEval
2017 test data, as shown in Table 6.

5 Conclusion

We implemented CNN and LSTM models with
word embedding for sentiment analysis in Twitter
data organized in SemEval 2017. Our experiments
reveled an interesting point that LSTM model per-
forms well on positive and neutral classes, while
CNN model performs average on all classes. The
final submission is based on model interpolation,
with the weight decided by development set. It
achieved 0.618 for 3-class average recall rate,
0.587 for 2-class average F1-score, and 0.618 for
accuracy.

For near-future works, we hope to get closer in
performance to the leaders on the board, respec-
tively 0.681, 0.685, and 0.657. We will start by
looking at methods that deal with data imbalance,
as well as adversarial training approaches.
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Abstract

Recently, neural twitter sentiment classi-
fication has become one of state-of-the-
arts, which requires less feature engineer-
ing work compared with traditional meth-
ods. In this paper, we propose a simple
and effective ensemble method to further
boost the performances of neural mod-
els. We collect several word embedding
sets which are publicly released (often are
learned on different corpus) or constructed
by running Skip-gram on released large-
scale corpus. We make an assumption that
different word embeddings cover differ-
ent words and encode different semantic
knowledge, thus using them together can
improve the generalizations and perfor-
mances of neural models. In the SemEval
2017, our method ranks 1st in Accuracy,
5th in AverageR. Meanwhile, the addi-
tional comparisons demonstrate the supe-
riority of our model over these ones based
on only one word embedding set. We re-
lease our code 1 for the method replicabil-
ity.

1 Introduction

Twitter sentiment classification has attracted a lot
of attention (Dong et al., 2015; Nakov et al., 2016;
Rosenthal et al., 2017), which aims to classify a
tweet into three sentiment categories: negative,
neutral, and positive. Tweet text has several fea-
tures: written by the informal language, hash-tags
and emoticons indicate sentiments, and sometimes
is sarcasm, which make decisions of tweet senti-
ment hard for machines. With releases of anno-
tated datasets, more researchers prefer to use the

1https://github.com/zwjyyc/NNEMBs

twitter sentiment classification as one testbed to
evaluate their proposed models.

Traditional methods (Mohammad et al., 2013)
for twitter sentiment classification use a variety of
hand-crafted features including surface-form, se-
mantic and sentiment lexicons. The performances
of these methods often depend on the quality of
feature engineering work, and building a state-of-
the-art system is difficult for novices. Moreover,
these designed features are presented by the one-
hot representation which cannot capture the se-
mantic relativeness of different features and pro-
poses a problem of feature sparsity. To address
this, Tang et al. (2014) induced sentiment-specific
low-dimensional, real-valued embedding features
for twitter classification, which encode both se-
mantics and sentiments of words. In the exper-
iments, the embedding features and hand-crafted
features obtain similar results, and also they are
complementary for each other in the system. With
the developments of neural networks in natural
language processing, neural sentiment classifica-
tion (Severyn and Moschitti, 2015; Deriu et al.,
2016) has attracted a lot of attention recently and
become the state-of-the-arts. These methods first
learn word embeddings from large-scale twitter
corpus, then tune neural networks by the tweets
which have distant labels, and finally fine-tune the
proposed models by the annotated datasets.

Learning word embeddings using in-domain
data is an effective way to boost model perfor-
mances (Mikolov et al., 2013; Yin et al., 2016).
However, collecting large-scale twitter corpus is
often time-consuming. In this paper, we use the
different word embedding sets to boost the per-
formances of our neural networks, which only in-
clude released different word embeddings sets and
the word embedding set derived from the released
Yelp large-scale datasets by Skip-gram (Mikolov
et al., 2013). A simple and effective ensemble

621



Figure 1: Overview of our method.

method is proposed, which takes different word
embedding sets as input to train neural networks
and predicts labels of testing tweets by merging
all output of neural models. Our ensemble method
show its effectiveness in SemEval 2017, though
most of used word embedding sets are not learned
from twitter corpus, which can be explained that
different embedding sets has different vocabular-
ies and encode different parts of sentiment knowl-
edge. Moreover, we conduct additional experi-
ments to analyze our model.

2 Method

In this section, we describe the details of our
method, which is illustrated in Figure 1. We feed
different word embedding sets into neural net-
works and train these neural networks separately.
When predicting the labels of tweets in testing set,
we sum label probabilities of all neural network to
make final decisions.

2.1 Neural Network
We have many choices of neural networks (e.g.,
LSTM, RNN and GRU) for our method, here we
consider RCNN (Lei et al., 2016) in our method.
RCNN has non-consecutive convolution and adap-
tive gated decay, which aims to capture longer-
range, non-consecutive patterns in a weighted
manner.

Given a sequence of words which are denoted
as {xi}li=1, the corresponding word embeddings
{xi}li=1 are derived using the embedding matrix
E. Then, RCNN obtains their corresponding hid-
den vectors {hi}li=1 using the convolution opera-
tion and gating mechanism. After obtaining hid-
den vectors, RCNN uses a pooling operation to
get fixed-sized vector presentation, which is fed

into softmax layer to finish the prediction. The n-
gram convolution operation and gating decay are
described as follows:

λt = σ(Wλxt + Uλht−1 + bλ),

c
(1)
t = λt � c

(1)
t−1 + (1− λt)� (W1xt),

c
(2)
t = λt � c

(2)
t−1 + (1− λt)� (c

(1)
t−1 + W2xt),

· · · ,
c
(n)
t = λt � c

(n)
t−1 + (1− λt)� (c

(n−1)
t−1 + Wnxt),

ht = tanh(c
(n)
t + b),

where Wλ, Uλ, bλ, b and W∗ are learnable
parameters, σ is sigmoid function which rescales
the value into (0, 1), � is dot product, λt is gat-
ing value determining how much information of
xt and previous patterns is added into the hidden
vector, c(i)

t refer to the vector for accumulated pre-
vious patterns which are ended with xt include i
consecutive tokens. When λt = 0, the convolu-
tion becomes a standard n-gram convolution.

We also can build a deep RCNN by adding sev-
eral convolution layer on top of hidden vectors
derived from the bottom convolution layer. Here
we consider the RCNN with d convolution layers,
which outputs {hdi }li=1. Then, a last pooling oper-
ation is conducted on hidden vectors to obtain text
representation r. Finally, text representation is fed
into a softmax layer. The softmax layer outputs
the probability distribution over |Y| categories for
the distributed representation, which is defined as:

p(r) = softmax(Wclass
k r).

The cross-entropy objective function is used to
optimize the RCNN model.

2.2 Prediction

We learn different RCNN models with differ-
ent embedding sets as input. Formally, we
have s embedding sets which are denoted as
{E1,E2, · · · ,Es}, and feed them into s RCNN
models, then learn RCNN models separately. We
predict sentiment label of testing tweet based on
these learned RCNN models, which are described
by following functions:
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Sets Corpus Scale Algorithm Dimension Source Vocab
gloveG General 840B GloVec 300 R 2.2M
gloveT Twitter 27B GloVec 200 R 1.2M
word2vecGN Google News 100B Word2Vec 300 R 3.0M
word2vecY Yelp Reviews 0.3B Word2Vec 300 S 0.2M
Ensemble - - - - - 5.4M

Table 1: Statistics of the embedding sets. R means the embedding set is publicly released and S means
the embedding set is self-contained. GloVec (Mikolov et al., 2013) and Word2Vec (Pennington et al.,
2014) are most popular embedding algorithms. Scale means the size of tokens in corpus, M and B refer
to million and billion respectively. The embedding set word2vecY are trained by Word2Vec with default
settings and Yelp reviews are available at https://www.yelp.com/dataset challenge.

Dataset #num #category ratio
Previous SemEvals 50032 1.5/4.7/3.8
SemEval 2017 Test 12284 3.2/4.8/2.0

Table 2: Statistics of datasets.

p1 = RCNN1({xi}li=1,E
1),

p2 = RCNN2({xi}li=1,E
2),

. . . ,

ps = RCNNs({xi}li=1,E
s),

p
′
=
∑

1≤i≤s
pi.

y = argmax1≤i≤|Y|p
′
i,

where y is the predicted label.

3 Experiment

3.1 Datasets and Settings

We use 4 embedding sets which are described in
Table 1. Meanwhile, we crawl and merge all an-
notated datasets of previous SemEvals, and split
them into training, development, and testing sets
with ratio 8:1:1, which are shown in Table 2 to-
gether with testing set of SemEval 2017. From the
table, we can see that testing set of SemEval 2017
has big differences on the category ratio (nega-
tive:neutral:positive), compared with the previous
SemEval datasets.

For the model settings, all RCNN models have
same configurations but different word embedding
sets. We set dimensions of hidden vectors to 250
and depths d to 2. To avoid model over-fitting,
we use dropout and regularization as follows: (1)
the regularization parameter is set to 1e-5; (2) the

dropout rate is set to 0.3, which is applied in the fi-
nal text representation. All parameters are learned
by Adam optimizer (Kingma and Ba, 2014) with
the learning rate 0.001. Note that, all word embed-
ding sets are fixed when training. All models are
tuned by the development set in Training.

3.2 Results and Analysis

In this section, we first report the results on
datasets of previous SemEvals, which are de-
scribed in Table 3. Then, we report the perfor-
mances of our method on SemEval 2017 in Ta-
ble 4.

From the Table 3, we observe that gloveT per-
forms worst though it is trained on in-domain
twitter dataset and the word2vecY performs best
though it is derived from yelp reviews. As far
as we known, Yelp data is constructed by care-
fully filtering and is high-quality. Thus, we can
include that the quality of corpus is also impor-
tant as the size of corpus and domain in twitter
sentiment classification. Additionally, we can in-
fer that word2vecGN outperforms others in recall
of negative category, word2vecY performs best in
recall of neutral category, and gloveT is best in re-
call of positive category. Different embedding sets
propose different characteristics. Additionally, the
ensemble method obtains a significant improve-
ment of 4%.

In the Table 4, we compare our method with
best and median systems in SemEval 2017, and
report the results of individual embedding sets.
Our method outperforms other systems in accu-
racy, but performs worse in R Average, especially
in R Negative. Compared with the median sys-
tem, our method has improvements of about 5%
in both accuracy and R Average. Different from
the results in Table 3, the word2vecY performs
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Embeddings Accuracy R Negative R Neutral R Positive R Average
gloveG 70.6 66.3 66.4 77.7 70.1
gloveT 68.3 66.8 61.2 77.9 68.7
word2vecGN 70.5 70.2 68.3 73.5 70.7
word2vecY 72.2 65.0 71.3 76.2 70.8
Ensemble 74.6 72.1 71.2 80.0 74.5

Table 3: Results on datasets of previous SemEval. R * means recall value.

Embeddings Accuracy R Negative R Neutral R Positive R Average
Best system 65.1 82.9 51.2 70.2 68.1
Median system 61.6 53.1 65.0 67.4 61.8
gloveG 62.9 63.0 61.3 66.7 63.7
gloveT 63.7 70.5 57.4 68.2 65.4
word2vecGN 62.9 68.4 60.0 60.8 63.1
word2vecY 61.6 59.1 63.8 60.5 61.1
Our 66.4 69.8 64.0 66.8 66.9

Table 4: Results on SemEval 2017. The median system is the system of rank 19th among 38 teams.

worse among these embedding sets, while the
gloveT obtains best performances. Additionally,
we can observe that gloveT performs best both in
R Negative and R Positive, and word2vecY per-
forms best in R Neutral. Compared with the em-
bedding baselines, our ensemble method obtains
improvements of 2.7% and 1.5% in accuracy and
R Average respectively, which demonstrates the
effectiveness of the proposed method.

3.3 Error Analysis

In this section, we analyze the incorrect predic-
tions of our system in SemEval 2017.

We summarize four kinds of errors in our sys-
tem. The first one is that some decisions need do-
main knowledge, which our method only can learn
from the labeled datasets. The instances are as fol-
lows:

Messi’s 100 international goals for Barcelona
#fcblive https://t.co/fMkglvusL1 [via @thereis-
agenius]. Predicted label: neutral, golden label:
positive

#Trudeau gives your cash to #Terrorist
#Hamas-influenced group - #UNRWA - @Can-
diceMalcolm https://t.co/5i5o2qwRWl Predicted
label: neutral, golden label: negative

Messis 9 goals in CL are more than 20 of the 32
teams in the competition have scored in total, and
hes tied with five other sides #fcblive Predicted la-
bel: neutral, golden label: positive

The second one is emoticons in tweet, as most
of word embedding sets do not include emoticon
embeddings and emoticons are always with senti-

Figure 2: Emoticon instances.

ments. The instances are described in Figure 2
The third one is that sentiments are not consis-

tent in sentences. For example, the first half part
is positive, while the second half part is negative,
in this case, our system would predict ’positive’ or
’negative’, the golden label is neutral.

@jimmyfallon 1. Emily 2. Michel 3. Kirk 4. TJ.
Love the quirky ones and Emily coz she’s such a
BIATCH! #gilmoregirlstop4. predicted label posi-
tive, golden label: neutral

The fourth one is the sarcasm, such as:
#Hamas leader: #Trump may be a #Jew
https://t.co/jGFZTvj2pF. predicted label positive,
golden label: negative

4 Conclusion

We propose a simple and effective ensemble
method to boost the neural twitter sentiment clas-
sification. By using different embedding sets, the
system can cover more words and encode more
sentiment information. The results on datasets of
previous SemEval and SemEval 2017 show the ef-
fectiveness of our method. Moreover, error anal-
ysis is conducted to propose the main challenges
for our method. We release our code for system
duplicability.
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Abstract

This paper describes a system developed
for a shared sentiment analysis task and
its subtasks organized by SemEval-2017.
A key feature of our system is the em-
bedded ability to detect sarcasm in order
to enhance the performance of sentiment
classification. We first constructed an
affect-cognition-sociolinguistics sarcasm
features model and trained a SVM-based
classifier for detecting sarcastic expres-
sions from general tweets. For sentiment
prediction, we developed CrystalNest—a
two-level cascade classification system us-
ing features combining sarcasm score de-
rived from our sarcasm classifier, senti-
ment scores from Alchemy, NRC lexi-
con, n-grams, word embedding vectors,
and part-of-speech features. We found
that the sarcasm detection derived features
consistently benefited key sentiment anal-
ysis evaluation metrics, in different de-
grees, across four subtasks A-D.

1 Introduction

Sentiment analysis, also known as opinion mining,
is the study of the feelings and opinions from user-
generated content. Sarcasm detection, though very
related, is a different topic of interest. As a clas-
sification task, the primary objective of sentiment
analysis is to determine if a message is positive,
negative, or neutral. In contrast, the objective of
sarcasm detection is to determine if a message is
sarcastic or not sarcastic.

To illustrate, let us look at two short text ex-
amples. Example 1 expresses a positive sentiment

∗Both authors contributed to this research equally. For
correspondence, please contact yangyp@ihpc.a-star.edu.sg.

which has a slight mixed feeling, but it is not sar-
castic. A very similar-looking Example 2 is sar-
castic, and its underlying sentiment is negative.

Ex 1. Love my new phone! Only that the battery runs out

very fast.

Ex 2. Love my new phone that runs out battery so fast!

In computational linguistics and NLP, detecting
sarcasm is receiving increasing research interest
(e.g., González-Ibáñez et al., 2011; Reyes et al.,
2012; Liebrecht et al., 2013; Riloff et al., 2013;
Rajadesingan et al., 2015; Bamman and Smith,
2015). While these studies recognized the linkage
between sarcasm and sentiment and have proposed
various techniques for detecting sarcasm, none
directly studied the impact of sarcasm detection
on sentiment analysis. Maynard and Greenwood
(2014) is among the first to explore how to use
sarcasm-related information to improve sentiment
analysis. They proposed a rule-based method in-
volving five rules such as using “#sarcasm” to
flip a sentiment from positive to negative. How-
ever, their evaluation was performed on a rela-
tively small test dataset of 400 tweets.

We believe that sentiment analysis systems will
benefit from a systematically embedded ability to
detect sarcasm. In the following, we describe
our approach and present supportive findings eval-
uated on a large set of test data provided by
SemEval-2017 Task 4 (Rosenthal et al., 2017).

2 Sarcasm Detection: An
Affect-Cognition-Sociolinguistics
(ACS) Feature Model

In order to capture discriminative and explain-
able sarcasm features, we sought to design a
feature model based on review and synthesis
across related studies such as natural language
processing, linguistics, psychology, speech and
communication, as well as neuroscience. Our
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Figure 1: The Key Components of the Crystalace Sarcasm Detection Method

model characterizes sarcasm with three key fea-
ture groups: affect-related, cognition-related, and
sociolinguistics-related features.

Figure 1 presents an overview of the pro-
posed sarcasm detection method that we name
it as “Crystalace”. Crystalace will subsequently
produce a key feature, i.e. sarcasm score, for
the final CrystalNest sentiment analysis system.
Crystalace’s core processing layer is the affect-
cognition-sociolinguistics sarcasm feature model
(sections 2.1-2.4). Crystalace also includes a sup-
porting layer that pre-processes raw text into crys-
tallized text (section 2.5) for effective feature ex-
traction.

2.1 Affect-related features
A fundamental understanding of sarcasm is that it
involves a negative emotional connotation through
a seemingly positive expression (Brant, 2012).
Riloff et al. (2013) suggested that count of posi-
tive and negative words, location and order of pos-
itive words and negative words are useful features
in sarcasm detection. Rajadesingan et al. (2015)
further used strength of positive words and nega-
tive words and found that strength-related features
(e.g., count of very positive words in a tweet) are
among top ten sarcasm features in their study.

In our model, beyond the valence and strength-
related features, we propose to incorporate the in-
tensity aspect of affective expressions. Concep-
tually, psychologists characterized emotion with
two fundamental dimensions: the strength dimen-
sion (Osgood et al., 1957 called it “evaluation”) in
that an expression would have a positive or nega-
tive meaning that is strong, moderate or weak, and
the intensity dimension (Shaver et al., 1987) which

further concerns what Osgood et al. called moti-
vational “potency” and physical “activity”1. With
the intensity dimension, anger-based expressions
(high in potency), for example, can be differenti-
ated from sadness-based expressions (low in po-
tency). Because sarcasm is featured with an un-
derlying emotional connation (Brant, 2012), it is
conceivable that expressers would tend to leverage
seemingly positive emotions such as joy or grati-
tude words to implicate underlying negative men-
tal experiences such as contempt or disapproval.
Thus, in addition to the strength dimension, we ex-
plore capturing the emotional intensity variances
to further differentiate sarcastic from non-sarcastic
expressions.

Other than using words, Twitter users often use
special punctuations to highlight their affective ex-
periences, which can be useful cues to sarcasm.
For example, users tend to capitalize certain letters
to express strong feelings. Others may also use
repetitive exclamations marks “!!!”. Therefore,
we consider these special punctuations as affect-
related features. Lastly, we consider percentage of
first-persons singular pronouns (I, me, mine etc.)
as a feature as research in linguistic psychology
has indicated that such words give an expresser
power to make an emotional connection with the
audience (Cohen, 2014).

2.2 Cognition-related features

Besides affect, sarcasm is also significantly associ-
ated with cognitive processes. As Haiman (1998)
puts it, what is essential to sarcasm is that it is

1It is worth noting that other psychologists (e.g., Russell,
1980; Plutchik, 1980; Mehrabian, 1980) have also proposed
other emotion dimensions.
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“overt irony intentionally used by the speaker as
a form of verbal aggression”. Neuropsychology
studies also indicated that damage of certain cog-
nitive functions in the brain harms people’s abil-
ity in recognizing sarcasm (Shamay-Tsoory et al.,
2005; Davis et al., 2016). Because sarcasm is in-
tentional, there is a degree of deliberation in order
to construct sarcasm. Thus, if a sarcastic tweet is
produced, the tweet is probably manifested with
a high degree of lexical complexity which is also
likely constructed by a high cognitive complexity
individual. Conversely, a low cognitive complex-
ity individual would tend to be more straightfor-
ward to communicate their feelings.

In linguistics, certain words have been found
to reveal “depth of thinking” (Tausczik and Pen-
nebaker, 2009). These include cognitive pro-
cesses words (e.g., because), conjunctions (e.g.,
although), prepositions (e.g., to) and words greater
than six letters. In addition, psycholinguistic anal-
ysis of tweets has suggested that a well-prepared
and constructed tweet is correlated with higher
lexical density, which is marked by information-
carrying words (Hu et al., 2013). Therefore, we in-
clude nouns, negation, verbs, adjectives, numbers,
and quantifiers which are information-carrying
words in this feature category.

2.3 Sociolinguistics-related features
In verbal communication, average pitch, pitch
slop, and laughter or responses to questions have
been found to be prosodic cues to sarcasm utter-
ances (Tepperman et al., 2006). In online digi-
tal platforms such as Twitter, users do not have
facial and vocal cues at their disposal to com-
municate sarcastic expressions (Burgers, 2010).
In consequence, they would find some alternative
and “creative” ways to effectively express sarcasm
cues as a hint to their intended audiences. Users
would use hashtags to highlight a specific key
phrase for easy search by others, use at-mentions
to bring attention to a specific user, or use emoti-
cons to provide cues to the underlying feelings.
Therefore, we incorporate user-created hashtags,
at-mentions, URLs and emoticons in our feature
model.

2.4 Features Extraction
In total, our proposed sarcasm feature model
includes a total of 82 features. The affect-
related features include 50 valence-based fea-
tures, strength-based features, intensity-based fea-

tures and other indirect affective features. The
cognition-related features include a total of 26
depth-of-thinking features (e.g., prep, conj). The
sociolinguistics-related features refer to 6 Twitter-
specific contextual cues features (e.g., #, @).

In order to capture the complementary bene-
fits from different lexical sources, we used three
lexicons, i.e., Opinion Lexicon2 (Hu and Liu,
2004), SentiStrength Lookup Dictionary3 (Thel-
wall et al., 2012), and our Emotion Intensity Lexi-
con4, in conjunction with two linguistic sources,
i.e., LIWC 20155 (Pennebaker et al., 2015) and
TweetPOS6 (Owoputi et al., 2013) to extract the
relevant features.

Appendix A shows the full list of the 82 fea-
tures, the feature codes and the respective linguis-
tic resources/tools used for the features extraction.

2.5 Tweets Preprocessing

For supporting effective feature extraction, we de-
signed a procedure to pre-process raw tweets. The
first step is hashtag segmentation (Davidov et al.,
2010), which involves tokenizing each hashtag
such that the words can be more readily captured
by existing lexical sources (e.g., #shitnooneever-
say will be shit no one ever say). The second step
is misspelt word correction, which converts words
with more than two consecutive letters into those
with two consecutive letters (e.g., greaaat will be
greaat, awwww will be aww), such that intention-
ally misspelt words are standardized for the sub-
sequent step. The third step is expressions substi-

2https://www.cs.uic.edu/∼liub/FBS/sentiment-
analysis.html#lexicon

3http://sentistrength.wlv.ac.uk/
4No major sentiment or emotion lexicons developed to

date cover the intensity dimension of emotions. Hence, we
developed “Emotion Intensity (EI) Lexicon” for the purpose
of more effectively distinguishing emotion-related words and
phrases in different degrees of valence, strength and inten-
sity. The EI Lexicon consists of 3,204 lexicon items includ-
ing classic emotion-carrying English words, common social
media slangs and emoticons, where each item is coded with
a strength score as well as an intensity score in the range of
[-3, -2, -1, 0, 1, 2, 3]. For example, items such as excited,
astonished and thrill are coded as “3” (high-intensity, pos-
itive). Items such as thank, cooperative, concern, :) and :d
are coded as “1” (low-intensity, positive). Items such as sorry,
agh and :/ are coded “-2” (medium-intensity, negative). Items
such as hate, resented and D: are coded “-3” (high-intensity,
negative). Words such as great, haze, fulfill, sick and sleepy
are coded as “0” as they are related to emotions, but are not
“genuine emotions” (Clore et al., 1987; Ortony et al., 1987).
We will make this lexicon and its upgraded versions available
for the research community.

5http://liwc.wpengine.com/
6http://www.cs.cmu.edu/ ark/TweetNLP/#pos
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Method Precision Recall F1

Random Classifier .22 .48 .30
N-grams Classifier .54 .44 .48
Riloff et al. (2013)’s bootstrapped lexicon-based method .62 .44 .51
Our proposed ACS model-based method (Crystalace) .52 .70 .60

Table 1: Performance of Sarcasm Classification

tution. Even after the first two steps, many tweets
could still contain a great variety of unusual ex-
pressions. Therefore, we constructed a mapped
list of such expressions with more common words
or phrases that carry a similar meaning, referenc-
ing Internet resources such as Urban Dictionary
and Wikipedia. For example, gonna will be going
to, :/ will be annoyed, aww will be sweet, classier
will be excellent, rainy will be bad weather, and
sneezing will be poor health.

Note that we do not remove stop words, as re-
moving stop words that helps in classic NLP tasks
has been found to harm sentiment analysis perfor-
mance (Saif et al., 2014).

2.6 Sarcasm Classifier
To train and evaluate our sarcasm classifier, we
downloaded the annotated tweets dataset from
Riloff et al. (2013), pre-processed the tweets, and
trained a linear SVM classifier using our ACS-
based features model. Similar to the final condi-
tion reported in Riloff et al. (2013), we also added
unigrams and bigrams features to complement the
theoretical features model. We then ran 10-fold
cross validations to evaluate our method’s perfor-
mance. The results in Table 1 show that our ACS-
based method obtained F1-score of .60, which
gained an additional .09 as compared to the best
condition reported in Riloff et al.’s original study.
Based on the results, we trained the final Crysta-
lace sarcasm classifier using the full dataset.

3 System Description

Our sarcasm detection-enhanced sentiment analy-
sis system, CrystalNest, is designed with five fea-
tures groups and a cascade classifier with two lev-
els of training. The following provides the devel-
opment details.

3.1 Sarcasm and Sentiment Features
We used our Crystalace sarcasm classifier
and Alchemy Language API7 to form a two-
dimensional feature vector. Alchemy Language is

7https://www.ibm.com/watson/developercloud/alchemy-
language.html

a component of the cognitive APIs offered on IBM
Watson Developer Cloud. The first dimension of
this feature vector contains the confidence score
obtained using the sarcasm classifier and the sec-
ond dimension contains the confidence score that
has been obtained by calling Alchemy.

3.2 NRC SemEval-2015 English Twitter
Lexicons Features

We also leveraged NRC SemEval-2015 English
Twitter Sentiment Lexicons8 which aims to cap-
ture the degree of the positiveness of a given word
or phrase (Rosenthal et al., 2015) and a list of
negator9 words to extract a six-dimensional fea-
ture vector for each tweet. This feature vector
contains the counts of positive, negative, neutral,
negators words respectively, as well as maximum
and minimum strengths of sentiment for a given
tweet.

3.3 N-grams Features

N-grams are a common feature used for sentiment
analysis. We extracted unigrams and bigrams
from each tweet without removing stop words.
To build the n-gram dictionary, we downloaded
25,000 general tweets using Twitter’s Streaming
API and extracted all possible unigrams and bi-
grams from those tweets. After extraction, we fil-
tered these unigrams and bigrams based on their
occurrences and removed all that appeared less
than three times in our tweets dataset. We then
used this n-gram dictionary to represent a tweet
into the feature space where each of the feature di-
mensions represents the number of occurrences of
that n-gram in the tweet.

3.4 Word Embedding Features

Word embedding has been used in recent Twitter
sentiment analysis methods (Zhang et al., 2015;
Rouvier and Favre, 2016) due to its ability to
represent the semantic and syntactic meaning of

8http://saifmohammad.com/WebPages/lexicons.html
9http://dictionary.cambridge.org/grammar/british-

grammar/questions-and-negative-sentences/negation and
https://www.grammarly.com/handbook/sentences/negatives/1/
negatives/

629



the word into a low-dimensional feature vector.
Here, we used Gensim10 based Sentence2Vec11

to convert the tweets into 500-dimensional fea-
ture vectors. To train the word-embedding model,
we downloaded approximately 8 million general
tweets from Twitter using Twitter Streaming API.

3.5 Tweet Part-of-Speech (POS) Features

Lastly, we extracted 25-dimensional part-of-
speech (Owoputi et al., 2013) features for each
tweet without any preprocessing, as the TweetPOS
tool has been specially designed to capture tweets-
specific linguistic elements. These features help
to capture cues such as tweets-specific linguis-
tic counts, punctuation, as well as conversational
markers including hashtags, at-mentions, emoti-
cons and URLs.

3.6 Cascade Sentiment Classifier

For our final system, we used a cascade classifi-
cation approach to predict the sentiment outcome.
Before extracting the features, tweets are prepro-
cessed as described in Section 2.5. For each of
the five feature groups described in sections 3.1-
3.5, we used linear SVM to train three differ-
ent classifiers using one-against-all approach for
positive, negative and neutral classes. For each
of these classifiers (first-level classification), we
used SemEval-2013 training data for training and
SemEval-2016 and SemEval-2017 test tweets for
final evaluation.

After obtaining the outputs from all three clas-
sifiers of each feature group, we formed a 15-
dimensional feature vector and used Naive Bayes
classifier to train the final classifier. In this
final classifier (second-level classification), we
used SemEval-2016 test data for training12 and
SemEval-2017 test data for final evaluation.

For topic-based tweet quantification subtask D,
we calibrated CrystalNest using a dynamic base-
sentiment selection approach as there was no clear
prior knowledge to determine if topic-specific in-
formation would be benefiting or harming the
quantification performance. We first obtained
two sets of sentiment scores (sentiment general

10https://github.com/RaRe-Technologies/gensim
11https://github.com/klb3713/sentence2vec
12Note that for all the above-mentioned system training,

we used only the classic general message-level sentiment
(subtask A) data. This could limit the effectiveness of the
training, and we plan to expand with more training data for
future system enhancement.

and sentiment topic) by using Alchemy to pro-
cess each individual tweet’s sentiment score with
and without using the specific topic information.
Then when sentiment general and sentiment topic
converged on the same polarity, we used the con-
verged consensus. When sentiment general and
sentiment topic produced conflicting polarity for
a given tweet, we used the “majority voted” polar-
ity from the other tweets under the same topic to
assign the polarity to the particular tweet that re-
ceived conflicting polarity values. Using this dy-
namic approach, we found the error terms were re-
duced as compared to those resulted from simply
relying on any of the individual sentiment general
and sentiment topic base sentiment features.

4 Results

We evaluated the proposed approach using the
official test datasets provided by SemEval-2017
Task 4’s subtasks A-D. Tables 2-4 summarize the
results. For subtasks A & B, recall and F1 scores
are assessed as averaged scores according to the
task organizers (see Rosenthal et al. 2017 for de-
tailed discussion on the evaluation metrics).

System Recall(ρ)Recall(ρ)Recall(ρ) FPN1F
PN
1F
PN
1 AccAccAcc

Subtask A Message Polarity Classification
Alchemy .589 .577 .586
Alchemy+Sarcasm .591 .575 .581
CyrstalNest .619 .593 .629

Subtask B Topic-based Two-point Scale Classification
Alchemy .657 .651 .719
Alchemy+Sarcasm .820 .816 .821
CyrstalNest .827 .822 .827

Table 2: CrystalNest Results for Subtasks A & B

System MAEM MAEµ
Subtask C Topic-based Five-point Scale Classification

Alchemy .758 .591
Alchemy+Sarcasm .760 .564
CyrstalNest .698 .571

Table 3: CrystalNest Results for Subtask C (MAE
is an error term; the lower MAE is, the better the
system is)

System KLD AE RAE
Subtask D Topic-based Two-point Scale Quantification

Alchemy .357 .270 1.718
Alchemy+Sarcasm .061 .111 1.346
CyrstalNest .056 .104 1.202

Table 4: CrystalNest Results for Subtask D (KLD,
AE and RAE are error terms; the lower they are,
the better the system is)
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The test data provided by SemEval-2017 Task
4 is so far one of the largest annotated senti-
ment analysis test datasets. Subtask A consists
of 12,284 annotated tweets, Subtasks B and D
consist of 6,185 annotated tweets, and Subtask
C consists of 12,379 annotated tweets. The re-
sults indicated that CrystalNest consistently ben-
efited the performance more than the full-fledged,
off-the-shelf sentiment analysis service offered by
Alchemy. Furthermore, when we experimented
with the subsystem combining only Alchemy and
sarcasm features, the enhancements from sarcasm
classifier over Alchemy’s base sentiment features
were also found in subtasks A, B and D, in partic-
ular in the two two-point subtasks B and D.

In comparison with other participating systems,
CrystalNest obtained relatively good rankings in
subtask A (#18 out of 37 systems), subtask B (#9
out of 23), subtask C (#6 out of 15) and subtask D
(#4 out of 15).

5 Conclusion

This paper described a new sentiment analysis
system featuring a sarcasm detection classifier in
conjunction with other complementary features
derived from Alchemy, NRC sentiment lexicon,
n-grams, word embedding vectors, and part-of-
speech features. The evaluation results using sen-
timent analysis subtasks A-D test data provided
initial evidence on the value of embedding sar-
casm detection in sentiment analysis systems. For
future work, we plan to explore deep learning
methods and conduct more experiments to further
augment the system performance.
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Appendix A Full List of Features in the Affect-Cognition-Sociolinguistics Sarcasm Feature Model

Features (example words) Feature codes Extraction
source/tool

Affect-related Features (50)

O
pi

ni
on

L
ex

ic
onCount of +ive words (advanced, foolproof) pcountOL

Count of−ive words (crashed, drunken) ncountOL
Count of both +ive and−ive words pncountOL
Starting position of first positive word (-1 if no positive word) pstartOL
Starting position of first negative word (-1 if no positive word) nstartOL
Order of the +ive and−ive words (1 if +ive words appear before−ive; -1 otherwise. 0 if no +ive/−ive words) pnorderOL

Count of positive words (2,3,4 scored) (care, bff) pcountSS

Se
nt

iS
tr

en
gt

h
L

oo
ku

p
D

ic
tio

na
ry

Count of negative words (-2,-3,-4 scored) (dizzy, provoke) ncountSS
Count of both positive and negative words pncountSS
Starting position of first positive word pstartSS
Starting position of first negative word nstartSS
Order of the position of the positive and negative words pnorderSS
Count of 4-scored words (loving, magnific* [*: all words starting with magnific]) pos4SS
Count of 3-scored words (awesome, fantastic, great, wow*, joy*) strengthp3SS
Count of 2-scored words (fun, glad, thank, nice*, brillian*) strengthp2SS
Count of 1-scored words (ok, peace*) strengthp1SS
Count of -1-scored words (dark, lost) strengthn1SS
Count of -2-scored words (against, aloof) strengthn2SS
Count of -3-scored words (envy*, foe*) strengthn3SS
Count of -4-scored words (cry, fear) strengthn4SS
Absolute value of highest positive strength score of words (e.g., 3 is returned if a tweet contains “excitement”
and “amused”, which have SentiStrength scores of 3 and 2 respectively)

maxpstrengthSS

Absolute value of lowest negative strength score of words (e.g., 4 is returned if a tweet contains “anguish” and
“alone”, which have SentiStrength scores of -4 and -2 respectively)

minnstrengthSS
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Appendix A Full List of Features in the Affect-Cognition-Sociolinguistics Sarcasm Feature Model
(continued...)

Features (example words) Feature codes Extraction
source/tool

Affect-related Features (50) (continued...)

E
m

ot
io

n
In

te
ns

ity
L

ex
ic

on

Count of positive words (feeling-high, heartening, aww, =)) pcountEI
Count of negative words (uncared-for, weird, agh, :/) ncountEI
Count of both positive and negative words pncountEI
Starting position of first positive word pstartEI
Starting position of first negative word nstartEI
Order of the position of the positive and negative words pnorderEI
Count of 3-scored strength words (love, awesome) strengthp3EI
Count of 2-scored strength words (lucky, surprising) strengthp2EI
Count of 1-scored strength words (compassion, curious) strengthp1EI
Count of 0-scored strength words (refreshed, sleepy) strength0EI
Count of -1-scored strength words (nervous, sorrow) strengthn1EI
Count of -2-scored strength words (tense, bitter) strengthn2EI
Count of -3-scored strength words (woesome, hating) strengthn3EI
Absolute value of highest positive score of strength words maxpstrengthEI
Absolute value of highest negative score of strength words maxnstrengthEI
Count of 3-scored intensity words (excited, astonished, thrill ) intensityp3EI
Count of 2-scored intensity words (love, awesome, glad, fun,:P,=D) intensityp2EI
Count of 1-scored intensity words (thank, cooperative, concern, :), :d) intensityp1EI
Count of 0-scored intensity words (great, haze, fulfill, sick, sleepy) intensity0EI
Count of -1-scored intensity words (anger, annoyed) intensityn1EI
Count of -2-scored intensity words (sorry, agh, :/) intensityn2EI
Count of -3-scored intensity words (hate, resented, D:) intensityn3EI
Absolute value of highest positive score of intensity words maxpintensityEI
Absolute value of lowest negative score of intensity words minnintensityEI

Percentage of uppercase characters uppcase

L
IW

C
20

15

Percentage of question marks (?) qmark
Percentage of exclamation marks (!) exclamark
Percentage of first persons singular (I, me, mine) i

Cognition-related Features (26)
Count of total words WC
Count of total characters charcount
Frequency of words greater than 6 letters sixltr
Percentage of negation words (no, never) negate
Percentage of certainty words certain
Percentage of preposition words prep
Percentage of conjunction words conj

Count of common nouns (books, someone) N

Tw
ee

tP
O

S
Count of pronoun (personal/WH; not possessive) O
Count of nominal + possessive words (books’, someone’s) S
Count of proper nouns (lebron, usa, iPad) ˆ
Count of proper nouns + possessive (America’s) Z
Count of nominal verbal (I’m), verbal + nominal (let’s) L
Count of proper noun + verbal (Mark’ll) M
Count of verbs incl. copula and auxiliaries (might, ought, couldn’t, is, eats) V
Count of adjectives (good, fav, lil) A
Count of adverbs (2, i.e., too) R
Count of interjections (lol, haha, FTW, yea, right) !
Count of determiner words (the, the, its, it’s) D
Count of pre- or postpositions or subordinating conjunction (while, to, for, 2[to], 4[for]) P
Count of coordinating conjunctions (and, n, &, +, BUT) &
Count of verb particles (out, off, Up, UP) T
Count of existential there, predeterminers (both) X
Count of existential there, predeterminers, verbal (there’s, all’s) Y
Count of numerals (2010, four, 9:30) $
Count of punctuations (#,$,(,)) ,

Sociolinguistics-related Features (6)
Count of hashtags (#acl) #
Count of at-mentions (@BarackObama) @
Count of discourse markers (RT @user : hello) ∼
Count of URLs or email address (http://t.co/rsxZxhnU) U
Count of emoticons (:) :b (: <3 o O) E
Count of other abbreviations, foreign words etc. (ily (I love you) wby (what about you) ’s –>awesome...I’m) G
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Abstract

This document describes our participation
in SemEval-2017 Task 4: Sentiment Anal-
ysis in Twitter. We have only reported
results for subtask B - English, deter-
mining the polarity towards a topic on a
two point scale (positive or negative senti-
ment). Our main contribution is the inte-
gration of user information in the classifi-
cation process. A SVM model is trained
with Word2Vec vectors from user’s tweets
extracted from his timeline. The obtained
results show that user-specific classifiers
trained on tweets from user timeline can
introduce noise as they are error prone be-
cause they are classified by an imperfect
system. This encourages us to explore
further integration of user information for
author-based Sentiment Analysis.

1 Introduction

Task 4 of SemEval 2017, Sentiment Analysis in
Twitter (Rosenthal et al., 2017), has included some
new subtasks this year. One of these subtasks con-
siders user information to be also integrated in pro-
posed systems. We have participated in subtask B
consisting of, given a message and a topic, clas-
sify the message on a two-point scale (positive or
negative sentiment towards that topic). Actually,
organizers provide scripts to download user pro-
file information such as age, location, followers...
We have taken advantage of this information to ex-
pand a SVM model trained with Word2Vec vec-
tors from user publications on this social media.

In this paper, we present our approach to clas-
sify tweets in a two point scale (positive and
negative) by combining Support Vector Machine
(SVM), Word2Vec (Mikolov et al., 2013) and
user information. We have decided to combine

these technologies for several reasons. Firstly, we
have applied SVM many different tasks includ-
ing tweet polarity classification with good results
(Saleh et al., 2011). Secondly, after a revision
of the systems presented in the last year for the
same task (Nakov et al., 2016), it seems that bet-
ter results are achieved by using word embeddings
representations, so we have decided to test how
it works on user modeling. Finally, this year for
the first time, organizers include user information.
We consider that it is very interesting to integrate
this contextual information to improve tweets sen-
timent classification. Actually, polarity classifi-
cation on a per-user basis has been found to be
useful in tasks like collaborative filtering (Garcı́a-
Cumbreras et al., 2013). Besides, the generation
of user profiles in Twitter has attracted the atten-
tion of many researches in recent years, enabling
the prediction of user behavior as in election pro-
cesses (Pennacchiotti and Popescu, 2011).

In Section 2 we explain the data used in our ap-
proach. Section 3 presents the system description.
Experiments and results are expounded in Section
4 and they are analyzed in Section 5. Finally, in
Section 6, conclusions and future work are com-
mented.

2 Data

The organizers provided English data from pre-
vious years (2015 and 2016). The test set cor-
responding to 2016 was also supplied for devel-
opment purposes but, since then, it can be used
for training too. In the experimentation phase,
the training set is composed by the development,
training and test datasets of 2015 and the develop-
ment and training datasets of 2016. For our partic-
ipation in task 4 we used all this data for training.
In Table 1, it can be seen the distribution of tweets
used in the experimentation and testing phases.
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Set Positive Negative Total
training dev 6,739 1,674 8,413
dev 8,212 2,339 10,551
training test 14,951 4,013 18,964
test 2,463 3,722 6,185

Table 1: Number of tweets provided for experi-
mentation and testing.

3 System description

The system presented is based on user modeling.
It determines the user opinion on a tweet accord-
ing to a user model generated from his timeline.
In our experiments, all tweets are vectorized using
Word2Vec. First, a general SVM model on train-
ing vectors is generated. Then, for each user in the
test set, the system downloads the last 200 tweets
published by the user and classifies them using a
general SVM classifier, the one resulting from the
training set. If the classified tweets from the time-
line contains positive and negative tweets and an
specific SVM model of the timeline reports an ac-
curacy over 0.7 on leave-one-out cross-validation,
the user model is applied on authored tweets from
the test set; if not, the general SVM model is ap-
plied. Thus, we try to train a per-user classifier,
whenever feasible.

For the Word2Vec representation of the tweets,
it has been used the software1 developed by the
authors of the method (Mikolov et al., 2013). In
order to get representative vectors for each word,
it is needed to generate a model from a large text
volume. To this end, a Wikipedia2 dump in En-
glish of the articles in XML was downloaded, and
the text from them was extracted. The parame-
ters used have been those that provided better re-
sults in previous experiments with Spanish tweets
(Montejo-Ráez and Dıaz-Galiano, 2016; Montejo-
Ráez et al., 2014): a window of 5 terms, the
CBOW model and a number of dimensions ex-
pected of 300. In this way, each tweet of the
training and test set has been represented with
the resultant vector of calculating the average and
standard deviation of the Word2Vec vectors from
words in the tweet text, resulting in a final vector
of 600 features. Previously, a simple normaliza-
tion has been performed on each tweet: repeated
letters have been eliminated, stop words have been

1https://code.google.com/p/Word2Vec/
2https://dumps.wikimedia.org/enwiki/

removed and all words have been transformed to
lowercase.

The SVM implementation selected is that based
on LibSVM (Chang and Lin, 2011) provided by
the Scikit-learn library (Pedregosa et al., 2011).

4 Experiments and results

Three different experiments were conducted over
the development set as follows (Fig. 1 and Fig. 2):

• Experiment 1: a general SVM model on
Word2Vec representations of training tweets
was generated. Each tweet of the develop-
ment set was vectorized using Word2Vec and
classified with the model obtained previously.

• Experiment 2: each tweet vector was ex-
panded with a user vector. A general
SVM model was also generated, but on both
the Word2Vec representation of the training
tweets and user timeline. For every user in
the training tweets, the last 200 tweets from
his timeline were downloaded. These tweets
were used to enrich the vector of each in-
dividual tweet. Each tweet of the develop-
ment set along with user timeline who posted
it were vectorized using Word2Vec and the
tweet was classified with the model.

• Experiment 3: the general SVM model of ex-
periment 1 was used but one model per user
was also defined. In order to define the user
model, the last 200 tweets published by the
user were retrieved and each of them was vec-
torized and classified using the general SVM
model. Each tweet of the development set
was vectorized using Word2Vec and classi-
fied according to the following approach: if
the model corresponding to the user contains
positive and negative tweets and the leave-
one-out cross-validation reports an accuracy
over 0.7%, the tweet is classified with the
user model; if not, it is classified with the
general SVM model.

The results obtained in the development phase
are shown in Table 2. Although experiment 1 was
the one that provided the best results, for our par-
ticipation in the task, we selected the approach de-
veloped in experiment 3 because it takes into ac-
count user information, one of the challenges of
this year. Experiment 2 also considers user in-
formation and got better results than experiment
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Figure 1: Data flow for experiment 1 and 2.

Figure 2: Data flow for experiment 3.
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Exp 1 Exp 2 Exp 3
P positive 0.856 0.854 0.842
P negative 0.764 0.757 0.772
R positive 0.962 0.962 0.970
R negative 0.432 0.422 0.363
Avg. F1 0.729 0.723 0.698
Avg. R 0.697 0.692 0.666
Acc. 0.845 0.842 0.835

Table 2: Results for the development phase.

# System AvgR AvgF1 Acc
1 BB twtr 0.8821 0.8901 0.8971

2 DataStories 0.8562 0.8612 0.8692

3 Tweester 0.8543 0.8563 0.8633

4 TopicThunder 0.8464 0.8474 0.8544

5 TakeLab 0.8455 0.8365 0.8406

6 funSentiment 0.8346 0.8248 0.8278

7 YNU-HPCC 0.8346 0.81610 0.81810

8 WarwickDCS 0.8298 0.8346 0.8435

9 CrystalNest 0.8279 0.8229 0.8278

10 zhangweida2080 0.82610 0.8307 0.8387

11 Amobee-C-137 0.82211 0.80112 0.80212

12 SINAI 0.81812 0.80611 0.80911

13 NRU-HSE 0.79813 0.78713 0.79013

14 EICA 0.79014 0.77514 0.77716

15 OMAM 0.77915 0.76217 0.76417

16 NileTMRG 0.76916 0.77415 0.78915

17 ELiRF-UPV 0.76617 0.77316 0.79013

18 DUTH 0.66318 0.60018 0.60718

19 ej-za-2017 0.59419 0.48621 0.51819

20 SSN MLRG1 0.58620 0.49420 0.51819

21 YNU-1510 0.51621 0.49919 0.49921

22 TM-Gist 0.49922 0.42822 0.44422

23 SSK JNTUH 0.48323 0.37223 0.41223

baseline 1: all POSITIVE 0.500 0.285 0.398
baseline 2: all NEGATIVE 0.500 0.376 0.602

Table 3: Results for SemEval-2017 Task 4, subtask B - English.

3 in the development phase, but we did not select
it because we considered that the fact of adding
tweets without more sense was not a good idea.
Experiment 3 makes more sense, since it defines a
personal model for each user based on the way he
thinks.

The results for all participants in the test phase
can be seen in Table 3 and the detailed report of the
results for all participants can be found at (Rosen-
thal et al., 2017).

Once the gold standard corresponding to the
test phase was released, we also conducted other
experiments that we defined in the development
phase. The results related to the test set in all the

experiments are shown in Table 4. Following, in
the next section, an in-depth analysis of the results
obtained is performed.

Exp 1 Exp 2 Exp 3
P positive 0.735 0.730 0.718
P negative 0.897 0.890 0.893
R positive 0.862 0.851 0.859
R negative 0.794 0.791 0.777
Avg. F1 0.818 0.812 0.806
Avg. R 0.828 0.821 0.818
Acc. 0.821 0.815 0.809

Table 4: Results for the test phase.
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5 Analysis of results

The results obtained do not seem to support the
integration of content from users’ timelines. In
Table 4 we can see that using word embeddings
in tweet words straightforward yielded the best re-
sults. Adding further user information did not im-
prove the first setup. A model of the user under
the form of an aggregated vector computed from
his timeline, or a specific polarity classifier for
each user involves, first, to download hundreds of
tweets for every single user in the data set and,
second, use these tweets to compute a final user
model.

It is important to note that the SemEval data set
is very unbalanced, and that can affect the gener-
ation of user classifiers. Besides, not additional
data has been used to determine the polarity of
tweets in the timeline, so the effects of a bad per-
formance might be, therefore, amplified. Anyhow,
experiment 3 shows similar results as the other two
approaches, despite the potential bias that recent
tweets from the timeline may have on the classifi-
cation process.

6 Conclusion

Working on timelines has been found interesting
as a source of information to generate user pro-
files (Bollen et al., 2011). Actually, as more text
is obtained, further analysis on user behavior or
personality can be performed (Diakopoulos and
Shamma, 2010).

We will continue exploring how the timeline
could be better integrated or analyzed for an ef-
fective user modeling process. As the timeline is
provided on recent tweets, it could be worth down-
loading those closer to the moment when the tweet
to analyze was published, so the context would be
more coherent.
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Abstract

We present a simple supervised text clas-
sification system that combines sparse and
dense vector representations of words, and
the generalized representations of words
via clusters. The sparse vectors are gen-
erated from word n-gram sequences (1-
3). The dense vector representations of
words (embeddings) are learned by train-
ing a neural network to predict neighbor-
ing words in a large unlabeled dataset. To
classify a text segment, the different vector
representations of it are concatenated, and
the classification is performed using Sup-
port Vector Machines (SVMs). Our sys-
tem is particularly intended for use by non-
experts of natural language processing and
machine learning, and, therefore, the sys-
tem does not require any manual tuning
of parameters or weights. Given a train-
ing set, the system automatically gener-
ates the training vectors, optimizes the rel-
evant hyper-parameters for the SVM clas-
sifier, and trains the classification model.
We evaluated this system on the SemEval-
2017 English sentiment analysis task. In
terms of average F1-Score, our system ob-
tained 8th position out of 39 submissions
(F1-Score: 0.632, average recall: 0.637,
accuracy: 0.646).

1 Introduction

Text classification is one of the most fundamen-
tal natural language processing tasks, and involves
the categorization of texts based on their lexical
contents. In its simplest form, text classification
is binary in nature, such as the categorization of
spam vs. non-spam email (Youn and McLeod,
2007). Researchers from distinct fields are ex-

posed to a wide range of text classification prob-
lems. Even within a specific domain, such as the
medical domain, there is a multitude of text clas-
sification tasks and problems, such as assessing
the qualities of published papers (Kilicoglu et al.,
2009; Sarker et al., 2015), outcome polarity clas-
sification (Sarker et al., 2011), biomarker classifi-
cation (Davis et al., 2015), and adverse drug re-
action mention detection (Sarker and Gonzalez,
2015) to name a few. Early automated text clas-
sification systems were rule-based in nature (e.g.,
Sarker and Mollá-Aliod (2010)) mostly because of
the absence of sufficient annotated data. However,
such rule-based systems are generally limited in
terms of performance and/or overfit to the target
problem. They particularly suffer in terms of per-
formance when exposed to unseen datasets. With
the rapid increase in text-based data in all domains
(e.g., the largest medical database, Medline,1 now
indexes over 23 million articles), most efficient
text classification systems now use machine learn-
ing. Such systems utilize annotated data, and au-
tomatically extract features from large volumes of
annotated text to perform classification. The rules
that are used in classification are not hard-coded or
predetermined, but are learned from the annotated
data automatically. Text classification strategies
for various tasks have been thoroughly explored
in the literature, and relatively recent progress has
seen the use of techniques such as distant supervi-
sion (Mintz et al., 2009).

While the automated classification of text is
useful for numerous tasks involving natural lan-
guage, and in a variety of domains, setting up
and running text classification systems is very
challenging for non-experts. The task generally
requires in-depth knowledge of natural language
processing (NLP), particularly for preprocessing,

1https://www.nlm.nih.gov/bsd/
pmresources.html. Accessed: 2/17/2017.
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feature extraction/generation and analysis, and at
least basic knowledge of machine learning so that
the classification system can be optimized. For
researchers working on interdisciplinary projects
(e.g., clinicians working on biomedical informat-
ics projects), the time or opportunity to learn the
relevant topics are often unavailable. While state-
of-the-art classification techniques now apply so-
phisticated techniques such as deep neural net-
works (e.g., Lai et al. (2015)), such techniques are
rarely used by non-experts of machine learning in
practice. Therefore, there is motivation to design
simple text classification systems that are easy to
setup and run, and also perform well on real-world
text classification problems.

In this paper, we describe a simple text classifi-
cation system that was initially designed to teach
text classification to biomedical informatics stu-
dents from non-computing backgrounds. The sys-
tem was modified for application to a 3-class prob-
lem (from its initial implementation for binary
classification).2 The system employs a Support
Vector Machines (SVMs) (Vapnik, 1995) classi-
fier and some simple features. SVMs are particu-
larly useful for text classification as they are capa-
ble of handling large feature vectors. However, to
optimize the performance of the SVM classifiers,
several hyperparameters have to be tuned (Chang
and Lin, 2011). In our system, the cost parame-
ter of the classifier and weights for classes (useful
for imbalanced datasets) are learned automatically
via 5-fold cross validation over the training set. To
evaluate the performance of our simple system, we
used it for the SemEval-2017 sentiment analysis
task in English language (task 4). Our system ob-
tained an average F1-Score of 0.632 (8th out of
39 teams), average recall of 0.637, and accuracy
of 0.646. The balance in simplicity and perfor-
mance of the system suggests that it can be very
useful for researchers who are non-experts in the
natural language processing and machine learning
domains. The system is publicly available, and is
open source.3

2Notes for the workshop for training students about the
system are available at: http://diego.asu.edu/
Publications/Textclassif_workshop_v2-3.
pdf.

3Available at: https://bitbucket.org/
pennhlp/hlp-upenn_semeval_2017_task4.

2 Methods

The sentiment analysis task for SemEval Task-4A
requires the classification of English tweets into
one of three sentiment classes: positive, nega-
tive and neutral. For the 2017 task, all Twitter
sentiment annotations from past years were made
available. We downloaded all these annotations
and used them for training our system. Specific
details about the task can be found in Rosenthal
et al. (2017).4 We used a total of 49,484 tweets
from the past annotations of which 19,597 (39.6%)
were tagged as positive, 7692 (15.5%) as nega-
tive, and 22,195 (44.9%) as neutral. We used an
SVM classifier with an RBF kernel for the classi-
fication task. In our system, the training set was
used to compute suitable weights for each of the
classes and an optimal value for the cost parame-
ter via 5-fold cross validation. We now briefly dis-
cuss our features and parameter/weight optimiza-
tion approach.

2.1 Feature sets

We used three simple feature sets, which are as
follows:

2.1.1 N-grams
To generate sparse vectors, we used traditional
word n-grams (n = 1–3). Standard preprocess-
ing steps such as stemming and lowercasing was
performed prior to generating the sparse vectors.
Stemming was performed using the Porter stem-
mer (Porter, 1980). We limited the total number
of features to 5000.

2.1.2 Word clusters
In an attempt to include more generalized repre-
sentations of terms, we used word clusters, which
have proven to be useful for Twitter-based classi-
fication tasks in our past work. The clusters repre-
sent groups of terms that are semantically similar.
We used a set of publicly available word clusters5

that were generated by first learning distributed
representations of Twitter terms and then cluster-
ing the word vectors (Owoputi et al., 2012). The
clusters are used in a bag-of-words manner, and
feature vectors are generated for these in the same
way as the n-gram features.

4The task website is: http://alt.qcri.org/
semeval2017/task4/. Accessed: 2/20/2017.

5Available at: http://www.cs.cmu.edu/˜ark/
TweetNLP/. Accessed: 2/20/2016
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2.1.3 Dense vectors
We obtained dense vector representations of each
tweet simply by adding dense representations of
individual terms. To obtain dense vector repre-
sentations of the terms, we used publicly avail-
able pretrained vectors6 (Godin et al., 2015). The
vectors were learned from 400 million tweets, and
each word is represented using a dense vector of
size 400.

2.2 Optimization and classification
A good value for the cost parameter of the SVM
classifier was determined via grid search. The
grid search included all powers of 2 between 1
and 5. Ideally, identifying the optimal value re-
quires a more thorough search, with an extended
search space. We used this small search space
to speed up the searching process. To determine
the appropriate weight for each class, first each
of the three classes were assigned a weight which
is equal to the total number of instances in the
training set divided by the number of instances
for that class in the training set. Thus, for ex-
ample, the initial weight assigned to the neutral
class was 49484

22195 = 2.23. Iterating through possi-
ble weights in imbalanced classification tasks can
be a tricky problem, and require some expertise
in applied machine learning. Without optimiza-
tion of weights, classification problems involving
imbalanced datasets may perform poorly. As men-
tioned, our system was originally designed to pro-
vide simple text classification solutions to non-
experts. Therefore, we devised a simple weight
optimization strategy. First, the search interval is
computed as the variance of the vector of the ini-
tial weight values. For a given class, the possible
weight then lies in the range given by Equation 1:

(1)
range = [max(0.1, class weight

− (2× interval)),
class weight + (2× interval)]

Possible values for weight for the class can then
be iterated through within the given range using
suitable step sizes. In our work, the initial weight
of the positive class (middle class), was kept con-
stant while a range of values were iterated through
for the neutral (larger class) and negative (smaller
class). Within a given range, we used step sizes
of interval

2 , and chose the weight combination that
6Available at: http://www.fredericgodin.

com/software/. Accessed: 2/20/2016

produced the best results for the cross validation
task. A larger search space is likely to result in a
better classifier, but also requires longer time for
searching.

As described in the previous subsections, dur-
ing feature generation, a single vector (dense or
sparse) is generated for each feature set for each
instance. All the three feature vectors for an in-
stance are simply concatenated to form a single
vector prior to training. For the system used for
this task, each combined vector consisted of a to-
tal of 6400 features.

3 Results, Comments and Conclusion

Despite the simplicity of our approach, and limited
tuning, it obtained 8th position in terms of average
F1-Score out of 39 systems. In addition, the sys-
tem obtained average recall of 0.637 (11th), and
accuracy of 0.646 (8th). Due to time-constraints
associated with the submission deadline for the
shared task, we only performed 5-fold cross val-
idation, and estimated optimal class weights and
values for the cost parameter from a small set
of possibilities, as described in the previous sec-
tion. Therefore, we suspect that the performance
of the system could be further improved by search-
ing through a larger set of values. Furthermore,
our system was optimized for average F1-Score,
resulting in better overall ranking for F1-Score,
rather than for average recall.

The key advantage of our system is its simplic-
ity. The parameter optimization is handled auto-
matically, and does not require any manual inter-
pretation. At the same time, the optimization ap-
proach is easily interpretable and customizable by
non-experts. For example, if better accuracy is re-
quired for a specific task, a more thorough search
for optimal weights can be performed simply by
increasing the number of steps. Such modification
does not require deep understanding of SVMs.

Our system is simple and is applicable to any
social media text classification task. In the future,
we will assess the true performance of the opti-
mized system over the SemEval-2017 test set, via
more thorough automated optimization. We will
also compare the performance of our simple sys-
tem with other similar automated systems (e.g.,
the TPOT system Olson et al. (2016)) in terms of
speed and performance.
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Rua Romão Ramalho, 59
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Abstract

This paper describes the system we have
used for participating in Subtasks A (Mes-
sage Polarity Classification) and B (Topic-
Based Message Polarity Classification ac-
cording to a two-point scale) of SemEval-
2017 Task 4 Sentiment Analysis in Twit-
ter. We used several features with a sen-
timent lexicon and NLP techniques, Max-
imum Entropy as a classifier for our sys-
tem.

1 Introduction

Text data has been growing dramatically. We have
demands to process and mine from Social net-
works and online platforms. Opinions in user-
generated content, are valuable for market and
trend analysis. Processing of sentiment analysis
helps us to automatically distinguish from these
written opinions.

This paper describes a participation in
SemEval-2017 Task 4 with the ej-sa-2017
system. We have participated in SemEval-2017
Task 4 on Sentiment Analysis in Twitter, subtasks
A (Message Polarity Classification), B (Topic-
Based Message Polarity Classification)(Rosenthal
et al., 2017). Subtask A is to classify message
polarity from given a message that is of positive,
negative, or neutral sentiment. Subtask B is to
classify positive or negative sentiment of a tweet
towards that topic on a two-point scale.

We utilized a supervised machine learning clas-
sifier, having bag-of-word (BoW), lemmas, bi-
grams of adjective, punctuation based features,
and lexicon-based features. The rest of the paper
is structured as follows: In Section 2, we present
some related work in features and approaches with
a lexicon. In Section 3, this section describes the
algorithm and feature representation used to detect

sentiment of text. In Section 4, the experimental
results are introduced. Finally, the conclusions as
well as further work are described in Section 5.

2 Related Work

There are many works associated with the target-
oriented sentiment analysis. Some of these works
have focused on probability distribution model of
particular features and approach. The system of
Sentiue (Saias, 2015) used a separate MaxEnt clas-
sifier of MALLET (MAchine Learning for Lan-
guagE Toolkit) (McCallum, 2002) with bag-of-
word like features (lemmas, bigram, presences,
etc.) for Aspect based Sentiment Analysis in
SemEval-2015 Task 12 and accuracy was approx-
imately 79%. Kamps (Kamps et al., 2004) de-
veloped a simple distance measure, that focuses
almost exclusively on taxonomic relations and
WordNet and determined usage of the semantic
orientation of adjectives. Pak (Pak and Paroubek,
2010) utilized the presence of n-grams, for n∈
{1, 2, 3}, as a binary feature of a BoW represen-
tation using TreeTagger. They collected a corpus
of 300000 text posts from Twitter. Fong (Fong
et al., 2013) focused on news articles, which tend
to use a more neutral vocabulary using MALLET
to implement and train six classifiers for senti-
ment analysis and compared them. Their exper-
imental results show that the Naive Bayes clas-
sifier performs the best of six algorithms. Singh
(Singh et al., 2013) have been implemented double
Machine Learning based classifiers (Naive Bayes
as a 2-class text classification problem and SVM
with tf.idf vectors), the Unsupervised Semantic
Orientation approach with POS tagging and the
SentiWordNet approaches for sentiment classifi-
cation of a huge amount of movie reviews. Their
used priority scoring Adjective + Adverb combine
scheme of SentiWordNet approach was performed
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0.811 F1-score in their experiments.

3 Method

This section describes feature extraction and a
classifier of the sentiment analysis for our system.
We used the tool MALLET that supports a variety
of supervised classifiers, which makes it ideal for
the comparative study of our experiences. We de-
veloped the current system using several valuable
ideas from previous work (Saias, 2015) for Target
and Aspect based Sentiment Analysis.

3.1 Feature extraction

We have performed standard data preprocessing
steps on the system of tweets prior to classifica-
tion. Text preprocessing consists of tokenization,
removing all capitalization, stop word removal,
POS tagging, and lemmatization with Stanford
CoreNLP (Manning et al., 2014) and MALLET.
An instance was created for each tweet text which
includes extracted features. Some features are
used additional lexicon resources such as Senti-
WordNet lexicon (Baccianella et al., 2010).

Subtask A (Message Polarity Classification).
The below features to represent each instance in
Subtask A were:

• BoW with a feature for each token text;

• lemmas for nouns, verbs, adjectives and ad-
verbs;

• a polarized term for each word;

• average polarized term for each instance;

• presence of negation terms.

The polarized terms based on SentiWordNet
and used count of positive or negative polarity
words using polarity scores. Some words appear
more than once in this lexicon. For an example:
”easy”, this word is used in 28 different sentences
on SentiWordNet. In other words, there are 28 use
cases of the word and diverse polarity scores (pos-
itive or negative score). Thus, we have chosen an
approximate use case of the word from the lexicon
using BoW.

Subtask B (Topic-Based Message Polarity Clas-
sification). The below features to extract from
each instance in Subtask B were:

• BoW with a feature for each token text after
target position;

• lemmas for nouns, verbs, adjectives and ad-
verbs with next to target position;

• polarized term for unigram and bigram words
after given-target (topic) position in a text;

• presence of negation terms;

• presence of exclamation/question mark.

In this case, a polarized term was based on av-
erage polarity score which was created using all
used cases of a word in SentiWordNet records. If
any of an adjective appears next to target in a text,
it will be chosen as the polarized term feature and
set a tag as a positive, negative or neutral. Some
features of an example tweet presented are:
Target: ”denzel”; Tweet:”Gotta go see Flight
tomorrow Denzel is the greatest actor ever!”;
Extracted features: (1) #AFTER.VBZ.positive
for ”is”, (2) #AFTER.JJS.positive for ”great-
est”, (3) #AFTER.NN.neutral for ”actor” (4)
#AFTER.RB.neutral for ”ever” (5) #polEx-
clMark.positive for ”!”.

After this step, each text document in the sys-
tem will be represented by a feature vector using
MALLET.

3.2 Classifier training
The classifier algorithm was Maximum Entropy
and the classifier model features were previously
mentioned features. MaxEnt seeks the probabil-
ity distribution model that best fits the features
observed in the text. We have trained a classi-
fier with instance list where each tweet text had
been created as an instance with feature vectors
using MALLET pipeline. A single label multi-
class classification is used for the training in sub-
task A. Each tweet must be classified into exactly
one of the following three classes (positive, neutral
and negative). We also used a binary classification
(positive or negative) for the training in subtask B.
A single sentence in a tweet may have several sen-
timent polarities about different aspects. Thus, we
tried to consider it in feature selection phase that
has to choose correct sensitive words as a feature
depends on a target.

4 Results

In this section, the results obtained with the pro-
posed system and datasets are written. The prelim-
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inary experiments, we performed for the system
were carried out by training and testing our mod-
els on datasets generated in editions of previous
years of the tasks (see Table 1 and 2). All tweets
are annotated for polarity by the organizers. Un-
balanced training corpus is used where there are
more positive tweets than others.

Dataset All Pos. Neg. Neut.
twitter-2013
-train-A

9684 3640 1458 4586

twitter-2013
-dev-A

1654 575 340 739

twitter-2014
-sarcasm-A

86 33 40 13

twitter-2015
-train-A

489 170 66 253

twitter-2016
-train-A

6000 3094 863 2043

twitter-2016
-dev-A

1999 843 391 765

twitter-2016
-devtest-A

2000 994 325 681

Total (no
duplication)

21403 9171 3412 8820

Table 1: Trainset for our system in Task 4-A.

Dataset All Pos. Neg.
twitter-2015
-train-BD

198 142 56

twitter-2015
-testBD

1127 867 260

twitter-2016
-train-BD.txt

4346 3591 755

twitter-2016
-dev-BD

1325 986 339

twitter-2016
-devtest-BD

1417 1153 264

twitter-2016
-test-BD

10551 8212 2339

Total 18964 14951 4013

Table 2: Trainset for our system in Task 4-B.

The classification results are presented in Table
3. In Subtask A, 37 submissions evaluated, the
best F1-score value was 0.685, while our result
F1-score was 0.539. There are 24 submissions in
Subtask B, the best F1-score was 0.89 and our F1-
score was 0.486.

5 Conclusions

We have presented an approach that incorporates
the MaxEnt with various features to solve the over-

Subtask F1 Recall Acc
A 0.539 0.571 0.582
B 0.486 0.594 0.518

Table 3: Results achieved by our system

all polarity and topic-based message polarity. Our
system is part of first author’s work on text clas-
sification, included in PhD ongoing work. From
the results, we noticed that our system was un-
satisfactory compared to other teams. However,
this evaluation became a good experience for us.
Many people usually use an entirely different lan-
guage on social media sites such as Twitter and
Facebook. Thus, we will focus on social media
and informal language learning. As further work
we propose the following:

• compare the classical approaches with com-
mon features

• investigate the usage of a combination of
classical approaches

• explore different techniques that can be used
in target-oriented sentiment analysis

• investigate efficient features and new feature

• use more lexicons such as AFINN (Nielsen,
2011) and NRC Emoticon (Mohammad and
Turney, 2010)

• develop the possibility of the system on mul-
tilingual
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Abstract

In this paper, we describe the participa-
tion of the SentiME++ system to the Se-
mEval 2017 Task 4A “Sentiment Analysis
in Twitter” that aims to classify whether
English tweets are of positive, neutral or
negative sentiment. SentiME++ is an en-
semble approach to sentiment analysis that
leverages stacked generalization to auto-
matically combine the predictions of five
state-of-the-art sentiment classifiers. Sen-
tiME++ achieved officially 61.30% F1-
score, ranking 12th out of 38 participants.

1 Introduction

The SemEval-2017 Task 4 (Rosenthal et al., 2017)
focuses on the classification of tweets into posi-
tive, neutral and negative sentiment classes. In
2015, the Webis system (Hagen et al., 2015)
showed the effectiveness of ensemble methods for
sentiment classification by winning the SemEval-
2015 Task 10 “polarity detection” challenge
through the combination of four classifiers that
had participated to previous editions of SemEval.
In 2016, we have combined the original public re-
lease of the Webis system with the Stanford Sen-
timent System (Socher et al., 2013) using bag-
ging, creating the SentiME system (Sygkounas
et al., 2016b,a) which won the ESWC2016 Se-
mantic Sentiment Analysis challenge. In bagging,
the predictions of the classifiers trained on differ-
ent bootstrap samples (bags) are simply averaged
to obtained a final prediction. In this paper, we
propose SentiME++, an enhanced version of the
SentiME system that combines the predictions of
the base classifiers through stacked generalization.
In Section 2, we detail our approach to stack a
meta-learner on top of five state-of-the-art senti-
ment classifiers to combine their predictions. In

Section 3, we describe the experimental setup of
our participation to SemEval and we report the re-
sults we obtained in Section 4. Finally, we con-
clude the paper in Section 5.

2 Approach

2.1 Preliminaries
SentiME++ is based on the predictions of five
state-of-the-art sentiment classifiers:
NRC-Canada: winner of SemEval 2013, trains
a linear kernel SVM classifier on a set of linguis-
tic and semantic features to extract sentiment from
tweets (Mohammad et al., 2013);
GU-MLT-LT: 2nd ranked at SemEval 2013, uses
a linear classifier trained by stochastic gradient de-
scent with hinge loss and elastic net regularization
for their predictions on a set of linguistic and se-
mantic features (Günther and Furrer, 2013);
KLUE: 5th ranked at SemEval 2013, feeds a
simple bag-of-words model into popular machine
learning classifiers such as Naive Bayes, Linear
SVM and Maximum Entropy (Proisl et al., 2013);
TeamX: winner of SemEval 2014, uses a variety
of pre-processors and features, fed into a super-
vised machine learning algorithm which utilizes
Logistic Regression (Miura et al., 2014);
Stanford Sentiment System: one of the sub-
systems of the Stanford NLP Core toolkit1, con-
tains the Stanford Tree Parser, a machine-learning
model that can parse the input text into Stanford
Tree format and the Stanford Sentiment Classi-
fier, which takes as input Stanford Trees and out-
puts the classification results. The output of the
Stanford Sentiment System belongs to one of five
classes (very positive, positive, neutral, negative,
very negative) which differs from the three classes
defined in SemEval. In a previous work (Sygk-
ounas et al., 2016b), we have tested different con-

1http://stanfordnlp.github.io/CoreNLP/
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figurations for mapping the Stanford Sentiment
System classification to the three classes of the Se-
mEval competition and finally decided to use the
following strategy: very positive and positive are
mapped to positive, neutral is mapped to neutral
and negative and very negative are mapped to neg-
ative. The Stanford Sentiment System is used as
an off-the-self classifier and is not trained with Se-
mEval data.

2.2 Bootstrap samples
The first step in the SentiME++ approach con-
sists in training separately the first four classifiers,
using a uniform random sampling with replace-
ment (bootstrap sampling) to generate four dif-
ferent training sets Ti for each of the four sub-
classifiers from the initial training set T . In Sec-
tion 3, we report the results of the experiments that
we have conducted to determine the optimal size
of the samples Ti. Note that these samples are also
called ‘bags’. At this point, the SentiME system
combines the predictions on the models trained
on these bags using a simple average, while Sen-
tiME++ uses stacked generalization, as described
in the next section.

2.3 Stacking
Stacked Generalization (or simply stack-
ing) (Wolpert, 1992) is based on the idea of
creating an ensemble of base classifiers and then
combining them by means of a supervised classi-
fier, also called ‘meta-learner’. Stacking typically
leverages the complementarity among the base
classifiers to obtain a better global performance
than any of the individual models. The base
classifiers are trained separately and, for each
input, output their prediction. The meta-learner,
which is ‘stacked’ on top of the base classifiers,
is trained on the base classifiers’ predictions and
aims to correct the prediction errors of the base
classifiers. SentiME++ trains separately four
models, uses the Stanford Sentiment System
without training and uses these five outputs as
a feature vector for a stacked supervised learner
(Fig. 1). In detail, the SentiME++ approach works
can be divided in a training and a testing phase:
Training phase: (1) generate four bootstrap
samples Ti by sampling n tweets from the original
training set T , where n = s∗ |T | and s is a param-
eter that has to be fixed experimentally (2) train
separately NRC-CANADA, GU-MLT-LT, KLUE,
TeamX classifiers on the samples Ti and store the

trained models; (3) use the four trained models
and the Stanford Sentiment System to predict
the sentiment of each tweet t ∈ T , producing a
training set for the stacking layer Tstack; (4) Train
the meta-learner on Tstack.
Testing phase: (1) use the four trained models
and the Stanford Sentiment System to predict the
sentiment of each tweet t ∈ Ttest producing a test
set for the stacking layer Ttest; (2) test the trained
meta-learner on Ttest.
Note that the described approach is slightly
different from the standard procedure of Stacked
Generalization described in (Wolpert, 1992),
which is normally not based on bootstrap sam-
ples, but rather on disjoint splits of the training set.
This variation is mainly due to the will of building
SentiME++ as an incremental enhancement of
the existing SentiMe system, without disrupting
its base training mechanism. The meta-learner
that is used as default in SentiME++ is a Support
Vector Machine (SVM) with a Radial Basis
Function (RBF) kernel (Scholkopf et al., 1997).
Different choices are possible, but Support Vector
Machines are well-studied methods in machine
learning, able to be trained efficiently and to
limit over-fitting. This method depends on two
hyper-parameters, i.e. parameters that are not au-
tomatically learnt and that constitutes parameters
of the algorithm itself: the regularization constant
C and the parameter of the radial basis function γ.
In order to optimize the performance of the stack-
ing layer, we have chosen these parameters using
a grid-search cross validation approach (Hsu et al.,
2003). The process works as follows: (1) define
a range for hyper-parameters C ∈ [C1...Cm] and
γ ∈ [γ1...γn]; (2) train the model with all possible
pairs (Ci, γj); (3) compute scores with k-fold
cross validation for (Ci, γj) pair; (4) find the best
pair (Ci, γj) according to k-fold cross validation
score.
SentiME is implemented in Java and the stacking
process that characterizes SentiME++ is per-
formed by a python script working on top of the
results obtained by the SentiME system. The
source code is available on github2. It uses a
variety of lexicons (Table 1).

2https://github.com/
MultimediaSemantics/sentime
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Figure 1: Illustration of the SentiME++ approach: bootstrap samples (bags) are generated to train four
state-of-the-art sentiment classifiers, the Stanford System is used without training and their predictions
are used as a feature vector for a meta-learner.

Lexicon # of Words and phrases Classifiers
AFINN-111 2477 TeamX

Bingliu 6800 NRC-Canada,TeamX
Hashtag 16,862 unigrams NRC-Canada

NRC-emotion-lexicon-v0.92 14,182 unigrams NRC-Canada,TeamX
Sentiment140 62,468 unigrams NRC-Canada,TeamX

SentiWordNet 3.0.0 155.287 NRC-Canada,GU-MLT-LT,TeamX
SentiStrength 16,000 social web texts KLUE

Table 1: Lexicons used by each sub-classifier included into SentiME++

3 Experimental Setup

In this section, we describe the experimental setup
of the SentiME++ system for the participation to
the SemEval2017 Task4A challenge.

3.1 Bootstrap samples size

One of the parameters of the SentiME++ model
is the size of the bootstrap samples Ti. Different
sampling sizes have been experimented, ranging
from 33% to 175% of the size of the initial training
set T . In order to determine an optimal size, we
have tested the SentiME bagging approach, which
simply averages the predictions of the base clas-
sifiers, on the SemEval2013-test-B dataset train-
ing the models with different random extractions
of the SemEval2013-train+dev-B dataset. The ex-
periment was repeated three times to mitigate the
randomness due to the random extractions and we
observed that a 150% size3 led to the best per-

3Note that this implies that there are duplicates among the
training examples

formance on SemEval2013-test-B dataset (Sygk-
ounas et al., 2016a).

3.2 Encoding categorical features
In order to use the predicted sentiment classes as
features for a meta-learner in the stacking layer,
it is necessary to specify an encoding scheme,
which allows the system to interpret the class val-
ues ‘Positive’, ‘Neutral’ and ‘Negative’. These
values could be simply mapped to integers 0, 1, 2,
but the meta-learner, expecting continuous or bi-
nary inputs, would interpret it as an ordered se-
quence of real values. To avoid this, we use a
one-hot encoding scheme, i.e. m categorical val-
ues are turned into a m dimensional binary vec-
tor where only one element at the time is active.
In this specific case, the encoding that we have
used is: ‘positive’=[0, 0, 1], ‘neutral’=[0, 1, 0],
‘negative’=[1, 0, 0].

3.3 Hyper-parameters optimization

In order to optimize the performance of the SVM
meta-learner, we have performed the grid-search
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cross validation described in Section 2 on the
SemEval2013-train+dev-B dataset using 10-folds.
The experiment has been performed using as a
range an array of 30 logarithmically spaced val-
ues for γ from 10−9 to 103 and for C from 10−2

to 1010. The best obtained (C, γ) pair, i.e. the
pair producing the best prediction score, which
has been used for the participation to the challenge
is: (C, γ) = (0.174, 0.028). The implementation
of the SVM classifier and of the grid-search cross
validation procedure has been carried out using the
python library scikit-learn4.

4 Results

We started our experiments by training the
system on different combinations of SemEval
datasets, thus producing different trained mod-
els: model 1: SemEval2013-train+dev; model
2: model 1 + SemEval2013-test + SemEval2014-
test + Twitter2014-sarcasm + SemEval2015-train
+ SemEval2015-test; model 3: model 2 +
SemEval2016-dev + SemEval2016-test.

In order to compare the performance of these
different trained models, we have chosen as a
test set the SemEval2016-test dataset, as it is the
largest in size (33k tweets) and the most recent of
SemEval test sets. The results obtained from this
experiment are illustrated in Table 2. We observe

Model 1 Model 2 Model 3
SentiME++ 65.69 71.24 94.80

SentiME 64.35 70.23 86.87

Table 2: Comparison among trained models on
SemEval2016-test dataset for SentiME and Sen-
tiME++ according to F1 scores

that for all models, SentiME++ performs better
than SentiME, proving the efficiency of stacked
generalization with respect to bagging for com-
bining the predictions of classifiers. For Model
1 and Model 2 the difference is around 1% and
for Model 3 around 8%. Model 2 performs about
6% better than Model 1: this can be explained by
the size of the training set which is bigger. Model
3 achieves the highest performance but the test
dataset is part of the training dataset. While be-
ing aware that this introduces a bias in this eval-
uation, we also see that using more training data
enhances the performance of the system and thus

4http://scikit-learn.org/stable/

we opt for using SentiME++ with Model 3 for the
final submission. Being the process of bootstrap
sampling stochastic, we ran the system four times
and computed the F1-score on the SemEval2017
development dataset and, after the release of the
gold standard for the test set, on the SemEval2017
test dataset (Tab. 3). Run 4 has been submitted as

SentiME++ Run 1 Run 2 Run 3 Run 4
Dev 84.63 86.15 85.13 86.16
Test 60.70 60.90 63.40 61.30

Table 3: Comparison among runs on
SemEval2017-dev and SemEval2017-test dataset
for SentiME++ according to F1 scores.

it was the best performing on the development set,
but, a posteriori, we can observe that Run 3 per-
forms better on the test set. We also observe a sig-
nificant performance drop from the development
to the test set. We believe that this might be due
to the marked difference in the category distribu-
tions of the tweets in the two datasets (see Tab.4 in
(Rosenthal et al., 2017)). The best SentiME++ run
at SemEval2017 Task 4 Sub-Task A would rank
8th out of 38 participants.

5 Conclusion

In this paper, we have presented SentiME++, a
sentiment classifier that combines the predictions
of five state-of-the-art systems through stacking.
SentiME++ achieved officially 61.30% F1-score,
ranking 12th out of 38 participants. We have
shown how stacking can improve the combination
of the classifiers with respect to bagging, imple-
mented in the previous version of SentiME, eval-
uating it on SemEval2017 Challenge datasets. We
have described an experimental procedure to de-
termine an appropriate size of the bootstrap sam-
ples and optimize hyper-parameters of the meta-
learner. In general, we provide a further evidence
of the power of the ensemble approach applied to
sentiment analysis. As a future work, we plan to
improve the bootstrap sampling process by taking
into account the class distributions of the tweets, to
determine the bag sizes directly using SentiME++,
to include more base classifiers and experiment
different meta-learners.
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Troncy. 2016a. A Replication Study of the Top
Performing Systems in SemEval Twitter Sentiment
Analysis. In 15th International Semantic Web Con-
ference (ISWC).

Efstratios Sygkounas, Giuseppe Rizzo, and Raphaël
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Abstract

This paper describes the Amobee senti-
ment analysis system, adapted to compete
in SemEval 2017 task 4. The system con-
sists of two parts: a supervised training of
RNN models based on a Twitter sentiment
treebank, and the use of feedforward NN,
Naive Bayes and logistic regression classi-
fiers to produce predictions for the differ-
ent sub-tasks. The algorithm reached the
3rd place on the 5-label classification task
(sub-task C).

1 Introduction

Sentiment detection is the process of determin-
ing whether a text has a positive or negative at-
titude toward a given entity (topic) or in general.
Detecting sentiment on Twitter—a social network
where users interact via short 140-character mes-
sages, exchanging information and opinions—is
becoming ubiquitous. Sentiment in Twitter mes-
sages (tweets) can capture the popularity level of
political figures, ideas, brands, products and peo-
ple. Tweets and other social media texts are chal-
lenging to analyze as they are inherently different;
use of slang, mis-spelling, sarcasm, emojis and co-
mentioning of other messages pose unique diffi-
culties. Combined with the vast amount of Twitter
data (mostly public), these make sentiment detec-
tion on Twitter a focal point for data science re-
search.

SemEval is a yearly event in which teams com-
pete in natural language processing tasks. Task
4 is concerned with sentiment analysis in Twitter;
it contains five sub-tasks which include classifica-
tion of tweets according to 2, 3 or 5 labels and
quantification of sentiment distribution regarding

∗These authors contributed equally to this work.

topics mentioned in tweets; for a complete de-
scription of task 4 see Rosenthal et al. (2017).

This paper describes our system and participa-
tion in all sub-tasks of SemEval 2017 task 4. Our
system consists of two parts: a recurrent neural
network trained on a private Twitter dataset, fol-
lowed by a task-specific combination of model
stacking and logistic regression classifiers.

The paper is organized as follows: section 2
describes the training of RNN models, data be-
ing used and model selection; section 3 describes
the extraction of semantic features; section 4 de-
scribes the task-specific workflows and scores. We
review and summarize in section 5. Finally, sec-
tion 6 describes our future plans, mainly the de-
velopment of an LSTM algorithm.

2 RNN Models

The first part of our system consisted of training
recursive-neural-tensor-network (RNTN) models
(Socher et al., 2013).

2.1 Data
Our training data for this part was created by tak-
ing a random sample1 from Twitter and having it
manually annotated on a 5-label basis to produce
fully sentiment-labeled parse-trees, much like the
Stanford sentiment treebank. The sample contains
twenty thousand tweets with sentiment distribu-
tion as following:

v-neg. neg. neu. pos. v-pos.

Train 8.4% 23.2% 31.7% 25.3% 11.4%

Test 8.6% 23.0% 33.2% 24.8% 10.4%

2.2 Preprocessing
First we build a custom dictionary by means of
crawling Wikipedia and extracting lists of brands,

1Amobee is an official Twitter partner and as such has
access to its global stream of data.
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celebrities, places and names. The lists were then
pruned manually. Then we define the following
steps when preprocessing tweets:

1. Standard tokenization of the sentences, using
the Stanford coreNLP tools (Manning et al.,
2014).

2. Word-replacement step using the Wiki dictio-
nary with representative keywords.

3. Lemmatization, using coreNLP.

4. Emojis: removing duplicate emojis, cluster-
ing them according to sentiment and replac-
ing them with representative keywords, e.g.
“happy-emoji”.

5. Regex: removing duplicate punctuation
marks, replacing URLs with a keyword, re-
moving Camel casing.

6. Parsing: parts-of-speech and constituency
parsing using a shift-reduce parser2, which
was selected for its speed over accuracy.

7. NER: using entity recognition annotator3, re-
placing numbers, dates and locations with
representative keywords.

8. Wiki: second step of word-replacement using
our custom wiki dictionary.

2.3 Training

We used the Stanford coreNLP sentiment anno-
tator, introduced by Socher et al. (2013). Words
are initialized either randomly as d dimensional
vectors, or given externally as word vectors. We
used four versions of the training data; with and
without lemmatization and with and without pre-
trained word representations4 (Pennington et al.,
2014).

2.4 Tweet Aggregation

Twitter messages can be comprised of several sen-
tences, with different and sometimes contrary sen-
timents. However, the trained models predict sen-
timent on individual sentences. We aggregated the
sentiment for each tweet by taking a linear combi-
nation of the individual sentences comprising the

2http://nlp.stanford.edu/software/srparser.shtml.
3http://nlp.stanford.edu/software/CRF-NER.shtml.
4Twitter pre-trained word vectors were used,

http://nlp.stanford.edu/projects/glove/

tweet with weights having the following power de-
pendency:

h(f, l, pol) = (1 + f)α l β (1 + pol)γ + 1, (1)

where α, β, γ are numerical factors to be found,
f, l, pol are the fraction of known words, length of
the sentence and polarity, respectively, with polar-
ity defined by:

pol = |10 · vn + n− p− 10 · vp| , (2)

where vn, n, p, vp are the probabilities as assigned
by the RNTN for very-negative, negative, positive
and very-positive label for each sentence. We then
optimized the parameters α, β, γ with respect to
the true labels.

2.5 Model Selection
After training dozens of models, we chose to com-
bine only the best ones using stacking, namely
combining the models output using a supervised
learning algorithm. For this purpose, we used the
Scikit-learn (Pedregosa et al., 2011) recursive fea-
ture elimination (RFE) algorithm to find both the
optimal number and the actual models, thus choos-
ing the best five models. The models chosen in-
clude a representative from each type of the data
we used and they were:

• Training data without lemmatization step,
with randomly initialized word-vectors of
size 27.

• Training data with lemmatization step, with
pre-trained word-vectors of size 25.

• 3 sets of training data with lemmatization
step, with randomly initialized word-vectors
of sizes 24, 26.

The five models output is concatenated and used
as input for the various tasks, as described in 4.1.

3 Features Extraction

In addition to the RNN trained models, our system
includes feature extraction step; we defined a set
of lexical and semantical features to be extracted
from the original tweets:

• In-subject, In-object: whether the entity of
interest is in the subject or object.

• Containing positive/negative adjectives that
describe the entity of interest.
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• Containing negation, quotations or perfect
progressive forms.

For this purpose, we used the Stanford determinis-
tic coreference resolution system (Lee et al., 2011;
Recasens et al., 2013).

4 Experiments

The experiments were developed by using Scikit-
learn machine learning library and Keras deep
learning library with TensorFlow backend (Abadi
et al., 2016). Results for all sub-tasks are summa-
rized in table 1.

4.1 General Workflow

For each tweet, we first ran the RNN models and
got a 5-category probability distribution from each
of the trained models, thus a 25-dimensional vec-
tor. Then we extracted sentence features and con-
catenated them with the RNN vector. We then
trained a Feedforward NN which outputs a 5-label
probability distribution for each tweet. That was
the starting point for each of the tasks; we refer to
this process as the pipeline.

4.2 Task A

The goal of this task is to classify tweets senti-
ment into three classes (negative, neutral, positive)
where the measured metric is a macro-averaged
recall.

We used the SemEval 2017 task A data in the
following way: using SemEval 2016 TEST as our
TEST, partitioning the rest into TRAIN and DEV
datasets. The test dataset went through the previ-
ously mentioned pipeline, getting a 5-label proba-
bility distribution.

We anticipated the sentiment distribution of the
test data would be similar to the training data—as
they may be drawn from the same distribution.
Therefore we used re-sampling of the training
dataset to obtain a skewed dataset such that a lo-
gistic regression would predict similar sentiment
distributions for both the train and test datasets.
Finally we trained a logistic regression on the new
dataset and used it on the task A test set. We ob-
tained a macro-averaged recall score of ρ = 0.575
and accuracy of Acc = 0.587.

Apparently, our assumption about distribution
similarity was misguided as one can observe in the
next table.

Negative Neutral Positive

Train 15.5% 41.1% 43.4%
Test 32.3% 48.3% 19.3%

4.3 Tasks B, D

The goals of these tasks are to classify tweets sen-
timent regarding a given entity as either positive or
negative (task B) and estimate sentiment distribu-
tion for each entity (task D). The measured metrics
are macro-averaged recall and KLD, respectively.

We started with the training data passing our
pipeline. We calculated the mean distribution for
each entity on the training and testing datasets. We
trained a logistic regression from a 5-label to a
binary distribution and predicted a positive prob-
ability for each entity in the test set. This was
used as a prior distribution for each entity, mod-
eled as a Beta distribution. We then trained a lo-
gistic regression where the input is a concatena-
tion of the 5-labels with the positive component
of the probability distribution of the entity’s sen-
timent and the output is a binary prediction for
each tweet. Then we chose the label—using the
mean positive probability as a threshold. These
predictions are submitted as task B. We obtained
a macro-averaged recall score of ρ = 0.822 and
accuracy of Acc = 0.802.

Next, we took the predictions mean for each en-
tity as the likelihood, modeled as a Binomial dis-
tribution, thus getting a Beta posterior distribution
for each entity. These were submitted as task D.
We obtained a score of KLD = 0.149.

4.4 Tasks C, E

The goals of these tasks are to classify tweets
sentiment regarding a given entity into five
classes—very negative, negative, neutral, posi-
tive, very positive—(task C) and estimate senti-
ment distribution over five classes for each en-
tity (task E). The measured metrics are macro-
averaged MAE and earth-movers-distance (EMD),
respectively.

We first calculated the mean sentiment for each
entity. We then used bootstrapping to generate a
sample for each entity. Then we trained a logistic
regression model which predicts a 5-label distri-
bution for each entity. We modified the initial 5-
label probability distribution for each tweet using
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Task A B C D E

3-class. 2-class. 5-class. 2-quant. 5-quant.

Metric ρ ρ MAEM KLD EMD

Score 0.575 0.822 0.599 0.149 0.345

Rank 27/37 11/23 3/15 11/15 6/12

Table 1: Summary of evaluation results, metrics used and rank achieved, for all sub tasks. ρ is macro-averaged recall, MAEM

is macro-averaged mean absolute error, KLD is Kullback-Leibler divergence and EMD is earth-movers distance.

the following formula:

pnew(t0, c0) =
∑
c∈C

p (t0, c) · pentity-LR (t0, c0)∑
t∈T p (t, c)

,

(3)

where t0, c0 are the current tweet and label,
pentity-LR is the sentiment prediction of the logis-
tic regression model for an entity, T is the set of
all tweets and C = {vn, n, neu, p, vp} is the set of
labels. We trained a logistic regression on the new
distribution and the predictions were submitted as
task C. We obtained a macro-averaged MAE score
of MAEM = 0.599.

Next, we defined a loss function as follows:

loss(t0, c0) =
∑
c∈C
|c− c0| · p (t0, c)∑

t∈T p (t, c)
, (4)

where the probabilities are the predicted probabil-
ities after the previous logistic regression step. Fi-
nally we predicted a label for each tweet according
to the lowest loss, and calculated the mean senti-
ment for each entity. These were submitted as task
E. We obtained a score of EMD = 0.345.

5 Review and Conclusions

In this paper we described our system of senti-
ment analysis adapted to participate in SemEval
task 4. The highest ranking we reached was third
place on the 5-label classification task. Compared
with classification with 2 and 3 labels, in which
we scored lower, and the fact we used similar
workflow for tasks A, B, C, we speculate that the
relative success is due to our sentiment treebank
ranking on a 5-label basis. This can also explain
the relatively superior results in quantification of 5
categories as opposed to quantification of 2 cate-
gories.

Overall, we have had some unique advantages
and disadvantages in this competition. On the one
hand, we enjoyed an additional twenty thousand
tweets, where every node of the parse tree was la-
beled for its sentiment, and also had the manpower

to manually prune our dictionaries, as well as the
opportunity to get feedback from our clients. On
the other hand, we did not use any user informa-
tion and/or metadata from Twitter, nor did we use
the SemEval data for training the RNTN models.
In addition, we did not ensemble our models with
any commercially or freely available pre-trained
sentiment analysis packages.

6 Future Work

We have several plans to improve our algorithm
and to use new data. First, we plan to extract
more semantic features such as verb and adverb
classes and use them in neural network models
as additional input. Verb classification was used
to improve sentiment detection (Chesley et al.,
2006); we plan to label verbs according to whether
their sentiment changes as we change the tense,
form and active/passive voice. Adverbs were also
used to determine sentiment (Benamara et al.,
2007); we plan to classify adverbs into sentiment
families such as intensifiers (“very”), diminishers
(“slightly”), positive (“delightfully”) and negative
(“shamefully”).

Secondly, we can use additional data from Twit-
ter regarding either the users or the entities-of-
interest.

Finally, we plan to implement a long short-
term memory (LSTM) network (Hochreiter and
Schmidhuber, 1997) which trains on a sentence
together with all the syntax and semantic fea-
tures extracted from it. There is some work in
the field of semantic modeling using LSTM, e.g.
Palangi et al. (2014, 2016). Our plan is to use
an LSTM module to extend the RNTN model of
Socher et al. (2013) by adding the additional se-
mantic data of each phrase and a reference to the
entity-of-interest. An illustration of the computa-
tional graph for the proposed model is presented
in figure 1. The inputs/outputs are: V is a word
vector representation of dimension d, D encodes
the parts-of-speech (POS) tagging, syntactic cate-
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Figure 1: LSTM module; round purple nodes are element-wise operations, turquoise rectangles are neural network layers,
orange rhombus is a dim-reducing matrix, splitting line is duplication, merging lines is concatenation.

gory and an additional bit indicating whether the
entity-of-interest is present in the expression—all
encoded in a 7 dimensional vector, C is a control
channel of dimension d, O is an output layer of
dimension d + 7 and H is a sentiment vector of
dimension s.

The module functions are defined as following:

ft = σ [Lf ([Vt, Dt] , Ot−1)]
it = σ [Li ([Vt, Dt] , Ot−1)]
C ′t = tanh [LC′ ([Vt, Dt] , Ot−1)]
i′′t = σ

[
Li′′

([
C ′′t−1, Dt

]
, [Ct−1, Dt−1]

)]
C ′′t = tanh

[
LC′′

([
C ′′t−1, Dt

]
, [Ct−1, Dt−1]

)]
gt = σ [Lg ([Vt, Dt] , Ot−1)]
Ct = Ct−1 � ft + C ′t � it + i′′t � C ′′t
Ht = Wout · (gt � tanh (Ct))
Ot = [Dt, (gt � tanh (Ct))] , (5)

where Wout ∈ Rs×d is a matrix to be learnt, � de-
notes Hadamard (element-wise) product and [., .]
denotes concatenation. The functions Li are the
six NN computations, given by:

Lk (Sij) = SijT
k,[1:d]S>ij + I0,0W

k
0,0S

>
ij

+ I0,1W
k
0,1S

>
ij + I1,0W

k
1,0S

>
ij

+ I1,1W
k
1,1S

>
ij

Sij = ((vi, si, ei) , (vj , sj , ej)) , (6)

where (vi, si, ei) are the d dimensional word em-
bedding, 6-bit encoding of the syntactic category
and an indication bit of the entity-of-interest for
the ith phrase, respectively, Sij encodes the in-
puts of a left descendant i and a right descendant
j in a parse tree and k ∈ {1, . . . , 6}. Define D =
2d+ 14, then T [1:d] ∈ RD×D×d is a tensor defin-
ing bilinear forms, II,J with I, J ∈ {0, 1} are in-
dication functions for having the entity-of-interest
on the left and/or right child and WI,J ∈ Rd×D

are matrices to be learnt.
The algorithm processes each tweet according

to its parse tree, starting at the leaves and going
up combining words into expressions; this is dif-
ferent than other LSTM algorithms since the pars-
ing data is used explicitly. As an example, figure
2 presents the simple sentence “Amobee is awe-
some” with its parsing tree. The leaves are given
by d-dimensional word vectors together with their
POS tagging, syntactic categories (if defined for
the leaf) and an entity indicator bit. The computa-
tion takes place in the inner nodes; “is” and “awe-
some” are combined in a node marked by “VP”
which is the phrase category. In terms of our ter-
minology, “is” and “awesome” are the i, j nodes,
respectively for “VP” node calculation. We de-
fine C ′′t−1 as the cell’s state for the left child, in
this case the “is” node. Left and right are concate-
nated as input Vt and the metadata Dt is from the
right child whileDt−1 is the metadata from the left
child. The second calculation takes place at the
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Figure 2: Constituency-based parse tree; the LSTM module
runs on the internal nodes by concatenating the left and right
nodes as its input.

root “S”; the input Vt is now a concatenation of
“Amobee” word vector, the input Ot−1 holds the
Ot output of the previous step in node “VP”; the
cell state C ′′t−1 comes from the “Amobee” node.
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TWINA at SemEval-2017 Task 4: Twitter Sentiment  

Analysis with Ensemble Gradient Boost Tree Classifier 

 

 

Abstract 

This paper describes the TWINA 

system, with which we participated in 

SemEval-2017 Task 4B (Topic Based 

Message Polarity Classification – Two 

point scale) and 4D (Two-point scale 

Tweet Quantification). We 

implemented ensemble based Gradient 

Boost Trees Classification method for 

both the tasks. Our system could 

perform well for the task 4D and 

ranked 13
th
 among 15 teams, for the 

task 4B our model ranked 23
rd
 

position. 

1 Introduction 

Twitter, as a social networking service and 

microblogging service has gained great success in 

the recent years. It attracted millions of users to 

disseminate most up-to-date information, which 

resulted in generating massive amounts of 

information every day. Users share their opinions 

and experience on Twitter with the limit of 140 

characters length text called as Tweet. Many 

applications in the field of Natural Language 

processing (NLP) and Information Retrieval (IR) 

are suffering severely from noisy in such a short 

140 character length text. 

This paper describes the system, with which we 

participated in Task 4 (Sentiment Analysis in 

Twitter) of SemEval – 2017 (Rosenthal et al., 

2017). Organizers have given five different 

subtasks in task 4, they are: 

 Task-4A: Message Polarity Classification 

 Task-4B: Two-point scale Topic Based 

Message Polarity Classification 

 Task-4C: Five-point scale Topic-Based 

Message Polarity Classification 

 Task-4D: Two-point scale-Tweet 

quantification 

 Task-4E: Five-point scale - Tweet 

quantification 

We participated in only two subtasks B and D. 

With our submissions, we could stand in 13
th
 

position among 15 participants of task 4D and 

ranked 23
rd

 position in task 4B. For both the tasks 

B and D, we implemented basic model of 

ensemble based Gradient Boost Tree Classifier 

and applied parameter optimization technique to 

improve the results.  

The rest of the paper is organized as follows: In 

section 2 we describe the datasets, section 3 pre-

processing of data for analysis, section 4 

describes the model implementation using 

ensemble based Gradient Boost Trees 

Classification technique, section 5 gives results 

and section 6 gives conclusion and future work. 

2 Datasets 

In implementing the solution for SemEval Task 4, 

for every subtask the organizers provide training, 

development testing and testing datasets for 

training and testing. In addition to, the organizers 

made 2015 datasets available for training and 

tuning. We have used 4896 tweets for training the 

model and 20632 to test the model during the 

development. Final test of the model has been 

done on 12284 tweets. 
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3 Pre-processing 

Twitter has a constraint that, Tweet should not 

exceed 140 characters to convey the information 

or message. This makes the users to use 

unpredictable ways of expressing themselves. To 

find out sentiment from these kinds of tweets is 

very challenging task. In addition to, short text 

users are using different emoticons to express 

their opinions and feelings. Dealing with 

emoticons is a challenging task. To get the better 

results, we have to apply some pre-processing 

steps in order to clean Tweets for not to have 

unnecessary information. Initially each tweet 

converted into lower case and all URLS and 

HTML parts, Hash tags are removed from these 

tweets. Basically, emoticons has considered as 

two categories SAD and HAPPY, to deal with 

emoticons, each of the emoticons has been 

replaced with its category label either SAD or 

HAPPY. The Table 1 shows how the pre-

processing step is applied, for the original Tweet 

and pre-processed Tweet can be seen.  

4 Implementation 

To train and test our model implementations, we 

have downloaded the training, development 

testing and testing datasets provided by the 

SemEval-2017 Task 4 organizers. After pre-

processing the Tweet, we extracted word2vec 

features using genism models. These word2vec 

features are used to train the Gradient Boost Tree 

Classifier (GBC). After training the GBC model, 

development test dataset has been used to validate 

the model and final test dataset has been used to 

evaluate the model. 

4.1 Word2Vec 

Word2vec
1
 model is used for learning the vector 

representations of words called word embeddings 

(Mikolov et al., 2013; Pennington et al.,2014). 

Word2vec is computationally efficient predictive 
model for learning word embeddings. It comes in 

two flavors, the Continuous Bag-of-Words model 

(CBOW) and the Skip-Gram model. 
Algorithmically, these models are similar, except 

that CBOW predicts target words from source 
context words, while the skip-gram does the 

inverse and predicts source context-words from 

the target words. The amazing property of these 
word embeddings is that, it effectively captures 

the semantic meanings of the words. 

4.2 Gradient Boost Tree Classifier 

Gradient Boosting is a machine learning 

technique for regression and classification 

problems, it builds an ensemble of trees one-by-

one, and then the predictions of individual trees 

are summed.  

Gradient Boosting involves three elements: 

 A loss function to be optimized 

 A weak learner to make predictions  

 An additive model to add weak learner to 

minimize the loss function. 

 

Original Tweet Look @Qualcomm I found 

the 1st #Snapdragon Phone 

in my stuff from #Toshiba 

and @Microsoft. Still 

Working :) 

http://t.co/dLbuag6QDU 

After 

Preprocessing 

look found 1st snapdragon 

phone stuff toshiba still 

working HAPPY 

Original Tweet @darebeark 

@alyaeldeeb12345 my 

memory doesnt have more 

space. So i cant download it 

:( but i'll try to download it 

tomorrow from iPad 

After 

Preprocessing 

memory does not space cant 

download SAD try 

download tomorrow ipad 

Original Tweet Don't forget to collect the 

bills and win free ipod nano 

7th generation &amp; 17% 

CK vouchers of total bills , 

we...http://t.co/CNn4Ln9swy 

After 

Preprocessing 

do not forget collect bills 

win free ipod nano 7th 

generation 17% ck vouchers 

total bills 

Table 1: Tweet Pre-processing 
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Decision trees are used as weak learners in 

gradient boosting. Trees are constructed in greedy 

manner by choosing the best split points. Trees 

are added one at a time, and existing trees in the 

model are not changed. 

As we have used Scikit-learn
2
 for our model 

implementation. It is a free software library for 

machine learning in python. Scikit-learn come 

with various classification, regression and 

clustering techniques. It is designed to 

interoperate with Python numerical and scientific 

libraries NumPy and SciPy. 

Gradient Boosting is typically used with decision 

trees. In constructing the decision trees in 

Gradient Boosting method various parameters are 

used for defining a tree are - ‘n_estimators’, 

‘max_depth', 'subsample', 'min_samples_leaf', 

‘learning_rate’, ‘random_state '. 

min_samples_leaf is the minimum observations 

or samples required in leaf or terminal node. 

Lower values can be picked to control the over 

fitting problem and solve class imbalance 

problem, so we fixed with 1. 

n_estimators is the number of sequential trees to 

be modeled. In GBC is fairly robust for the higher 

values of trees, but it can still over fit from point 

on. Hence, we checked various combinations of 

values and fixed with 2500. 

max_depth is the maximum depth of the tree. 

Appropriate value has to be picked to control 

overfitting, because as the higher depth tree will 

allow the model to learn very specific relations, 

which leads to overfitting. So we fixed with 7. 

subsample is the fraction of observations to be 

used for each construction. Selection of the 

subsample is done by purely random sampling 

approach. The value slightly less than 1 makes the 

model robust. We fixed at 0.75. 
 

 1https://radimrehurek.com/gensim/models/word2vec.html 

2http://scikitlearn.org/stable/modules/generated/sklearn.ense

mble.GradientBoostingClassifier.html 

3https://www.analyticsvidhya.com/blog/2016/02/complete-

guide-parameter-tuning-gradient-boosting-gbm-python/ 

random_state is the random number seed used to 

generate the same random numbers every time. 

This is very important parameter. If we don’t fix 

the random number, then we will have different 

outcomes for subsequent runs on the same 

parameters. We fixed with 3. 

learning_rate is the parameter which determines 

the impact of each tree on the final outcome. 

Learning rate controls the magnitude of change in 

the estimates. Lower values are suitable to make 

the model more robust, but need to construct 

more number of trees to model all the relations, 

which actually computationally expensive. We 

fixed with 0.005. 

We have tested Gradient Boost Tree Classifier 

model with various combinations of values for 

the above parameters, and for every combination 

the accuracy of the model has been evaluated. We 

could arrive at comparatively best results for the 

above combinations. 

5 Results 

We participated in only two sub tasks (Task 4B & 

4D) of SemEval-2017 Task 4. We have used 

ensemble based Gradient Boost Trees 

Classification technique for both the subtasks. For 

Task 4B we classified the polarity of the Tweet 

with respect to a particular entity either positive 

or negative.  

For Task 4D, we assigned the probability score 

for each Tweet and computed mean value of the 

positive and negative probabilities for entity 

level. The computed mean probability of the 

entity is considered as the final score for the 

Tweet quantification towards the entity. 
 

 Precision Recall F1-Score 

Positive 0.389 0.834 0.530 

Negative 0.546 0.133 0.214 

Average  0.483 0.372 

Overall Score : 0.483 

Accuracy : 0.412 

Table 2:  Results for subtask- 4B 
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Table 3:  Comparative Results for subtask- 4B 

Table 4:  Comparative Results for subtask- 4D 

The organizers have defined various baselines for 

measuring the performance of submissions. For 

task 4B average recall and accuracy for each class 

is considered as baseline. For task 4D five 

baselines have been defined. Baseline 2 is macro-

averaged KLD, AE and RAE on train, dev, 

devtest and test from 2016. Baseline 3 is micro-

averaged KLD, AE and RAE on train, dev, 

devtest, and test from 2016. Baseline 4 is micro-

averaged KLD, AE and RAE on train, dev, 

devtest and test from 2016. Baseline 5 is micro-

averaged KLD, AE and RAE on train, dev, 

devtest and test from 2015 and 2016. 

 

6 Conclusions and Future work 

In this paper we presented TWINA system, with 

which we participated in two sub tasks of 

SemEval-2017. This is the first time we 

participated in SemEval Task; there is much 

scope for the improvement. We have used very 

simple feature extraction technique like 

word2vec, and ensemble based Gradient Boost 

Tree Classification method. We can get better 

results with the implementation of good feature 

engineering techniques and use of deep neural 

networks for classification task. 

S.

No 
System KLD AE RAE 

1 BB_twtr 0.036 0.080 0.598 

2 DataStories 0.048 0.095 0.848 

3 TakeLab 0.050 0.096 1.057 

4 CrystalNest 0.056 0.104 1.202 

5 Tweester 0.057 0.103 1.051 

6 funSentiment 0.060 0.109 0.939 

7 NileTMRG 0.077 0.120 1.228 

8 NRU-HSC 0.078 0.132 1.528 

9 Ecnucsy 0.092 0.143 1.922 

10 THU_HCSI_I
DU 

0.129 0.179 2.428 

11 Amobee-C-

137 

0.149 0.179 2.168 

12 OMAM 0.164 0.204 2.790 

13 SSK_JNTUH 0.421 0.314 2.983 

14 EliRF-UPV 1.060 0.593 7.991 

15 YNU-HPCC 1.142 0.592 7.859 

 Baseline 1 1.518 0.422 2.645 

 Baseline 2 0.554 0.423 6.061 

 Baseline 3 0.591 0.432 6.169 

 Baseline 4 0.534 0.418 6.000 

 Baseline 5 0.587 0.431 6.157 
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Abstract

In this paper, we present our contribu-
tion in SemEval 2017 international work-
shop. We have tackled task 4 entitled
“Sentiment analysis in Twitter”, specifi-
cally subtask 4A-Arabic. We propose two
Arabic sentiment classification models im-
plemented using supervised and unsuper-
vised learning strategies. In both mod-
els, Arabic tweets were preprocessed first
then various schemes of bag-of-N-grams
were extracted to be used as features.
The final submission was selected upon
the best performance achieved by the su-
pervised learning-based model. Neverthe-
less, the results obtained by the unsuper-
vised learning-based model are considered
promising and evolvable if more rich lex-
ica are adopted in further work.

1 Introduction

Social media is literally shaping decision making
processes in many aspects of our daily lives. Ex-
ploring online opinions is therefore becoming the
focus of many analytical studies. Twitter is one
of the most popular microblogging systems that
enables a real-time tracking of opinions towards
ongoing events (Saif et al., 2016). Hence, it pro-
vides the needed feedback information for analyt-
ical studies in several domains such as politics and
targeted advertising (El-Makky et al., 2014). Sen-
timent analysis plays an essential role in perform-
ing such studies as it can extract the sentiments
out of the opinions and classify them into polar-
ities (Tang et al., 2015). Arabic language has re-
cently been considered as one of the most grow-
ing languages on Twitter with more than 10.8 mil-
lion tweets per day (Alhumoud et al., 2015). Yet,
Arabic is remarkably less tackled in the research

of Sentiment Analysis (Nabil et al., 2015; ElSa-
har and El-Beltagy, 2015). With more resources
and tools for Arabic Natural Language Process-
ing (NLP) becoming available, and with the re-
cent developed sentiment lexica for Modern Stan-
dard Arabic (MSA) and dialectal Arabic, this year,
SemEval contest offers the opportunity to apply
sentiment classification on Arabic tweets through
subtask 4A-Arabic (Rosenthal et al., 2017). An-
alyzing Arabic tweets is significantly challeng-
ing due to the complex nature and morphology of
the Arabic language. Furthermore, Arabic tweets
are mostly informal and written in different di-
alects in which same words or expressions may
have drastically different sentiments. For exam-
ple, Ty�A`�� �yW`§ is a compliment of a pos-
itive sentiment that means “May GOD grant you
health” in the Levantine dialect while it has an
aggressive meaning of “burn in fire” in the Mo-
roccan and Tunisian dialects (El-Makky et al.,
2014). Additionally, tweeters tend to use abbrevi-
ations, neologisms, emoji and sarcasm frequently
(Maas et al., 2011; Rajadesingan et al., 2015),
and sometimes in the same 140-characters tweet
(Maas et al., 2011).

Here, we describe our participation in Task 4,
subtask 4A-Arabic of SemEval 2017 under the
team name “Tw-StAR” (Twitter-Sentiment analy-
sis team for ARabic). The task requires classifying
the sentiment of single Arabic tweets into one of
the classes: positive, negative or neutral (Rosen-
thal et al., 2017). To accomplish this mission, we
have used two classification models:

• Supervised learning-based model: bag-of-
N-grams features of different schemes have
been adopted to train the model. Support Vec-
tor Machines (SVM) and naı̈ve Bayes (NB)
algorithms have been used as classification
algorithms.
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• Unsupervised learning-based (lexicon-based)
model: in which a merged MSA/multi-
dialectal sentiment lexica along with the con-
stant weighting strategy have been employed
to classify the tweets’ sentiment.

The remainder of the paper is organized as fol-
lows: in Section 2, we describe the preprocessing
step. In Section 3, we identify the extracted fea-
ture sets. Section 4 introduces the learning strate-
gies used in the presented models. Results are re-
viewed and discussed in Section 5 while Section 6
concludes the study and future work.

2 Data Preprocessing

In this step, we have first cleaned the tweets from
the unsentimental content such as URLs, User-
name, dates, hashtags, retweet symbols, punctu-
ation, emotions and non-Arabic characters to get
the Arabic text only as in (Shoukry and Rafea,
2012; Al-Osaimi and Badruddin, 2014). Secondly,
the input data has been filtered from the words
that do not affect the text meaning, the so called
stopwords (El-Makky et al., 2014). Since our
data contains several dialects we had to use an al-
ready built stopwords list of 244 words for MSA
and Egyptian dialect used in (Shoukry and Rafea,
2012) merged with a manually-built list of 12
words from the Levantine and Gulf dialects such
as �y�, wJ which mean“where” and “what” in the
Gulf and Levantine dialects respectively. Further-
more, MSA/dialectal negation words such as A�,
L� that mean “not” in Levantine and Egyptian
dialects respectively, have been excluded from the
used stopwords lists, as they may reverse the po-
larity of a tweet (Duwairi et al., 2014). Thus, a
tweet such as “https://t.co/wPg3KEz4bW-C¤d§ A�
	��r� d�A�¤ x�C ¨�” which means “what is
going on in Trump’s mind” becomes “C¤d§ A�

	��r� d�A�¤ x�C” after preprocessing. Lastly,
for the ulexicon-based model, we have subjected
each tweet to tokenization then to stemming to
facilitate the words lookup process in the lexica.
Stemming has been carried out using the Infor-
mation Science Research Institute’s (ISRI) Arabic
stemmer provided by NLTK library (Bird, 2006).
ISRI is a root-extraction stemmer that can provide
a normalized form of unstemmed words rather
than leaving them unchanged. Moreover, being a
context-sensitive stemmer prevents ISRI from pro-
ducing insensible and invalid roots (Dahab et al.,
2015).

3 Feature Extraction

Bag-of-N-grams features have been adopted to be
used in both of the presented models (Shoukry
and Rafea, 2012; Abdulla et al., 2013; Ahmed
et al., 2013). N-grams represent a sequence of ad-
joining N items collected from a given corpus.
Extracting N-grams can be thought of as explor-
ing a large piece of text through a window of a
fixed size (Pagolu et al., 2016). Features selec-
tion has been performed using NLTK module Fre-
qDist which gives a list of the distinct words or-
dered by their frequency of appearance in the cor-
pus (Bird, 2006). A specific number of features
was defined (equals to 40100 for the combination
of unigrams+bigrams+trigrams) in order to be se-
lected from the FreqDist’s list . The feature extrac-
tion pipeline is illustrated in Figure 1. For a certain

Figure 1: Feature extraction pipeline

N-grams scheme, a tweet’s feature vector is con-
structed via examining the presence/absence of the
N-grams features among the tweet’s tokens. Con-
sequently, the feature vector’s values are identified
as True (presence) or False (absence).

4 Learning Strategies

In this section, we describe the learning strategies
adopted by the presented models. The mechanism
of each strategy is briefly reviewed, in addition
to an introduction of the python1 supported tools
used by these strategies to build the classification
models.

4.1 Supervised learning

Supervised learning requires a labeled corpus to
train the classifier on the text polarity prediction
(Biltawi et al., 2016). In our case, a polarity la-
beled dataset of (3355) Arabic tweets provided
by SemEval 2017 has been used such that 2684
tweets were dedicated to train the model while 671
tweets were used to tune it. The learning process

1https://www.python.org
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has been carried out by inferring that a combina-
tion of specific features of a tweet yields a specific
class (Shoukry and Rafea, 2012). We have used
Naı̈ve Bayes (NB) from Scikit-Learn (Pedregosa
et al., 2011) since it is as powerful as Logistic Re-
gression (Räbigera et al., 2016) and has proved
its efficiency in classifying sentiment of multi-
dialectal datasets (Itani et al., 2012). Addition-
ally, linear SVM from LIBSVM was employed for
its robustness and ease of implementation (Chang
and Lin, 2011). Regarding used features, and as
higher-order N-grams performed better compared
to unigrams (Rushdi-Saleh et al., 2011). We have
adopted N-grams schemes ranging from unigrams
up to trigrams.

4.2 Unsupervised learning (lexicon-based)
In this strategy, neither labeled data nor training
step are required to train the classifier. The po-
larity of a word or a sentence is determined us-
ing a sentiment lexicon or lexica that can be either
pre-built or manually-built (Abdulla et al., 2013).
Sentiment lexica usually contain subjective words
along with their polarities (positive, negative). For
each polarity, a sentiment weight is assigned using
one of these weighting algorithms:

• Sum method: adopts the constant weight
strategy to assign weights to the lexicon’s en-
tries, where negative words have the weight
of -1 while positive ones have the weight of
1. The polarity of a given text is thus calcu-
lated by accumulating the weights of negative
and positive terms. Then, the total polarity is
determined by the sign of the resulted value
(Abdulla et al., 2016).

• Double Polarity (DP) method: assigns both a
positive and a negative weight for each term
in the lexicon. For example, if a positive term
in the lexicon has a weight of 0.8, then its
negative weight will be: -1+0.8 = -0.2. Sim-
ilarly, a negative term of -0.6 weight has a
0.4 positive weight. Polarity is calculated by
summing all the positive weights and all the
negative weights in the input text. Conse-
quently, the final polarity is determined ac-
cording to the greater absolute value of the
resulted sum (El-Makky et al., 2014).

Having the MSA/dialectal combination of our
training dataset defined by manual annotation (see
Table 1), we have adopted a merged of pre-built

and manually-built sentiment lexica with 6587 to-
tal entries of single and compound terms.

Arabic Type Number of Tweets
MSA 2643
Egyptian 247
Levantine 69
Gulf 393
Moroccan 3
Total 3355

Table 1: Dataset MSA/Dialectal combination.

The pre-built lexica included NileULex (El-
Beltagy, 2016) for MSA and Egyptian, Arabic
Emotion Lexicon (Salameh et al., 2015) for emo-
jis and Arabic Hashtag Lexicon (Salameh et al.,
2015; Mohammad et al., 2016) for MSA/multiple
dialects. Levantine and Gulf dialects were targeted
through two manually-built lexica. Table 2 lists the
used lexica and their sizes.

Sentiment Lexicon Used Size
NileULex 5953
Arabic Emotion Lexicon (seeds) 23
Arabic Hashtag Lexicon (seeds) 230
Levantine Lexicon (manually-built) 281
Gulf Lexicon (manually-built) 100

Table 2: Used lexica.

As in (Abdulla et al., 2013; El-Beltagy and Ali,
2013), we have used the Sum method to deter-
mine the tweets’ polarity. The polarity calculation
procedure involved looking for entries that match
the tweet’s unigrams or bigrams in the lexica. Be-
sides, we have provided the ability to look for
the stemmed word if the unstemmed one could
not be found (Al-Horaibi and Khan, 2016). Stop-
words and negation words were kept to increase
the possibility of matching a tweet’s token with
the compound terms of the merged lexica. Thus,
for a tweet such ¨��r� ¨J T�db� ��w� means
“Google is incredibly creative” the polarity is cal-
culated by summing the polarity values of its to-
kens “google+incredibly+creative= 0+1+1=+2 >0
” hence, it is positive.

5 Results and Discussion

The provided dataset consists of three parts:
TRAIN (2684 tweets) for training models, DEV
(671 tweets) for tuning models, and TEST (6100
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tweets) for the official evaluation. Data pre-
processing involved using regular expressions
recognition and substitution provided by the re
Python module2. N-grams feature schemes (un-
igrams+bigrams+trigrams) have been generated
via NLTK 3. Having the data preprocessed and the
features extracted, we have trained the supervised
learning-based model then classified the sentiment
of the DEV set. The used classification algorithms
were SVM from LIBSVM 4 and NB from Scikit-
Learn 5. Table 4 lists the results of these two clas-
sification algorithms. Considering the baseline re-
sults reviewed in Table 3, it can be observed that
a slight improvement was achieved by NB com-
pared to the baseline. While SVM outperformed
both the baseline and NB by achieving an average
F-score (AVG F1) of 0.384 and an average Recall
(AVG R) of 0.459.

AVG F1 AVG R
Baseline 0.249 0.333

Table 3: The baseline results for DEV set.

Algorithm AVG F1 AVG R
SVM 0.384 0.459
NB 0.284 0.418

Table 4: The performance of the supervised
learning-based model on DEV dataset.

For the lexicon-based model, the tweet’s tokens
(unigrams+bigrams) have been looked up in the
lexica to calculate the tweet’s polarity using the
Sum method. The lookup process involved look-
ing for the stemmed token if the unstemmed one
is not found in the lexica. In Table 5, we notice
that when stemming assists the lookup process,
the performance degraded from 0.342 to 0.309 in
terms of F-score value. This is because dialec-
tal words may not be stemmed correctly by ISRI
stemmer6 (Dahab et al., 2015). For example, the
term Y��� means “I want” in the Gulf dialect and
has a neutral sentiment, while its stem using ISRI

2https://docs.python.org/3/library/re.
html

3http://www.nltk.org/
4https://www.csie.ntu.edu.tw/˜cjlin/

libsvm/
5http://scikit-learn.org/stable/

modules/naive_bayes.html
6http://www.nltk.org/_modules/nltk/

stem/isri.html

is Y�� means “injustice” that has a negative po-
larity. However, the experiment in which stem-
mer was not used achieved quite a close perfor-
mance to that of the supervised model as it yielded
0.448 and 0.342 for average recall and average
F-score respectively. This is due to the fact that
MSA/Egyptian and Gulf/Levantine dialects were
efficiently supported by the used lexica.

Stemming AVG F1 AVG R
Available 0.309 0.367
Not available 0.342 0.448

Table 5: Lexicon-based model performance on
DEV dataset.

Considering the results in Table 4 and Ta-
ble 5, the supervised learning-based model with
SVM algorithm achieved the best average F-score
and Recall values compared to the lexicon-based
model. So, we selected it to provide the TEST set
classification results for the final submission. Ta-
ble 6 reviews the scores and the ranking of our sys-
tem in the official evaluation.

Metric Value Ranking
Average F1 0.416 7/8
Average R 0.431 7/8
Average Accuracy 0.454 5/8

Table 6: Final submission evaluation of super-
vised learning-based model for the TEST dataset.

6 Conclusion and Future work

We have investigated sentiment classification of
Arabic tweets via two classification models of var-
ious features and two learning strategies. Rela-
tively, satisfying results were obtained by the su-
pervised and lexicon-based models. For the final
submission, we selected the supervised learning-
based model, as it achieved the best average F-
score and Recall values. However, the lexicon-
based model has also yielded good results when
the lookup process was not assisted by stemming.
We noticed that MSA/multi-dialectal content has
been efficiently handled by the merged lexica. Fur-
ther improvement can be obtained in the future if
Levantine/Gulf dialects are more efficiently sup-
ported by using their current lexica entries as seeds
to produce a richer lexicon.
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Abstract

We describe a supervised system that uses
optimized Conditional Random Fields and
lexical features to predict the sentiment
of a tweet. The system was submitted
to the English version of all subtasks in
SemEval-2017 Task 4.

1 Introduction

Sentiment analysis, sometimes known as opinion
mining, is the process of detecting the contex-
tual polarity of text. That is, given a text (of any
length), subjective information pertaining to the
sentiment attached to the text is derived using nat-
ural language processing tools (Pang et al., 2008;
Cambria et al., 2013). Sentiment analysis could be
approached in two ways. General sentiment anal-
ysis, often termed sentence-level sentiment analy-
sis, extracts the general sentiment of the text based
solely on its contents. The sentiment is not related
or based on any external entity. On the other hand,
topic-level sentiment analysis infers the sentiment
of the given text based on a specific topic. This
branch of sentiment analysis has been further ex-
plored under the term Stance Detection (Faulkner,
2014; Anand et al., 2011). With the rapid in-
crease in different forms of online expression like
reviews, political criticism, ratings and punditry,
social media has become an invaluable source of
data for research in sentiment analysis. With data
from social media, sentiment analysis can show
the public sentiment towards current topics of pub-
lic discourse. Twitter is one of the largest of such
social media platforms and a prominent source of
data for sentiment research (Pak and Paroubek,
2010; Wang et al., 2011; Rajadesingan and Liu,
2014). In this paper, we describe the components
and results of a system for English sentiment anal-
ysis with which participated in an international
shared task on sentiment analysis for Twitter data.

2 Shared Task Description

The SemEval-2017 Task 4 (Rosenthal et al., 2017)
(henceforth SemEval) is aimed at categorizing
tweets from Twitter. This task is composed of five
subtasks. Subtask A is a message polarity classifi-
cation task where tweets are classified on general
sentiment (not directed at any topic) on a three-
way scale: Negative, Neutral and Positive (hence-
forth, −1, 0, +1). Subtask B is a topic-based mes-
sage polarity classification where tweets are clas-
sified on sentiment towards a given topic on a two-
way scale: Negative and Positive (henceforth, −1,
+1). Subtask C is the same topic-based task as
B, except that it uses a five-point sentiment scale
(−2, −1, 0, +1, +2), where −2 is very negative
and +2 is very positive. Both subtasks D and E
are tweet quantification tasks based on subtasks B
and C, respectively. In both D and E, given the
same datasets from B and C, the distribution of
the tweets for each topic across each label of the
given scales is estimated.

This task is a rerun of SemEval-2016 Task 4
(Nakov et al., 2016), with some changes. For this
task, user profile information of the author of each
tweet were made available. Also, this task in-
cluded an Arabic language version. Our system
works on English but is submitted as part of the
OMAM (Opinion Mining for Arabic and More)
team that also submitted a system that analyzes
sentiment in Arabic (Baly et al., 2017).

3 Approach

For all subtasks, we used the same setup (pro-
cess and system). We used CRF++ (Kudo, 2005),
which is an implementation of Conditional Ran-
dom Fields (CRF), as the underlying machine
learning component. We were inspired by the
work of Yang et al. (2007) who used CRFs to de-
termine sentiment of web blogs, training at the
sentence level and classifying at the document
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level where the sentences sequence was taken in
consideration. For this shared task, however, the
tweets are not ordered, so there is no sequence in-
formation to be exploited. Nevertheless, we were
interested in benchmarking how CRFs will fare
in this scenario. We optimized the lexical fea-
tures as well as the CRF++ parameters for each
subtask independently against the specific subtask
metrics. Although some subtasks involved topic-
level sentiment analysis (i.e. sentiment towards
a target), we ignored the topics for all subtasks.
This idea is taken from the top scoring submis-
sion to SemEval-2016 Task 4C, TwiSE (Balikas
and Amini, 2016), who used a single-label multi-
class classifier and ignored topics altogether. For
the tweet quantification tasks, we used a simple
aggregation script (supplied by SemEval for a pre-
vious iteration of this task).

3.1 Data Preprocessing

We make use of all the data provided by SemEval
for training and testing for all five subtasks. Ad-
ditionally, we use a data set of 4,000 tweets avail-
able from SentiStrength.1 In the SemEval data,
each tweet is paired with a TweetID, Topic and
Label, except for subtask A data which has no
Topic. For the SentiStrength data, each tweet is
assigned two values representing positive and neg-
ative sentiment.

In order to use the training data from other sub-
tasks and from SentiStrength in a subtask, we con-
vert across the different label sets. For subtask A
(three-point scale), we mapped subtask C’s data’s
five-point scale labels −2 and +2 to −1 and +1,
respectively; but used subtask B’s data as is. We
also added the SentiStrength data’s two values and
mapped them to (−1, 0, +1). For subtask B (and
D) (two-point scale), we folded the five-point la-
bels as above and had two options regarding neu-
tral values: remove the neutral tweets or dupli-
cate them and relabel them as positive once and
negative once. We also explored classifying with
higher point scales and mapping down. Details are
discussed in Section 4.2. For subtask C (and E)
(five-point scale), we converted data labels from
other subtasks using duplication and relabeling:
tweets with positive labels were duplicated and la-
beled with +1 and +2; tweets with negative la-
bels were duplicated and labeled with −1 and −2;
and the neutral labels (0) were simply duplicated
to maintain balance. When converting subtask A

1http://sentistrength.wlv.ac.uk/

data for use in other subtasks, a placeholder topic
column was added. This did not influence the sys-
tem as topics are not considered in any of the sub-
tasks. The SentiStrength data was first mapped to
subtask A format, then duplicated and relabeled.

3.2 Lexical Features
We considered the following lexical features with
the CRF++ system. The unigram feature was
always used, but feature combinations were ex-
plored for the other lexical features.

• Unigrams The unique words in each tweet
consisting of alphanumeric characters and
punctuation.

• Tweet length (twtlen) The number of words
in the tweet.

• Tweet length binned (twtlenbin) The num-
ber of words in the tweet arbitrarily binned as
LOW (twtlen≤11), MID (12≤twtlen≤22)
and HIGH (23≤twtlen).

• Bigrams The unique bigrams in the tweet.

• SentiStrength (senti) The SentiStrength tool
estimates the strength of positive and nega-
tive sentiment in short texts (Thelwall et al.,
2010). The tool returns two values represent-
ing negative sentiment (range−1 to−5 ) and
positive sentiment (range +1 to +5 ). Both
values are used, as well as their sum, and a
mapped value (onto the range of −2 to +2).

• Removed URL (rurl) All URLs are replaced
with the string ‘EXTERNALURL’. If the re-
moved URL feature is true, that string is re-
moved.

• Stopwords (stpwrd) This feature removes
all stopwords in the tweet.

3.3 Model Optimization
We optimize the CRF++ model on the training
data in two phases. First, the seven lexical fea-
tures discussed above are exhaustively combined
to identify the best feature combination for each
subtask separately. Additionally, we explored
combinations of different data sets, e.g., using
SentiStrength data and/or subtask A data for sub-
task C. Using all of the available data for each sub-
task produced the best results. During this phase,
the CRF++ is run with default parameter values.
Next, the model is further optimized by tuning the
CRF++ parameters c and f. The c value controls
the hyper-parameter for the CRF to balance be-
tween overfitting and underfitting. The f parameter
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Features AvgR AvgF1 Acc
unigram; senti 0.623 0.596 0.686
unigram; twtlenbin; rurl; senti 0.621 0.593 0.667
unigram; stpwrd; twtlen; bigram; senti 0.613 0.584 0.667
unigram; twtlen; rurl; senti 0.613 0.583 0.686
unigram; twtlen; senti 0.613 0.580 0.688

Table 1: Scores of lexical feature combinations for subtask A

−f −c AvgR AvgF1 Acc
1 8.5 0.634 0.612 0.695
1 4.0 0.626 0.599 0.694
1 1.0 0.623 0.596 0.686
4 7.5 0.615 0.587 0.680
2 6.0 0.613 0.585 0.682

Table 2: Scores of CRF++ parameters combina-
tions for subtask A

sets the cut-off threshold for the features. We ex-
plored all combinations of c and f ranging between
0.5 and 10.0 (in increments of 0.5) and 1 to 4 (in
increments of 1), respectively.

3.4 Evaluation Metrics

Each subtask had its own target metric (Rosen-
thal et al., 2017). Subtasks A and B use AvgR,
macro-averaged recall (recall averaged across the
targeted labels). Subtask C uses MAEM , macro-
averaged mean absolute error. Subtask D uses
KL, Kullback-Leibler Divergence. Subtask E
uses EMD, Earth Mover’s Distance.

4 Results

4.1 Subtask A

For subtask A, we used the following data sets
for training: SemEval 2016 task 4A data (train,
dev and devtest), SemEval 2016 task 4C data
(train, test, dev and devtest) and SentiStrength
twitter data. Table 1 shows the five top performing
combinations from the lexical feature optimiza-
tion phase. The senti feature with unigrams were
the best features. Table 2 shows the five top per-
forming combinations for the CRF parameter op-
timization phase. The best setup, with c value 8.5,
f value 1 and features unigram and senti, was used
to produce the predicted file submitted for subtask
A for SemEval 2017. Our submission received the
following scores and ranks (in subscript) out of 38
systems: average recall AvgR = 0.59024, AvgF1
= 0.54226, Acc = 0.61519.

4.2 Subtasks B and D

For subtasks B and D, we explored the possibility
of training and predicting in five-point scale space
and then mapping to two-point scale space. In the
mapping, −2 and +2 map to −1 and +1, respec-
tively. When the system predicts the neutral label
(0), we select the next most probable label deter-
mined using CRF++’s verbose mode. For subtask
B and D, we used the following training data: Se-
mEval task 4B data, SemEval task 4A data, Se-
mEval task 4C data and SentiStrength twitter data.

Table 3(a) shows the five top performing lexical
feature combinations for subtask B. All features
combinations in Table 3(a) were from the setup
where classification is done in two-point format
and the neutral tweets from subtask A and C data
were removed.

Table 3(b) shows the five top performing c and
f value combinations for subtask B. The highest
performing setup, with c value 0.5 and f value
1 and features twtlenbin, rurl, bigram and senti,
was used to produce the predicted file submitted
for subtask B for SemEval 2017. Our submission
received the following scores and ranks (in sub-
script) out of 23 systems: average recall AvgR =
0.77915, AvgF1 = 0.76217, Acc = 0.76417.

For subtask D, the five top performing feature
combinations are shown in Table 5. All combi-
nations in Table 5, except the second, are from
the setup that predicts on five-point labeled data
where the neutral tweets are preserved and dupli-
cated. The second combination, unigram; stpwrd;
twtlen; senti, is from the setup the predicts on five-
point labeled data where the neutral tweets are re-
moved.

The combination with the best score, used
the following features: unigram; twtlenbin, rurl,
senti. This was used for prediction for the test
file which was later aggregated and submitted for
subtask D. Our submission received the following
scores and ranks (in subscript) out of 15 systems:
KL = 0.16412, AE = 0.20412, RAE = 2.79012.
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Features AvgR
unigram; twtlenbin; rurl; bigram; senti 0.785
unigram; stpwrd; twtlenbin; rurl; bigram; senti 0.783
unigram; twtlen; rurl; bigram; senti 0.783
unigram; stpwrd; rurl; bigram; senti 0.782
unigram; twtlenbin; bigram; senti 0.782

(a) lexical feature combinations

−f −c AvgR
1 0.5 0.786
2 0.5 0.786
1 2.0 0.786
1 2.0 0.785
3 1.0 0.782
(b) CRF++ parameters

Table 3: Optimization scores for subtask B

Features MAEM

unigram; twtlen; twtlenbin; rurl; senti 0.74
unigram; stpwrd; twtlen; rurl; senti 0.77
unigram; stpwrd; rurl; bigram; senti 0.77
unigram; stpwrd; twtlenbin; senti 0.77
unigram; senti 0.77

(a) lexical feature combinations

−f −c MAEM

2 10.0 0.71
1 0.5 0.74
1 1.0 0.74
2 5.5 0.75
2 7.5 0.75
(b) CRF++ parameters

Table 4: Optimization scores for subtask C

Features KL
unigram; twtlenbin; rurl; senti 0.035
unigram; stpwrd; twtlen; senti 0.036
unigram; rurl; bigram; senti 0.037
unigram; stpwrd; twtlenbin; rurl; senti 0.038
unigram; twtlenbin; rurl; senti 0.038

Table 5: Scores of lexical feature combinations
for Subtask D

4.3 Subtasks C and E
For subtask C and E, we used the following data
for training: SemEval 2016 task4A data, SemEval
2016 task 4C data and SentiStrength twitter data.
Table 4(a) shows the five top performing lexical
feature combinations for subtask C. Table 4 shows
the five top performing c and f value combinations
for subtask C.

The highest performing setup, with c value 10.0
and f value 2 and features unigram; twtlen, twtlen-
bin, rurl and senti, was used to produce the pre-
diction file submitted for subtask C for SemEval
2017. Our submission received the following
scores and ranks (in subscript) out of 15 systems:
MAEM = 0.89510, MAEµ = 0.4751.

For subtask E, Table 6 shows the five top per-
forming lexical combinations.

The combination with the best score, used the
following features: unigram twtlenbin, rurl, senti.
This was used for creating the prediction file
which was later aggregated and submitted for sub-
task E. Our submission received the following

Features EMD
unigram; twtlenbin; rurl; senti 0.070
unigram; twtlen; twtlenbin; senti 0.087
unigram; twtlenbin; rurl 0.087
unigram; senti 0.088
unigram; twtlen; twtlenbin; rurl; senti 0.088

Table 6: Scores of lexical feature combinations
for Subtask E

scores and ranks (in subscript) out of 12 systems:
EMD = 0.3507.

5 Conclusion and Future Work

In this paper, we presented a system for English
sentence-level sentiment analysis of twitter using
CRF++ and optimized lexical features. We ex-
plore feature combinations and tune CRF++ pa-
rameters values to find the best setup for each
subtask. Overall, the unigram and SentiStrength
(senti) features were always present in the best
performing setups for all subtasks. In all subtasks
other than A, binned tweet length (twtlenbin) and
removing URLs (rurl) consistently helped.

We used this system to participate in the
SemEval-2017 Task 4. The system’s performance
was middle of the pack, which was accomplished
while ignoring topics in the topic-level tasks.

In the future, we will explore more lexical fea-
tures and other CRF and SVM implementations.
We also look forward to applying the same setup
to other languages.
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Abstract

In this paper, we describe our submission
to SemEval2017 Task 4: Sentiment Anal-
ysis in Twitter. Specifically the proposed
system participated both to tweet polar-
ity classification (two-, three- and five
class) and tweet quantification (two and
five-class) tasks. The submitted system is
based on “Tweester” (Palogiannidi et al.,
2016) that participated in last year’s Sen-
timent analysis in Twitter Tasks A and
B. Specifically it comprises of multiple
independent models such as neural net-
works, semantic-affective models and af-
fective models inspired by topic modeling
that are combined in a late fusion scheme.

1 Introduction

Tweets are short length pieces of text, usually
written in informal style that contain abbrevia-
tions, misspellings and creative syntax (like emoti-
cons, hashtags etc). The challenging nature of
sentiment analysis in Twitter motivated the or-
ganization of numerous tasks within the Seman-
tics Evaluation (SemEval) workshop. In this pa-
per, we show how our sentiment analysis frame-
work called “Tweester” (winner of Subtask B in
SemEval-2016 (Palogiannidi et al., 2016)), can
be applied to all subtasks, namely Subtask A
(message polarity classification), Subtask B (tweet
classification according to a two-point scale), Sub-
task C (sentiment conveyed by a tweet towards
the topic on a five-point scale), Subtask D (esti-
mate the distribution of the tweets across a two-
point scale), Subtask E (estimate the distribution

of the tweets across a five-point scale ). The sys-
tem achieved high performance ranking 5th, 3rd,
4th, 5th and 8th for Subtasks A, B, C, D, and E,
respectively (S.Rosenthal et al., 2017). In Section
2 we provide more details on the individual sys-
tems as well as the fusion scheme. Experimental
procedure is described in Section 3 and some con-
cluding remarks as well as an outlook on future
work are presented in Section 4.

2 System Description

The submitted system is based on the fusion of
several systems. Specifically the system con-
sists of: 1) the semantic-affective system (sub-
mitted to the SemEval 2016 Task 4 (Palogiannidi
et al., 2016)) that incorporates affective, semantic-
similarity, sarcasm/irony and topic modeling fea-
tures, 2) a single and a two-step convolutional neu-
ral network, 3) a system based on word embed-
dings, 4) a “stacking” based system that trans-
forms the 3-class polarity problem of Subtask
A, into 2-class binary problems and finally 5)
the open-source system submitted to the SemEval
2015 Task 10 (Rosenthal et al., 2015a).

2.1 Preprocessing

We hypothesize that hashtags are able to express
user’s sentiment with regard to some topic or
events (e.g., “Jazz all day #lovemusic”). Follow-
ing this assumption, hashtag expansion into word
strings (Palogiannidi et al., 2016) was performed
using the Viterbi algorithm (Forney, 1973). The
absolute and relative frequencies of hashtags to be
expanded are used as features, as well as the bi-
nary indicators that a tweet contains hashtags that
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require expansion. POS-tagging / Tokenization
is performed using the ARK NLP tweeter tag-
ger (Owoputi et al., 2013). The Gensim model
(Řehůřek and Sojka, 2010) is used which can au-
tomatically detect common multi-word expres-
sions (MWE) from a stream of sentences. After
we detect MWE, we select only the ones that con-
sist up to two words, which we treat as a single
token. Negations are usually expressions that are
used to alter the sentiment orientations. We claim
that not all parts of the tweet convey equally im-
portant information and some parts, like negated
parts or the last words of a tweet may express an
opposite meaning of what is literally said. The un-
derlying intuition here is the cognitive dissonance
phenomenon that is associated with the existence
of ironic content, sarcasm and humour (Reyes and
Rosso, 2014). Based on this claim, we detect the
negation part of a tweet using the list proposed by
(Potts, 2011). Specifically, when a negation token
is detected, the tokens that follow are marked as
negated until a punctuation mark is reached. Then,
we extract features in the negated part. We also
apply context windows on each tweet, in order
to keep selected words. “Prefix” context windows
are the first two and three tokens of the tweet, how-
ever , “suffix” windows change analogously to the
length of the tweet, selecting the 20%, 50% and
70% of the last tokens.

2.2 Semantic-Affective system

The Semantic-Affective based system is the core
model of “Tweester” which is based on previous
work by (Malandrakis et al., 2014). The major-
ity of the features used are affective ratings that
have been estimated by semantic affective mod-
els, however, numerous non-affective or semantic
features are also used.

2.2.1 Affective lexica
Using the semantic affective model described in
(1) we created affective lexica by estimating con-
tinuous (in [-1,1]) ratings for unknown words.
This model that was first proposed by (Malan-
drakis et al., 2013) and enhanced by (Palogiannidi
et al., 2015) relies on the assumption that “seman-
tic similarity implies affective similarity”. First,
a semantic model is built and then affective rat-
ings are estimated for unknown tokens. This ap-
proach uses a set of words with known affective
ratings, usually referred as seed words, as a start-
ing point. The English manual annotated affective

lexicon ANEW (Bradley and Lang, 1999) is used
for selecting the seed words. The model is applica-
ble both to single words or multi-word expression
tokens:

υ̂(w) = α0 +
M∑
i=1

αiυ(ti)S(ti, w), (1)

where t1...tM are the seed words, υ(ti) is the af-
fective rating for seed word ti, αi is a trainable
weight corresponding to seed ti and S(·) is the se-
mantic similarity metric between two tokens. The
semantic model is built as shown in (Palogiannidi
et al., 2015) using word-level contextual feature
vectors and adopting a scheme based on mutual
information for feature weighting. From the af-
fective ratings we retain only the polarity features
(instead of using additional affective dimensions,
namely arousal and dominance). Affective lex-
ica were created using a Twitter corpus, which we
call task-dependent corpus and a generic corpus,
which we call out-of-domain (see Section 3.1). In
an attempt to create task-dependent affective lex-
ica we use the out-of-domain corpus and follow
a domain adaptation technique. Specifically, we
build a language model using domain relevant sen-
tences, i.e., tweets. Then, we estimate the per-
plexity of each out-of-domain sentence in order
to evaluate its relevance to the language model.
In this context, instances that are lexically more
similar to the instances in the task-dependent cor-
pus will be assigned lower perplexity scores. We
create four adapted lexica selecting from the out-
of-domain corpus the top 10%, 30%, 50% and
70% of the most relevant sentences to the language
model.

Third party affective lexica are also used. Those
include AFFIN ((Nielsen, 2011), NRC and nrctag
(Mohammad et al., 2013)). Given the affective
ratings, the next step is combining them through
statistics. We use simple statistics grouped by part
of speech tags. Specifically we compute: length
(cardinality), min, max, max amplitude, sum, av-
erage, range (max minus min), standard devia-
tion and variance. The results are statistics like
“maximum valence among adjectives”, “mean va-
lence among proper nouns”, “number of verbs and
nouns”, etc. All features mentioned above are
not only extracted on the token-level, but also on
the prefix and suffix parts of each tweet and the
MWEs.
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2.2.2 Additional features

In addition to the affective features, we also in-
corporate morphology, character and word embed-
ding based features.

Character features include the frequencies of se-
lected characters like capitalized letters, punctua-
tion marks, emoticons and character repetition.

Word embeddings are utilized for the semantic
similarity estimation. They were derived using
word2vec (Mikolov et al., 2013b), representing
each word as a d-dimensional vector. For each
tweet the corresponding vectors of its constituent
words are averaged to get a sentence-level feature
vector.

As subjectivity features we use the absolute
and the relative frequencies of the strong pos-
itive/negative and weak positive/negative words
taken from a subjectivity lexicon (Wilson et al.,
2005).

The detection of irony in tweets is mainly consti-
tuted from the detection of disagreement between
what someone says and what he actually believes.
According to this assumption, features that mea-
sure the level of opposition between literal and in-
tended meanings in a tweet are extracted. Similar
to (Barbieri and Saggion, 2014), we extracted the
following features: i) frequency based which are
features that are derived from the mean frequency
of common and rare words in a tweet, as well
as the difference between them. Word frequen-
cies are indicated in the ANC Frequency Data cor-
pus (Ide and Macleod, 2001), ii) written-spoken
gap where we calculate the difference between the
number of words that are considered “formal” vs.
the “informal” ones in each tweet. Those words
are also identified in the ANC corpus, iii) senti-
ment distances for which we first apply a thresh-
old that separates words into positive and negative,
based on polarity ratings from the lexica we de-
scribe in Section 2.2.1. For each tweet we com-
pute: total sentiment range (average positive mi-
nus average negative), positive range (max pos-
itive minus tweet average), negative range (max
negative minus tweet average) and iv) following
the approach proposed by (Barbieri and Saggion,
2014), we use the same feature selection process
related to synonyms, since they may be high indi-
cators of irony.

A topic modeling method (described in Section
2.6), provides additional features to this system.

2.3 Convolutional Neural Network
In our framework we propose the combination of
two neural networks. Specifically, we develop a
deep Convolutional Neural Network (CNN) and
a two-step Convolutional Neural Network. The
neural network architecture is inspired by sentence
classification tasks (Severyn and Moschitti, 2015;
Kalchbrenner et al., 2014; Kim, 2014). Each tweet
is represented by a sentence matrix D that is cre-
ated as follows. First, each word is represented as
a d-dimensional vector using word2vec (Mikolov
et al., 2013b), and then, the word vectors are con-
catenated as follows:

D = W1⊕W2⊕W3⊕···⊕Wn., D ∈ IRd×n (2)

where ⊕ indicates the concatenation operation.
Each column i of D is a vector W ∈ IRd that
corresponds to the ith word of the tweet. This
way the sequence of the words in the tweet is
kept. In order to preserve the same length for all
tweets, zero padding is applied by concatenating
zero word vectors until the length n of the longest
tweet is reached. The size of D is d × n, where d
is the dimension of the word embedding and n is
the maximum number of words.

The matrix D is the input to the network, where
a convolution operation is performed between D
and a filter F ∈ IRd×m which is applied to a
window of m words to produce a new feature.
The result of the convolutional layer is a vector
c ∈ IRn−h+1 (Kim, 2014). The network uses
multiple m filters, with varying sliding windows
and generates multiple features that are aggre-
gated into a feature matrix C ∈ IRmx(n−h+1).
The filters are learned during the training phase
of the neural network (the exact parameter values
are presented in Table 3). These features are the
inputs to the next layer which selects the maxi-
mum value of each feature by applying a max-
over-time pooling operation (max-pooling layer)
(Collobert et al., 2011). Max pooling reduces the
dimensionality of the input feature matrix and al-
lows the “strongest” information to be considered
in the resulting feature representation. The out-
put pooled feature map matrix of this step has
the form: Cpooled ∈ IRm×n−h+1

s (Kalchbrenner
et al., 2014) where s is the length of each re-
gion. The next layer is a fully connected hid-
den layer that computes the following transforma-
tion: α(Whidden ∗ x + bhidden) as explained in
(Nair and Hinton, 2010) where α is the rectified
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linear activation function relu(x) = max(0, x)
, Whidden ∈ IRm×m is the weight matrix and
bhidden ∈ Rm is the bias. The output vector of this
layer, x ∈ Rm are the sentence embeddings for
each tweet. Finally we add a soft-max layer that
classifies the outputs of the hidden layer x ∈ Rm

to one of the possible classes.
Two-step CNN: In the case of 3-class problem
of Subtask A we propose an additional two-step
system. This process requires the re-annotation
of the train datasets as follows. We separate the
neutral tweets, while positive and negative tweets
are annotated as “emotional”. Then, we apply the
aforementioned CNN model architecture which is
trained on the re-annotated data. The output is pre-
dictions on neutral and “emotional” tweets. The
next step involves the classification of the tweets
that were found to belong to “emotional” cate-
gory, into positive and negative. This step requires
only the “emotional” tweets for training the CNN
model.

2.4 Word2vec
This system uses word embeddings to predict the
sentiment of each tweet in a supervised approach,
using a classifier which is trained with the avail-
able labeled data. The vector for each word is
a semantic description of how that word is used
in context, so words that are used similarly in
text will get similar vector representations. Mo-
tivated by this, we build this separate system that
relies exclusively on tweets’ semantic representa-
tion. Specifically the word embeddings of each
tweet word are first extracted. Then, the vectors of
each tweets’ constituent words are averaged and
form utterance-level vectors used for training the
classifier.

2.5 Stacking
The main idea of this technique is to reduce a
multi-class problem into binary 2-class problems
and train one separate classifier for each pair of
classes (Savicky and Fürnkranz, 2003). In the sec-
ond step, the predictions of the binary classifiers
are combined using a separate classifier. This pro-
cess is referred to as stacking (Fürnkranz, 2001).

2.6 Topic modeling
Here, we perform sentence-level adaptation from
the semantic space to the affective space. For the
adaptation of the semantic space of each tweet we
split a large Twitter corpus (see Section 3.1) in

topics using LDA (Blei et al., 2003). We create
a number of topics and an equal number of clus-
ters with the following procedure. For each tweet
we get the LDA posteriors which give the proba-
bilities by which the tweet belongs to certain top-
ics. The tweet is assigned to those clusters if the
probability is above a threshold. Each cluster con-
stitutes a sub-corpus for which a semantic model
is built using word embeddings as features. The
purpose of those steps is to calculate a new simi-
larity score between a lexical token tj and a seed
word wi using a semantic mixture of the above
mentioned models as follows:

S(tj , wi) =
∑T

n=1 p(n|s) · Sn(tj , wi)∑T
n=1 p(n|s)

, (3)

where s = {t0, t1, . . . , tj , . . . , tk} are the tweet’s
tokens, wi is the ith seed word, T is the number
of topics-clusters, p(n|s) is the posterior probabil-
ity for s to contain topic n and Sn(·) is the cosine
similarity between tj and wi, obtained from clus-
ter n. The similarities computed in (3) are used
in (1). This enables the computation of affective
scores for tweet tokens based on which the fol-
lowing statistics are computed: max, min, mean,
variance, standard deviation, range (max - min),
extremum (larger absolute value) and sum. We also
compute the same statistics for the following POS
tags of each tweet, N, O, S, ˆ, Z, L, V, A, R, !, us-
ing the ARK NLP tweeter tagger (Owoputi et al.,
2013) getting max score over all nouns, min score
over all nouns etc. Those values are normalized by
dividing with the corresponding score computed
over all tokens, e.g. the min score over all nouns
is divided by the min score over all tokens.

2.7 Webis
We also incorporated the Webis system (Büchner
and Stein, 2015), which is the ensemble of dif-
ferent subsystems (namely NRC, GUMLT, KlUE,
TeamX) that ranked at the top of SemEval 2013
and 2014 Sentiment Analysis tasks (Nakov et al.,
2013; Rosenthal et al., 2015b)

2.8 Fusion of systems
The last step of the “Tweester” framework is the
combination of all the aforementioned systems
that have been trained on different feature spaces.
Specifically, this step applies late fusion by aver-
aging the output posterior probabilities from each
classifier.
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3 Experimental procedure and results

3.1 Data

We train our systems using both general purpose
and Twitter data. The training set is composed
by the training, development and development-
time testing data of SemEval-2013 and SemEval-
2016, as described in Table 1. We also add to
the train set, the test data from SemEval-2015
and SemEval-2014. We omit the SemEval-2016
test data, which are kept for testing and experi-
menting with our models. For the procedure of
adaptive lexica creation we used a general pur-
pose corpus that contains 116M sentences that
was created by posing queries on a web search
engine and aggregating the resulting snippets of
web documents(Iosif et al., 2016). In addition, a
Twitter-specific dataset is created and consists of
300M tweets (T-300M). Finally the ANEW lexi-
con (Bradley and Lang, 1999) is used for selecting
the initial set of seed words of (1).

Training Set
Subtask A 28,061
Subtask B & D 6,680
Subtask C & E 9,070

Table 1: Number of tweets used for training.

3.2 Systems

The Semantic-Affective system (see Section 2.2)
is trained using the SemEval datasets of Table 1 for
each subtask. We perform feature selection on the
massive set of candidate features. Specifically, we
perform a forward stepwise feature selection us-
ing a correlation criterion (Hall, 1999) that extracts
the most informative features. For classification, a
Naive Bayes tree classifier is trained. Naive Bayes
trees proved superior to other types of trees during
our testing, presumably due to the smoothing of
observation distributions. This model is used for
Subtasks A,B and D combined with the other sys-
tems, however in Subtask C and E it is used as a
standalone system.

For the word2vec-based system (see Section
2.4) we trained a Random Forest classifier with
100 trees using the tweet-level vectors described in
Section 2.4. The word embeddings are initialized
using word2vec (Mikolov et al., 2013a,b) and are
trained using the T-300M corpus (see Section 3.1).
We apply a skip-gram model of window size 5

while the words with frequency less than 50 were
not taken into consideration. The dimensionality
of the word vectors used is d = 50. Words that
appear in the tweet but do not have a vector repre-
sentation, are initialized randomly from a uniform
distribution.

The stacking based system (see Section 2.5)
is used in Subtask A and requires that the train-
ing data is split into subsets using only exam-
ples from each of the two classes (i.e, positive-
negative, positive-neutral and negative-neutral).
We form tweet-level vectors (set to d=50), as in the
word2vec based system, for each of the aforemen-
tioned subsets. Then, we train separate Random
Forest classifiers with 100 trees, using the tweet-
level vectors. After the training phase, each clas-
sifier is tested not only on the provided test data
but also on the training data. The posterior proba-
bilities from this step constitute the features for the
classifier in the final step, which is a nearest neigh-
bor classifier (Savicky and Fürnkranz, 2003).

We run a series of experiments with the topic
modeling system (see Section 2.6) in which we
fine-tune the following parameters. Word2vec
parameters of topic clusters which are, size of
word vectors, max skip length between words and
the model’s architecture, i.e. Continuous Bag-
of-Words (CBOW) or skip-gram, the number of
topics to extract from the T-300M, the probabil-
ity threshold for grouping tweets into clusters (as
described in Section 2.6) and the number of seed
words to use from the ANEW lexicon in order
to estimate the affective scores, as described in
(1) and (3). Each experiment produces a differ-
ent feature set. In order to select the best set for
the semantic-affective based system, we evaluate
them against the SemEval labeled data using a
Naive Bayes tree classifier. The feature set that
gives the best performance is selected for each
subtask.

Parameters
Number of convolutional filters m = 200
Filter window size h [3,4,5]
Size of max-pooling interval width = 6, s = 2
Activation function relu
Adadelta parameters ε = 10−6 and

ρ = 0.95

Table 3: Summary of CNN parameters used.

For the CNN model we first run a distant-
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Tweester Systems
Subtask Perf. Rank NRC GUMLT KlUE TeamX Sem-Affect CNN 2step CNN Word2vec Stack

A 0.659 5 0.617 0.613 0.593 0.615 0.606 0.621 0.613 0.593 0.575
B 0.854 3 × 0.752 × × 0.843 0.851 × 0.791 ×
C 0.623 4 × × × × 0.623 × × × ×
D 0.057 5 × 0.093 × × 0.062 0.052 × 0.079 ×
E 0.365 8 × × × × 0.365 × × × ×

Table 2: Individual system combinations and their performance.

supervised phase where we use emoticons to in-
fer the polarity of a balanced set of 15M tweets.
The word-embeddings, D ∈ IRd×n are updated
during both the distant and the supervised train-
ing phases, as back-propagation is applied through
the entire network. The neural network is trained
on the 15M tweets for one epoch, followed by a
supervised training phase using SemEval labeled
data. The dimensionality of the vector represen-
tation in the sentence matrix is set to d = 50. The
same parameters are used in both single and 2-step
CNN models. The CNN model is not used in Task
C and D due to the lack of a large distant train-
ing dataset annotated in 5 classes. The network
parameters are summarized in Table 3.

3.3 Results

In Table 2 the integrated systems’ performances
are depicted along with the submitted combina-
tion for each subtask (the omitted systems are de-
noted with ×). For Subtasks A and B the evalua-
tion metric is macro-averaged recall (AvgR), for
Subtask C it is the macro-averaged mean abso-
lute error (MAEM ), for Subtask D the normal-
ized cross-entropy (KLD) is used and for Subtask
E the metric is called the Earth Mover’s Distance
(EMD). All the aforementioned metrics are de-
fined in (Rosenthal et al., 2014).

For Subtask A we combined all individual sys-
tems and achieved an AvgR of 0.659. CNN proved
to be the most robust individual system, achiev-
ing the highest performance (0.621) among the
others. The two-step CNN achieved a slightly
lower score compared to the single-step model.
Since the CNN model is quite robust in distin-
guishing positive vs negative tweets it seems that
the 2-step model makes more errors on the first
step, which is the distinction between neutral and
emotional class. For Subtasks B and D the step-
wise based systems are omitted (since they in-
volve binary classification). The selected combi-

nations are based on our empirical results using
SemEval-2016 test dataset. Particularly, in Sub-
task B, where we decided to omit three subsys-
tems from Webis, the model was ranked at the 3rd
place with 0.854 AvgR. Similarly, in Subtask D
we omitted the same systems as in B and ranked
in 5th place. The results for B and D show that the
highest performance is achieved by the CNN fol-
lowed by the semantic-affective system. However,
in Subtask D the selected combination degraded
the best performing system. Finally, for Subtasks
C and E we submitted only the semenatic-affective
based system, based on experiments conducted on
SemEval-2016 test dataset.

4 Conclusions

We presented a system for the sentiment classifica-
tion of tweets for the SemEval 2017 Task 4: Sen-
timent analysis in twitter. The system participated
in Subtasks A, B, C, D and E and proved very suc-
cessful, ranking on the top 5 places for the first
four subtasks. Our framework is improved using a
two-step CNN, a stacking-based approach for the
3-class problem and we incorporate new features
using the adaptation of the semantic space to each
tweet. Future work should focus on domain adap-
tation technique as we believe there is still room
for improvement. Also, we aim to investigate in
more depth the fusion of different systems.
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Abstract 

In many areas, such as social science, 
politics or market research, people need to 
deal with dataset shifting over time. Dis-
tribution drift phenomenon usually ap-
pears in the field of sentiment analysis, 
when proportions of instances are chang-
ing over time. In this case, the task is to 
correctly estimate proportions of each sen-
timent expressed in the set of documents 
(quantification task). Basically, our study 
was aimed to analyze the effectiveness of 
a mixture of quantification technique with 
one of deep learning architecture. All the 
techniques are evaluated using the 
SemEval-2017 Task4 dataset and source 
code, mentioned in this paper and availa-
ble online in the Python programming 
language. The results of an application of 
the quantification techniques are dis-
cussed. 

1 Introduction 

A traditional classification task is often based on 
the assumption that data for training a classifier 
represent test data. But in many areas, such as 
customer-relationship management or opinion 
mining, people need to deal with dataset shift or 
population drift phenomenon. The simplest type 
of dataset shift is when training set and test set 
vary only in the distribution of the classes of the 
instances aka distribution drift. If we would like 
to measure this variation, the task of accurate 
classification of each item is replaced by the task 
of providing accurate proportions of instances 
from each class (quantification). George Forman 
suggested defining the ‘quantification task’ as 
finding the best estimate for the amount of cases 

in each class in a test set, using a training set with 
a substantially different class distribution (For-
man, 2008). 

Application of the quantification approach in 
opinion mining (Esuli et al., 2010), network-
behavior analysis (Tang et al., 2010), word-sense 
disambiguation (Chan and Ng, 2006), remote 
sensing (Guerrero-Curieses et al., 2009), quality 
control (Sánchez et al., 2008), monitoring support-
call logs (Forman et al., 2006) and credit scoring 
(Hand and others, 2006) showed high perfor-
mance even with a relatively small training set. 

Although quantification techniques are able to 
provide accurate sentiment analysis of proportions 
in situations of distribution drift, the question of 
an optimal technique for analysis of tweets still 
raises a lot of questions. It is worth mentioning 
that sentiment analysis of tweets presents addi-
tional challenges to natural language processing, 
because of the small amount of text (less than 140 
characters in each document), usage of creative 
spelling (e.g. “happpyyy”, “some1 yg bner2 
tulus”), abbreviations (such as “wth” or “lol”), in-
formal constructions (“hahahaha yava quiet so 
!ma I m bored av even home nw”) and hashtags 
(BREAKING: US GDP growth is back! #kid-
ding), which are a type of tagging for Twitter mes-
sages. 

We participated in D and E subtasks of the 
tweet sentiment quantification competition 
SemEval-2017 Task 4. To solve them we used a 
quantification method, which showed good accu-
racy last year (Karpov et al., 2016) and deep 
learning architecture mentioned in literature for 
text classification task. 

The paper is organized as follows. In Section 2, 
we first look at the notation, then we briefly over-
view a method to solve the quantification prob-
lem. Section 3 describes a deep learning architec-
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ture and approach to train our network. In Section 
4 we show an experiment methodology. Section 5 
describes the results of our experiments, while 
Section 6 concludes the work defining open re-
search issues for further investigation. 

2 Quantification Method 

In this section, we describe methods used to han-
dle changes in class distribution.  

First, let us give some definition of notation. 
Х: vector representation of observation x; 
C = {c1, …, cn}: classes of observations, where n 
is the number of classes; 

�� (c): a true a priori probability (aka “preva-
lence” of class c in the set S; 

�� (cj): estimated prevalence of cj using the set S; 

��
�(cj): estimated �� (cj) obtained via method M; 

p(cj /x): a posteriori probability to classify an ob-
servation x  to the class cj; 
�����, ����: training and test sets of observa-
tions, respectively; 
�����: a subset of ����set where each observa-
tion falls within class �; 
����_��= {pTEST(ci)}; i=1, ������: class probability 
distribution of the test set; 
�����_�� = {pTRAIN(ci)}; i=1, ������: class probabil-
ity distribution of the training set; 

The problem we study has some training set, 
which provides us with a set of labeled examples 
– TRAIN, with class distribution TRAIN_CD. At 
some point, the distribution of data changes to a 
new, but unknown class distribution – 
TEST_CD, and this distribution provides a set of 
unlabeled examples – TEST. Given this termi-
nology, we can state our quantification problem 
more precisely. 

2.1 Expectation Maximization 

A simple procedure to adjust the outputs of a clas-
sifier to a new a priori probability is described in 
the study by (Saerens et al., 2002). 

 �(��/��) =

� ��������

� ���������
��(��/��)

∑
� ��������

� ���������
��(��/��)�

���

 (1) 

It is important that authors suggest using not 
only a well-known formula (1) to compute the 
corrected a posteriori probabilities, but also an it-
erative procedure to adjust the outputs of the 
trained classifier with respect to these new a pri-
ori probabilities, without having to refit the mod-

el, even when these probabilities are not known 
in advance. 

To make the Expectation Maximization (EM) 
method clear, we specify its algorithm in Figure1 
using a pseudo-code. The algorithm begins with 
counting start values for class probability distri-
bution, using labels on the training set TRAIN 
(line 1), then builds an initial classifier C_i from 
the TRAIN set (line 2) and classifies each item in 
the unlabeled TEST set (line3), where the 
classify functions return the a posteriori 
probabilities (TEST_prob) for the specified da-
tasets. The algorithm then iterates in lines 4-9 
until the maximum number of iterations 
(maxIterations) is reached. In this loop, the 
algorithm first uses the previous a posteriori 
probabilities TEST_prob to estimate a new a pri-
ori probability (line 6). Then, in line 7, a posteri-
ori probabilities are computed using Equation 
(1). Finally, once the loop terminates, the last a 
posteriori probabilities return (line 9). 
EM (TRAIN, TEST) 

1.TEST_CD = prevalence(TRAIN) 
2.C_i = build_clf(TRAIN) 
3.TEST_prob = classify(C_i, TEST) 
4.for (i=1; i<maxIterations; i++) 
5.{ 
6.TEST_CD = prevalence(TEST_prob) 
7.TEST_prob=bayes(TEST_CD, 
TEST_prob) 
8.} 
9.return TEST_CD 

Figure 1: Pseudo-code for the EM algorithm. 
 

To build a classifier in the function 
build_clf, we use support vector machines 
(SVM) with a linear kernel. 

2.2 Iterative Class Distribution Estimation 

Another interesting method is iterative cost-
sensitive class distribution estimation (CDE-
Iterate) described in the study by (Xue and 
Weiss, 2009). 

The main idea of this method is to retrain a 
classifier at each iteration, where the iterations 
progressively improve the quantification accura-
cy of performing the «classify and count» meth-
od via generated cost-sensitive classifiers. 

For the CDE-based method, the final preva-
lence is induced from the TRAIN labeled set 
with the cost of classes COST. The COST value 
is computed with Equation (2), utilizing the class 
distribution calculated during the previous step 
TEST_CD. For each iteration, we recalculate: 
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 ���� =
����_��

�����_��
 (2) 

The CDE-Iterate algorithm is specified in Fig-
ure 2, using the pseudo-code. The algorithm be-
gins with counting the class distribution 
TRAIN_CD for training labels TRAIN (line 1). 
Then it builds an initial classifier C_i from the 
TRAIN set (line 2). In a loop, this algorithm uses 
the previous classifier C_i to classify the unla-
beled TEST set by estimating a posterior proba-
bility TEST_prob for each item in a test set 
(line 5). Then in line 6, the a priory probability 
distribution is computed and the cost ratio infor-
mation is updated (line 7). In line 8, a new cost-
sensitive classifier C_i is generated using the 
TRAIN set with the updated cost ratio COST. 
The algorithm then iterates in lines 4-9 until the 
maximum number of iterations 
(maxIterations) is reached. Finally, once 
the loop terminates, the last a priory probability 
distribution of classes is returned TEST_CD (line 
10). 
 
CDE-Iterate(TRAIN, TEST, COST_start) 

1. TRAIN_CD = prevalence(TRAIN) 
2. C_i = build_clf(TRAIN, 
COST_start) 
3. for (i=1; i<maxIterations; i++) 
4. { 
5.  TEST_prob= classify(C_i, TEST) 
6.  TEST_CD = prevalence(TEST_prob) 
7.  COST = TEST_CD/TRAIN_CD 
8.  C_i = build_clf(TRAIN, COST) 
9. } 
10.return TEST_CD 

Figure 2: Pseudo-code for the CDE-Iterate algorithm. 
 

Last year we did not find any open library 
where baseline quantification methods were im-
plemented. We, therefore, shared all the algo-
rithms, which we had programmed using the Py-
thon language, on the Github repository1. We be-
lieve that this library can help to pool infor-
mation on quantification. 

3 Deep Learning Architecture 

As the classifier for quantification algorithm, we 
used a neural network with traditional architec-
ture for text classification task. In this section, 
we briefly describe our choice of architecture, a 
regularization method and a training algorithm. 

                                                     
                                                      
1https://github.com/Arctickirillas/Rubrication 

3.1 Pre-trained Embedding Layer 

The organizers provided a dataset of messages of 
SemEval Task4 since 2013 till 2016. But it still 
contained not so many samples to effectively 
train deep architecture. Therefore, we additional-
ly used weekly labeled Sentiment140 corpus of 
tweets, (Go et al., 2009), to pre-train our network 
so as to learn semantic and sentiment specific 
representation of words and phrases. 

A sequence of words of the input tweet maps 
to the corresponding real-valued vectors by the 
embedding layer. The length of its vector is 
called the dimension of the embeddings. To find 
out good embeddings we utilize GenSim2 to pre-
trained CBOW model for vectors with a dimen-
sionality of 300. We choose these over the 
CBOW embeddings trained on Twitter data be-
cause of the higher dimensionality, considerably 
larger training corpus and vocabulary of unique 
words. 

Word vectors from GenSim used as a starting 
point and they have updated during network 
training by back-propagating the classification 
errors. 

3.2 Recurrent layers 

Recurrent layers are proved to be useful in han-
dling variable length sequences (Tang et al., 
2015). We use two series-connected long short-
term memory (LSTM) cells to compute continu-
ous representations of tweets with semantic 
composition.  

 
Figure 3: Neural network structure. 

3.3 Regularization 

We use dropout as the regularizer to prevent our 
network from overfitting (Srivastava, 2013). Our 

                                                     
                                                      
2http://radimrehurek.com/gensim/ 
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dropout layer selects a half of the hidden units at 
random and sets their output to zero and thus 
prevents co-adaptation of the features. 

3.4 Training algorithm 

The Sentiment140 dataset and all messages from 
SemEval Task4 competition since 2013 till 2016 
were used (except sarcasm dataset) to pre-train 
neural network layers. Then we fine tuned them 
on the train subsets for extract subtask. We used 
Adam method for stochastic optimization of an 
objective function. 

4 Experiment Methodology 

This section describes our experimental setup for 
participation in the SemEval-2017 Task 4 called 
“Sentiment Analysis in Twitter”. Task 4 consists 
of five subtasks, but we only participated in top-
ic-based message polarity quantification – sub-
tasks D, E according to a two-point scale and 
five-point scale, respectively. Its dataset consists 
of Twitter messages (aka observations) divided 
into several topics. These subtasks are evaluated 
independently for different topics, and the final 
result is counted as an average of evaluation 
measure out of all the topics (Rosenthal et al., 
2017). 

For the quantification algorithm described in 
Section 2, we need to build a cost-sensitive clas-
sifier in the function build_clf. 

4.1 Approach 2016 

Last year we tried few cost-sensitive classifiers 
and finally chose a fast logistic regression classi-
fier. 

Since observation x in this dataset is a mes-
sage written in a natural language, we first need 
to transform it to a vector representation X. 
Based on a study by (Gao and Sebastiani, 2015), 
we choose the following components of the fea-
ture vector: 
 TF-IDF for word n-grams with n varies 

from 1 to 4 

 TF-IDF character n-grams where n varies 
from 3 to 5. 

A feature vector is extracted with a 
Scikit_Learn tool3. We also perform data prepro-
cessing. Several text patterns (e.g. links, emoti-

                                                     
                                                      
3http://scikit-
learn.org/stable/modules/generated/sklearn.feature_extractio
n.text.TfidfVectorizer.html 

cons, and numbers) were replaced with their sub-
stitutes. For word n-grams we apply lemmatiza-
tion using WordNetLemmatizer.  

It is interesting to characterize messages using 
the SentiWordNet library. For each token xi in 
document X we obtain its polarity value from the 
SentiWordNet. First, we recognize the part of 
speech using a speech tagger from the NLTK li-
brary (Bird et al., 2009). Second, we get the 
SentiWordNet first polarity value for this token 
using the part of speech information. 

The organizers provide a default split of the 
SemEval2016 data into training, development, 
development-time testing and testing datasets. 
The algorithms evaluation is performed using 
these subsets. The training, development and de-
velopment-time testing subsets are used as a 
TRAIN set. The testing subset is used as a TEST 
set. 

4.2 Approach 2017 

This year we try to apply neural network as a 
cost-sensitive classifier. 

We remove punctuations from input text mes-
sage. Then we split tweets into words and trans-
form them into a sequence of word index with 
fixed length. All preprocessing is performed us-
ing Keras4 library with Tensor Flow backend. 
We do not apply character sequences and lem-
matization or stemming of words. As a TRAIN 
set, we use all datasets provided by organizers of 
topic-based message polarity challenge.  

The chosen parameters of our network are as 
follows: the maximum input sequence length is 
set to 30, vocabulary size is 300000, the dimen-
sionality of word embedding is 300, LSTM units 
hidden state vector size is 64, two LSTM layers 
and dropout of 50% while training. We use the 
dense layer with output dimension equals to one 
for subtask D and five for subtask E with sig-
moid activation. 

The metrics that we use to evaluate the classi-
fier performance are described in (Rosenthal et 
al., 2017) and are not described here. 

5 Experiment Results 

The results of five point scale subtask are shown 
in Table 1. During the development period, we 
compare our system with last year one on the last 
year dataset. New system produced an EMD 

                                                     
                                                      
4https://keras.io 

686



 
 
 

 

measure of 0.347 while last year system was 
slightly better - 0.334. We explain this by the 
fact that dataset for network fine-tuning was rela-
tively small last year. This year training dataset 
is three times bigger, that is why we decide to 
submit results from the new version of the algo-
rithm. 

EMD of our new system on the new dataset is 
0.317 while the best system scored 0.245.  

Settings EMD 

Approach and dataset 2017 0.317 (5) 

Approach 2017, dataset 2016 0.347 

Approach and dataset 2016 0.334 (4) 

Table 1: Results of Task 4E. 
 
The results of two-point scale subtask are shown in 

Table 2. Our algorithm shows KLD equals to 0.078 
while the best system is 0.036. 

Settings KLD  RAE  

Approach and dataset 2017 0.078 (8) 1.528 (8) 

Approach and dataset 2016 0.084 (7) 0.767 (4) 

Table 2: Results of Task 4D. 

6 Conclusion and future work 

The aim of this research was to try to solve sen-
timent quantification task with deep learning ar-
chitecture. We compared our deep learning ap-
proach used this year with an approach without 
deep learning used last year.  

For tweet quantification on a five-point scale 
(Subtask E) and a two-point scale (Subtask D), 
we used the same iterative method proposed by 
(Xue and Weiss, 2009). As a classifier we used 
deep learning network which was retrained on 
the big corpus and fine tune on the small. These 
approaches showed the 5-th and the 8-th best 
places in the competition subtasks E and D re-
spectively. 

In our future work, we are planning to move in 
two directions. First, we plan to apply new deep 
architecture and pre-train it using more data. Se-
cond, we want to explore the bias property of the 
CDE-Iterate quantification method. 
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Abstract

A CNN method for sentiment classifica-
tion task in Task 4A of SemEval 2017
is presented. To solve the problem of
word2vec training word vector slowly, a
method of training word vector by inte-
grating word2vec and Convolutional Neu-
ral Network (CNN) is proposed. This
training method not only improves the
training speed of word2vec, but also
makes the word vector more effective for
the target task. Furthermore, the word2vec
adopts a full connection between the input
layer and the projection layer of the Con-
tinuous Bag-of-Words (CBOW) for ac-
quiring the semantic information of the
original sentence.

1 Introduction

The polarity of a Twitter message is classified into
positive, negative and neutral in Twitter sentiment
analysis. However, the difficulty of sentiment
analysis greatly increases due to the ambiguity and
the rhetorical of natural language (Liu, 2012). In
recent years, the deep learning model has shown
great potential in the task of sentiment classifica-
tion (Socher et al., 2011; Poria et al., 2015; Socher
et al., 2013). For short text data such as Twit-
ter, Convolutional Neural Network (CNN) model
(Kim, 2014; Dos Santos and Gatti, 2014; Chen
et al., 2016) is the most widely and successfully
used, and in the SemEval 2016-task4A competi-
tion, the system ranked first also uses CNN model
(Deriu et al., 2016). So CNN model is used to
complete the task in our system. The task 4A
of SemEval 20171 is a polarity classification task
which requires participated systems to classify a

1http://alt.qcri.org/semeval2017/
task4/

given Twitter message into positive, negative or
neutral (Rosenthal et al., 2017).

The system integrates the word2vec and CNN
to train the labeled data, generating the word vec-
tor of each word in the data. This method can
improve the training speed of word vector. In or-
der to preserve the more semantic information of
the original sentence effectively, the word2vec is
fully connected between the input layer and the
projection layer of the Continuous Bag-of-Words
(CBOW).

2 System description

2.1 Word vector representation method

Word2vec can represent every word that ap-
pears in a large number of training texts as
a lower dimension vector (usually 50-100 di-
mensions). (Mikolov et al., 2013b; Rong, 2014;
Mikolov et al., 2013a) have a detail descrip-
tion of word2vec. Word2vec in our sys-
tem uses Continuous Bag-of-Words (CBOW)
model, and the structure is shown in Fig-
ure 1, in which wi is a word, and the se-
quence 〈w(i−c), ..., w(i−1), w(i+1), ..., w(i+c)〉 rep-
resents the context of the word wi, and c is the
window size. The word-vector length of the word
wi is d. The traditional word2vec adds 2c words’
word vector on the input layer to the projection
layer. (Mikolov et al., 2013b) has a detail descrip-
tion of this method, which has been exactly used in
Google Word2vec released in 2013. However, in
the sentiment analysis task, whether there is a neg-
ative word before the sentiment word will influ-
ence the identification of polarity (Liu, 2012). So
in order to preserve more emotional semantic in-
formation, the input layer and the projection layer
of CBOW are fully connected in this system.

The procedure of integrating word2vec and
CNN to train the words vector follows four
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Figure 1: The structure of word2vec in the system.

steps: (i) initialization and pre-training: initial-
ize word2vec and CNN parameters, and pre-
train word2vec a certain number of iterations; (ii)
CNN training: input the latest words vector from
word2vec to CNN; (iii) word2vec training: input
the latest words vector from CNN to word2vec;
(iv) alternate the (ii) and (iii) steps until the train-
ing phase converges. CNN can help word2vec
extract more effective text features. Experiments
show that the model obtained by integrating CNN
and word2vec performs better when the data is
sufficient compared to adopting them separately.

2.2 Deep learning model

The system proposes CNN model to predict the
sentiment polarity of a Twitter text. The CNN
structure diagram is shown in Figure 2.

Word vector sequence: Each word is repre-
sented as a d-dimensional word vector, a sentence
or a Twitter text containing n words can be ex-
pressed as n d-dimensional vectors, which are
concatenated together into a matrix X ∈ Rd×n

form which represents a sentence or a Twitter text.
Each row of matrix X is treated as a new vec-
tor, thus d n-dimensional vectors are obtained and
concatenated as input to the CNN network.

Convolutional layer: The convolution layer
uses full convolution operation. Let F l

i ∈ RM1

represents ith feature map at lth layer2, andml
j,i ∈

RM2 represents the convolutional kernel of the jth
convolutional result C l+1

j at l + 1th layer. So the

2Here, a layer refers to one convolutional and one pooling
layer.

jth convolutional result C l+1
j at l + 1th layer is

the result of convolution operation between each
feature map at lth layer and convolutional kernel
ml

j,i, i.e.,

C l+1
j =

∑
j

ml
j,i ∗ F l

i (1)

k-max pooling: After the convolution oper-
ation, the max-pooling operation is performed
which preserves the largest value in each convolu-
tion result. The system uses k-max pooling, which
preserves the largest k values instead. For exam-
ple:

(1, 6, 3, 8) 2−max−−−−→ (6, 8)

Where k is a parameter that needs to be set man-
ually.

full-connection Layer: The full connection
layer receives the output of the last layer of CNN
and fully connects itself to the output layer, i.e.
W ∗x+b operation, whereW and b can be trained
during the network training phase.

output Layer: The output layer uses the Soft-
max operation and outputs the probability that
the input sentence or Twitter text belongs to each
class, and the class with the maximum probability
is the predicted class judged by the system.

2.3 Combination prediction
Because of the insufficiency of training data and
the great quantity bias in different classes’ train-
ing data, the trained CNN can’t work so well. So
our system adds Support Vector Machine (SVM)
(Suykens, 2001) model to predict jointly with
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Figure 2: The structure of CNN in the system.

CNN. The steps of combination prediction are
shown in Figure 3.

Figure 3: The steps of combination prediction.

3 Experimental datasets and model
parameters

3.1 Experimental datasets
The datasets of the experiment is provided by Se-
mEval 2017, and the specific datasets used are
shown in Table 1.

Dataset positive negative neutral Total
train 18123 14354 21748 54225
dev 1000 500 1500 3000
test 2375 3972 5937 12284

Table 1: Datasets of the experiment.

3.2 Model parameters

The parameters set of word2vec and CNN in our
system are shown in Table 2.

word2vec parameters
Window size of context c 3
Number of hidden layer 1
Dimensionality of hidden layer [50]
Convolutional Neural Network parameters

Number of Convolutional layer 1
Number of max-pooling layer 1
Convolutional kernel size 7
Number of feature map at Convolutional 100
k-max pooling parameter k 2

Table 2: Parameters used in the word2vec and
CNN.

4 Experimental results and analysis

4.1 Evaluation method

The measure metric of the Evaluation is average
macro recall (Rosenthal et al., 2017). The formula
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is as follows:

ρPUN =
ρP + ρU + ρN

3
(2)

Here, ρP , ρU and ρN denote recall for the posi-
tive class, neutral class and negative class.

The other two measure metrics are the average
macro F1 and the average macro precision:

FPUN
1 =

FP
1 + FU

1 + FN
1

3
(3)

PPUN =
PP + PU + PN

3
(4)

Here, FP
1 , FU

1 and FN
1 denote F1 for the pos-

itive class, neutral class and negative class; PP ,
PU and PN denote precision for the positive class,
neutral class and negative class.

4.2 Analysis of experimental results
Table 3 lists the average macro recall for each
model on the development dataset. From the ta-
ble 3, the effect of word2vec+CNN model is bet-
ter than SVM, and word2vec + CNN + SVM is the
best of the three models, so the best results on the
test set are submitted.

System SVM CNN SVM+CNN
ρPUN 0.589 0.601 0.653

Table 3: The results of different models on the
development dataset.

Table 4 shows the details of our system’s result
in comparison with the three top ranked systems’
results. It can be seen from the table that our re-
sult’s ρN is not good, but ρU is better than the top
three systems. The decrease of experimental re-
sults is from the quantity bias in training data of
different classes.

For deep learning models, a lot of training data
are required. Due to the lack of Twitter texts,

word2vec training is not sufficient and do not gen-
erate effective words vector representation. In the
future, semi-supervisory mechanisms will be con-
sidered to expand the number of training data.

In the future, we can improve the system’s per-
formance from following points: (i) to expand the
amount of training data; (ii) to improve the type
of combination: the results can be combined with
multiple CNN systems to predict; (iii) to add more
emotional semantic features.

5 Conclusion

This paper presentes a method of training word
vector by integrating word2vec with CNN and us-
ing the trained CNN to complete the Twitter senti-
ment analysis task. In the future work, we hope to
continue to improve system’s performance in mul-
tiple ways, such as trying to modify some param-
eters or improve the type of classifiers’ combina-
tion, adding some sentiment features.
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Universitat Rovira i Virgili,

Av. Paı̈sos Catalans, 26, 43007 Tarragona, Spain
<first name>.<last name>@urv.cat

Abstract

This paper describes SiTAKA, our system
that has been used in task 4A, English and
Arabic languages, Sentiment Analysis in
Twitter of SemEval2017. The system pro-
poses the representation of tweets using a
novel set of features, which include a bag
of negated words and the information pro-
vided by some lexicons. The polarity of
tweets is determined by a classifier based
on a Support Vector Machine. Our system
ranks 2nd among 8 systems in the Arabic
language tweets and ranks 8th among 38
systems in the English-language tweets.

1 Introduction

Sentiment analysis in Twitter is the problem of
identifying people’s opinions expressed in tweets.
It normally involves the classification of tweets
into categories such as positive, negative and in
some cases, neutral. The main challenges in de-
signing a sentiment analysis system for Twitter are
the following:

• Twitter limits the length of the message to
140 characters, which leads users to use novel
abbreviations and often disregard standard
sentence structures.

• The informal language and the numerous
spelling errors.

Most of the existing systems are inspired by
the work presented in (Pang et al., 2002). Ma-
chine Learning techniques have been used to build
a classifier from a set of tweets with a manually
annotated sentiment polarity. The success of the
Machine Learning models is based on two main
facts: a large amount of labeled data and the in-
telligent design of a set of features that can distin-

guish between the positive, negative and neutral
samples.

With this approach, most studies have focused
on designing a set of efficient features to obtain a
good classification performance (Feldman, 2013;
Liu, 2012; Pang and Lee, 2008). For instance, the
authors in (Mohammad et al., 2013) used diverse
sentiment lexicons and a variety of hand-crafted
features.

This paper proposes the representation of tweets
using a novel set of features, which include the in-
formation provided by seven lexicons and a bag
of negated words (BonW). The concatenation of
these features with a set of basic features improves
the classification performance. The polarity of
tweets is determined by a classifier based on a
Support Vector Machine.

The system has been evaluated on the Arabic
and English language test sets of the Twitter Sen-
timent Analysis Track in SemEval 2017, subtask
A (Message Polarity Classification). Our system
(SiTAKA) has been ranked 8th over 38 teams in
the English language test set and 2nd out of 8
teams in the Arabic language test set.

The rest of the paper is structured as follows.
Section 2 presents the tools and the resources that
have been used. In Section 3 we describe the sys-
tem. The experiments and results are presented
and discussed in Section 4. Finally, in the last sec-
tion the conclusions as well as further work are
presented.

2 Resources

This section explains the tools and the resources
that have been used in the SiTAKA system. Let us
denote its Arabic language and English language
versions by Ar-SiTAKA and En-SiTAKA, respec-
tively.
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2.1 Sentiment Lexicons

2.1.1 En-SiTAKA Lexicons

We used for En-SiTAKA five lexicons in this
work, namely: General Inquirer (Stone et al.,
1968), Hu-Liu opinion lexicon (HL) (Hu and Liu,
2004), NRC hashtags lexicon (Mohammad et al.,
2013), SenticNet (Cambria et al., 2014), and TS-
Lex (Tang et al., 2014b). More details about each
lexicon, such as how it was created, the polarity
score for each term, and the statistical distribu-
tion of the lexicon, can be found in (Jabreel and
Moreno, 2016).

2.1.2 Ar-SiTAKA Lexicons

In this version of the SiTAKA system, we used
four lexicons created by (Saif M. Mohammad and
Kiritchenko, 2016): Arabic Hashtag Lexicon, Di-
alectal Arabic Hashtag Lexicon, Arabic Bing Liu
Lexicon and Arabic Sentiment140 Lexicon. The
first two were created manually, whereas the rest
were translated to Arabic from the English version
using Google Translator.

2.2 Embeddings

We used two pre-trained embedding models in
En-SiTAKA. The first one is word2vec which is
provided by Google. It is trained on part of the
Google News dataset (about 100 billion words)
and it contains 300-dimensional vectors for 3M
words and phrases (Mikolov et al., 2013b). The
second one is SSWEu, which has been trained
to capture the sentiment information of sentences
as well as the syntactic contexts of words (Tang
et al., 2014c). The SSWEu model contains 50-
dimensional vectors for 100K words.

In Ar-SiTAKA we used the model Arabic-
SKIP-G300 provided by (Zahran et al., 2015).
Arabic-SKIP-G300 has been trained on a large
corpus of Arabic text collected from different
sources such as Arabic Wikipedia, Arabic Giga-
word Corpus, Ksucorpus, King Saud University
Corpus, Microsoft crawled Arabic Corpus, etc. It
contains 300-dimensional vectors for 6M words
and phrases.

3 System Description

This section explains the main steps of the
SiTAKA system, the features used to describe a
tweet and the classification method.

3.1 Preprocessing and Normalization

Some standard pre-processing methods are ap-
plied on the tweets:

• Normalization: Each tweet in English is con-
verted to the lowercase. URLs and usernames
are omitted. Non-Arabic letters are removed
from each tweet in the Arabic-language sets.
Words with repeated letters (i.e. elongated)
are corrected.

• Tokenization and POS tagging: All English-
language tweets are tokenized and tagged us-
ing Ark Tweet NLP (Gimpel et al., 2011),
while all Arabic-language tweets are tok-
enized and tagged using Stanford Tagger
(Green and Manning, 2010).

• Negation: A negated context can be de-
fined as a segment of tweet that starts with
a negation word (e.g. no, don’t for English-
language, ��
Ë ð B for Arabic-language) and
ends with a punctuation mark (Pang et al.,
2002). Each tweet is negated by adding a suf-
fix (” NEG” and ” ù


	® 	JÓ”) to each word in the

negated context.

It is necessary to mention that in Ar-SiTAKA
we did not use all the Arabic negation words
due to the ambiguity of some of them. For
example, the first word AÓ, is a question mark

in the following ”? �HYg AÓ ú

	̄ ½K



@P AÓ-What

do you think about what happened?” and it
means ”which/that” in the following exam-
ple ” @Yg. Zú
æ� ÐñJ
Ë @ �HYg AÓ 	à@ - The matter

that happened today was very bad”.

As shown in (Saif et al., 2014), stopwords tend
to carry sentiment information; thus, note that they
were not removed from the tweets.

3.2 Features Extraction

SiTAKA uses five types of features: basic text,
syntactic, lexicon, cluster and Word Embeddings.
These features are described in the following sub-
sections:

3.2.1 Basic Features
These basic features are extracted from the text.
They are the following:

Bag of Words (BoW): Bag of words or n-grams
features introduce some contextual information.
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The presence or absence of contiguous sequences
of 1, 2, 3, and 4 tokens are used to represent the
tweets.

Bag of Negated Words (BonW): Negated con-
texts are important keys in the sentiment analysis
problem. Thus, we used the presence or absence
of contiguous sequences of 1, 2, 3 and 4 tokens in
the negated contexts as a set of features to repre-
sent the tweets.

3.2.2 Syntactic Features
Syntactic features are useful to discriminate be-
tween neutral and non-neutral texts.

Part of Speech (POS): Subjective and objective
texts have different POS tags (Pak and Paroubek,
2010). According to (Zhou et al., 2014), non-
neutral terms are more likely to exhibit the fol-
lowing POS tags in Twitter: nouns, adjectives, ad-
verbs, abbreviations and interjections. The num-
ber of occurrences of each part of speech tag is
used to represent each tweet.

Bi-tagged: Bi-tagged features are extracted
by combining the tokens of the bi-grams with
their POS tag e.g. ”feel VBP good JJ” ”ÉJ
Ôg. JJ
�
@Yg. VBD”. It has been shown in the literature that
adjectives and adverbs are subjective in nature and
they help to increase the degree of expressiveness
(Agarwal et al., 2013; Pang et al., 2002).

3.2.3 Lexicon Features
Opinion lexicons play an important role in sen-
timent analysis systems, and the majority of the
existing systems rely heavily on them (Rosenthal
et al., 2014). For each of the chosen lexicons, a
tweet is represented by calculating the following
features: (1) tweet polarity, (2) the average polar-
ity of the positive terms, (3) the average polarity
of the negative terms, (4) the score of the last pos-
itive term, (5) the score of the last negative term,
(6) the maximum positive score and (7) the mini-
mum negative score.

The polarity of a tweet T given a lexicon L is
calculated using the equation (1). First, the tweet
is tokenized. Then, the number of positive (P)
and negative (N) tokens found in the lexicon are
counted. Finally, the polarity measure is calcu-
lated as follows:

polarity =


1− N

P ; ifP > N
0 ; ifP = N
P
N − 1 ; ifP < N

(1)

3.2.4 Cluster Features
We used two set of clusters in En-SiTAKA to rep-
resent the English-language tweets by mapping
each tweet to a set of clusters. The first one is
the well known set of clusters provided by the Ark
Tweet NLP tool which contains 1000 clusters pro-
duced with the Brown clustering algorithm from
56M English-language tweets. These 1000 clus-
ters are used to represent each tweet by mapping
each word in the tweet to its cluster. The second
one is Word2vec cluster ngrams, which is provided
by (Dong et al., 2015). They used the word2vec
tool to learn 40-dimensional word embeddings of
255,657 words from a Twitter dataset and the K-
means algorithm to cluster them into 4960 clus-
ters. We were not able to find publicly available
semantic clusters to be used in Ar-SiTAKA.

3.2.5 Embedding Features
Word embeddings are an approach for distribu-
tional semantics which represents words as vec-
tors of real numbers. Such representation has use-
ful clustering properties, since the words that are
semantically and syntactically related are repre-
sented by similar vectors (Mikolov et al., 2013a).
For example, the words ”coffee” and ”tea” will be
very close in the created space.

We used sum, standard-deviation, min and max
pooling functions (Collobert et al., 2011) to obtain
the tweet representation in the embedding space.
The result is the concatenation of vectors derived
from different pooling functions. More formally,
let us consider an embedding matrix E ∈ Rd×|V |

and a tweet T = w1, w2, ..., wn, where d is the
dimension size, |V | is the length of the vocabu-
lary (i.e. the number of words in the embedding
model), wi is the ith word in the tweet and n is the
number of words. First, each word wi is substi-
tuted by the corresponding vector vj

i in the matrix
E where j is the index of the wordwi in the vocab-
ulary. This step ends with the matrix W ∈ Rd×n.
The vector VT,E is computed using the following
formula:

VT,E =
⋃

pool∈{max,min,sum,std}
poolni=1vi (2)

where
⋃

denotes the concatenation operation. The
pooling function is an element-wise function, and
it converts texts with various lengths into a fixed-
length vector allowing to capture the information
throughout the entire text.
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3.3 Classifier

Up to now, Support Vector Machines (SVM)
(Cortes and Vapnik, 1995) have been used widely
and reported as the best classifier in the sentiment
analysis problem. Thus, we trained a SVM clas-
sifier on the training sets provided by the organiz-
ers. For the English-language we combined the
training sets of SemEval 13-16 and testing sets of
SemEval 13-15, and used them as a training set.
Table 1 shows the numerical description of the
datasets used in this work. We used the linear ker-
nel with the value 0.5 for the cost parameter C. All
the parameters and the set of features have been
experimentally chosen based on the development
sets.

System Training set Dev set

En-SiTAKA 27,700 20,632
Ar-SiTAKA 2684 671

Table 1: Numerical description of the set of tweets

4 Results

The evaluation metrics used by the task organiz-
ers were the macroaveraged recall (ρ), the F1 aver-
aged across the positives and the negatives F1PN

and the accuracy (Acc) (Rosenthal et al., 2017).
The system has been tested on 12,284 English-

language tweets and 6100 Arabic-language tweets
provided by the organizers. The golden answers
of all the test tweets were omitted by the organiz-
ers. The official evaluation results of our system
are reported along with the top 10 systems and
the baseline results in Table 2 and 3. Our sys-
tem ranks 8th among 38 systems in the English-
language tweets and ranks 2nd among 8 systems
in the Arabic language tweets. The baselines 1,
2 and 3 stand for the cases in which the system
classifies all the tweets as positive, negative and
neutral respectively.

5 Conclusion

We have presented a new set of rich sentimental
features for the sentiment analysis of the messages
posted on Twitter. A Support Vector Machine clas-
sifier has been trained using a set of basic fea-
tures, information extracted from a set of useful
and publicly available opinion lexicons, syntactic

# System ρ F1PN Acc

1 DataStories 0.6811 0.6772 0.6515

BB twtr 0.6811 0.6851 0.6583

3 LIA 0.6763 0.6743 0.6612

4 Senti17 0.6744 0.6654 0.6524

5 NNEMBs 0.6695 0.6585 0.6641

6 Tweester 0.6596 0.6486 0.6486

7 INGEOTEC 0.6497 0.6457 0.63311

8 En-SiTAKA 0.6458 0.6289 0.6439

9 TSA-INF 0.6439 0.62011 0.61617

10 UCSC-NLP 0.64210 0.62410 0.56530

baseline 1 0.333 0.162 0.193
baseline 2 0.333 0.224 0.323
baseline 3 0.333 0.00 0.483

Table 2: Results for SemEval-2017 Task 4, sub-
task A, English.

# System ρ F1PN Acc

1 NileTMRG 0.5831 0.6101 0.5811

2 Ar-SiTAKA 0.5502 0.5712 0.5632

3 ELiRF-UPV 0.4783 0.4674 0.5083

4 INGEOTEC 0.4774 0.4555 0.4994

5 OMAM 0.4385 0.4226 0.4308

LSIS 0.4385 0.4693 0.4456

7 1w-StAR 0.4317 0.4167 0.4545

8 HLP@UPENN 0.4158 0.3208 0.4437

baseline 1 0.333 0.199 0.248
baseline 2 0.333 0.267 0.364
baseline 3 0.333 0.00 0.388

Table 3: Results for SemEval-2017 Task 4, sub-
task A, Arabic.

features, clusters and embeddings. Deep learn-
ing approaches have recently been used to build
supervised, unsupervised or even semi-supervised
methods to analyze the sentiment of texts and to
build efficient opinion lexicons (Severyn and Mos-
chitti, 2015; Tang et al., 2014a,c); thus, the authors
are considering the possibility of also using this
technique to build a sentiment analysis system.
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Abstract

This paper presents Senti17 system which
uses ten convolutional neural networks (Con-
vNet) to assign a sentiment label to a tweet.
The network consists of a convolutional layer
followed by a fully-connected layer and a
Soft- max on top. Ten instances of this net-
work are initialized with the same word em-
beddings as inputs but with different initial-
izations for the network weights. We com-
bine the results of all instances by selecting
the sentiment label given by the majority of
the ten voters. This system is ranked fourth
in SemEval-2017 Task4 over 38 systems with
67.4% average recall.

1 Introduction

Polarity classification is the basic task of sentiment
analysis in which the polarity of a given text should
be classified into three categories: positive, negative
or neutral. In Twitter where the tweet is short and
written in informal language, this task needs more
attention. SemEval has proposed the task of Mes-
sage Polarity Classification in Twitter since 2013,
the objective is to classify a tweet into one of the
three polarity labels (Rosenthal et al., 2017).

We can remark that in 2013, 2014 and 2015 most
best systems were based on a rich feature extraction
process with a traditional classifier such as SVM
(Mohammad et al., 2013) or Logistic regression
(Hamdan et al., 2015). In 2014, Kim (2014) pro-
posed to use one convolutional neural network for
sentence classification, he fixed the size of the in-
put sentence and concatenated its word embeddings

for representing the sentence, this architecture has
been exploited in many later works. Severyn and
Moschitti (2015) adapted the convolutional network
proposed by Kim (2014) for sentiment analysis in
Twitter, their system was ranked second in SemEval-
2015 while the first system (Hagen et al., 2015) com-
bined four systems based on feature extraction and
the third ranked system used logistic regression with
different groups of features (Hamdan et al., 2015).

In 2016, we remark that the number of participa-
tions which use feature extraction systems were de-
graded, and the first four systems used Deep Learn-
ing, the majority used a convolutional network ex-
cept the fourth one (Amir et al., 2016). Despite
of that, using Deep Learning for sentiment analysis
in Twitter has not yet shown a big improvement in
comparison to feature extraction, the fifth and sixth
systems (Hamdan, 2016) in 2016 which were built
upon feature extraction process were only (3 and
3.5% respectively) less than the first system. But We
think that Deep Learning is a promising direction in
sentiment analysis. Therefore, we proposed to use
convolutional networks for Twitter polarity classifi-
cation.

Our proposed system consists of a convolutional
layer followed by fully connected layer and a soft-
max on top. This is inspired by Kim (2014), we
just added a fully connected layer. This architec-
ture gives a good performance but it could be im-
proved. Regarding the best system in 2016 (Deriu et
al., 2016), it uses different word embeddings for ini-
tialisation then it combines the predictions of differ-
ent nets using a meta-classifier, Word2vec and Glove
have been used to vary the tweet representation.
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In our work, we propose to vary the neural net-
work weights instead of tweet representation which
can get the same effect of varying the word embed-
dings, therefore we vary the initial weights of the
network to produce ten different nets, a voting sys-
tem over the these ten voters will decide the senti-
ment label for a tweet.

The remaining of this paper is organized as fol-
lows: Section 2 describes the system architecture,
Section 3 presents our experiments and results and
Section 4 is devoted for the conclusion.

2 System Architecture

The architecture of our convolutional neural net-
work for sentiment classification is shown on Fig.
1. Our network is composed of a single convolu-
tional layer followed by a non-linearity, max pool-
ing, Dropout, fully connected layer and a soft-max
classification layer. Here we describe this architec-
ture:

2.1 Tweet Representation

We first tokenize each tweet to get all terms using
HappyTokenizer1 which captures the words, emoti-
cons and punctuations. We also replace each web
link by the term url and each user name by uuser.
Then, we used Structured Skip-Gram embeddings
(SSG) (Ling et al., 2015) which was compiled by
(Amir et al., 2016) using 52 million tweets.

Each term in the tweet is replaced by its SSG em-
bedding which is a vector of d dimensions, all term
vectors are concatenated to form the input matrix
where the number of rows is d and the number of
columns is set to be maxl: the max tweet length in
the training dataset. This 2-dim matrix is the input
layer for the neural network.

2.2 Convolutional Layers

We connect the input matrix with different convolu-
tional layers, each one applies a convolution opera-
tion between the input matrix and a filter of size m
x d. This is an element-wise operation which cre-
ates f vectors of maxl-m+1 dimension where f is the
number of filters or feature maps.

This layer is supposed to capture the common pat-
terns among the training tweets which have the same

1http://sentiment.christopherpotts.net/tokenizing.html

filter size but occur at any position of the tweet. To
capture the common patterns which have different
sizes we have to use more than one layer therefore
we defined 8 different layers connected to the input
matrix with different filter sizes but the same number
of feature maps.

2.3 Activation Layer
Each convolutional layer is typically followed by
a non-linear activation function, RELU (Rectified
Linear Unit ) layer will apply an element-wise oper-
ation to swap the negative numbers to 0. The output
of a ReLU layer is the same size as the input, just
with all the negative values removed. It speeds up
the training and is supposed to produce more accu-
rate results.

2.4 Max-Pooling Layer
This layer reduces the size of the output of activa-
tion layer, for each vector it selects the max value.
Different variation of pooling layer can be used: av-
erage or k-max pooling.

2.5 Dropout Layer
Dropout is used after the max pooling to regularize
the ConvNet and prevent overfitting. It assumes that
we can still obtain a reasonable classification even
when some of the neurones are dropped. Dropout
consists in randomly setting a fraction p of input
units to 0 at each update during training time.

2.6 Fully Conected Layer
We concatenate the results of all pooling layers af-
ter applying Dropout, these units are connected to
a fully connected layer. This layer performs a ma-
trix multiplication between its weights and the input
units. A RELU non-linarity is applied on the results
of this layer.

2.7 Softmax Layer
The output of the fully connected layer is passed to
a Softmax layer. It computes the probability distri-
bution over the labels in order to decide the most
probable label for a tweet.

3 Experiments and Results

For training the network, we used about 30000 En-
glish tweets provided by SemEval organisers and
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Figure 1: Network architecture.

the test set of 2016 which contains 12000 tweets
as development set. The test set of 2017 is used to
evaluate the system in SemEval-2017 competition.
For implementing our system we used python and
Keras2.

We set the network parameters as follows: SSG
embbeding size d is chosen to be 200, the tweet max
legnth maxl is 99. For convolutional layers, we set
the number of feature maps f to 50 and used 8 fil-
ter sizes (1,2,3,4,5,2,3,4). The p value of Dropout
layer is set to 0.3. We used Nadam optimizer (Dozat,
2015) to update the weights of the network and
back-propogation algorithm to compute the gradi-
ents. The batch size is set to be 50 and the training
data is shuffled after each iteration.

We create ten instances of this network, we ran-
domly initialize them using the uniform distribution,
we repeat the random initialization for each instance
100 times, then we pick the networks which gives
the highest average recall score as it is considered
the official measure for system ranking. If the top
network of each instance gives more than 95% of
its results identical to another chosen network, we
choose the next top networks to make sure that the
ten networks are enough different.

Thus, we have ten classifiers, we count the num-
ber of classifiers which give the positive, negative
and neutral sentiment label to each tweet and select
the sentiment label which have the highest number
of votes. For each new tweet from the test set, we
convert it to 2-dim matrix, if the tweet is longer than

2https://keras.io

maxl, it will be truncated. We then feed it into the ten
networks and pass the results to the voting system.

Official ranking: Our system is ranked fourth
over 38 systems in terms of macro-average recall.
Table 4 shows the results of our system on the test
set of 2016 and 2017.

Test Dataset Avg. Recall Accuracy F-score
Test 2017 0.674 0.652 0.665
Test 2016 0.692 0.650 0.643

Table 1: Table 1: Senti17 results on the test sets of 2016 and

2017.

4 Conclusion

We presented our deep learning approach to Twitter
sentiment analysis. We used ten convolutional neu-
ral network voters to get the polarity of a tweet, each
voter has been trained on the same training data us-
ing the same word embeddings but different initial
weights. The results demonstrate that our system is
competitive as it is ranked forth in SemEval-2017
task 4-A.
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Abstract

This report describes our participation to
SemEval-2017 Task 4: Sentiment Analy-
sis in Twitter, specifically in subtasks A,
B, and C. The approach for text sentiment
classification is based on a Majority Vote
scheme and combined supervised machine
learning methods with classical linguis-
tic resources, including bag-of-words and
sentiment lexicon features.

1 Introduction

For millions of users, microblogging services such
as Twitter, a popular service where users can post
no more than 140 characters status messages, have
become an elemental part of daily life. By using
tools and techniques from Natural Language Pro-
cessing (NLP) and machine learning, Sentiment
analysis is defined as the process to identify and
analyze polarity from short texts, sentences, and
documents (Pang et al., 2008).

In the last few years, people from different
research disciplines are interested in Sentiment
Analysis, and the SemEval workshop offers an op-
portunity to compete and work in this field. Our
team has participated in SemEval-2017 task 4 on
Sentiment Analysis in Twitter, more specifically
on subtasks A (Message Polarity Classification),
B, and C (Tweet Classification in either two-point
or five-point scale respectively) (Rosenthal et al.,
2017).

In this report, we present an ensemble text senti-
ment classification scheme, based on an extensive
empirical analysis of several classifiers and other
related works, e.g. (Balahur, 2013; Martı́nez-
Cámara et al., 2014; Balikas and Amini, 2016;
Onan et al., 2016). A voting scheme combines
learning algorithms to identify and select an op-
timal set of base learning algorithms. These com-

ponents were carefully combined and optimized to
create a separate version of the system for each of
the tackled subtasks.

The rest of this report is organized as follows.
The description of proposed system we used and
its feature extraction are presented in Section 2.
Section 3 reports our experiments. Conclusions
and directions for further work/research are sum-
marized in Section 4.

2 System Description

The main objective of SemEval-2017 Task 4 is
sentiment classification. The system we used is
based on the bag-of-words representation, n-gram
extraction, and usage of lexicons which have a pre-
defined sentiment for every uni-gram and bi-gram.
For the implementation of the system we used
Python’s Scikit-Learn (Pedregosa et al., 2011), as
well as NLTK (Natural Language Toolkit) (Bird
et al., 2009).

2.1 Pre-processing

The pre-processing steps that we followed were to
remove and replace strings from the tweets that do
not show any sentiment, as well as to remove du-
plicates and unicode strings:

• Removing duplicates: we found that some in-
stances were duplicates, e.g. in Subtask A, so
we removed them.

• Replacing hashtags, URLs and usernames:
we first removed the “#” character in front
of the words and replaced the twitter oriented
strings @usernames and the URLs with tags
such as “AT USER” and “URL” respectively.

• Removing unicode strings: there were many
Unicode strings especially in the testing data,
e.g. strings like “\u002c” and “x96”.
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Positive Negative Neutral Total
train 18377 (38%) 7442 (16%) 22012 (46%) 47831
dev 2412 (43%) 1056 (18%) 2185 (39%) 5653
test 2375 (19%) 3972 (32%) 5937 (49%) 12284

Table 1: Number of tweets in training (train), development (dev), and testing (test) data for subtask A.

• Removing numbers and punctuation: prelim-
inary experiments showed better results when
we removed all the numbers. Before remov-
ing punctuation, we detected useful punctua-
tion signs such as “!” and “?” and replaced
them with labels.

• Using lowercase and tokenization: the fi-
nal tweets were lower-cased (after detecting
words that had all of their character capital-
ized which were retained) and splitted into
tokens.

• Removing stop words: stopwords are com-
mon function words with very high frequency
among sentences and low content, so we re-
moved them.

• Using stemming: stemming is the process of
reducing a word to its base root form. Prelim-
inary tests showed that stemming improves a
lot the results.

Previous studies (Pak and Paroubek, 2010; Bak-
liwal et al., 2013) have made references on the
influence of pre-processing and proposed a set of
features to extract the maximum sentimental infor-
mation.

2.2 Feature Engineering

We extracted features based on the lexical content
of each tweet and we also used lexicons. Below
we present all the features.

• Word n-grams: the word level uni-grams and
bi-grams are adopted.

• Number of capitalized words

• Number of question marks, exclamation
marks and the aggregation of them

• Number of elongated words: it indicates the
number of elongated words in the raw text of
the tweet.

To identify the sentiment polarity of tweets,
we used three different sentiment lexicons dur-
ing our experiments. Sentiment lexicons are lexi-
cal resources which are formed by a list of words
without any additional information and are built
by opinion words and some sentiment phrases
(Martı́nez-Cámara et al., 2014).

In our system we used sentiment lexicons such
as Bing Liu’s lexicon (Hu and Liu, 2004), the NRC
emotion lexicon (Mohammad and Turney, 2010),
the MPQA lexicon (Wilson et al., 2005) and com-
binations of them. The above lexicons have a sen-
timent tag for each word and in our approach we
count the occurrences of each sentiment class for
each tweet’s word. Finally, we compute the overall
sentiment of the tweet, by adding its words senti-
ments.

3 Experiments

In this section, after the feature extraction, we
analyse the classification process with the learning
methods and classification algorithms that used in
our system.

3.1 Datasets

The datasets were provided by the organizers and
contained all datasets of the previous years with
the addition of a new. For Subtask A the available
datasets were all the training, development, and
testing data from the years 2013 to 2016. For Sub-
task B the available datasets were from the years
2015 to 2016, and for Subtask C from the year
2016. We used a portion of the data for develop-
ment and the rest for training. We present them in
Tables 1–3.

Positive Negative Total
train 12812 (79%) 3410 (21%) 16222
dev 2139 (78%) 604 (22%) 2743
test 2463 (40%) 3722 (60%) 6185

Table 2: Number of tweets in training (train), de-
velopment (dev), testing (test) data for subtask B.
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2 1 0 -1 -2 Total
train 819 (3%) 10984 (41%) 11735 (44%) 2869 (11%) 225 (1%) 26632
dev 201 (5%) 1938 (48%) 1258 (31%) 529 (13%) 74 (3%) 4000
test 131 (1%) 2332 (19%) 6194 (50%) 3545 (29%) 177 (1%) 12379

Table 3: Number of tweets in training (train), development (dev), testing (test) data for subtask C.

As we can observe from the tables, the testing
data that were provided by the organizers have dif-
ferent ratio among the classes, especially between
the positives and negatives.

3.2 Evaluation Metrics
For Subtask A, we use the macro-average re-
call, which is the recall averaged across the three
classes Rmacro = Rpos+Rneu+Rneg

3 . Subtask B
maintains the same measure, but among the two
classes Rmacro = Rpos+Rneg

2 . For Subtask C, the
official metrics are the macro-averaged mean ab-
solute error and the extension of macro-averaged
recall for ordinal regression (Rosenthal et al.,
2017) among 5 predefined classes.

3.3 Learning
Using all the features described above, we first
trained several classifiers to the development data
in order to tune the parameters of each classifier.
The main target of tuning was the metric of this
specific task, which is the macro-average recall.
We tested a variety of classifiers that include the
following:

• Ridge: an algorithm belonging to the Gen-
eralized Linear Models family that alleviates
the multicollinearity amongst predictor vari-
ables.

• Logistic Regression: despite its name it is
used for classification and fits a linear model.
It is also known as Maximum Entropy, and
uses a logistic function to model the proba-
bilities that describe the output prediction.

• Stochastic Gradient Descent: a simple and
efficient algorithm to fit linear models. It is
suitable for very large number of features.

• Nearest Centroid: an algorithm that uses the
center of a class, called centroid, to represent
it and has no parameters.

• Bernoulli Naı̈ve Bayes: an alternative of
Naı̈ve Bayes, where each term is equal to 1

if it exists in the sentence and 0 if not. Its dif-
ference from Boolean Naı̈ve Bayes is that it
takes into account terms that do not appear in
the sentence.

• Linear SVC: an SVM algorithm, which tries
to find a set of hyperplanes that separate
space into dimensions representing classes.
The hyperplanes are chosen in a way to max-
imize the distance from the nearest data point
of each class.

• Passive-Aggressive: belongs to a family of
algorithms for large-scale learning, which do
not require a learning rate and includes a
regularization parameter C (Pedregosa et al.,
2011).

In order to vectorize the collection of raw doc-
uments, we used a Python’s Scikit-Learn (Pe-
dregosa et al., 2011) tf-idf transformation with a
max df parameter of 0.5. The value of this param-
eter was extracted by the tuning process and indi-
cates that we ignore terms that have a frequency
strictly higher than this threshold. The next step
was to use these parameters to test our model with
the help of 10-fold cross-validation on the training
set.

3.3.1 Subtask A
Subtask A is a multi-class classification problem,
where each tweet has to be classified in one among
three classes. We found that the best combination
for this task was the use of stemming and the three
lexicons. Features like the number of exclamation
marks, etc., under-performed. The three classi-
fiers with the best results were the Bernoulli Naı̈ve
Bayes, the Stochastic Gradient Descent (SGD),
and the Linear SVC.

The final step was to use the majority voting
classification method that combines three different
classifiers and outputs the class that the majority of
them agreed. Using all possible combinations of
every three classifiers, the best result was with the
Bernoulli Naı̈ve Bayes, SGD, and Nearest Cen-
troid. Note that Nearest Centroid was one of the
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weakest classifiers in isolation, but presented an
excellent contribution when combined with other
two.

3.3.2 Subtask B
Subtask B is a topic-based binary classification
problem, where each tweet belongs to a topic,
and one has to classify whether the tweet con-
veys a positive or negative sentiment towards the
topic. We used the same approach with Subtask A,
with the addition of a weight for the topic which
was added as a feature. The best combination
was the use of stemming and the three lexicons,
like in subtask A. The three best classifiers were
the SGD, the Passive-Aggressive, and the Linear
SVC.

The majority voting classifier outperformed all
the single classifiers; here, the best result was with
the SGD, Logistic Regression, and Ridge classi-
fiers, showing once again that weak classifiers can
contribute significantly when combined with oth-
ers.

3.3.3 Subtask C
Subtask C is also a topic-based classification prob-
lem, where each tweet belongs to a topic, and
one has to estimate the sentiment conveyed by the
tweet towards the topic on a five-point scale. The
same approach as with Subtask B was used, and
the best result was achieved by the combination of
the Logistic Regression, the Nearest Centroid, and
the Bernoulli Naı̈ve Bayes classifiers.

ρ FPN1 Acc
Task A 0.621 0.605 0.640
Task B 0.663 0.600 0.607

(MAEM ) (MAEµ)
Task C 0.895 0.544

Table 4: DUTH’s results for SemEval-2017 Task
4 on Sentiment Analysis in Twitter (Rosenthal
et al., 2017).

4 Conclusions & Future work

By analyzing and classifying sentiments on Twit-
ter, people can comprehend attitudes about partic-
ular topics, making Sentiment Analysis an attrac-
tive research area. In this report we presented an
approach for Twitter sentiment analysis on two-
point, three-point, and five-point scale, based on
a voting classification method. This was our first

contact with the task of sentiment analysis and
compared with the top-ranked participating sys-
tems, there seems to be for us much room for im-
provement.

In future work, we consider to focus on adding
more pre-processing methods such as spelling cor-
rection and POS tagging. We also consider adding
more features such as emoticons, negation, char-
acter n-grams and more lexicons.
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Abstract

The SSN MLRG1 team for Semeval-2017
task 4 has applied Gaussian Process, with
bag of words feature vectors and fixed rule
multi-kernel learning, for sentiment anal-
ysis of tweets. Since tweets on the same
topic, made at different times, may exhibit
different emotions, their properties such as
smoothness and periodicity also vary with
time. Our experiments show that, com-
pared to single kernel, multiple kernels
are effective in learning the simultaneous
presence of multiple properties.

1 Introduction

Twitter is a huge microblogging service with more
than 500 million tweets per day from different lo-
cations of the world and in different languages
(Nabil et al., 2016). The sentiment analysis in
Twitter has been applied in various domains such
as commerce (Jansen et al., 2009), disaster man-
agement (Verma et al., 2011) and health (Chew
and Eysenbach, 2010). The task is challenging
because of the informal writing style, the seman-
tic diversity of content as well as the “unconven-
tional” grammar. These challenges in building
a classification model can be handled by using
proper approaches to feature generation and ma-
chine learning.

The heart of every Gaussian process model
is a covariance kernel. Multi Kernel Learning
(MKL)—using multiple kernels instead of a sin-
gle one—can be useful in two ways:
• Different kernels correspond to different no-

tions of similarity, and instead of trying to
find which works best, a learning method
does the picking for us, or may use a combi-
nation of them. Using a specific kernel may
be a source of bias which is avoided by allow-

ing the learner to choose from among a set of
kernels.
• Different kernels may use inputs coming

from different representations, possibly from
different sources or modalities.

(Gonen and Alpaydn, 2011) and (Wilson and
Adams, 2013) explain how multiple kernels defi-
nitely give a powerful performance. (Gonen and
Alpaydn, 2011) also describe in detail various
methodologies to combine kernels. (Wilson and
Adams, 2013) introduces simple closed form ker-
nels that can be used with Gaussian Processes to
discover patterns and enable extrapolation. The
kernels support a broad class of stationary co-
variances, but Gaussian Process inference remains
simple and analytic.

We studied the possibility of using multiple ker-
nels to explain the relation between the input data
and the labels. While there is a body of work on
using Multi Kernel Learning (MKL) on numerical
data and images, yet applying MKL on text is still
an exploration.

2 Gaussian Process

Gaussian Process is a non-parametric Bayesian
modelling in supervised setting. Gaussian pro-
cess is a collection of random variables, any fi-
nite number of which have a joint Gaussian dis-
tribution (Rasmussen and Williams, 2006). Using
a Gaussian process, we can define a distribution
over functions f(x),

f(x) ∼ GP (m(x), k(x,x′)) (1)

where m(x) is the mean function, usually defined
to be zero, and k(x,x′) is the covariance function
(or kernel function) that defines the prior prop-
erties of the functions considered for inference.
Gaussian Process has the following main advan-
tages (Cohn and Specia, 2013; Cohn et al., 2014).
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• The kernel hyper-parameters can be learned
via evidence maximization.
• GP provides full probabilistic prediction, and

an estimate of uncertainty in the prediction.
• Unlike SVMs which need unbiased version

of dataset for probabilistic prediction, yet
does not take into account the uncertainty of
f(x), GP does not suffer from this problem.
• GP can be easily extended and incorporated

into a hierarchical Bayesian model.
• GP works really well when combined with

kernel models.
• GP works well for small datasets too.

2.1 Gaussian Process Classification

In Gaussian Process Classification (GPC), we
place a GP prior over a latent function f(x) and
then “squash” this prior through the logistic func-
tion to obtain a prior on π(x) =∆ p(y = +1|x) =
σ(f(x)). Note that π is a deterministic function of
f , and since f is stochastic, so is π.

Inference is divided into two steps: first, com-
puting the distribution of the latent variable corre-
sponding to a test case

p(f∗|X,y,x∗) =
∫
p(f∗|X,x∗, f)p(f |X,y)df

(2)
where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the
posterior over the latent variables, and subse-
quently using this distribution over the latent to
produce a probabilistic prediction

π∗(x) =∆ (y∗ = +1|X,y,x∗) (3)

=
∫
σ(f∗)p(f∗|X,y,x∗)df∗ (4)

In classification, the non-Gaussian likelihood in
Equation 2 makes the integral analytically in-
tractable. Similarly, Equation 4 can also be ana-
lytically intractable for certain sigmoid functions.
Therefore, we need an analytical approximation of
integrals. We can approximate the non-Gaussian
joint posterior with a Gaussian one, using Expec-
tation Propagation (EP) method (Minka, 2001).
EP, however, uses the probit likelihood

p(yi|fi) = Φ(fiyi), (5)

which makes the posterior analytically intractable.
To overcome this hurdle in the EP framework, the
likelihood is approximated by a local likelihood
approximation in the form of an un-normalized

Gaussian function in the latent variable fi which
defines the site parameters Z̃i, µ̃i and σ̃2

i .

p(yi|fi) ' ti(fi|Z̃i, µ̃i, σ̃
2
i ) =∆ Z̃iN (fi|µ̃i, σ̃

2
i )
(6)

The posterior p(f |X,y) is approximated by
q(f |X,y) = N (µ,Σ), where µ = ΣΣ̃−1µ̃, Σ̃ is
diagonal with Σ̃ii = σ̃2

i , Σ = (K−1 + Σ̃−1)−1,
and K is the covariance matrix.

A practical implementation of Gaussian Process
Classification (GPC) for binary class (Rasmussen
and Williams, 2006) is outlined in the following
algorithm:
Algorithm: Predictions for Expectation Propaga-
tion GPC.
Input:ν̃, τ̃ (Natural site param), X (Training in-
puts), y (Training targets), k (Covariance func-
tion), x∗ (Test input).
Output: Predictive class probability.

1. L := cholesky(In+S̃1/2KS̃1/2)
2. z :=S̃1/2LT \(L\S̃1/2Kν̃)
3. f∗ := k(x∗)T (ν̃ − z)
4. v := L\(S̃1/2k(x∗))
5. V [f∗] := k(x∗,x∗)− vTv
6. π∗ := Φ(f∗/

√
1 + V [f∗])

7. return: π∗ (predictive class probability)
The natural site parameters ν̃ and τ̃ for Expecta-
tion Propagation GPC are found using EP approx-
imation algorithm. Multi-class classification can
be performed using either one-versus-rest or one-
versus-one for training and prediction. For Gaus-
sian Process classification, “one-vs-one” might be
computationally cheaper, so we have used it to for
subtasks A and C.

2.2 Multiple Kernel Gaussian Process

The covariance kernel k of Gaussian Process di-
rectly specifies the covariance between every pair
of input points in the dataset. The particular choice
of covariance function determines the properties
such as smoothness, length scales, and amplitude,
drawn from the GP prior.

We have used Exponential kernel and Multi-
Layer Perceptron kernel combined with Squared
Exponential kernel, and found the combinations
to give better results. The text data used in sen-
timent analysis is collected over a period of time.
Comments on the same topic may exhibit differ-
ent emotions, depending on the time it was made,
and hence their properties, such as smoothness and
periodicity, also vary with time. Since any one
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kernel learns only certain properties well, multiple
kernels are effective in detecting the simultaneous
presence of different emotions in the data.

The MKL algorithms use different learning
methods for determining the kernel combination
function. It is divided into five major categories:
Fixed rules, Heuristic approaches, Optimization
approaches, Bayesian approaches and Boosting
approaches. The combination of kernels in differ-
ent learning methods can be performed in one of
the two basic ways, either using linear combina-
tion or using non-linear combination. Linear com-
bination seems more promising (Gonen and Al-
paydn, 2011), and have two basic categories: un-
weighted sum (i.e., using sum or mean of the ker-
nels as the combined kernel) and weighted sum.
Non-linear combination uses non-linear functions
of kernels, namely multiplication, power, and ex-
ponentiation. We have studied the fixed rule linear
combination in this work which can be represented
as

k(x, x′) = k1(x, x′)+k2(x, x′)+. . .+kn(x, x′).
(7)

For training, we have used one-step method to-
gether with the simultaneous approach. One-step
methods, in a single pass, calculate both the pa-
rameters of the combination function, and those
of the combined base learner; and the simultane-
ous approach ensures that both sets of parameters
are learned together.

3 System Overview

The system comprises of the following modules:
data extraction, preprocessing, feature vector gen-
eration, and multi-kernel Gaussian Process model
building. The data is preprocessed with lemmati-
zation and tokenization, using NLTK toolkit. Then
train variable is assigned an integer value. A data
dictionary is built using training sentences, and
feature vectors for train sets are generated by en-
coding BoW representation. These feature vectors
are given as input to build the MKGPC model.

The Multi-Kernel Gaussian Process Classifica-
tion (MKGPC) model building is outlined in the
following algorithm.
Algorithm: Build a Multi-Kernel Gaussian
Process model.
Input: Input dataset with BoW feature represen-
tation.
Output: Learned model.

begin
1. Split the training dataset into XTrain which

contains the features and YTrain that contains
the emotion scores.

2. Build the initial classification model using
appropriate kernel function.

3. Optimize the classification model with the
hyper-parameters (length scale, variance,
noise).

4. Return the learned model.
end

There are different kernels that can be used to
build a GPC model. The Squared Exponential
(SE) kernel, sometimes called the Gaussian or Ra-
dial Basis Function (RBF), has become the default
kernel in GPs. To model the long-term smooth-
rising trend, we use a Squared Exponential covari-
ance term.

k(x, x′) = σ2 exp
(
−(x− x′)2

2l2

)
. (8)

where σ2 is the variance and l is the length-scale.
The usage of Exponential kernel is particularly

common in machine learning and hence is also
used in GPs. They perform tasks such as statis-
tical classification, regression analysis, and cluster
analysis on data in an implicit space.

k(x, x′) = σ2 exp
(
−(x− x′)

2l2

)
(9)

The Multi-Layer Perceptron kernel has also
found use in GP as it can learn the periodicity
property present in the dataset; its k(x, x′) is given
by

2σ2

π
sin−1 (σ2

wx
Tx′ + σ2

b )√
σ2

wx
Tx+ σ2

b + 1
√
σ2

wx
′Tx′σ2

b + 1
(10)

where σ2 is the variance, σ2
w is the vector of the

variances of the prior over input weights and σ2
b

is the variance of the prior over bias parameters.
The kernel can learn more effectively because of
the additional parameters σ2

w and σ2
b .

4 Results and Discussion

The output submitted for the task was obtained
using MKGPC with Radial Basis Function ker-
nel and Exponential Kernel. We also used Multi-
Layer Perceptron Kernel. The results of the SGPC
using SE kernel for subtask B and MKGPC for
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subtask B are shown in Table 1. The evaluation
was done on SemEval-2017 labeled test dataset.
Only 1000 tweets were used to train the model due
to the time-complexity of GP and hardware limita-
tions, and from among the remaining 9551 tweets
test set was taken.

Table 1: A Performance Evaluation based on
Recall, F-measure and Precision (all macro-
averaged) for subtask B

Model Recall F-measure Precision

SGPC 0.57 0.58 0.64
MKGPC(R+E) 0.56 0.56 0.63
MKGPC(R+M) 0.61 0.62 0.64
MKGPC(R+E+M) 0.62 0.63 0.64

The kernel combinations used in Table 1 are
SGPC: Single Kernel Gaussian Process Classifier

with Radial Basis Function (RBF) kernel,
MKGPC(R+E): Multi Kernel Gaussian Process

with sum of RBF and Exponential kernels,
MKGPC(R+E+M): Multi Kernel Gaussian Pro-

cess Classifier with sum of RBF, Exponential,
and Multi-Layer Perceptron kernels,

MKGPC(R+M): Multi Kernel Gaussian Process
Classifier with sum of RBF and Multi-Layer
Perceptron kernels.

We observe from Table 1 that though the macro-
averaged precision of the MKGPC models is
the same as SGPC, their macro-averaged recall
and F-measure are better than SGPC (except for
MKGPC(R+E)), because the Multi-Layer Percep-
tron kernel learns the periodicity better than RBF
and Exponential kernels do. These different mod-
els, when evaluated on dataset for subtask A and
subtask C, exhibited similar performance as in
subtask B. The system underperform compared to
the baseline system in task C, and to logistic re-
gression on 1-gram in tasks A and B since only a
small fraction of the dataset was used for training.

5 Official Evaluation

Our system scored a macro-averaged recall of
0.431 and was ranked 35 for subtask A, macro-
averaged recall of 0.586 and was ranked 20 for
subtask B, and macro-averaged mean absolute er-
ror of 1.325 and was ranked 15 for subtask C.

6 Conclusion

In this paper, we have presented a Gaussian Pro-
cess classification model for sentiment analysis in

Twitter. We used Bag of Words feature vectors
and fixed rule multi kernel learning to build the GP
model. We observed that combining Multi-Layer
Perceptron kernel improves the performance of the
system, perhaps due to its more effective learning
of the periodicity property in the dataset. There
is scope for enhancing the results by using differ-
ent feature generation algorithms, different multi-
kernel learning approaches, and increasing the
data size.
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Abstract 
 

Sentiment analysis is one of the central issues 

in Natural Language Processing and has bec-

ome more and more important in many fields. 

Typical sentiment analysis classifies the sent-

iment of sentences into several discrete class-

es (e.g.,positive or negative). In this paper we 

describe our deep learning system(combining 

GRU and SVM) to solve both two-, three- and 

five- tweet polarity classifications. We first 

trained a gated recurrent neural network using 

pre-trained word embeddings, then we extra-

cted features from GRU layer and input these 

features into support vector machine to fulfill 

both the classification and quantification 

subtasks. The proposed approach achieved 

37th, 19th, and 14rd places in subtasks A, B, 

and C, respectively. 

 
1   Introduction 
Sentiment analysis (SA) is a field of knowledge 

which deals with the analysis of people’s 

opinions, sentiments, evaluations, appraisals, 

attitudes and emotions towards particular entities 

(Liu, 2012). Typical approaches to sentiment 

analysis is to classify the sentiment of a sentence 

into several discrete classes such as positive and 

negative polarities, or six basic emotions: anger, 

happiness, fear, sadness, disgust and surprise 

(Ekman,1992). SA is widely considered to be one 

of the most popular and challenging, competitive 

and the hot research area in computational 

linguistics. There are many ways to tackle the 

sentiment classification problems, such as 

random forest, support vector machine (SVM), 

Bayes classifier. In addition, there are many cha- 

 

llenges, such as analysis of noise texts (e.g. oral 

language) in natural language processing tasks, 

despite numerous notable advances in recently 

years (e.g., Breck et al,. 2007; Yessenalina and 

Cardie, 2011; Socher et al,. 2011). Based on this, 

our way is to extract features with Gated 

Recurrent Unit (GRU) and classify sentences by 

SVM using these features. 

Task 4 subtask A is to classify a tweet’s 

sentiment as positive, negative, or neutral. 

Subtask B (Tweet classification according to a 

two-point scale) requires classifying a tweet’s 

sentiment towards the given topic. Similar to B, 

subtask C is a five-point scale (Nakov et al., 

2016). Unlike typical classification approaches, 

ordinal classification can assign different ratings 

(e.g., very negative, negative, neutral, positive 

and very positive) according to the sentiment 

strength (Taboada et al., 2011; Li et al., 2011; Yu 

et al., 2013; Wang and Ester, 2014). 

This paper presents a system that combine 

GRU and SVM to process subtasks A, B and C. 

Our system uses a GRU neural network with 

word embeddings (Mikolov et al,. 2013) that are 

slightly fine-tuned (Yoon Kim et al,. 2014) on 

each training set. The word embeddings were 

obtained by training GloVe (Jeffrey Pennington 

et al,. 2014) on 2 billion tweets that we crawled 

for this purpose. These word vectors are then 

used to build sentence vectors through a recurrent 

convolutional neural network.  

The proposed gated recurrent neural network 

consists of the GRU layer and SVM classifier. 

The choice based on the following two reasons: 

(1) it is more computational efficient than 

Convolution Neural Network (CNN) models (Lai 

et al., 2015); (2) unlike CNN, it also can extract 
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long semantic patterns without tuning the 

parameter when training the model. Our system 

architecture is composed of a word embedding 

layer, drop out layer, GRU layer, a hyperbolic 

relu layer, SVM classifier and softmax layer. 

 

 
   

Figure 1: The architecture of the GRU + SVM system. 

 

By capturing features from GRU layer, we obtain 

training and test data features, and integrate them 

with given labels as inputs, so SVM classifier can 

train the parameters. 

 

2   Combining GRU and SVM for Sente-
nces Classification 

 

2.1 Embedding Layer 

The first layer in the network , we let xi∈Rk be 

the k-dimensional word vector corresponding to 

the i-th word in the sentence.  A sentence of 

length n (padded where necessary) is represented 

as: 

                x1:n = x1 ⊕ x2 ⊕ . . . ⊕ xn，    (1) 

n is the maximum length of sentences and we set 

it to 50. When meeting short tweets we use fixed 

characters padding. Each word xi is represented 

by embedding vectors (w1,w2...wl) where l is set 

to 200. For word embeddings, we use pre-trained 

word vectors from GloVe (Pennington et al., 

2014). GloVe is an unsupervised learning 

technology for learning word representation. The 

purpose of training is to use statistical 

information to find similarities among words and 

based on co-occurrence matrix and statistical 

information. We use them to provide pre-trained 

word vectors trained on 27B tokens from Twitter 

and with a length of 200. Words not presented in 

the set of pre-trained words are initialized 

randomly. 

 

2.2 GRU Layer 
The main layer in our model, the input to it is the 

sequence of length L and each word in it having k 

dimension. The gated recurrent network proposed 

in (Bahdanauetal., 2014) is a recurrent neural 

network (a neural network with feedback 

connection, see(Atiya and Parlos, 2000)) where 

the activation hj of the neural unit j at time t is a 

linear interpolation between the previous 

activation 
j

th  (Chung et al., 2014): 

1(1 )
j

j j j j
tt t t th z h z h  

             

(2) 

Where t

jz
 is the update gate that determines how 

much time the units update its content, 
j

th is the 

newly computed candidate state. 

 

2.3 Dropout Layer 
Dropout is a regularization technique for reducing 

overfitting in neural networks by preventing 

complex coadaptations on training data Dropout 

refers to randomly let the weight of some hidden 

layer of network does not work in model when 

training, those nodes does not work can 

temporarily thought is not part of the network but 

the weight of it is retained(just temporarily not 

update), because it may work again the next time 

throwing samples into it. 

 

2.4 Relu Layer 
This layer is to allow the network to make 

complex decision by learning non-linear 

classification boundaries. We used more efficient 

function Rectified Linear Units (ReLU). 

 

2.5 Soft-Max Layer 
The output of the GRU layer and dropout layer  

is passed to a fully connected softmax layer. This 
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layer calculates the classes probability di-
stribution: 

 
P(y=j|x,s,b)=softmaxj(x

Tw+b) 

= 

1

exp( )

exp( )

T

j j

K T

k kk

x w b

x w b





    

(3) 

where kw
and kb

are the weight vector and bias 

of the k-th class, respectively. For subtask A 

and B, the difference is three neurons and two 

neurons used (i.e., K=3 or K=2). 

  

2.6 SVM classifier 
Support vector machines (SVMs) are a set of 

supervised learning methods used for 

classification, regression and outliers detection. 

Given a set of training examples, each training 

instance is marked as belonging to one or the 

other of the two categories, the SVM training 

algorithm to create a new instance will be 

assigned to one of two categories of models, 

making it a nonprobability binary linear 

classifier. Sklearn is a Python library of 

scientific computing and it provides several 

clustering algorithms. In our system, we from 

sklearn.svm import SVC module and redefine 

this function and parameters. As we all known, 

SVM is a binary classifier, but we also need 

process three and five classification problem. In 

the multiclass case, this is extended as per Wu et 

al. (2004). SVC and NuSVC implement the 

“one-against-one” approach (Knerr et al., 1990) 

for multi-class classification. If n_class is the 

number of classes, then n_class * (n_class - 1) / 

2 classifiers are constructed and each one trains 

data from two classes. To provide a consistent 

interface with other classifiers, the decisi-
on_function_shape option allows to aggregate 

the results of the “one-against-one” classifiers to 

a decision function of shape (n_samples, 

n_classes). 

 

3  Data  
The training and development datasets used in 

our experiments were all datasets from SemEval 

2013-2016 that labeled. Before training, we 

processed the data with the follow procedures: 

1). The texts were lowercased by string.stri-
p().lower(), 

2).We only retain punctuation, exclamation 

mark, question mark and comma, 

3). Tokenize each tweet using blank in sentences, 

4). Emoticons like (^.^) have been deleted, 

5).Using the patterns described in Table 1 to 

normalize each tweet. 

Pattern Examples Normaliza

tion Usernames @user1,@user2 UserName 

Abbreviation Don’t  Do not 

Abbreviation 2c or a90 Delete 

Repeated letters ahahhhh ahahh 

Numbers 123 NUM 

URLs www.google.co

m 

URL 

Topic (Subtask B only) Microsoft Entity 

Table 1: Normalization Patterns 

          
Datasets Total Pos Neg Neu 

Twitter2013 13454
3 

5124 2097 6233 

SMS2013 2093 492 394 1207 

Twitter2014 1853 982 202 669 

LiveJournal2014 1142 427 304 411 

Tw2014Sarcasm 86 33 40 13 

Twitter2015 2390 1038 365 987 

Twitter2016 29632 11259 4483 3985

2 Table 2: Overview of datasets and number of tweets we d-
owloaded. The data was divided into training, development 

and testing sets 

 

4  Experiments and Results  
All our experiments have been developed using 

Keras deep learning library with Theano backend, 

and with CUDA enabled. And all our 

experiments were performed on a computer with 

Intel Core(TM) i3 @3.4GHz 16GB of RAM and 

GeForce GTX 1060 GPU.  The hyper-parameters 

of the network are chosen based on the 

performance on the dev-test data. We firstly 

carry out our system: put data into GRU model, 

as we known GRU can also train and test d-

ataset at the same time we adjust some important 

parameters to make our GRU model to be the 

newest. Then we define a Theano function, and 

input para-meter is the GRU network portal, 

output is the GRU network dense layer before 

softmax layer. Using the Theano function, once 

we throw new data, we can get features that 

meeting our requirements. Last we throw these 

features into SVM so we can get classification 

results as we hope. After experiment we know 

our system performance well on two 

classification question, and poor on five 

classification. Some factors may cause this: 

small training data and in five-classification 

dataset many twitters belong to negative, neutral 

and positive; our deep model GRU maybe not 

actually called deep due to  number of  layers 
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and our manually tuning. 

 

4.1 Subtask A  

Table 3: Result for Subtask A “Message Polarity classi- 

       fication”, English. The systems are ordered by their 
1

PNF

score (higher is better). 

 

4.2 Subtask B  
 

Table 4: Results for Subtask B “Tweet classification a-
ccording to a two-point scale”, English. The systems are 

ordered by their
PN  score (higher is better). 

 

4.3  Subtask C  

Rank System M

MAE  MAE
  

14 YNU-1510 1.26214 0.76414 

baseline 1: Highly NEGATIVE 

baseline 2: NEGATIVE 

baseline 3: NEUTRAL 

baseline 4: POSITIVE 

baseline 5: Highly POSITIVE 

2.000 

1.400 

1.200 

1.400 

2.000 

1.895 

0.923 

0.525 

1.127 

2.105 
Table 5: Results for Subtask C “Tweet classification accor-
ding to a five-point scale”, English. The systems are ordered 

by their MAEMscore (lower is better). 

 

5   Conclusion  
In this paper, we presented our GRU-SVM system 

used for SemEval 2017 Task4 (Subtasks A, B and 

C). The system used a gated recurrent layer as a 

core layer to extract features and then feed these 

features into SVM classifier.  
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Rank System PN  1PNF  Acc 
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Abstract

We present, in this paper, our contri-
bution in SemEval2017 task 4 : ”Sen-
timent Analysis in Twitter”, subtask A:
”Message Polarity Classification”, for En-
glish and Arabic languages. Our sys-
tem is based on a list of sentiment seed
words adapted for tweets. The senti-
ment relations between seed words and
other terms are captured by cosine simi-
larity between the word embedding repre-
sentations (word2vec). These seed words
are extracted from datasets of annotated
tweets available online. Our tests, us-
ing these seed words, show significant
improvement in results compared to the
use of Turney and Littman’s (2003) seed
words, on polarity classification of tweet
messages.

1 Introduction

Sentiment Analysis aims to obtain feelings ex-
pressed as positive, negative, neutral, or even ex-
pressed with different strength or intensity levels.
One of the well known extracting sentiment ap-
proaches is the lexicon-based approach. A senti-
ment lexicon is a list of words and phrases, such
as excellent, awful and not bad, each is being
assigned with a positive or negative score reflect-
ing its sentiment polarity. Therefore, sentiment
lexicon provides rich sentiment information and
forms the foundation of many sentiment analysis
systems (Liu, 2012).

Our system is based on one of the most sig-
nificant sentiment lexicon classification methods
introduced by Turney and Littman (2003). The
method is inspired by the semantic similarity mea-
suring and applied to the sentiment analysis field
as a sentiment similarity measuring. In a similar

method, Kanayama and Nasukawa (2006) worked
on detecting a word’s sentiment polarity by mea-
suring the difference between its sentiment simi-
larity with a positive seed word and a negative seed
word, respectively. This method achieves better
results with larger corpora, where there are more
chances to find the word (to be classified) near the
positive and negative seed words.

In SemEval2017 task 4, we’re working with
tweets which will lead to deal with slang words
and informal phrases. Therefore, the classic seed
words suggested by Turney and Littman (2003),
listed below in Table 1, will not be very suitable.
For example, the word Superior is rarely used in
the modern ”social media” English, and it is barely
found in tweets compared to other seed words.
In the tweets dataset of sentiment140 (Go et al.,
2009), the word Superior is used 42 times, but
the word Nice is used 23563 times. Thus, for the
English tweets polarity classification task, we use
the adapted for tweets seed words extracted in our
previous work (Htait et al., 2017). And for the
Arabic tweets polarity classification task, we ap-
ply the same method as in (Htait et al., 2017) to
extract Arabic seed words adapted for tweets, to
be used in our system.

positive negative
good, nice, bad, nasty,
excellent, positive, poor, negative
fortunate, correct, unfortunate, wrong,
superior. inferior.

Table 1: The classic seed words suggested by Tur-
ney and Littman (2003).

2 Related Work

The use of seed words was the base of many sen-
timent analysis experiments, some used the con-
cept with supervised or semi-supervised methods.
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For example, Ju et al. (2012) worked on a semi-
supervised method for sentiment classification that
aims to train a classifier with a small number of
labeled data (called seed data). Some other exper-
iments used the concept with unsupervied meth-
ods which reduces the need of annotated training
data. For example Turney (2002; 2003), which
used statistical measures to calculate the similar-
ities between words and a list of 14 seed words
(Table 1), such as point wise mutual informa-
tion (PMI). But we should note that Turney’s seed
words were manually selected based on restaurant
reviews, which have different nature than tweets.
Also we find that Maas et al. (2011) used the con-
cept as ”bag of words” but with cosine similarity
measure on word embedding.

Our previous work (Htait et al., 2017) was on
sentiment intensity prediction of tweets segments
using SemEval2016 Task71 data. We extracted
new seed words as more adapted for tweets seed
words. We retrieved the most frequent words in
Sentiment140 (Go et al., 2009) and then manu-
ally filtered the list to eliminate the neutral words.
Our tests in (Htait et al., 2017) showed the effi-
ciency of the new seed words over Turney’s 14
seed words. Also, they showed that using cosine
similarity measure of word embedding represen-
tations (word2vec) yields better results than using
statistical measures like PMI to calculate the sim-
ilarities between words. Therefore, and based on
the above experiments, we decide to use for our
system cosine similarity measure of word embed-
ding representations, but also to use the adapted
for tweets seed words from (Htait et al., 2017).

Even though the Arabic language processing
faces more challenges than the English language,
since words can have transitional meanings
depending on position within a sentence and
the type of sentence (verbal or nominal) (Farra
et al., 2010), we can still find some interesting
experiments in lexical-based sentiment analysis:
El-Beltagy and Ali (2013) built a sentiment
lexicon based on a manually constructed seed
sentiment lexicon of 380 words. Using this
lexicon, with assigned sentiment intensity score
for each value, they were able to calculate the
sentiment orientation for a set of tweets in Arabic
language (Egyptian dialect). Another paper by
Eskander and Rambow (2015) presented a large
list of sentiment lexicon for Arabic language

1http://alt.qcri.org/semeval2016/task7/

called SLSA where each value is associated with
a sentiment intensity score. The scores were
assigned due to a link created between the English
annotation of each Arabic entry to a synset from
SentiWordNet (Cambria et al., 2010). For our
system in Arabic language, we are following the
same method as the system in English language.
But since there is no previously created list of
adapted for tweets seed words, we create the list
following the same method in (Htait et al., 2017),
and then use it with cosine similarity measure of
word embedding representations.

3 Adapted seed words

3.1 English seed words

In (Htait et al., 2017), seed words were extracted
from Sentiment140 dataset (Go et al., 2009). For
the positive seeds, a list of the most frequent
words in Sentiment140 positive tweets is retrieved
and then manually filtered to eliminate the neutral
words, and the same is applied for negative seeds.
The list of English seed words adapted to tweets is
as shown in Table 2.

Positive Negative
love, like, good, win , ill, fucking, shit,
lol, hope, best, thanks, fuck, hate, bad, break,
funny, haha, god, amazing, sucks, cry, damn, sad,
fun,beautiful, nice, cute, stupid, dead, pain, sick,
cool, perfect, awesome, wtf, lost, worst, fail,
okay, special, hopefully, bored, scared, hurts,
glad, congrats, excellent, afraid, upset, broken,
dreams, sunshine, hehe, died, stuck, boring,
positive,fantastic, dance, horrible, negative,
correct, fabulous, superior, unfortunate, inferior,
fortunate, relaxing, unfortunately,poor,
happy,great, kind, laugh, need, suck, wrong,
haven, wonderful, yay, evil, missed, sore, alone,
enjoying, sweet, crap, hell, tired, nasty.

Table 2: The Tweets Adapted English seed words
(Htait et al., 2017).

3.2 Arabic seed words

The Arabic language’s experiences, in lexical-
based sentiment analysis, were mostly oriented to
sentiment lexicons than to seed words. Large lists
of sentiment lexicons were built and used for sen-
timent analysis. For our system, we create a list
of seed words following almost the same method
as in (Htait et al., 2017). We search for the most
common words in positive tweets and in nega-
tive tweets from two annotated corpora of Ara-

719



bic tweets (Arabic Sentiment Tweets Dataset2 and
Twitter data-set for Arabic Sentiment Analysis3).
Then, to filter the list and to eliminate the neu-
tral words, we use Mohammad et al.’s (2016) list.
That list contain 240 positive and negative words
of modern standard Arabic, therefore and due to
Arabic dialects variety, using that list to filter will
create a list of seed words in modern standard Ara-
bic but adapted for tweets, and it can be used in-
dependently of dialects. The list of Arabic seed
words adapted for tweets is as shown in Table 3.

Positive Translation Negative Translation
Q�
 	g benevolent ÈAK. worn

ÈAÒm.Ì'@ fairness © ���. ugly
Q�
J.» grand t��ð filthy

úÎ«

@ superior QKAg. unjust

	á�k well I. J
« flaw

Õæ

	¢« great Q�
¢ 	k dangerous

©K@P wonderful Q�
�®k despicable

PXA 	K exceptive t�'
AK. vapid

ÈAÔg. beauty 	áK
 	Qk sad

Õç'
Q» generous P 	Y�̄ dirty

Ñ 	¢«

@ greatest ÉKAë massive

ÉJ
�. 	K noble
	¬Q�®Ó nasty

ÉJ
Ôg. beautiful É£AK. invalid

lÌ'A� valid é 	̄ A�K trifle
��J
�̄ X accurate 	àñªÊÓ damned
��Qå��Ó bright 	�ñ 	̄QÓ unacceptable

I. J
£ delicious 	á�
º�Ó poor

ñÊg sweet Y�A 	̄ corrupt

YJ
k. good 	� ñÓ regrettable

ø
 Q�®J.« genius ©J
 	¢ 	̄ horrible

Table 3: The Tweets Adapted Arabic seed words.

4 System of Sentiment classification

Our System is based on sentiment similarity co-
sine measure with Word Embedding representa-
tions (word2vec). For the English language, we
use twitter word2vec model by Godin et al (Godin
et al., 2015), since best results were achieved us-
ing that model in sentiment intensity prediction
with the adapted seed words (Htait et al., 2017).
This model is a word2vec model trained on 400
millions tweets in English language and it has
word representations of dimensionality 400. For
the Arabic language, there is no twitter word2vec

2http://www.mohamedaly.info/datasets/astd
3https://archive.ics.uci.edu

model available online (to the best of our knowl-
edge). Therefore, we collect 42 millions tweets in
Arabic language from archived twitter streams4 to
create our twitter word2vec model.

In Figure 1, we have the work flow of our sys-
tem for tweets sentiment classification. First, each
tweet is cleaned by removing links, user names,
stop words, numeric tokens and characters except
the common emoticons: ”:-)”, ”:-(”, ”:)”, ”:(”,
”:’(”. Also, words with repetitive characters are
replaced by the corrected ones (e.g. coooool by
cool). After that, the tweet is segmented into to-
kens or words. The similarity between each word
with positive seed words and negative seed words
is calculated using gensim tool5 with the previ-
ously mentioned word2vec models for both lan-
guages English and Arabic.

Having the sentiment score of each word in a
tweet, we aggregate by sum to combine these val-
ues. The final score specify the tweet’s polarity.
After many tests on old SemEval data (task ”Mes-
sage Polarity Classification” of 2013 and 2014),
we found that the best scores achieved are by con-
sidering the following: if the score is higher than
1, the tweet is considered positive, else if the score
is lower than -2, the tweet is considered negative,
else it is considered neutral.

To test the efficiency of the adapted seed words
on tweets polarity classification, we apply our sys-
tem on SemEval data for the task : ”Sentiment
Analysis in Twitter” of years 20136 and 20147,
using Turney’s seed words (in Table1), and the
adapted seed words. The Table 4, along with the
results, shows clearly how the use of the adapted
for tweets seed words increase the results com-
pared to Turney’s seed words.

2013 AvgF1 AvgR Acc
Turney 0.262 0.381 0.480
Adapted 0.564 0.571 0.508
2014 AvgF1 AvgR Acc
Turney 0.303 0.383 0.511
Adapted 0.589 0.553 0.552

Table 4: The comparison between Turney’s seed
words and the adapted seed words on semEval
task’s data of years 2013 and 2014.

The results of our participation at SemEval2017
Task4 (subtask A) for English and Arabic lan-

4https://archive.org/details/twitterstream
5https://pypi.python.org/pypi/gensim
6https://www.cs.york.ac.uk/semeval-2013/task2.html
7http://alt.qcri.org/semeval2014/task9/
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Figure 1: The work flow of tweets sentiment classification.

guages are in Table 5, with the best results accom-
plished in the subtask A.

English Team AvgF1 AvgR Acc
BB twtr 0.685 0.681 0.658
LSIS 0.561 0.571 0.521

Arabic Team AvgF1 AvgR Acc
NileTMRG 0.610 0.583 0.581
LSIS 0.469 0.438 0.445

Table 5: The results at semEval2017 Task 4 sub-
task A - for English and Arabic Languages.

5 Conclusion

In this paper, we present our contribution in Se-
mEval2017 task4: Sentiment Analysis in Twit-
ter, subtask A: Message Polarity Classification,
for English and Arabic languages. Our sys-
tem is based on a list of sentiment seed words
adapted for tweets, used in sentiment similarity
cosine measure with word embedding representa-
tions (word2vec). Although the results are encour-
aging, further investigation is required concerning
the detection of negations (e.g. not) and intensi-
fiers(e.g. very) in the tweets, due to their big effect
on reversing the polarity of a tweet.
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Abstract

This paper describes the participation
of ELiRF-UPV team at task 4 of Se-
mEval2017. Our approach is based on the
use of convolutional and recurrent neural
networks and the combination of general
and specific word embeddings with polar-
ity lexicons. We participated in all of the
proposed subtasks both for English and
Arabic languages using the same system
with small variations.

1 Introduction

Twitter has become a source of a huge amount
of information which introduces great possibili-
ties of research in the field of Sentiment Anal-
ysis. Sentiment Analysis or Opinion Mining,
is a research area within Natural Language Pro-
cessing whose aim is to identify the underlying
emotion of a certain document, sentence or as-
pect (Liu, 2012). Sentiment Analysis systems has
been applied, among other, for classifying reviews
(Turney, 2002; Pang et al., 2002), for generating
aspect-based summaries (Hu and Liu, 2004), or
political tendency identification (Pla and Hurtado,
2014).

SemEval-2017 task 4 organizers proposed five
different subtasks. All five subtasks are related to
sentiment analysis at global level in Twitter, but
each one of them has significant differences. Ad-
ditionally, in the 2017 edition, the five subtasks
were also proposed in Arabic. Altogether, the par-
ticipants could address ten different challenges.

Subtask A consists in predicting the message
polarity as positive, negative, or neutral. In sub-
tasks B and C, given a message and a topic systems
should assign the message in a two-point scale or
in a five-point scale respectively.

Subtasks D and E address the problem of tweet
quantification, that is, given a set of tweets about a
given topic, estimate the distribution of the tweets
across two-point scale or in a five-point scale re-
spectively.

The rest of this paper is organized as follows.
Section 2 describes the general system architec-
ture proposed in this work. Section 3 presents both
the variations on the general system introduced to
address the different subtasks and the results ob-
tained in the subtasks. Finally, section 4 presents
some conclusions and the future work.

2 System description

In this section, we describe the system architec-
ture we used for all the Sentiment Analysis sub-
tasks. This system is based on the use of convolu-
tional and recurrent neural networks and the com-
bination of general and specific word embeddings
(Mikolov et al., 2013b,a) with polarity lexicons.

Slight modifications of the system have been
applied to adapt it to each subtask. These mod-
ifications are motivated by the characteristics of
each subtask and the available resources.

The system combines three Convolutional Re-
current Neural Network (CRNN) (Zhou et al.,
2002) in order to learn high level abstractions (Le-
cun et al., 2015) from noisy representations (Jim
et al., 1994). The input of these three networks are:
out-domain embeddings, in-domain embeddings,
and sequences of the polarities of the words. The
output of the CRNNs is concatenated and used as
input for a discriminating model implemented by
a fully-connected Multilayer Perceptron (MLP).
Figure 1 summarizes the proposed approach.

The CRNNs used have as a first layer a unidi-
mensional convolutional layer that allows to ex-
tract spatial relations among the words of a sen-
tence (Kim, 2014). In some subtasks, a down-
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~x1

~x2

~x3

~xn

CRNN
(out-domain embeddings)
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~x3 '

~xn '

CRNN
(in-domain embeddings)

~x1 ' '
~x2 ' '
~x3 ' '

~xn ' '

CRNN
(polarity sequence)

MLP argmax c p(c | x)

Figure 1: General system architecture.

sampling process by means of a max pooling layer
was applied.

Then, the output of the convolutional layers (in-
cluding max pooling in some subtasks) is used
as input for a recurrent neural network (LSTM).
Moreover, because the polarity of a subsequence
of the sentence not only depends on the previ-
ous words but also depends on the next words,
we used a Bidirectional Long-Short-Term Mem-
ory (BLSTM) network (Hochreiter and Schmid-
huber, 1997; Schuster and Paliwal, 1997). In most
subtasks, only one BLSTM layer has been used.
The dimension for the output vector has been fixed
between 32 and 256.

Figure 2 shows a graphical representation of the
CRNN layers, where x̃i is a noisy version of the
input, ci are the kernels of the convolutional layer,
pi represent the operations of max pooling, and ys
is the output of the CRNNs.

~x1

~x2

~x3

~x n−1

~xn

c2

c L

p1

c1

pm

BLSTM y s

Figure 2: Implementation of the Convolutional
Recurrent Neural Network.

The last network used in our system is a fully
connected Multilayer Perceptron. Depending on
the subtasks, we used between 1 and 3 hidden lay-
ers. The number of neurons also depended on the
subtask. Softmax activation function was used in
the output layer to estimate p(c|x) (the number of
neurons in that layer depends on the number of
classes in the task).

A graphical representation of the MLP used can
be seen in Figure 3, where yi are the outputs of
the CRNNs, which are used as input for the MLP.
Note that, in this case, no noise is applied to the
input because the chosen setup obtained better re-
sults during the tuning phase.

y1

y2

y3

argmax c p(c | x)

Relu FC Softmax FC

Figure 3: Implementation of the Multilayer Per-
ceptron.

2.1 Resources
As we stated above, we used two different kind of
embeddings (in-domain and out-domain) as input
to the system for all the Arabic and English sub-
tasks.
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We used these two embeddings models in order
to reduce the number of unseen words. In this way,
we combined a specific representation that only
considers the words seen in the training set (in-
domain embeddings) with a more general one that
has a great amount of words unseen in the training
set but that can appear in the test set (out-domain
embeddings).

For the English subtasks, we used as out-
domain model the word2vec model learned
by Fréderic Godin (Godin et al., 2015; Ritter
et al., 2011) from 400 million tweets in En-
glish. For the Arabic subtasks, we learned a
400-dimensional word2vec model using the arti-
cles of the Wikipedia in Arabic (Wikipedia, 2017).
With respect to the in-domain models, a word2vec
model was trained for each subtask from the pro-
vided training corpus.

In addition to the two representations based on
embeddings, we added polarity information to the
input layer. To include this information, we con-
sidered a representation of tweets based on a se-
quence of C-dimensional one-hot vectors, where
C is the number of sentiment classes. Each vec-
tor indicates the polarity of one word according
to certain polarity lexicon. This way, a tweet is a
sequence of C-dimensional vectors. Once again,
the resources used depended on the language. We
used the NRC lexicon (Mohammad et al., 2013)
both for the Arabic and English subtasks and the
Afinn lexicon (Hansen et al., 2011) only for the
English subtasks.

3 Results

In this section, we present the modifications we
made on the general schema for all the subtasks in
which we participated. We also report and discuss
the results we achieved in the different subtasks.

Due to the different sizes of the corpora used
in every subtask, we made some changes from
the generic model in order to reduce or increase
the number of parameters to be estimated. These
changes had been fixed for each subtask by means
of a tuning process.

3.1 Subtask A: Message Polarity
Classification

Subtask A consists in classifying the message as
positive, negative, or neutral. Our model for this
subtask consists of three CRNN merged with a
three layer MLP, see general schema in Figure 1.

The results achieved by our system in Subtask
A are shown in Table 1. The measure used to
range the participants was macroaveraged recall
(ρ). Two additional measures were also consid-
ered: F1 averaged across the positives and the neg-
atives (FPN1 ) and Accuracy (Acc). We have also
included, for each measure, the position reached
by our system compared with the other partici-
pants.

Subtask A English Arabic
ρ 0.632 (14/38) 0.478 (3/8)

FPN1 0.619 (12/38) 0.467 (4/8)

Acc 0.599 (24/38) 0.508 (3/8)

Table 1: Results for Subtask A: Message Polarity
Classification, English and Arabic.

Note the different ranking position achieved by
our system considering ρ and Acc measures for
English. ρ achieved the 14th position while Acc
achieved the 24th position. We think this is due to
the way we tackled with the imbalanced classes
in the corpus. The decision was to balance the
training set by eliminating some samples of those
classes that appeared more times in the corpus.

In contrast, for the Arabic subtask, Accuracy re-
sults are not influenced by the way we managed
the imbalanced problem, achieving similar posi-
tion in all the measures considered.

3.2 Subtask B: Tweet classification according
to a two-point scale

In subtask B, given a message and a topic, the par-
ticipants must classify the message on two-point
scale (positive and negative) towards that topic.
Unfortunately, we did not include information of
the topic in the model and, in consequence, our
model consists of a variation of the generic model.
In this case, max pooling layers were replaced
with another convolutional layer, the number of
neurons in MLP layers was reduced and we used
Gaussian noise over MLP layers activations be-
cause better results are obtained over the valida-
tion set. For the Arabic language, we used the
same topology, but we reduced the number of pa-
rameters due to the size of the training corpus.

The results achieved by our system in Subtask
B are shown in Table 2. The measures considered
were the same as in Subtask A.

The scores achieved in all measures are better
than those obtained in task A. Perhaps, this sub-
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Subtask B English Arabic
ρ 0.766 (17/23) 0.721 (2/4)

FPN1 0.773 (16/23) 0.724 (2/4)

Acc 0.790 (13/23) 0.734 (2/4)

Table 2: Results for Subtask B: Tweet classifica-
tion according to a two-point scale, English and
Arabic.

task is easier because only two classes are consid-
ered. But, compared with the other participants,
our system ranked lower in this subtask. We think
this is because no information of the topic was in-
cluded in the model. For this subtask, the behavior
of the system for both languages is similar.

3.3 Subtask C: Tweet classification according
to a five-point scale

In this subtask, given a message and a topic, par-
ticipants must classify the message on a five-point
scale towards that topic. As in Subtask B, we did
not include topic information to the model. Our
model was an extension of the generic model, with
two convolutional layers and two max pooling lay-
ers in each CRNN. For the Arabic version, we
used the generic model with less parameters be-
cause of the available data.

The results achieved by our system in Subtask C
are shown in Table 3. The measure used to range
the participants was macroaveraged Mean Abso-
lute Error (MAEM ). An extension of macroav-
eraged recall for ordinal regression (MAEµ) was
also considered.

Subtask C English Arabic
MAEM 0.806 (7/15) 1.264 (2/2)

MAEµ 0.586 (11/15) 0.787 (2/2)

Table 3: Results for Subtask C: Tweet classifica-
tion according to a five-point scale, English and
Arabic.

For the English language, our system achieved
the 7th position (0.806), with big difference re-
spect to the team that obtained the best results
(0.481). Once again, not including information
about the topic could be decisive in the perfor-
mance of the system.

3.4 Subtask D: Tweet quantification
according to a two-point scale

Subtask D consists of tweet quantification in a
two-point scale. Given a set of tweets about a
given topic, participants must estimate the distri-
bution of the tweets across two-point scale (posi-
tive and negative). We used the output of Subtask
B to estimate, by maximum likelihood, the distri-
bution of the tweets.

The results achieved by our system in Subtask D
are shown in Table 4. The measure used to range
the participants was Kullback-Leibler Divergence
(KLD). Two additional measures were also con-
sidered: absolute error (AE) and relative absolute
error (RAE).

Subtask D English Arabic
KLD 1.060 (14/15) 1.183 (3/3)

AE 0.593 (15/15) 0.537 (3/3)

RAE 7.991 (15/15) 11.434 (3/3)

Table 4: Results for Subtask D: Tweet quantifica-
tion according to a two-point scale, English and
Arabic.

We can partially explain these poor results due
to the simplicity of the method used to estimate
the probability distribution and because the output
of Subtask B also included errors.

3.5 Subsection E: Tweet quantification
according to a five-point scale

In a similar way that Subtask D, Subtask E was a
tweet quantification task, but in a five-point scale.
For this subtask, we used the output of Subtask C
to estimate, by maximum likelihood, the distribu-
tion of the tweets.

The results achieved by our system in Subtask
E are shown in Table 5. The measure used to
range the participants was Earth Mover’s Distance
(EMD).

Subtask E English Arabic
EMD 0.306 (4/12) 0.564 (2/2)

Table 5: Results for Subtask E: Tweet quantifica-
tion according to a five-point scale, English and
Arabic.

Our system achieved the 4th position (0.306) for
English, with slight difference respect to the first
system (0.245).
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4 Conclusions

In this work, we have presented the system devel-
oped by ELiRF-UPV team for participating in the
task 4 of SemEval2017. We used a general system
with small modifications to participate in all the
subtasks. The system was based on the use of con-
volutional and recurrent neural networks and the
combination of general and specific word embed-
dings with polarity lexicons. The results achieved
by our system were competitive in many subtasks.

As future work, we plan to study some prob-
lems not addressed in this work such as tackle with
the imbalance problem, address tweet quantifica-
tion problem properly, add topic information in the
model for B and C subtasks, and consider addi-
tional resources for tweet representation.
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Abstract

This paper describes the XJSA System
submission from XJTU. Our system was
created for SemEval2017 Task 4 – subtask
A which is very popular and fundamental.
The system is based on convolutional
neural network and word embedding. We
used two pre-trained word vectors and
adopt a dynamic strategy for k-max
pooling.

1 Introduction

Several years ago, the typical approaches to
sentiment analysis of tweets were based on
classifiers trained using several hand-crafted
features, in particular lexicons of words with an
assigned polarity value. About since 2014 the
deep neural network methods have got state-of-
the-art results in many NLP tasks, especially in
sentiment classification. The work of Harvard
NLP group in 2014 and Kalchbrenner’s work in
2014 have suggested that convolutional neural
network and word embedding play important
roles in this field. General word embedding has
got excellent results. If we can embed sentiment
information in vectors, we will get better results.
There are some open word vectors on the web
already such as Word2Vec (Mikolov et al., 2013),
Glove (Pennington et al., 2014), SSWE (Tang et
al., 2014). In our system we use Word2Vec and
SSWE at the same time.
Deep learning models have achieved excellent
results in computer vision and speech recognition
in recent years. In the field of natural language
processing, much work with deep learning
methods has involved learning word vectors

representations for their own task or problem
(Bengio et al., 2003; Mikolov et al., 2013,
Collobert C&W et al., 2011).The others exploit
the open word vectors which was mentioned
above.Word vectors is a transformation of the
feature of letter,word,sentence and paragraph or
even text. It’s a lower dimensional, dense and
continuous vectors. In this vector, the words have
similar syntactic are close – in Euclidean or cosine
distance in the vector space. So one can study and
compare the syntactic functionality between
different words via word vectors.
Convolutional neural network (CNN) utilize

layers with convolutional filters that are applied to
local features (LeCun et al., 1998). CNN
originally invented for computer vision, recently
CNN models have achieved remarkably results in
many natural language processing problem, such
as sentence modeling (Kalchbrenner et al., 2014),
semantic parsing (Yih et al., 2014), sentiment
classification (kim et al., 2014) and other
traditional natural language processing
tasks(Collobert C&W et al., 2011).
Our system was inspired by the work (kim et

al., 2014) and another work (Tang et al., 2014). In
the aspect of CNN, we use a simple 3 layers CNN
to automatic extract features. In the aspect of pre-
trained vectors, we use the Word2Vec and SSWE
to filter our training set to get a proper input for
CNN. The reason that we use the vectors trained
by Mikolov et al. (2013) is the 100 billion words
of Google News and the vectors are publicly for
free. We use the SSWE vectors because the
vectors was especially trained for sentiment
classification by Tang et al (2014). SSWE
contains sentiment information which is not in
word vectors trained by Mikolov.
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2 Background

As is shown above,traditional methods typically
model the syntactic context of words but ignore
the sentiment information of text. As a result,
words with opposite polarity are mapped into
close vectors, such as good and bad, just as
Word2Vec.So in our system,we use SSWE and
Word2Vec at the same time for word embedding,
SSWE first.
Tang et al.(2014) introduce SSWE model to

learn word embedding for Twitter sentiment
classification. In our task,We use the word vector
trained by uSSWE ,which captures the sentiment
information of sentences as well as the syntactic
contexts of words. uSSWE is illustrated in Figure1.
Given an original(or corrupted)n-gram and the

sentiment polarity of a sentence as the input,
SSWEu predicts a two-dimensional vector for
each input n-gram. t is the original n-gram, rt is the
corrupted n-gram.The two scalars ),( 10

uu ff stand
for language model score and sentiment score of
the input n-gram,where uf0 stands the

positive, uf1 the negative.
The training goal of SSWE are that (1) the

original n-gram should obtain a higher language
model score )(0 tf u than the corrupted n-gram

)(0
ru tf ,and (2) the sentiment score of original n-

gram )(1 tf u should be more consistent with the
gold polarity annotation of sentence than
corrupted n-gram )(1

ru tf .The loss function of
SSWEu is shown behind,

 ),(),( r
cw

r
u ttlossttloss 

),()1( r
us ttloss (1)

where ),( r
cw ttloss is the syntactic loss as given in

Equation 1, ),( r
us ttloss is the sentiment loss as

shown in Equation 2.The hyper-parameter ɑ
weights the two parts. )(ts is an indicator
function reflecting the sentiment polarity of a
sentence.

)()(1,0max(),( 1 tftttloss u
s

r
us 

))()( 1
ru

s tft (2)

3 Model

The architecture of our system shown in figure 2
is a simple 3 layers CNN just like the architecture
of Kim et al (2013). k

ix  is the k-
dimensional word vector corresponding to the i-th
word in the sentence. A sentence of length n is
described as

,...21:1 nn xxxx  (3)

Where⊕ is the concatenation operator. Then we
let jiix : stand for the concatenation of words

jiii xxx  ,...,, 1 . A convolutional filter hkw 
is applied to a window of h words to produce a
new feature. For example, a feature ic is

generated from a window of words 1: hiix by

)( 1: bxwfc hiii   (4)

where b is a bias term and f is a non-linear
function. This filter is applied to each possible
window of words in the sentence

},...,,{ :11:2:1 nhnhh xxx  to produce a feature map

],,...,,[ 121  hncccc (5)

Here 1 hnc . Then a max-over-time
pooling operation is applied just like Collobert
C&W et al. (2011).over the feature map and take
the maximum value }max{

^
cc 

4 Experimental Setup

We test our system on the following settings:

4.1 Hyper-parameters and Training

There are four models in Kim et al (2013):CNN-
rand,CNN-static,CNN-non-static,CNN-
multichannel.

Figure 1:The SSWEu model
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For all our experiments we use CNN-non-static:
A model with pre-trained vectors from SSWE and
wrd2vec.The pre-trained vectors are fine-tuned for
each task.

We use rectified linear units, filter windows (h)
of 3, 4, 5 with 100 feature maps each, dropout rate
(p) of 0.5, 2l constraint (s) of 3, and mini-batch
size of 50. These values were chosen via a grid
search on the dev sets.

4.2 Pre-trained Word Vectors

Initializing word vectors with those obtained from
an unsupervised neural language model is a
popular method to improve performance in the
absence of a large supervised training set
(Collobert C&W et al., 2011; Socher et al., 2011;
Iyyer et al., 2014). First we use SSWE (Tang et al.
2014) which is a word vector contains sentiment
information.We also use the publicly available
word2vec vectors which were trained on 100
billion words from Google News. The vectors
have dimensionality of 300 and were trained using
the CBOW architecture.Because the
dimensionality of vectors in SWEE is 50, so we
extended it to 300 dimension by padding the 250
dimension randomly.

4.3 Environment of experiment

The experiments were run on a linux server with
an nVIDIA GTX 1080 accelerated GPU.

5 Results

In order to compare the results of our system with
other better system’s results, here we show

enough results generated by our system and the
top one. The official submission achieved results
presented in Table 1, compared to the top scoring
system. We also list our detailed scores in Table 2

6 Conclusion

Our work based on the method with deep learning
neural network built on the top of word2vec and
SSWE. We can find if we exploit the sentiment
information in the pre-trained word vector we
would get better result. Our work and some
previous work mentioned in this paper show that
unsupervised pre-training of word vectors plays
an important role in deep learning for sentiment
analysis.

P R F1
Positive 0.5791 0.6748 0.5423
Negative 0.5655 0.5592 0.5065
Neutral 0.5264 0.4340 0.4962
AvgP = 0.557, AvgR = 0.556, AvgF1= 0.519
Overall score: 0.556

system AvegF1 AvegR Acc
BB_twtr 0.685 0.681 0.658
XJSA 0.519 0.556 0.575

Figure 2: Architecture of XJSA
system

Table 1: Official results of our submission
compared to the top one.

Table 2: Detailed scores of XJSA official
submission.
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Abstract 

We propose a sentiment analyzer for the 
prediction of document-level sentiments of 
English micro-blog messages from Twit-
ter. The proposed method is based on lexi-
con integrated convolutional neural net-
works with attention (LCA). Its perfor-
mance was evaluated using the datasets 
provided by SemEval competition (Task 
4). The proposed sentiment analyzer ob-
tained an average F1 of 55.2%, an average 
recall of 58.9% and an accuracy of 61.4%. 

1 Introduction 

Sentiment analysis is necessary to interpret the 
vast number of online opinions on social media 
platforms such as Twitter. This will allow gov-
ernments and corporations to manage public rela-
tions and policies effectively. Existing sentiment 
analyzers are based on naïve bayes, SVM, RNN 
(Irsoy, 2014) and in particular convolutional neu-
ral networks (CNNs) (Kim, 2014).  
   In order to improve on existing CNN based sen-
timent analyzer, lexicon embedding and attention 
embedding were integrated into the proposed sen-
timent analyzer. Lexicon embedding allows ex-
traction of sentimental score for each word and at-
tention embedding enables the global view of the 
sentence.  
   The proposed LCA was both trained and evalu-
ated using corpus from Twitter 2013 to 2016 pro-
vided by the SemEval-2017. Figure 1 shows the 
overview of the proposed sentiment analyzer. It 

consists of embedding, CNNs, concatenation, ful-
ly connected and softmax layer.  

 

2 Input Features & Architecture 

The proposed LCA consists of three input features  
(i) Word embeddings 
(ii) Lexicon embeddings 
(iii) Attention embeddings. 

 
 
 
 
 
 
 
 
 

 

Figure 1:  Architecture of proposed LCA. 
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Word embeddings are trained by implementation 
of word2vec using skip-gram (Mikolov, 2014) and 
negative sampling. The word embeddings are 
trained using an unlabeled corpus of 1.6M tweets 
from Sentiment 140 dataset with different dimen-
sions (50, 100, 200, 400). The dimensions of word 
embeddings are 𝑑𝑑 and the number of words in a 
document is 𝑛𝑛 
 
Lexicon embeddings are considered because they 
are useful features. Lexicon embeddings consist 
of set of words each paired with a score ranging 
from -1 to +1. Where a score of -1 represents a 
negative sentiment and +1, a positive sentiment. 
The lexicon document corresponding to each 
word is 𝑠𝑠𝑙𝑙 ∈ ℝ𝑛𝑛×𝑒𝑒 , where 𝑒𝑒 is the dimension of 
lexicon embeddings and it is set by the number of 
lexicon corpus. 
 
Attention embeddings are important for Deep 
Learning in terms of performance and explanation 
of models (Kelvin, 2015). CNN uses several fil-
ters which have length 𝑙𝑙. It considers 𝑙𝑙-gram fea-
tures, but it only takes local views into account 
not considering the global view of sentence. Sen-
timent analysis must consider transitional cases 
such as negation. While attention embeddings can 
capture keywords to improve sentiment analysis, 
it also considers the global view of sentence. In 
order to do so, CNN for attention embedding used 
1 as the length of filter. Then, it executes max 
pooling for each row of attention matrix. The out-
put of max pooing is an attention vector which has 
probabilities assigned to each word vector that has 
𝑑𝑑-dimension. 
 
 
The architecture of LCA consists of  

(i) a word and lexicon embedding layer,  
(ii) CNNs,  
(iii) a concatenation layer,  
(iv) a fully connected layer  
(v) and a softmax layer. 

 
Word and lexicon embedding layer transform 
input data into vector representation. The input to 
our model is a document, treated as a sequence of 
words. Instead of hand-crafted features, we used 
word2vec (w2v) to represent words to vectors. We 
also converted lexicons to vectors, containing sen-
timent score. The Input document matrix is 𝑠𝑠 ∈

ℝ𝑛𝑛×𝑑𝑑 where 𝑛𝑛 is the number of words in a docu-
ment. 
 
Convolutional neural networks are effective for 
extracting high level features. We modified the 
LCA architecture of Shin (2016). The proposed 
LCA consists of two layer CNNs with a nonline-
arity, max pooling layers, a concatenation layer 
and a softmax classification layer with respect to 
the word embedding layer. The architecture of the 
proposed LCA was chosen empirically. The doc-
ument matrix 𝑠𝑠  is convolved by the filter 𝑐𝑐 ∈
ℝ𝑙𝑙×𝑑𝑑, where 𝑙𝑙 is the length of filters. In convolv-
ing lexicon embeddings by the filter, we used the 
separate convolution approach of Shin (2016). 
 
Concatenation layer consists of 1-layer CNN, 2-
layer CNN, lexicon and attention outputs. We de-
liberately designed our model so that the output of 
1-layer CNN captures low level feature for getting 
additional information. The dimension of concat-
enation layer is 𝐷𝐷𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 ∈ ℝ2𝑚𝑚+𝑑𝑑×𝑛𝑛𝑙𝑙, where 𝑚𝑚 is 
the number of filters with the same length and 𝑛𝑛𝑙𝑙 
is the number of filters with different lengths.  
 
Fully connected layer (FC) is used to create non-
linear combinations with rectified linear unit 
(ReLU) (Nair and Hinton, 2010). The input of ful-
ly connected layer is the output of concatenation 
layer. The dimension of weight is  𝑊𝑊𝑓𝑓𝑐𝑐 ∈
ℝ𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐×𝑛𝑛𝑐𝑐  and bias is 𝑏𝑏𝑓𝑓𝑐𝑐 ∈ ℝ𝑛𝑛𝑐𝑐 , where 𝑛𝑛𝑐𝑐  is 
the number of class. 
 
Softmax layer is used to convert the output of FC 
layer into classification probabilities. In order to 
compute the probabilities, softmax function was 
used: 
 

softmax(𝑥𝑥𝑖𝑖) =  
𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑖𝑖𝑖𝑖
 

 
The output dimension is 3 because our model 
classified tweets into 3 classes (positive, neutral 
and negative). 
 
Regularization is achieved by 𝐿𝐿2 regularizer. In 
order to prevent overfitting from our CNN model, 
dropout is used at the output of CNN and fully 
connected layer. To do this, each node is randomly 
removed. We also apply 𝐿𝐿2  regularization to the 
cost function by adding the term 𝜆𝜆‖𝜃𝜃‖22, where 𝜆𝜆 
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is the regularization strength and 𝜃𝜃 ∈ Θ  are the 
fully connected neural network parameters.  
 

3. Data and Preprocessing  

Tweets are used as the training and development 
dataset from Twitter 2013 to 2016 (The training 
and development dataset were provided by the 
SemEval-2017 competition.) In addition, senti-
ment 140 corpus are added for training word em-
bedding.  
 
Lexicons in the proposed LCA have six types of 
sentiment lexicons (that include sentimental 
score). Some lexicons only contain positive and 
negative sentiment polarities. Sentiment scores 
were normalized to the range from -1 to +1 be-
cause some lexicons have different scales. If some 
words are missing in a lexicon, we assigned neu-
tral sentiment score of 0.  
 

• SemEval-2015 English Twitter Sentiment 
Lexicon (2015). 

• National Research Council Canada (NRC) 
Hashtag Affirmative and Negated Context 
Sentiment Lexicon (2014).  

• NRC Sentiment140 Lexicon (2014).    

• Yelp Restaurant Sentiment Lexicons (2014). 

• NRC Hashtag Sentiment Lexicon (2013). 

• Bing Liu Opinion Lexicon (2004).    

 

The following preprocessings were applied to eve-
ry tweets and lexicon in the corpus: 

 
• Lowercase: all the characters in tweets and 

lexicons are converted in lowercase. 

• Tokenization: all tweets were tokenized us-
ing tokenizer. 

• Cleaning: URLs and ‘#’ token in hashtag 
were removed to reduce sparse representa-
tion.  

 

4. Training and Hyperparameters 
The parameters of our model were trained by Ad-
am (Diederik et al., 2014) optimizer. To anneal the 
learning rate over time, the learning rate were cal-
culated by exponential decay. The following con-
figuration is our hyperparameters: 

 
• Embedding dimension = (50, 100, 200, 400) 

for both word and attention embeddings. 

• Filter size = (2,3,4,5,6) for capturing more 
𝑛𝑛-gram features. 

• Number of filters = (128) for convolving 
the document matrix 𝑠𝑠 combined with lexi-
con and attention embeddings. 

• Batch size = (64) for calculating losses to 
update weight parameters. 

• Number of epochs = (80) for training our 
models. 

• Starter learning rate = (0.0001) for updating 
weight parameters. 

• Exponential decay steps and rate = (3000, 
0.96) for annealing the learning rate. 

• Dropout rate = (0.5) for avoiding overfitting 
from the last layer of CNN and FC layer 

• 𝐿𝐿2  Regularization lambda = (0.005) for 
avoiding overfitting from FC layer 

 

 

Corpus  Total Positive Negative Neutral 
Train 2013 9,684 3,640 1,458 4,586 
Dev 2013 1,654 575 340 739 
Train 2015 489 170 6 253 
Train 2016 6,000 3,094 863 2,043 
Dev 2016 1,999 843 391 765 
DevTest 2016 2,000 994 325 681 
Test 2013 3,547 1,475 559 1,513 
Test 2014 1,853 982 202 669 
Test 2015 2,390 1,038 365 987 
Test 2016 20,632 7,059 3,231 10,342 
TwtSarc 2014 86 33 40 13 
SMS 2013 2,094 492 394 1,208 
LiveJournal 
2014 

1,142 427 304 411 

Table 1:  Overview of datasets 
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5. Evaluation 
The evaluation metric consisted of  

(i) macro-averaged F1 measure,  
(ii) recall  
(iii) and accuracy in the competition 

across the positive, negative and 
neutral classes.  

 

 
 

 
 

6. Results 

The result of competition showed that our model 
was overfitting because our experimental results 
were higher than the actual result. In our experi-
ment, lexicon and word embedding feature 
showed that it could improve our model. Table 2 
presents the various dimensions of word embed-
dings that could change performance which is 
high when the dimension of word embedding is 
100. Table 3 shows lexicons as the feature more 
important than word2vec because the overall per-
formances of model with lexicon were higher than 
the overall performance with word2vec. Since the 
sentiment score of missing words (such as 0; neu-
tral) has been replaced, the lexicon feature is not 
perfect. Nonetheless, lexicon is still an important 
and essential feature for sentiment analysis.  
 

7. Conclusion 

This paper proposes the integration of lexicon 
with attention on CNN as an approach to senti-
ment analysis. We considered various features to 
capture improved representations by concatenat-
ing the output of 1-layer and 2-layer CNN. Lexi-
con and word embedding showed that these fea-

tures improved the model performance signifi-
cantly. 
   Additional enhancements are viable by gather-
ing more training dataset or lexicon dataset with 
distant supervision (Deriu et al, 2016), because it 
will extend the coverage of our model. Further-
more, in the aspect of models, the combined 
CNN-CRF model, recursive neural network and 
ensembles of multi-layer CNN can be applied. 
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Abstract

This paper describes our approach for
SemEval-2017 Task 4 - Sentiment Anal-
ysis in Twitter (SAT). Its five subtasks are
divided into two categories: (1) sentiment
classification, i.e., predicting topic-based
tweet sentiment polarity, and (2) sentiment
quantification, that is, estimating the senti-
ment distributions of a set of given tweets.
We build a convolutional sentence classifi-
cation system for the task of SAT. Official
results show that the experimental results
of our system are comparative.

1 Introduction

With the rapid growth of social media such as
Twitter, sentiment classification towards the user
generated texts has attracted increasing research
interest. The objective of sentiment classification
is identifying the sentiment of a text into binary
polarity (Positive vs. Negative) or single-label
multi-class (e.g., Very positive, Positive, Neutral,
Negative, Very negative). Feature representation
is one of key points for this kind of classification,
which generally falls into two categories: (1) tra-
ditional feature engineering (Liu, 2012; Moham-
mad et al., 2013), such as sentiment lexicon, n-
grams, dependency triple, etc. (2) deep learning
methods (Zhao et al., 2015; Yang et al., 2016),
which use exquisitely designed neural network to
encode input texts and to get text feature represen-
tation. Recently, deep learning approaches emerge
as powerful computational models for text senti-
ment classification, and have achieved new state-
of-the-art result in some datasets.

SemEval-2017 provides a universal platform for
researchers to explore the task of twitter sentiment
analysis. In this paper, we explore Task 4 (Rosen-
thal et al., 2017), which includes five subtasks:
subtask A, B and C are related to the task of sen-

timent classification, and subtask D and E are re-
lated to sentiment quantification (that is distribu-
tions of sentiments). Considering the length lim-
itations of tweets, we view the subtasks of SAT
as sentence-level sentiment analysis. We design a
convolutional neural network for topic-based sen-
timent classification.

2 System Description

In this section, we describe the neural network ar-
chitecture of our system. As shown in Figure 1,
our system consists of six layers, an input layer, a
convolutional layer, a max-pooling layer, a topic
embedding layer, a concatenate layer, and an out-
put layer.

Input layer. A tweet text can be denoted as
a sentence sequence x with n words, x =
[w1, w2, · · ·, wi, · · ·, wn]. To obtain word vector
of word wi , we look-up word embedding ma-
trix E, where e(wi) ∈ Rd, E ∈ R|V |×d, |V | is
the vocabulary size. Then, we get an input matrix
X = [e(w1); · · ·; e(wn)], where X ∈ Rn×d.

Convolution layer. The convolution action has
been used to capture n-gram information (Col-
lobert et al., 2011), and n-gram has been shown
useful for twitter sentiment analysis (Dos Santos
and Gatti, 2014). In this layer, a set of m filters is
applied to a sliding window of length h over each
tweet matrix X, and a feature ci ∈ Rn−h+1 is
generated from a window of words e(w)i:i+h by:

ci = f(Fk · e(w)i:i+h + b) (1)

where f is an activation function, and b ∈ R is a
bias term. The vectors c = [c1 ⊕ · · · ⊕ cm] are
then aggregated over all m filters into a feature
map matrix. We consider m is 3, and h is chosen
in {3, 4, 5}.
Max-pooling layer. In order to get a fixed di-
mension vector, we exploit pooling techniques to
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Figure 1: The framework of the simple CNN for topic-based sentiment classification.

get sentence representation S ∈ Rm, and we
adopt max pooling function.

Topic embedding layer. To make the best use of
topic information, we propose to learn an embed-
ding vector ti for each topic:

ti = tanh(W (1)avg(e(w1), · · · , e(wk))) (2)

where w1, · · · , wk are topic words, ti ∈ Rs,
avg(·) is a element average function, and W (1) ∈
Rs×d.

Concatenation layer. We use a concatenation
layer to get tweet representation which can be
formed as:

St = tanh(W (2) [S⊕ ti]) (3)

where ⊕ is the concatenation operator, W (2) ∈
Rs×(s+m).

Output layer. Finally, we use a softmax layer
to get the class probability:

Pi =
exp(W T

yi
St(i) + byi)∑C

j=1 exp(W T
j St(i) + bj)

. (4)

Where St(i) denotes the tweet representation with
sentiment class yi. Wj is jth column of parameter
W ∈ R2s×C and C is number of categories.

Training process. The training goal is to min-
imize the cross-entropy loss over the training set
T :

L(θ) = −
∑
x∈T

C∑
i=1

P gi (x) · logPi(x) +
λ

2
‖ θ ‖2

(5)
where C is the number of classes, x represents
a tweet, θ is the model parameters, P g(x) is the
goal probability, which has the same dimension as
the number of classes, and only the corresponding
goal dimension is 1, with all others being 0.

We use mini-batch gradient descent algorithm
to train the network, with the batch size is 32
and a learning rage of 0.01. We also use
Adadelta (Zeiler, 2012) to optimize the learn-
ing of θ, which is a effective method to train
the neural networks. We initialize all the matrix
and vector parameters with uniform samples in(
−√6/(r + c),+

√
6/(r + c)

)
(Glorot and Ben-

gio, 2010), where r is the rows numbers , and c is
the column numbers.

Pre-training Word Embedding We adopted
the word2vec tool1 to obtain word embedding with

1https://code.google.com/archive/p/
word2vec
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the dimensionality of 100, trained on 238M tweet
from Sentiment1402.

3 Experiments

3.1 Datasets

Since only tweet IDs are provided by organizers,
Some tweets are no longer available on Twitter due
to tweets miss or system errors. Subtask B and D
share one dataset, while subtask C and E share the
other dataset. An overview statistics of the data
available for download are given in Tables 1, 2,
and 3, respectively.

dataset positive neutral negative total

train

2013train 3,632 4,564 1,453 9,649
2013test 1,473 1,513 559 3,545
2015test 1,033 983 363 2,379
2016train 3,078 2,036 861 5,975
2016dev 842 765 390 1,997
2016test 7,033 10,302 3,221 20,556

dev

2013dev 573 737 339 1,649
2014test 982 669 202 1,853
2015train 170 252 66 488
2016devtest 994 681 323 1,998

test 2017test 2,375 5,937 3,972 12,284

Table 1: Statistics of datasets for subtask A, En-
glish. The data was divided into train, dev and test
sets.

dataset positive negative total topics

train

2015train 144 56 200 44
2016train 3,579 754 4,333 60
2016dev 985 339 1,324 20
2016test 8,202 2,333 10,535 100

dev
2015test 863 260 1,123 137
2016devtest 1,417 264 1,417 20

test 2017test 2,458 3,695 6,153 125

Table 2: Statistics of datasets for subtask B and D,
English. The data was divided into train, dev and
test sets.

dataset -2 -1 0 1 2 total topics

train
2016train 87 665 1,651 3,139 433 5,975 60
2016dev 43 296 675 930 53 1,997 20
2016test 136 2,191 10,034 7,814 381 20,556 100

dev 2016devtest 31 232 582 1,005 148 1,998 20
test 2017test 177 3,505 6,149 2,323 130 12,284 125

Table 3: Statistics of datasets for subtask C and E,
English. The data was divided into train, dev and
test sets.

2http://help.sentiment140.com/
for-students/

3.2 Tweet Preparation.
We preprocessed all of our datasets as follows:

• The tweet text was lowercased.

• URLs and mentioned usernames were substi-
tuted by replacement tokens< LINK > and
< MENTION > respectively. We also
map numbers to a generic NUMBER to-
ken.

• All words that appear less than 5 times in the
training were removed.

• Recovered the elongated words to their orig-
inal forms, e.g., “goooooood “ to “good“.

• The NLTK3 twitter tool was employed to to-
kenize tweets.

3.3 Result on Test Data
Subtask A. For this subtask, there is no topic in-
formation, so we removed the Concatenate and
Topic Embedding parts in Figure 1. We report the
result of our system in Table 4.

Metric Our score Best score Rank
ρ 0.595 0.681 23/37
FPN1 0.599 0.677 24/37
Acc 0.555 0.651 24/37

Table 4: Our score and rank compared to the
best team’s result for Subtask A “Message Polarity
Classification“ , English.

As shown in Table 4, we obtained poor per-
formance in Subtask A. In order to further
analysis our system performance on three-point
scale(positive, negative, neutral), we show the de-
tail results in Table 5

Our system did not distinguish the positive and
negative class, but it performed well in neutral
class. The unbalanced train data distribution may
influence our system: 49%(positive), 31%(neu-
tral) , 20%(negative).

Subtask B and C. The results of our system for
Subtasks B and C are reported in Table 6 and Ta-
ble 7, individually. For these two subtasks, the or-
ganizers make available alternative metrics. We
found that the choice of the scoring metric influ-
ences results considerably, for example, in Sub-
task C, our system ranked second byMAEµ while
ranked 8th in MAEM .

3http://nltk.org/
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Team P R F1

EICA
+ 0.5086 0.6371 0.5656
- 0.6137 0.4907 0.5453
= 0.6351 0.6561 0.6454

DataStories
+ 0.6259 0.7023 0.6619
- 0.5929 0.8291 0.6914
= 0.7471 0.5115 0.6073

BB twtr
+ 0.6851 0.6522 0.6682
- 0.5848 0.8776 0.7019
= 0.7518 0.5144 0.6109

Table 5: More detail metric in task A. EICA is
our team name, DataStories and BB twtr are rank
1 teams which have same ρ score. +: positive. -:
negative. =: neutral

Metric Our score Best score Rank
ρ 0.790 0.882 14/23
FPN1 0.775 0.890 14/23
Acc 0.777 0.897 16/23

Table 6: Our score and rank compared to the best
team’s result for Subtask B “Tweet classification
according to a two-point scale“ , English.

4 Conclusion

In this paper, we used a simple convolution neu-
ral network to accomplish sentiment analysis to-
wards sentence level (i.e., subtask A) and topic
level (i.e., subtask B, C), without using any user
information. In future work, we will focus on de-
veloping advanced neural network to model sen-
tence with the aid of user information. we also
would like to ensemble deep leaning based clas-
sifier with handcrafted features based classifier to
improve the system performance, in the next Se-
mEval competition.
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Abstract 

This paper describes the approach we used for 

SemEval-2017 Task 4: Sentiment Analysis in Twitter. 

Topic-based (target-dependent) sentiment analysis has 

become attractive and been used in some applications 

recently, but it is still a challenging research task. In 

our approach, we take the left and right context of a 

target into consideration when generating polarity 

classification features.  We use two types of word 

embeddings in our classifiers: the general word 

embeddings learned from 200 million tweets, and sen-

timent-specific word embeddings learned from 10 

million tweets using distance supervision.  We also 

incorporate a text feature model in our algorithm. This 

model produces features based on text negation, tf.idf 

weighting scheme, and a Rocchio text classification 

method. We participated in four subtasks (B, C, D & 

E for English), all of which are about topic-based 

message polarity classification. Our team is ranked #6 

in subtask B, #3 by MAE
u
 and #9 by MAE

m
 in sub-

task C, #3 using RAE and #6 using KLD in subtask 

D, and #3 in subtask E. 

1 Introduction 

There have been many studies on message or 

sentence level sentiment classification (Go et al., 

2009; Mohammand et al., 2013; Pang et al., 

2002; Liu, 2012; Tang et al., 2014), but there are 

few studies on target-dependent, or topic-based, 

sentiment prediction (Jiang et al., 2011; Dong et 

al., 2014; Vo and Zhang, 2015). A target entity 

in a message does not necessarily have the same 

polarity type as the message, and different enti-

ties in the same message may have different po-

larities. For example, in the tweet “Linux is bet-

ter than Windows”, the two named entities, 

Linux and Windows, will have different senti-

ment polarities. In this paper, we describe our 

approach for the subtask B, C, D & E of 

SemEval-17 Task 4: Sentiment Analysis in Twit-

ter (Sara Rosenthal and Noura Farra and Preslav 

Nakov, 2017).  All the four subtasks are on top-

ic-based message sentiment classification.  Task 

B and C are about topic-based message polarity 

classification. Given a message and a topic, in 

task B, we classify the message on a two-point 

scale: positive or negative sentiment towards the 

topic. And in task C, we classify the message on 

a five-point scale: sentiment conveyed by the 

tweet towards the topic on a five-point scale. 

Task D and E are about Tweet quantification. 

Given a set of tweets about a given topic, in task 

D, we want to estimate the distribution of the 

tweets across two-point scale - the positive and 

negative classes, and in task E, we estimate that 

on a five-point scale - the five classes of a five-

point scale. Our approach uses word embeddings 

(WE) learned from general tweets, sentiment 

specific word embeddings (SSWE) learned from 

distance supervised tweets, and a weighted text 

feature model (WTM).  

Learning features directly from tweet text has 

recently gained lot of attention. One approach is 

to generate sentence representations from word 

embeddings. Several word embedding generation 

algorithms have been proposed in previous stud-

ies (Collobert et al., 2011; Mikolov et al., 2013). 

Using the general word embeddings directly in 

sentiment classification is not effective, since 

they mainly model a word’s semantic context, 

ignoring the sentiment clues in text. Therefore, 

words with opposite polarity, such as worst and 

best, are mapped onto vectors embeddings that 

are close to each other in some dimensions. Tang 

et al. (2014) propose a sentiment-specific word 

embedding (SSWE) method for sentiment analy-

sis, by extending the word embedding algorithm.
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SSWE encodes sentiment information in the word 

embeddings.  

In our approach, we incorporate WE, SSWE 

and a weighted text feature model (WTM) togeth-

er.  The WTM model generates two types of fea-

tures. The first type is a negation feature based on 

the negation words in a tweet. The second set of 

features is created by computing the similarity be-

tween the tweet and each of the polarity types, us-

ing cosine similarity and the tf.idf word weighting 

scheme. Each polarity category is represented by a 

pseudo centroid tweet learned from training data.  

This is very similar to the Rocchio text classifier 

(Christopher et al., 2008), but here all the similari-

ty values with all the polarity types are used as 

features, and fed to the classification algorithm. 

The rationale behind the second set of features is 

that the similarity values with the different polari-

ty types will have some correlations, and using all 

of them as features will provide more information 

to the classifier. For example, a positive tweet 

usually will have a higher similarity value with 

neutral type than with the negative type. This will 

provide an additional signal to the classifier. 

The context of an entity will affect its polarity 

value, and usually an entity has a left context and 

also a right one, unless it is at the beginning or 

end of a message.  Both the context information 

and the interaction between these two contexts 

are included in the classification features of our 

approach.  Our approach uses both SSWE and 

WE to represent these contexts, since WE and 

SSWE complement each other, and our experi-

ment shows that using both increases the accura-

cy by more than 6%, compared to using only one 

of them. 

In the following sections, we present the re-

lated studies, our methodology and the experi-

ments and results for subtask B, C, D and E.  

2 Related Work 

Message Level Sentiment: Traditional sentiment 

classification approaches use sentiment lexicons 

(Mohammad et al., 2013; Thelwall et al., 2012; 

Turney, 2002) to generate various features. Pang 

et al. treat sentiment classification as a special 

case of text categorization, by applying learning 

algorithms (2002). Many studies follow Pang’s 

approach by designing features and applying dif-

ferent learning algorithms on them (Feldman, 

2013; Liu, 2012). Go et al. (2009) proposed a dis-

tance supervision approach to derive features from 

tweets obtained by positive and negative emo-

tions. Some studies (Hu et al., 2013; Liu, 2012; 

Pak and Paroubek 2010) follow this approach. 

Feature engineering plays an important role in 

tweet sentiment classification; Mohammad et al. 

(2013) implemented hundreds of hand-crafted fea-

tures for tweet sentiment classification. 

Deep learning has been used in the sentiment 

analysis tasks, mainly by applying word 

embeddings (Collobert et al., 2011; Mikolov et al., 

2013). Learning the compositionality of phrase 

and sentence and then using them in sentiment 

classification is also explored by some studies 

(Hermann and Blunsom, 2013; Socher et al., 

2011; Socher et al., 2013). Using the general word 

embeddings directly in sentiment classification 

may not be effective, since they mainly model a 

word’s semantic context, ignoring the sentiment 

clues in text. Tang et al. (2014) propose a senti-

ment-specific word embedding method by extend-

ing the word embedding algorithm from 

(Collobert et al., 2011) and incorporating senti-

ment data in the learning of word embeddings.  

Target-dependent Sentiment: Jiang et al. 

(2011) use both entity dependent and independ-

ent features generated based on a set of rules to 

assign polarity to entities. By using POS features 

and the CRF algorithm, Mitchell et al. (2013) 

identify polarities for people and organizations in 

tweets. Dong et al. (2014) apply adaptive recur-

sive neural network on the entity level sentiment 

classification. These two approaches use syntax 

parsers to parse the tweet to generate related fea-

tures. In our approach, we consider both the left 

and right contexts of a target when generating 

features. 

3 Methodology 

In this section, we describe the three main com-

ponents used in our method, the WE, SSWE and 

WTM models, and how they are integrated to-

gether.  

3.1 Word Embedding  

Word embedding is a dense, low-dimensional 

and real-valued vector for a word. The 

embeddings of a word capture both the syntactic 

structure and semantics of the word. Traditional 

bag-of-words and bag-of-n-grams hardly capture 

the semantics of words. Word embeddings have 

been used in many NLP tasks. The C&W model 

(Collobert et al., 2011) and the word2vec model 

(Mikolov et al., 2013), which is used in this 
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study to generate the WE embeddings, are the 

two popular word embedding models.  

The embeddings are learned to optimize an 

objective function defined on the original text, 

such as likelihood for word occurrences. One 

implementation is the word2vec from Mikolov et 

al. (2013). This model has two training options, 

continuous bag of words and the Skip-gram 

model. The Skip-gram model is an efficient 

method for learning high-quality distributed vec-

tor representations that capture a large number of 

precise syntactic and semantic word relation-

ships. This model is used in our method and here 

we briefly introduce it. 

The training objective of the Skip-gram mod-

el is to find word representations that are useful 

for predicting the surrounding words in a sen-

tence or a document. Given a sequence of train-

ing words W1, W2, W3, . .,WN , the Skip-gram 

model aims to maximize the average log proba-

bility 
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where m is the size of the training context. A 

larger m will result in more semantic information 

and can lead to a higher accuracy, at the expense 

of the training time.  Generating word 

embeddings from text corpus is an unsupervised 

process. To get high quality embedding vectors, 

a large amount of training data is necessary. Af-

ter training, each word, including all hashtags in 

the case of tweet text, is represented by a low-

dimensional, dense and real-valued vector.  

3.2 Sentiment-Specific Word Embedding 

The C&W model (Collobert et al., 2011) learns 

word embeddings based on the syntactic contexts 

of words. It replaces the center word with a ran-

dom word and derives a corrupted n-gram. The 

training objective is that the original n-gram is 

expected to obtain a higher language model score 

than the corrupted n-gram. The original and cor-

rupted n-grams are treated as inputs of a feed-

forward neural network, respectively.  

SSWE extends the C&W model by incorpo-

rating the sentiment information into the neural 

network to learn the embeddings; it captures the 

sentiment information of sentences as well as the 

syntactic contexts of words (Tang et al., 2014). 

Given an original (or corrupted) n-gram and the 

sentiment polarity of a tweet as input, it predicts 

a two-dimensional vector (f0, f1), for each input 

n-gram, where (f0, f1) are the language model 

score and sentiment score of the input n-gram, 

respectively. The training objectives are twofold: 

the original n-gram should get a higher language 

model score than the corrupted n-gram, and the 

polarity score of the original n-gram should be 

more aligned to the polarity label of the tweet 

than the corrupted one. The loss function is the 

linear combination of two losses - loss0 (t, t’) is 

the syntactic loss and loss1 (t, t’) is the sentiment 

loss: 

  loss (t, t’) = α * loss0 (t, t’) + (1-α) * loss1 (t, t’) 

The SSWE model used in this study was trained 

from massive distant-supervised tweets, collect-

ed using positive and negative emotions.  

3.3  Weighted Text Feature Model (WTM) 

WTM features: This model only uses the train-

ing data set to generate features; it does not use 

any external lexicon or other data sources, such 

as embeddings learned from millions of tweets. 

The feature generation process is simple, fast, 

and effective. This model generates two types of 

features for each training or test tweet: 

 Negation feature - the number of negation 

words in the tweet. This is different from 

other studies that add a prefix to all the 

words that follow the negation word, e.g. 

NOT xxx becomes NOT_xxx. We use the 

following negation words: no, not, cannot, 

rarely, seldom, neither, hardly, nor, n’t, 

never 

 Features corresponding to the cosine 

similarity values between this tweet and 

the pseudo centroid tweet of each of the 

polarity types. 
Pseudo centroid tweet: The pseudo centroid 

tweet for each sentiment type is built from train-

ing data, via the following steps: 

 Tweet text is pre-processed as follow:  

o all URLs and mentions are removed 

o dates are converted to a symbol 

o all ratios are replaced by a special 

symbol 

o integers and decimals are normalized 

to two special symbols 

o all special characters, except hashtags, 

emoticons, question marks and excla-

mations, are removed 

o negation words that are already used in 

the negation features are removed  

 A tf.idf value is calculated for each term in 

a polarity category. For tf.idf, each catego-
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ry is treated as a document, and tf is nor-

malized by its category size.  

 A pseudo centroid tweet is generated for 

each sentiment type. We define a centroid 

as a vector containing the tf.idf value for 

each term in this category.  Although we 

call it a “tweet”, its length is much longer 

than a regular tweet.   

Similarity value: For each training or test tweet, 

its similarity with a sentiment type is calculated 

as follows: 

 The tweet text is pre-processed using the 

same steps mentioned above 
 A tf.idf value is calculated for each remain-

ing term 
 A cosine similarity is calculated between 

this tweet and each sentiment type. 

 

Figure 1. The features generated from different mod-

els. 

3.4 Feature Generation 

3.4.1 Features 

Given a tweet and the target entity, eight types of 

features are generated based on WE, SSWE, and 

WTM models.  They are integrated together to 

train the classifier. Figure 1 shows the eight 

types of features. Six types of features are gener-

ated from WE and SSWE embeddings for a tar-

get entity. Two types of features are generated 

from the WTM model. The red ones are SSWE 

embeddings, and the blue ones are WE 

embeddings. The subscript letter L and R refer to 

the left and right side of an entity, respectively. 

They are described below:  

WEL and WER: These are the WE embeddings 

for the text on the left side and right side of the 

target entity, respectively. In the four subtasks, 

occasionally, the given topic (target) is a para-

phrase of the actual target entity in the tweet text, 

and it is not easy to match these two. In this case, 

the whole tweet text is used for both the left and 

right contexts, and this case is handled in the 

same way when generating SSWEL and SSWER 

described below. 

SSWEL and SSWER: These are the SSWE 

embeddings for the text on the left side and right 

side of the target entity, respectively.  

WE and SSWE: these are the embeddings gen-

erated from the whole message text, which 

means they are entity independent features.  We 

use these two features to capture the whole mes-

sage, which reflects the interaction between the 

left and right sides of the entity. 

WTM features: It has two types of features: the 

negation feature and the features corresponding 

to the cosine similarity values between the tweet 

and the pseudo centroid tweet of each of the po-

larity types. We have described how to generate 

them in the previous section. 

These eight types of features together capture 

different types of information we are interested: 

the entity’s left and right contexts, the interaction 

of the two sides, the sentiment specific word em-

bedding information, the general word embed-

ding information, and the sentiment affected by 

negation terms.  

3.4.2 Text Representation from Term 

Embeddings 

There are different ways to obtain the representa-

tion of a text segment, such as a whole tweet or 

the left/right context of an entity, from word 

embeddings. In our approach, we use the concat-

enation convolution layer, which concatenates 

the layers of max, min and average of word 

embeddings, because this layer gives the best 

performance based in our pilot experiments.  
 

Subtask Metric, Score & Rank 

B 
ρ F1

PN
 Acc 

0.8346 0.8248 0.8278 

C 
MAE

μ
 MAE

m
 

0.5303 0.0.8429 

D 
RAE AE KLD 

0.9393 0.1096 0.0606 

E 
EMD 

0.2733 

 

Table 1. Evaluation result for subtask B, C, D & E. 

The subscript of each score is the rank of our ap-

proach by the corresponding metric for that task. 
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4 Experiments and Results 

4.1 WE Model Construction  
The tweets for building the WE model include 

tweets obtained through Twitter’s public stream-

ing API and the Decahose data (10% of Twitter’s 

streaming data) obtained from Twitter. Only 

English tweets are included in this study. Totally 

there are about 200 million tweets. Each tweet 

text is preprocessed to get a clean version, fol-

lowing similar steps described in the WTM mod-

el subsection, except the stop removal step. Stop 

words are not removed, since they provide im-

portant information on how other words are used. 

Totally, about 2.9 billion words were used to 

train the WE model. Based on our pilot experi-

ments, we set the embedding dimension size, 

word frequency threshold and window size as 

300, 5 and 8, respectively. There are about 1.9 

million unique words in this model. 

  

4.2 SSWE Model Construction 
The SSWE model for Twitter was trained from 

massive distant-supervised tweets (Tang et al., 

2014), collected using positive and negative 

emoticons, such as :), =), :( and :-(. A total of 10 

million tweets were collected, where 5 million 

contain positive emotions and the other 5 million 

contain negative ones. The embedding dimension 

size was set as 50 and the window size as 3. 

 

4.3 Data Set and Results for Task 4 

For subtask B and D, the sentiment classification 

and quantification based on a 2-point scale, the 

training data is from the related tasks of 

SemEval-2015 and SEmEval-2016. There are 

20,538 tweets, but the actual tweet texts are not 

provided, due to privacy concerns. So we 

crawled these tweets from Twitter’s REST API. 

However, we were unable to obtain all these 

tweets because some of them were already delet-

ed or not available due to authorization status 

change. To build our classifier, we split this data 

set into three parts: 70% as training data, 20% as 

development data and 10% for testing our classi-

fier. For these two subtasks, we applied several 

classification algorithms, such as SMO, 

LibLinear and logistic regression, to see which 

one performs the best. The result we reported is 

based on logistic regression, which performed 

the best. 

For subtask C and E, the sentiment classifica-

tion and quantification based on a 5-point scale, 

the training data is from the related tasks of 

SemEval-2016. There are 30,632 tweets, and 

similarly to subtask B and D, we downloaded the 

tweets from Twitter’s API and split them into 

three parts. The result we reported is based on 

SMO (Keerthi et al., 2001), which performed the 

best among several classifiers we tested. SMO is 

a sequential minimal optimization algorithm for 

training a support vector classifier. 

Table 1 shows the results of our approach for 

the four subtasks. It lists the scores and ranks of 

our team for all the performance metrics used for 

each subtask. The subscript of each score is the 

rank of our team using that metric for that sub-

task. 

The meanings of the measures used in Table 1 

are explained below: 

For task B: ρ is the macro-averaged recall, 

which is macro-averaged over the positive and 

the negative class. Accuracy and F1 measures are 

also used for subtask B. As subtask B is topic-

based, each metric is computed individually for 

each topic, and then the results are averaged 

across the topics to yield the final score. This is 

the same for all the measures used in task C, D 

and E, which are all topic based tasks. 

For task C: MAE
M

 is the macro-averaged mean 

absolute error, which is an ordinal classification 

measure. Note that MAE
M

 is a measure of error, 

not accuracy, and thus lower values are better.  

MAE
μ
 is an extension of macro-averaged recall 

for ordinal regression. More details about these 

two measures are described in (Baccianella et al., 

2009; Nakov et al., 2016a). 

For task D: KLD is the Kullback-Leibler Diver-

gence measure, a measure of error, which means 

that lower values are better. AE is the absolute 

error and RAE is the relative absolute error.  

For task E: Subtask E is an ordinal quantifica-

tion task. As in binary quantification, the goal is 

to compute the distribution across classes, as-

suming a quantification setup. EMD is Earth 

Mover’s Distance (Rubner et al., 2000), which is 

currently the only known measure for ordinal 

quantification. Like KLD and MAE, EMD is a 

measure of error, so lower values are better.  

5 Conclusion 

This paper describes the approach we used for 

subtask B, C, D and E of SemEval-2017 Task 4: 

Sentiment Analysis in Twitter.  We use two 

types of word embeddings in our classifiers: 

general word embeddings learned from 200 mil-

lion tweets, and sentiment-specific word 

embeddings learned from 10 million tweets using 

distance supervision.  We also incorporate a 
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weighted text feature model in our algorithm. 

Our team is ranked #6 in subtask B, #3 using 

MAE
u
 metric and #9 using MAE

m
 metric in sub-

task C, #3 using RAE and #6 using KLD in sub-

task D, and #3 in subtask E. 
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Abstract

In this paper we present two deep-learning
systems that competed at SemEval-2017
Task 4 “Sentiment Analysis in Twitter”.
We participated in all subtasks for En-
glish tweets, involving message-level and
topic-based sentiment polarity classifica-
tion and quantification. We use Long
Short-Term Memory (LSTM) networks
augmented with two kinds of attention
mechanisms, on top of word embeddings
pre-trained on a big collection of Twitter
messages. Also, we present a text process-
ing tool suitable for social network mes-
sages, which performs tokenization, word
normalization, segmentation and spell cor-
rection. Moreover, our approach uses no
hand-crafted features or sentiment lexi-
cons. We ranked 1st (tie) in Subtask A,
and achieved very competitive results in
the rest of the Subtasks. Both the word
embeddings and our text processing tool1

are available to the research community.

1 Introduction

Sentiment analysis is an area in Natural Language
Processing (NLP), studying the identification and
quantification of the sentiment expressed in text.
Sentiment analysis in Twitter is a particularly chal-
lenging task, because of the informal and “cre-
ative” writing style, with improper use of gram-
mar, figurative language, misspellings and slang.

In previous runs of the Task, sentiment anal-
ysis was usually tackled using hand-crafted fea-
tures and/or sentiment lexicons (Mohammad et al.,
2013; Kiritchenko et al., 2014; Palogiannidi
et al., 2016), feeding them to classifiers such
as Naive Bayes or Support Vector Machines
(SVM). These approaches require a laborious

1github.com/cbaziotis/ekphrasis

feature-engineering process, which may also need
domain-specific knowledge, usually resulting both
in redundant and missing features. Whereas, arti-
ficial neural networks (Deriu et al., 2016; Rouvier
and Favre, 2016) which perform feature learning,
last year (Nakov et al., 2016) achieved very good
results, outperforming the competition.

In this paper, we present two deep-learning
systems that competed at SemEval-2017 Task
4 (Rosenthal et al., 2017). Our first model is de-
signed for addressing the problem of message-
level sentiment analysis. We employ a 2-layer
Bidirectional LSTM, equipped with an attention
mechanism (Rocktäschel et al., 2015). For the
topic-based sentiment analysis tasks, we propose
a Siamese Bidirectional LSTM with a context-
aware attention mechanism (Yang et al., 2016).
In contrast to top-performing systems of previous
years, we do not rely on hand-crafted features,
sentiment lexicons and we do not use model en-
sembles. We make the following contributions:

• A text processing tool for text tokenization,
word normalization, word segmentation and
spell correction, geared towards Twitter.

• A deep learning system for short-text senti-
ment analysis using an attention mechanism,
in order to enforce the contribution of words
that determine the sentiment of a message.

• A deep learning system for topic-based senti-
ment analysis, with a context-aware attention
mechanism utilizing the topic information.

2 Overview

Figure 1 provides a high-level overview of our
approach, which consists of two main steps and
an optional task-dependent third step: (1) the text
processing, where we use our own text processing
tool for preparing the data for our neural network,
(2) the learning step, where we train the neural
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Figure 1: High-level overview of our approach

networks and (3) the quantification step for esti-
mating the sentiment distribution for each topic.
Task definitions. In Subtask A, given a message
we must classify whether the message expresses
positive, negative, or neutral sentiment (3-point
scale). In Subtasks B, C (topic-based sentiment
polarity classification) we are given a message and
a topic and must classify the message on 2-point
scale (Subtask B) and a 5-point scale (Subtask C).
In Subtasks D, E (quantification) we are given a
set of messages about a set of topics and must es-
timate the distribution of the tweets across 2-point
scale (Subtask D) and a 5-point scale (Subtask E).
Unlabeled Dataset. We collected a big dataset
of 330M English Twitter messages, gathered from
12/2012 to 07/2016, which is used (1) for calculat-
ing words statistics needed by our text processor
and (2) for training our word embeddings.
Pre-trained Word Embeddings. Word em-
beddings are dense vector representations of
words (Collobert and Weston, 2008; Mikolov
et al., 2013), capturing their semantic and syntac-
tic information. We leverage our big collection
of Twitter messages to generate word embeddings,
with vocabulary size of 660K words, using GloVe
(Pennington et al., 2014). The pre-trained word
embeddings are used for initializing the first layer
(embedding layer) of our neural networks.

2.1 Text Processor
We developed our own text processing tool, in or-
der to utilize most of the information in text, per-
forming sentiment-aware tokenization, spell cor-
rection, word normalization, word segmentation
(for splitting hashtags) and word annotation.
Tokenizer. The difficulty in tokenization is to
avoid splitting expressions or words that should
be kept intact (as one token). Although there

are some tokenizers geared towards Twitter (Potts,
2011; Gimpel et al., 2011) that recognize the Twit-
ter markup and some basic sentiment expressions
or simple emoticons, our tokenizer is able to iden-
tify most emoticons, emojis, expressions such as
dates (e.g. 07/11/2011, April 23rd), times (e.g.
4:30pm, 11:00 am), currencies (e.g. $10, 25mil,
50e), acronyms, censored words (e.g. s**t),
words with emphasis (e.g. *very*) and more.
Text Postprocessing. After the tokenization we
add an extra postprocessing step, performing mod-
ifications on the extracted tokens. This is where
we perform spell correction, word normalization
and segmentation and decide which tokens to
omit, normalize or annotate (surround or replace
with special tags). For the tasks of spell correction
(Jurafsky and Martin, 2000) and word segmenta-
tion (Segaran and Hammerbacher, 2009) we used
the Viterbi algorithm, utilizing word statistics (un-
igrams and bigrams) from our unlabeled dataset,
to obtain word probabilities. Moreover, we low-
ercase all words, and normalize URLs, emails and
user handles (@user).

After performing the aforementioned steps we
decrease the vocabulary size, while keeping infor-
mation that is usually lost during the tokenization
phase. Table 1 shows an example of our text pro-
cessing pipeline, on a Twitter message.

2.2 Neural Networks

Last year, most of the top scoring systems used
Convolutional Neural Networks (CNN) (LeCun
et al., 1998). Even though CNNs are designed for
computer vision, the fact that they are fast and easy
to train, makes them a popular choice for NLP
problems. However CNNs have no notion of or-
der, thus when applying them to NLP tasks the
crucial information of the word order is lost.

2.2.1 Recurrent Neural Networks
A more natural choice is to use Recurrent Neu-
ral Networks (RNN). An RNN processes an in-
put sequentially, in a way that resembles how
humans do it. It performs the same operation,
ht = fW (xt, ht−1), on every element of a se-
quence, where ht is the hidden state a timestep t,

original The *new* season of #TwinPeaks is coming on May 21, 2017. CANT WAIT \o/ !!! #tvseries #davidlynch :D
processed the new <emphasis> season of <hashtag> twin peaks </hashtag> is coming on <date> . cant <allcaps> wait

<allcaps> <happy> ! <repeated> <hashtag> tv series </hashtag> <hashtag> david lynch </hashtag> <laugh>

Table 1: Example of our text processor. The word annotations help the RNN to learn better features.
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and W the weights of the network. The hidden
state at each timestep depends on the previous hid-
den states. This is why the order of the elements
(words) is important. This process also enables
RNNs to handle inputs of variable length.

RNNs are difficult to train (Pascanu et al.,
2013), because gradients may grow or decay expo-
nentially over long sequences (Bengio et al., 1994;
Hochreiter et al., 2001). A way to overcome these
problems is by using one of the more sophisti-
cated variants of the regular RNN, the Long Short-
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997) or the recently proposed
Gated Recurrent Units (GRU) (Cho et al., 2014).
Both variants introduce a gating mechanism, en-
suring proper gradient propagation through the
network. We use the LSTM, as it performed
slightly better than GRU in our experiments.
Attention Mechanism. An RNN updates its hid-
den state hi as it processes a sequence and at the
end, the hidden state holds a summary of all the
processed information. In order to amplify the
contribution of important elements in the final rep-
resentation we use an attention mechanism (Rock-
täschel et al., 2015; Raffel and Ellis, 2015), that
aggregates all the hidden states using their relative
importance (see Figure 2).
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Figure 2: Comparison between the regular RNN
and the RNN with attention.

2.3 Quantification
For the quantification tasks an obvious approach is
the Classify & Count (Forman, 2008), where we
simply compute the fraction of a topic’s messages
that a classifier predicts to belong to a class c.
Another approach is the Probabilistic Classify &
Count (PCC) (Gao and Sebastiani, 2016), in which
first we train a classifier that produces a probabil-
ity distribution over the classes and then we av-
erage the estimated probabilities for each class to
obtain the final distribution. Let T be the set of
topics in the training set and p(c|tweet) the (pos-
terior) probability that a tweet belongs to class c as

estimated by the classifier. Then we estimate the
expected fraction of a topic’s tweets that belong to
class c as follows:

p̂T (c) =
1
|T |

∑
tweet∈T

p(c|tweet) (1)

3 Models Description

We propose two different models, a Message-level
Sentiment Analysis (MSA) model for Subtask A
(3.1) and a Topic-based Sentiment Analysis (TSA)
(3.2) model for Subtasks B,C,D,E.

3.1 MSA Model (message-level)
Our message-level sentiment analysis model
(MSA) consists of a 2-layer bidirectional LSTM
(BiLSTM) with an attention mechanism, for iden-
tifying the most informative words.
Embedding Layer. The input to the network is a
Twitter message, treated as a sequence of words.
We use an Embedding layer to project the words
X = (x1, x2, ..., xT ) to a low-dimensional vec-
tor space RE , where E the size of the Embedding
layer and T the number of words in a tweet. We
initialize the weights of the embedding layer with
our pre-trained word embeddings.
BiLSTM Layers. An LSTM takes as input the
words of a tweet and produces the word annota-
tions H = (h1, h2, ..., hT ), where hi is the hid-
den state of the LSTM at time-step i, summariz-
ing all the information of the sentence up to xi.
We use bidirectional LSTM (BiLSTM) in order to
get word annotations that summarize the informa-
tion from both directions. A bidirectional LSTM
consists of a forward LSTM

−→
f that reads the sen-

tence from x1 to xT and a backward LSTM
←−
f that

reads the sentence from xT to x1. We obtain the
final annotation for a given word xi, by concate-
nating the annotations from both directions:

hi =
−→
hi ‖ ←−hi , hi ∈ R2L (2)

where ‖ denotes the concatenation operation and
L the size of each LSTM. We stack two layers of
BiLSTMs in order to learn more abstract features.
Attention Layer. Not all words contribute equally
to the expression of the sentiment in a message.
We use an attention mechanism to find the rela-
tive contribution (importance) of each word. The
attention mechanism assigns a weight ai to each
word annotation. We compute the fixed represen-
tation r of the whole message as the weighted sum
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Figure 3: The MSA model: A 2-layer bidirectional LSTM with attention over that last layer.

of all the word annotations. Formally:

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (3)

ai =
exp(ei)∑T
t=1 exp(et)

,
T∑
i=1

ai = 1 (4)

r =
T∑
i=1

aihi, r ∈ R2L (5)

whereWh and bh are the attention layer’s weights,
optimized during training to assign bigger weights
to the most important words of a sentence.
Output Layer. We use the representation r as fea-
ture vector for classification and we feed it to a fi-
nal fully-connected softmax layer which outputs a
probability distribution over all classes.

3.2 TSA Model (topic-based)
For the topic-based sentiment analysis tasks, we
propose a Siamese2 bidirectional LSTM network
with a different attention mechanism than in MSA.
Our model is comparable to the work of (Wang
et al., 2016; Tang et al., 2015). However our model
differs in the way it incorporates topic information
and in the attention mechanism.
Embedding Layer. The network has two in-
puts, the sequence of words in the tweet Xtw =
(xtw1 , xtw2 , ..., xtwTtw

), where Ttw the number of
words in the tweet, and the sequence of words in
the topic Xto = (xto1 , x

to
2 , ..., x

to
Tto

), where Tto the
number of words in the topic. We project all words
to RE , where E the size of the Embedding layer.
Siamese BiLSTM. We use a bidirectional LSTM
with shared weights to map the words of the
tweet and the topic to the same vector space,
in order to be able to make meaningful com-
parison between the two. The BiLSTM pro-
duces the annotations for the words of the tweet

2Siamese are called the networks that have identical con-
figuration and their weights are linked during training.

Htw = (htw1 , htw2 , ..., htwTtw
) and the topic Hto =

(hto1 , h
to
2 , ..., h

to
Tto

), where each word annotation
consists of the concatenation of its forward and
backward annotations:

hji =
−→
hji ‖

←−
hji , hji ∈ R2L, j ∈ {tw, to} (6)

where ‖ denotes the concatenation operation and
L the size of each LSTM.
Mean-Pooling Layer. We use a Mean-Pooling
layer over the word annotations of the topic Hto

that aggregates them to produce a single annota-
tion. The layer computes the mean over time to

produce the topic annotation, hto =
1
Tto

∑Tto
1 htoi .

Context-Aware Annotations. We append the
topic annotation hto to each word annotation to get
the final context-aware annotation for each word:

hi = htwi ‖ hto, hji ∈ R4L (7)

Context-Attention Layer. We use a context-
aware attention mechanism as in (Yang et al.,
2016), in order to strengthen the contribution
of words that express sentiment towards a given
topic. This is done by adding a context vector uh
that can be interpreted as a fixed query, like “which
words express sentiment towards the given topic”,
over the words of the message. Concretely:

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (8)

ai =
exp(e>i uh)∑Ttw
t=1 exp(e

>
t uh)

,

Ttw∑
i=1

ai = 1 (9)

r =
Ttw∑
i=1

aihi, r ∈ R4L (10)

where Wh, bh and uh are jointly learned weights.
Maxout Layer. We pass the representation r to a
Maxout (Goodfellow et al., 2013) layer to make
the final comparison between the tweet aspects
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Figure 4: The TSA model: A Siamese Bidirectional LSTM with context-aware attention.

and the topic aspects. We selected Maxout as it
amplifies the effects of dropout (Section 3.3).
Output Layer. We pass the output of the Max-
out layer to a final fully-connected softmax layer
which outputs a probability distribution over all
classes.

3.3 Regularization
In both of our models we add Gaussian noise at
the embedding layer, which can be interpreted
as a random data augmentation technique, mak-
ing our models more robust to overfitting. In ad-
dition to that, we use dropout (Srivastava et al.,
2014) to randomly turn-off neurons in our net-
work. Dropout prevents co-adaptation of neurons
and can also be thought as a form of ensemble
learning, because for each training example a sub-
part of the whole network is trained. Moreover, we
apply dropout to the recurrent connections of the
LSTM as in (Gal and Ghahramani, 2016). Further-
more we add L2 regularization penalty (weight
decay) to the loss function to discourage large
weights. Also, we stop training after the valida-
tion loss has stopped decreasing (early-stopping).

Finally, we do not fine-tune the embedding lay-
ers. Words occurring in the training set, will be
moved in the embedding space and the classifier
will correlate certain regions (in embedding space)
to certain sentiments. However, words in the test
set and not in the training set, will remain at their
initial position which may no longer reflect their
“true” sentiment, leading to miss-classifications.

3.4 Class Weights
In the training data some classes have more train-
ing examples than others, introducing bias in our
models. In order to deal with this problem we ap-
ply class weights to the loss function of our mod-
els, penalizing more the misclassification of un-
derrepresented classes. Moreover, we introduce

a smoothing factor in order to smooth out the
weights in cases where the imbalances are very
strong, which would otherwise lead to extremely
large class weights. Let x be the vector with the
class counts and α the smoothing factor, we ob-
tain class weights with wi = max(x)

xi+α×max(x) . In
Subtasks A, B, D we use no smoothing (α = 0)
and in Subtasks C and E we set α = 0.1.

3.5 Training

We train all of our networks to minimize the
cross-entropy loss, using back-propagation with
stochastic gradient descent and mini-batches of
size 128. We use Adam (Kingma and Ba, 2014)
for tuning the learning rate and we clip the norm
of the gradients (Pascanu et al., 2013) at 5, as an
extra safety measure against exploding gradients.
Dataset. For training we use the available data
from prior years (only tweets). Table 2 shows the
statistics of the data we used. Also, we do not use
any user information from the tweets (only text).

3.5.1 Hyper-parameters
In order to find good hyper-parameter values in
a relative short time, compared to grid or ran-
dom search, we adopt the Bayesian optimization
(Bergstra et al., 2013) approach, performing a
“smart” search in the high dimensional space of
all the possible values.
MSA Model. The size of the embedding layer is
300, and the LSTM layers 150 (300 for BiLSTM).
We add Gaussian noise with σ = 0.2 and dropout
of 0.3 at the embedding layer, dropout of 0.5 at
the LSTM layers and dropout of 0.25 at the recur-
rent connections of the LSTM. Finally, we add L2

regularization of 0.0001 at the loss function.
TSA Model. The size of the embedding layer is
300, and the LSTM layers 64 (128 for BiLSTM).
We insert Gaussian noise with σ = 0.2 at the em-
bedding layer of both inputs and dropout of 0.3 at
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Positive Neutral Negative
Dataset Task 2 1 0 -1 -2 Total
Train A 19652 (39.64%) 22195 (44.78%) 7723 (15.58%) 49570

B,D 14897 (78.85%) - 3997 (21.15%) 18894
C,E 1016 (3.34%) 12852 (42.23%) 12888 (42.35%) 3380 (11.11%) 296 (0.97%) 30432

Test A 2375 (19.33%) 5937 (48.33%) 3972 (32.33%) 12284
B,D 2463 (39.82%) - 3722 (60.18%) 6185
C,E 131 (1.06%) 2332 (18.84%) 6194 (50.04%) 3545 (28.64%) 177 (1.43%) 12379

Table 2: Dataset statistics. Notice the difference in the ratio of positive-negative classes this year.

the embedding layer of the message, dropout of
0.2 at the LSTM layer and the recurrent connec-
tion of the LSTM layer and dropout of 0.3 at the
attention layer and the Maxout layer. Finally, we
add L2 regularization of 0.001 at the loss function.

4 Experiments and Results

Semeval Results. Our official ranking (Rosenthal
et al., 2017) is 1/38 (tie) in Subtask A, 2/24 in Sub-
task B, 2/16 in Subtask C, 2/16 in Subtask D and
11/12 in Subtask E. All of our models performed
very good, with the exception of Subtask E. Since
the quantification was performed on top of the
classifier of Subtask C, which came in 2nd place,
we conclude that our quantification approach was
the reason for the bad results for Subtask E.
Attention Mechanism. In order to assess the im-
pact of the attention mechanisms, we evaluated the
performance of each model, with and without at-
tention. We report (Table 3) the average scores of
10 runs for each system, on the official test set.
The attention-based models performed better, but
only by a small margin.

RNN Subtask A (MSA) Subtask B (TSA)
ρ F1pn ρ F1pn

Regular 0.678 0.673 0.856 0.817
Attention 0.682 0.675 0.863 0.82

Table 3: Results of the impact of attention3.

Quantification. To get a better insight into the
quantification approaches, we compare the per-
formance of CC and PCC. It is inconclusive as
to which quantification approach is better. PCC
outperformed CC in (Bella et al., 2010) but un-
derperformed CC in (Esuli and Sebastiani, 2015).
Following the results from (Gao and Sebastiani,
2016), which are reported on sentiment analysis
in twitter, we decided to use PCC for both of our

3ρ is the average recall and F1pn the macro-average F1
score of the positive and negative classes

quantification submissions. Table 4 shows the per-
formance of our models. PCC performed better
than CC for Subtask D but far worse than CC for
Subtask E. We hypothesize that two possible rea-
sons for the difference in performance between D
and E, might be (1) the difference in the number of
classes and (2) the big change in the ratio of pos-
to-neg classes between the training and test sets.

Method Subtask D Subtask E
KLD AE RAE EMD

CC 0.060 0.093 0.608 0.359
PCC 0.048 0.095 0.848 0.595

Table 4: Results of the quantification approaches4.

Experimental setup. For developing our mod-
els we used Keras (Chollet, 2015) with Theano
(Theano Dev Team, 2016) as backend and Scikit-
learn (Pedregosa et al., 2011). We trained our neu-
ral networks on a GTX750Ti (4GB). Lastly, we
share the source code of our models 5.

5 Conclusion

In this paper, we present two deep-learning sys-
tems for short text sentiment analysis developed
for SemEval-2017 Task 4 “Sentiment Analysis in
Twitter”. We use RNNs, utilizing well established
methods in the literature. Additionally, we em-
power our networks with two different kinds of at-
tention mechanisms in order to amplify the contri-
bution of the most important words.

Our models achieved excellent results in the
classification tasks, but mixed results in the quan-
tification tasks. We would like to work more in this
area and explore more quantification techniques in
the future. Another interesting approach would be
to design models operating on the character-level.

4KLD is Kullback-Leibler Divergence, EMD is Earth
Mover’s Distance, AE is Absolute Error and RAE is Rela-
tive Absolute Error. For all metrics lower is better.

5https://github.com/cbaziotis/
datastories-semeval2017-task4
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Abstract

The paper describes the participation of
the team “TwiSE” in the SemEval-2017
challenge. Specifically, I participated at
Task 4 entitled “Sentiment Analysis in
Twitter” for which I implemented systems
for five-point tweet classification (Sub-
task C) and five-point tweet quantification
(Subtask E) for English tweets. In the fea-
ture extraction steps the systems rely on
the vector space model, morpho-syntactic
analysis of the tweets and several sen-
timent lexicons. The classification step
of Subtask C uses a Logistic Regression
trained with the one-versus-rest approach.
Another instance of Logistic Regression
combined with the classify-and-count ap-
proach is trained for the quantification task
of Subtask E. In the official leaderboard
the system is ranked 5/15 in Subtask C and
2/12 in Subtask E.

1 Introduction

Microblogging platforms like Twitter have lately
become ubiquitous, democratizing the way people
publish and access information. This vast amount
of information that reflects the opinions, news or
comments of people creates several opportunities
for opinion mining. Among other platforms, Twit-
ter is particularly popular for research due to its
scale, representativeness and ease of access to the
data it provides. Furthermore, to facilitate the
study of opinion mining, high quality resources
and data challenges are organized. The Task 4 of
the SemEval-2017 challenges, entitled “Sentiment
Analysis in Twitter” is among them.

The paper describes the participation of the
team Twitter Sentiment (TwiSe) in two of the
subtasks of Task 4 of SemEval-2017. Specifically,

I participated in Subtasks C and E. Both of them
assume that sentiment is distributed across a five-
point scale ranging from VeryNegative to VeryPos-
itive. Subtask C is a sentiment classification task,
where given a tweet the aim is to assign one of
the five classes. Subtask E is a quantification task,
whose aim is given a set of tweets referring to a
subject to estimate the prevalence of each of the
five classes. The tasks are described in more detail
at (Rosenthal et al., 2017).

The rest of the paper is organized as follows:
Section 2 describes the feature extraction steps
performed in order to construct the representation
of a tweet, which is the same for both subtasks C
and E. Section 3 details the learning approaches
used and Section 4 summarizes the achieved per-
formance. Finally, Section 5 concludes with point-
ers for future work.

2 Feature Extraction

In this section I describe the details of the feature
extraction process performed. My approach is
heavily inspired by my previous participation
in the “Twitter Sentiment Analysis” task of
SemEval-2016, which is detailed at Balikas and
Amini (2016). Importantly, the code for perform-
ing the feature extraction steps described below
is publicly available at https://github.
com/balikasg/SemEval2016-Twitter_
Sentiment_Evaluation.

There are three sets of features extracted:

1. Word occurrence features,

2. Morpho-syntactic features like counts of
punctuation and part-of-speech (POS) tags,

3. Semantic features based on sentiment lexi-
cons and word embeddings.
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For the data pre-processing, cleaning and tok-
enization1 as well as for most of the learning steps,
I used Python’s Scikit-Learn (Pedregosa et al.,
2011) and NLTK (Bird et al., 2009).

2.1 Word occurrence and morpho-syntactic
features

Following (Kiritchenko et al., 2014; Balikas and
Amini, 2016) I extract features based on the words
that occur in a tweet. The aim is to describe the
lexical content of the tweets as well as to capture
part of the words order. The latter is achieved us-
ing N -grams, with N > 1. To reduce the di-
mensionality of the representations when using N -
grams, especially with noisy data such as tweets,
I use the hashing trick. Hashing is a fast and
space-efficient way for vectorizing text spans. It
turns arbitrary features into vector indices of pre-
defined size (Weinberger et al., 2009). For ex-
ample, assume that after the vocabulary extraction
step one has a vocabulary of dimensionality 50K.
This would result in a very sparse vector space
model and longer training for a classifier. Feature
hashing can be seen as a dimensionality reduction
process where a hash function given a textual in-
put (vocabulary item) associates it to a number j
within 0 ≤ j ≤ D, where D is the dimension of
the new representation.

The word-occurrence and morpho-syntactic
features I extracted are:

• N -grams with N ∈ [1, 4], projected to 20K-
dimensional space using the hashing func-
tion,2

• character m-grams of dimension m ∈ [4, 5],
that is sequences of characters of length 4 or
5, projected to 25K-dimensional space using
the same hashing function. The sizes of the
output of the hashing function for N -grams
and character m-grams (20K and 25K re-
spectively) were decided using the validation
set. Also, I applied the hashing trick only for
these two types of features,

• # of exclamation marks, # of question marks,
sum of exclamation and question marks, bi-

1We adapted the tokenizer provided at http:
//sentiment.christopherpotts.net/
tokenizing.html

2I used the signed 32-bit version of Murmurhash3 func-
tion, implemented as part of the HashingVectorizer
class of scikit-learn.

nary feature indicating if the last character of
the tweet is a question or exclamation mark,

• # of capitalized words (e.g., GREAT) and # of
elongated words (e.g. coool), # of hashtags in
a tweet,

• # of negative contexts. Negation is important
as it can alter the meaning of a phrase. For
instance, the meaning of the positive word
“great” is altered if the word follows a neg-
ative word e.g. “not great”. We have used
a list of negative words (like “not”) to de-
tect negation. We assumed that words after
a negative word occur in a negative context,
that finishes at the end of the tweet unless
a punctuation symbol occurs before. Notice
that negation also affects the N -gram features
by transforming a word w in a negated con-
text to w NEG,

• # of positive emoticons, # of negative emoti-
cons and a binary feature indicating if emoti-
cons exist in a given tweet, and

• The distribution of part-of-speech (POS) tags
(Gimpel et al., 2011) with respect to posi-
tive and negative contexts, that is how many
verbs, adverbs etc., appear in a positive and
in a negative context in a given tweet.

2.2 Semantic Features
With regard to the sentiment lexicons, I used:

• manual sentiment lexicons: the Bing liu’s
lexicon (Hu and Liu, 2004), the NRC emo-
tion lexicon (Mohammad and Turney, 2010),
and the MPQA lexicon (Wilson et al., 2005),

• # of words in positive and negative context
belonging to the word clusters provided by
the CMU Twitter NLP tool3, # of words be-
longing to clusters obtained using skip-gram
word embeddings,

• positional sentiment lexicons: the sentiment
140 lexicon (Go et al., 2009) and the Hashtag
Sentiment Lexicon (Kiritchenko et al., 2014)

I make, here, more explicit the way I used the
sentiment lexicons, using the Bing Liu’s lexicon
as an example. I treated the rest of the lexicons
similarly, which is inspired by (Kiritchenko et al.,

3http://www.cs.cmu.edu/˜ark/TweetNLP/
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2014). For each tweet, using the Bing Liu’s lex-
icon I generated a 104-dimensional vector. After
tokenizing the tweet, I count how many words (i)
in positive/negative contexts belong to the posi-
tive/negative lexicons (4 features) and I repeat the
process for the hashtags (4 features). To this point
one has 8 features. I repeat the generation process
of those 8 features for the lowercase words and the
uppercase words. Finally, for each of the 24 POS
tags the (Gimpel et al., 2011) tagger generates, I
count how many words in positive/negative con-
texts belong to the positive/negative lexicon. As a
result, this generates 2 × 8 + 24 × 4 = 104 fea-
tures in total for each tweet based on the sentiment
lexicons.

With respect to the features from text embed-
dings, I opt for cluster-based embeddings inspired
by (Partalas et al., 2016). I used an in-house col-
lection of ∼ 40M tweets collected using the Twit-
ter API between October and November 2016. Us-
ing the skip-gram model as implemented in the
word2vec tool (Mikolov et al., 2013), I generated
word embeddings for each word that appeared in
the collected data more than 5 times. Therefore,
each word is associated with a vector of dimension
D, where I set D = 100, which I did not validate.
Then, using the k-means algorithm I clustered the
learned embeddings, initializing the clusters cen-
troids with k-means++ (Arthur and Vassilvitskii,
2007). Having the result of the clustering step, I
produced binary cluster membership features for
the words of a tweet. For instance, assuming ac-
cess to the results of k-means with k = 50, each
tweet’s representation is augmented with 50 fea-
tures, denoting whether words of the tweet belong
to each of the 50 clusters. The number of the
clusters k in the k-meams algorithm is a hyper-
parameter, which was set to 1, 000 after tuning it
from k ∈ {100, 250, 500, 1000, 1500, 2000}.

3 The Learning Approach

The section describes the learning approach
for Subtasks C and E. For each of them, I
used a Logistic Regression optimized with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm from the quasi-newton family of methods,
and in particular its limited-memory (L-BFGS)
approximation (Byrd et al., 1995).4

4From scikit-learn: ‘LogisticRegression(solver=’lbfgs’).

3.1 Fine-grained tweet classification

The output of the concatenation of the represen-
tation learning steps described at Section 2 is a
46,368-dimensional vector, out of which N -grams
and character m-grams correspond to 45K ele-
ments. We normalize each instance using l2 norm
and this corresponds to the vector representation
of the tweets. I train a Logistic Regression as im-
plemented in Scikit-learn (Pedregosa et al., 2011)
using L2 regularization. The hyper-parameter C
that controls the importance of the regularization
term in the optimization problem is selected with
grid-search from C ∈ {10−4, 10−3, . . . , 104}. For
grid-search I used a simple train-validation split,
which is described in the next section. Once the C
parameter is selected, I retrained the Logistic Re-
gression in the union of the instances of the train-
ing and validation sets.

In addition, as shown in Figure 1 (“Class Distri-
bution: Training data”), the classification problem
is unbalanced as the distribution of the examples
across the five sentiment categories is not uniform.
To account for this, I assigned class weights to the
examples when training the Logistic Regression.
The goal is to penalize more misclassification er-
rors in the less frequent classes. The weights are
inversely proportional to the number of instances
of each class.5 This is also motivated by the fact
that the official evaluation measure is the macro-
averaged Mean Absolute Error (MAEM) that is av-
eraged across the different classes and accounts
for the distance between the true and predicted
class. More information about the evaluation met-
rics used can be found at (Rosenthal et al., 2017).

3.2 Fine-grained tweet quantification

While the aim of classification is to assign a cate-
gory to each tweet, the aim of quantification is to
estimate the prevalence of a category to a set of
tweets. Several methods for quantification have
been proposed: I cite for instance the work of
G. Forman on classify and count and probabilistic
classify and count (Forman, 2008) and the recently
proposed ordinal quantification trees (Da San Mar-
tino et al., 2016). In this work, I focus on a classify
and count approach, which simply requires classi-
fying the tweets and then aggregating the classifi-
cation results. The official evaluation measure is
Earth Movers Distance (EMD) averaged over the

5From scikit-learn: ‘LogisticRegression(class weight =
’balanced’).
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Subtask C & E

Train2016 5,482
Development2016 1,810
DevTest2016 1,778
Test2016 20,632
Test2017 12,137

Table 1: Size of the data used for training and de-
velopment purposes. We only relied on the Se-
mEval 2016 datasets.

Subtask C Subtask E
Team Score Team Score

BB twtr 0.4811 BB twtr 0.245
DataStories 0.5552 TwiSe 0.269
Amobee-C-137 0.5993 funSentiment 0.273
Tweester 0.6234 ELiRF-UPV 0.306
TwiSe 0.6400 NRU-HSE 0.317

Table 2: Top-5 systems ranks for Subtask C based
on MAEM and of Subtask E based on EMD.

subjects of the data, described in detail at (Rosen-
thal et al., 2017).

The classification and the quantification meth-
ods I use rely on efficient operations in terms of
memory (hashing) and computational resources
(linear models). The feature extraction and learn-
ing operations are naturally parallellizable. I be-
lieve that this is an important advantage, as the
end-to-end system is robust and fast to train.

4 The Experimental Framework

The data Table 1 shows the data released by the
task organizers. To tune the hyper-parameters of
my models, I used a simple validation mecha-
nism: I concatenated the “Train2016”, “Devel-
opment2016”, and “DevTest2016” (9,070 tweets
totally) to use them as training and I left the
“Test2016” as validation data. I acknowledge that
using the “Test2016” part of the data only for val-
idation purposes may be limiting in terms of the
achieved performance, since these data could have
also used to train the system. I also highlight that
by using more elaborate validation strategies like
using the subjects of the tweets, one should be able
to achieve better results for tuning.

Official Rankings Table 2 shows the perfor-
mance the systems achieved. There are two main
observations. For Subtask C, where TwiSe is
ranked 5th, I note that the system is a slightly
improved version of the system of (Balikas and
Amini, 2016), ranked first in the Subtask in the
2016 edition. The only difference is the addition
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Figure 1: The distribution of the instances in the
training and test sets among the five sentiment
classes. The figure is rendered better with color.

of the extra features from clustering the word em-
beddings. This entails that significant progress
was made to the task, which is either due to the
extra data (“Test2016” we only used for valida-
tion) or more efficient algorithms. On the other
hand, TwiSe is ranked 2nd in Subtask E. This,
along with the simplicity of the approach used that
is based on aggregating the counts of the classifi-
cation step, entails that there is more work to be
done in this direction.

Five-Scale Classification: Error Analysis An-
alyzing the classification errors, one finds out
that the (macro-averaged) mean-absolute-error
per sentiment category is distributed as follows:
VeryNegative: 0.836, Negative: 0.566, Neutral:
0.584, Positive: 0.771, VeryPositive: 0.443. The
system performed the best in the VeryPositive class
(lowest error) and the worst in the VeryNegative
class. Interestingly, the system did not do as well
in the Positive class. To better understand why,
Figure 1 plots the distribution of the instances
across the five sentiment classes, for the training
data we used and the test data. Notice how the
Positive class is the dominant in the training data,
while this changes in the test data. I believe that
that the distribution drift, between the training and
test data is indicative as of why the system per-
formed poorly in the “Positive” class.

Five-Scale Quantification: Error Analysis I
repeat, here, the error analysis process for the
quantification task. The best performance was
achieved in the subject “leonard cohen”, whose
EMD was 0.029 while the worst performance in
the topics “maduro” (EMD=0.709) and “medi-
caid” (EMD=0.660). The distribution of sentiment
for “leonard cohen” is very similar to the distri-
bution of sentiment in the training set, Kullback-
Leibner divergence of 0.140. On the other hand
the Kullback-Leibner divergence for “maduro”
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and “medicaid”, which are both skewed towards
the negative sentiment, are 1.328 and 0.896 re-
spectively. Although a more detailed error analy-
sis is required in order to improve the performance
of the system, I believe that the distribution drift
between the training examples and the examples
of a subject plays an important role. This may be
further enhanced by the fact I used a classify and
count approach which does not account for drifts.

5 Conclusion

The paper described the participation of TwiSe
in the subtasks C and E of of the “Twitter Sen-
timent Evaluation” Task of SemEval-2017. Im-
portantly, my system was ranked 2nd in Subtask
E, “Five-point Sentiment Quantification” using a
simple classify and count approach on top of a Lo-
gistic Regression. An interesting future work di-
rection towards improving the system aims at bet-
ter handling distribution drifts between the train-
ing and test data.
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Abstract

This paper describes the system developed at
LIA for the SemEval-2017 evaluation cam-
paign. The goal of Task 4.A was to iden-
tify sentiment polarity in tweets. The sys-
tem is an ensemble of Deep Neural Network
(DNN) models: Convolutional Neural Net-
work (CNN) and Recurrent Neural Network
Long Short-Term Memory (RNN-LSTM). We
initialize the input representation of DNN with
different sets of embeddings trained on large
datasets. The ensemble of DNNs are com-
bined using a score-level fusion approach.
The system ranked 2nd at SemEval-2017 and
obtained an average recall of 67.6%.

1 Introduction

This paper describes the system developed at LIA
for the SemEval-2017 sentiment analysis evaluation
task 4 (Rosenthal et al., 2017).

We have participated in Subtask A: sentiment
analysis at the message level in English. It consists
in determining the message polarity of each tweet
in the test set. The sentiment polarity classification
task is set as a three-class problem: positive, nega-
tive and neutral.

The sentiment analysis task is often modeled as a
classification problem which relies on features ex-
tracted from the text in order to feed a classifier.
Recent work has shown that Deep Neural Networks
(DNN) using word representations as input are well
suited for sentence classification problems and have
been shown to produce state-of-the-art results for
sentiment polarity classification (Tang et al., 2014a;
Severyn and Moschitti, 2015). Two different types

of DNN models are used: Convolutional Neural
Network (CNN) and Recurrent Neural Network with
Long Short-Term Memory units (RNN-LSTM). Pre-
trained word embeddings are used to initialize the
word representations, which are then taken as input
of a text.

Our approach consists in learning classifiers for
four types of embeddings, based on the CNN and
RNN-LSTM architectures. Each set of word embed-
dings models the tweet according to a different point
of view. A final fusion step is applied.

Our contributions are as follows:

• We propose to apply a teacher-student ap-
praoch for training the DNN models.
• We propose a new way to capture polarity in

word embeddings.
• The source code of our system, the models

trained for the evaluation, as well as the corpus
collected for creating word embeddings, are all
made available to the community in hope of
helping future research 1.

The paper is structured as follows. Section 2
presents a quick overview of the system architec-
ture, which is then detailed in sections 3 and 4, along
with the various word embeddings and other fea-
tures used in our system. Results and discussion ap-
pear in Section 5.

2 Overview of the approach

The system was developed as a two-level architec-
ture. Given a tweet, the first level extracts input rep-
resentations based various word embeddings. These

1http://gitlia.univ-avignon.fr/rouvierm/semeval-2017-
sentiment-analysis
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embeddings are fed to a DNN model (CNN and
RNN-LSTM). Four different sets of word embed-
dings are used: one lexical embedding and three dif-
ferent sentiment embeddings.

The second level inputs the concatenation of the
scores obtained each input representation and Deep
Neural Network (DNN and RNN-LSTM) from the
first level. This representation is fed to a Multi-
Layer Perceptron (MLP) which was trained to pre-
dict polarity.

3 Deep Neural Networks

3.1 Convolutional Neural Networks

CNNs represent one of the most used Deep Neu-
ral Network models in computer vision (LeCun and
Bengio, 1995). Recent work has shown that CNNs
are also well suited for sentence classification prob-
lems and can produce state-of-the-art results (Tang
et al., 2014a; Severyn and Moschitti, 2015). The
difference between CNNs applied to computer vi-
sion and their equivalent in NLP lies in the input di-
mensionality and format. In computer vision, inputs
are usually single-channel (eg. grayscale) or multi-
channel (eg. RGB) 2D or 3D matrices, usually of
constant dimension.

In sentence classification, each input consists of
a sequence of words of variable length. Each word
w is represented with a n-dimensional vector (word
embedding) ew of constant size. All the word repre-
sentations are then concatenated in their respective
order and padded with zero-vectors.

The parameters of our model were chosen so as to
maximize performance on the development set: the
width of the convolution filters is set to 5 and the
number of convolutional feature maps is 300. We
use ReLU activation functions and a simple max-
pooling. The fully-connected hidden layer is of size
512.

For this layer, a standard dropout of 0.4 is used
(40 % of the neurons are disabled at each iteration).
The back-propagation algorithm used for training
is Adadelta. In our experiments we observed that
the weight initialization of the convolution layer can
lead to a high variation in terms of performance.
Therefore, we trained 20 models and selected the
one that obtained the best results on the development
corpus.

3.2 Reccurent Neural Network with Long
Short Term Memory

RNNs are popular models that have shown great
promise in many Natural Language Processing
(NLP) tasks. The main differentiating feature of
RNNs is that the model take into account the order-
ing of words in the text as opposed to CNNs which
take only a limited, small context window.

In a traditional neural network we assume that all
inputs (and outputs) are independent of each other.
RNNs can take into account the input but also what
they perceived one step back in time. Hence recur-
rent networks have two sources of input, the present
and the recent past, which combine to determine
how to respond to new data, much as we do in life.

The parameters of our model were also chosen so
as to maximize performance on the development set:
the hidden layer is of size 128, a standard dropout of
0.2 is used. The back-propagation algorithm used
for training is Adadelta.

3.3 Word embeddings
Word embeddings are an approach for distributional
semantics which represents words as vectors of real
numbers. Such a representation has useful cluster-
ing properties, since it groups together words that
are semantically and syntactically similar (Mikolov
et al., 2013). For example, the word “coffee” and
“tea” will be very close in the created space. The
goal is to use these features as input to a DNN clas-
sifier. However, with the sentiment analysis task in
mind, typical word embeddings extracted from lex-
ical context might not be the most accurate because
antonyms tend to be placed at the same location in
the created space.

This year, in SemEval-2017 we explored different
approaches to integrate the sentiment polarity of the
words. Four representations were explored:
Lexical embeddings: these embeddings are
obtained with the classical skipgram model
from (Mikolov et al., 2013). The representation
is created by using the hidden layer of a linear
neural network to predict a context window from
a central word. For a given context wi−2 . . . wi+2,
the input to the model is wi, and the output could
be wi−2, wi−1, wi+1, wi+2. This method typically
extracts a representation which covers both syntax
and semantics, to some extent.
Sentiment embeddings (multitask-learning): One
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of the problems with the basic skipgram approach
(lexical embeddings) is that the model ignores the
sentiment polarity of the words. As a result, words
with opposite polarity, such as “good” and “bad”,
are mapped into close vectors. In (Tang et al.,
2014b), the authors propose to tackle this problem
so that sentiment information is encoded in the con-
tinuous representation of words. They propose to
create a neural network that predicts two tasks: the
context of the word and the sentiment label of the
whole sentence. Since it is expensive to manually
label sentences with their polarity, the authors pro-
pose to use tweets that contain emoticons and rely on
the polarity conveyed by the emoticons to label the
sentences. Since they report that best performance
is obtained by weighting both tasks equivalently, the
model is the same as for lexical embeddings, except
that the predicted context is formed of (word, senti-
ment) couples. For example, if s is the polarity of
the sentence where the context wi−2 . . . wi+2 is ex-
tracted, the model gets wi as input and has to predict
(wi−2, s), (wi−1, s), (wi+1, s), (wi+2, s).
Sentiment embeddings (distant-supervision):
The distant-supervision is another solution to inte-
grating sentiment polarity in words. A DNN (CNN
or RNN-LSTM) is trained on massive distant-
supervised tweets selected by positive and negative
emoticons. The positive and negative emoticons are
used as supervised labels. During training, the DNN
will automatically refine the word embeddings in
order to capture the sentiment polarity in words.
The refined word embeddings can be used as a new
representation.
Sentiment embeddings (negative-sampling): The
negative-sampling approach is an efficient way of
computing softmax. In order to deal with the dif-
ficulty of having too many output vectors that need
to be updated, the main idea of negative sampling is
to update not all the words but only a few words as
negative samples (hence “negative sampling”). In-
stead of selecting random words, as is usual for this
technique, we chose to select words with opposite
polarities. For example, for the word “good” we
select the words “bad”, “terrific”, etc. for negative
sampling.

3.4 Extension of the DNN model

The DNN model relies on word embeddings as word
representation. Unfortunately these models can only

capture information at the word level. We propose to
extract some sentence-level information and to in-
ject this information into the model. In order to in-
corporate this source of information into the system,
a set of sentence-level features are concatenated with
the last hidden layer in the model.

The following features are extracted at the sen-
tence level:

• Lexicons: frequency of lemmas that are matched in
MPQA (Wiebe et al., 2005), Opinion Lexicon (Hu
and Liu, 2004) and NRC Emotion lexicon (Moham-
mad and Turney, 2013).

• Emoticons: number of emoticons that are grouped
in positive, negative and neutral categories.

• All-caps: number of words in all-caps.
• Elongated units: number of words in which char-

acters are repeated more than twice (for example:
looooool).

• Punctuation: number of contiguous sequences of
several periods, exclamation marks and question
marks.

3.5 Mimic model

The teacher-student approach consists in training
a state-of-the-art model (teacher model), and then
training a new model (student model) to mimic the
teacher model. The mimic model (student model) is
not trained on the original labels, but it is trained to
learn targets predicted by the teacher model. Re-
markably, a mimic model trained on targets pre-
dicted by the teacher model can be more accurate
than teacher model trained on the original labels.
There are a variety of reasons why this can happen:

• If some labels have errors, the teacher model
may eliminate some of these errors thus making
it learning easier for the student.
• Learning from the original, hard 0/1 labels can

be more difficult than learning from a teacher’s
conditional probabilities; but the mimic model
sees non-zero targets for most outputs on most
training cases, and the teacher can spread un-
certainty over multiple outputs for difficult
cases. The uncertainty from the teacher model
is more informative to the student model than
the original 0/1 labels.
• The mimic model can be seen as a form of

regularization that helps prevent overfitting the
model.
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Corpus Positive Negative Neutral Total
SemEval13−15 9.316 3.443 9.067 21.826
SemEval16 7.059 3.231 10.342 20.632

Table 1: Statistics of the successfully downloaded part of the
SemEval 2017 Twitter sentiment classification dataset.

4 Fusion system

The outputs from all Deep Neural Networks are con-
catenated to form a single feature vector. This vector
is then fed into a Multi-Layer Perceptron (MLP) that
is trained to predict the polarity. The MLP contains
one hidden layer of 128 neurons and the activation
function used is tanh.

5 Experiments

5.1 Corpus
We use the training corpus from Twitter’13 to 17 for
training the various parts of the architecture. We
split the corpus into two parts. The train, devel-
opment and test corpora given in SemEval’13, 14,
15 form the first part, referred to as SemEval13−15.
The test corpus given in SemEval’16 forms part 2,
referred to as SemEval16. We perform 2-fold cross-
validation, where one part is used as the training cor-
pus and the other one is used as the development cor-
pus. Note that we were unable to download all the
training and development data because some tweets
were deleted or not available due to modified autho-
rization status. The sizes of the datasets are summa-
rized in Table 1.

5.2 Word embedding training
To train the word embeddings, we have created a
unannotated corpus of sentiment-bearing tweets in
English. These tweets were recovered on the Twitter
platform by searching for emotion keywords (from
the sentiment lexicons) and unigrams, bigrams and
trigrams extracted from the SemEval training cor-
pus. This corpus consists of about 90 million tweets.
A sub-corpus of about 20 million tweets containing
at least one emoticon is used for training the senti-
ment embeddings. Both corpora are now publicly
available 2.

In our experiments, lexical embeddings and
part-of-speech embeddings are estimated using the
word2vec toolkit (Mikolov et al., 2013). Sentiment

2http://gitlia.univ-avignon.fr/rouvierm/semeval-2017-
sentiment-analysis

System RecPos RecNeu RecNeg Avg-Rec
Fusion 64.6 57.7 80.4 67.6

Table 2: Overall performance of the LIA sentiment analysis
systems. RecPos, RecNeu and RecNeg are respectively the re-
call on positive, neutral and negative classe. Avg-Rec is the
macro-averaged recall calculated over the three categories.

embeddings are estimated using word2vecf. This
toolkit allows to replace linear bag-of-word contexts
with arbitrary features. The embeddings are trained
using the skipgram approach with a window of size
3 and 5 iterations. The dimension of the embeddings
is set to 100. Part-of-speech tagging is performed
with Tweet NLP (Owoputi et al., 2013; Gimpel et
al., 2011).

5.3 Results
Overall performance: The evaluation metric used
in the competition is the macro-averaged recall cal-
culated over the three categories. Table 3 presents
the overall performance of each of the systems used
for the first level. We observe that the best first-
level system is the CNN Mimic model using sen-
timent embedding (negative-sampling). The system
obtained an average-recall of 66.91%. Concerning
the word embedding, in generally sentiment em-
bedding (negative-sampling) obtains for each DNN
model the best results. Concerning the DNN mod-
els, the CNN approach provide better results than the
RNN-LSTM models.
Impact of fusion: Table 2 presents the results ob-
tained by the fusion system. It achieved the second
rank on the Twitter 2017 data among 39 teams.

6 Conclusions

This paper describes the LIA participation in Se-
mEval 2017. Our approach consists in running
an ensemble of neural networks (CNN and RNN-
LSTM) over different types of embeddings. A final
fusion step is applied, based on concatenating the
scores given by the neural networks and training a
deep neural network for the fusion. The resulting
system ranked 2nd at the SemEval-2017 evaluation
campaign.
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Appendix

System Architecture Word embeddings Training corpus RecPos RecNeu RecNeg Avg-Rec
1 CNN lexical SemEval13−15 63.5 53.9 80.3 65.9
2 CNN sentiment (multi-task learning) SemEval13−15 66.4 50.0 82.5 66.3
3 CNN sentiment (distant-supervision) SemEval13−15 65.5 49.8 83.9 66.4
4 CNN sentiment (negative-sampling) SemEval13−15 65.6 51.5 81.4 66.2
5 RNN-LSTM lexical SemEval13−15 56.0 58.6 76.9 63.9
6 RNN-LSTM sentiment (multi-task learning) SemEval13−15 62.4 52.4 78.0 64.3
7 RNN-LSTM sentiment (distant-supervision) SemEval13−15 59.5 60.0 68.6 62.7
8 RNN-LSTM sentiment (negative-sampling) SemEval13−15 61.5 60.9 72.2 64.9
9 CNN Mimic lexical SemEval13−15 66.3 53.7 80.0 66.7

10 CNN Mimic sentiment (multi-task learning) SemEval13−15 64.6 52.8 81.7 66.4
11 CNN Mimic sentiment (distant-supervision) SemEval13−15 65.0 51.2 83.8 66.7
12 CNN Mimic sentiment (negative-sampling) SemEval13−15 70.6 48.0 82.3 66.9
13 CNN lexical SemEval16 57.0 58.6 80.9 65.5
14 CNN sentiment (multi-task learning) SemEval16 53.2 53.5 84.2 63.6
15 CNN sentiment (distant-supervision) SemEval16 56.3 58.3 82.1 65.5
16 CNN sentiment (negative-sampling) SemEval16 60.3 45.8 88.7 64.9
17 RNN-LSTM lexical SemEval16 55.8 58.4 78.2 61.4
18 RNN-LSTM sentiment (multi-task learning) SemEval16 56.1 55.5 81.3 64.3
19 RNN-LSTM sentiment (distant-supervision) SemEval16 52.6 48.0 83.7 61.5
20 RNN-LSTM sentiment (negative-sampling) SemEval16 61.7 62.7 71.0 65.1
21 CNN Mimic lexical SemEval16 57.5 53.3 84.1 65.0
22 CNN Mimic sentiment (multi-task learning) SemEval16 59.8 53.9 82.9 65.5
23 CNN Mimic sentiment (distant-supervision) SemEval16 58.9 53.8 83.3 65.3
24 CNN Mimic sentiment (negative-sampling) SemEval16 62.1 52.6 83.8 66.2

Table 3: Overall performance of the DNN models using differ-
ent word embeddings and training corpus. RecPos, RecNeu and
RecNeg are respectively the recall on positive, neutral and neg-
ative classe. Avg-Rec is the macro-averaged recall calculated
over the three categories.
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Abstract

In this paper, we propose a classifier for
predicting topic-specific sentiments of En-
glish Twitter messages. Our method is
based on a 2-layer CNN. With a distant su-
pervised phase we leverage a large amount
of weakly-labelled training data. Our sys-
tem was evaluated on the data provided
by the SemEval-2017 competition in the
Topic-Based Message Polarity Classifica-
tion subtask, where it ranked 4th place.

1 Introduction

The goal of sentiment analysis is to teach the ma-
chine the ability to understand emotions and opin-
ions expressed in text. There are numerous chal-
lenges which make this task very difficult, for in-
stance the complexity of natural language which
makes use of intricate concepts like irony, sar-
casm, and metaphors to name a few. Usually
we are not interested in the overall sentiment of
a tweet but rather in the sentiment the tweet ex-
presses towards a topic of interest. Subtask B in
SemEval-2017 (Rosenthal et al., 2017) consists of
predicting the sentiment of a tweet towards a given
topic as either positive or negative.
Convolutional neural networks (CNN) have shown
to be very efficient at tackling the task of senti-
ment analysis, as they are able to learn features
themselves instead of relying on manually crafted
ones (Kalchbrenner et al., 2014; Kim, 2014). Our
work is based on the system proposed by (De-

riu et al., 2016), which in turn is based on (Sev-
eryn and Moschitti, 2015). CNNs typically have a
large number of parameters which need sufficient
data to be trained efficiently. In this work, we
leverage a large amount of data to train a multi-
layer CNN. The training is based on the follow-
ing 3-phase procedure (see Figure 1): (i) creation
of word embeddings based on an unsupervised
corpus of 200M English tweets, (ii) a distant su-
pervised phase using an additional 100M tweets,
where the labels are inferred by weak sentiment
indicators (e.g. smileys), and (iii) a supervised
phase, where the pre-trained network is trained on
the provided data.
We evaluated the approach on the datasets of
SemEval-2017 for the subtask B, where it ranked
4th out of 23 submissions.

Figure 1: Overview of the 3-Phase training proce-
dure.
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2 Model

Our system is based on the 2-layer CNN proposed
by (Deriu et al., 2016), as depicted in Figure 2 and
described in details below. We refer to a layer as
one convolutional and one pooling layer, thus, a 2-
layer network consists of two consecutive pairs of
convolutional-pooling layers.

Word embeddings. The word embeddings are
initialized using word2vec (Mikolov et al., 2013)
and then trained on an unlabelled corpus of 200M
tweets. We apply a skipgram model of window
size 5 and filter words that occur less than 15
times. The dimensionality of the vector represen-
tation is set to d = 52. The resulting vocabulary is
stored as a mapping V : t→ iwhich maps a token
to an index, where unknown tokens are mapped to
a default index. The word embeddings are stored
in a matrix E ∈ Rv×d where v is the size of the
vocabulary and the i-th row represents the embed-
ding for the token with index V (t) = i.

Preprocessing The preprocessing is done by: (i)
lower-case the tweet, (ii) replace URLs and user-
names with a special token, and (iii) tokenize the
tweet using the NLTK-TwitterTokenizer1.

Input Layer. Each tweet is converted to a set
of indices by applying the aforementioned prepro-
cessing. The tokens are mapped to their respective
indices in the vocabulary V .

Sentence model. Each word is associated to
a vector representation, which consists in a d-
dimensional vector. A tweet is represented by the
concatenation of the representations of its n con-
stituent words. This yields a matrix X ∈ Rd×n,
which is used as input to the convolutional neural
network.

Convolutional layer. In this layer, a set ofm fil-
ters is applied to a sliding window of length h over
each sentence. Let X[i:i+h] denote the concatena-
tion of word vectors xi to xi+h. A feature ci is
generated for a given filter F by:

ci :=
∑
k,j

(X[i:i+h])k,j · Fk,j (1)

A concatenation of all vectors in a sentence pro-
duces a feature vector c ∈ Rn−h+1. The vectors
c are then aggregated over all m filters into a fea-
ture map matrix C ∈ Rm×(n−h+1). The filters are

1http://www.nltk.org/api/nltk.tokenize.html

learned during the training phase of the neural net-
work.

Max pooling. The output of the convolutional
layer is passed through a non-linear activation
function before entering a pooling layer. The lat-
ter aggregates vector elements by taking the max-
imum over a fixed set of non-overlapping inter-
vals. The resulting pooled feature map matrix has
the form: Cpooled ∈ Rm×n−h+1

s , where s is the
length of each interval. In the case of overlap-
ping intervals with a stride value st, the pooled
feature map matrix has the form Cpooled ∈
Rm×n−h+1−s

st . Depending on whether the borders
are included or not, the result of the fraction is
rounded up or down respectively.

Hidden layer. A fully connected hidden layer
computes the transformation α(W∗x+b), where
W ∈ Rm×m is the weight matrix, b ∈ Rm the
bias, and α the rectified linear (relu) activation
function (Nair and Hinton, 2010). The output vec-
tor of this layer, x ∈ Rm, corresponds to the sen-
tence embeddings for each tweet.

Softmax. Finally, the outputs of the final pool-
ing layer x ∈ Rm are fully connected to a soft-
max regression layer, which returns the class ŷ ∈
[1,K] with largest probability. i.e.,

ŷ := arg max
j

P (y = j|x,w,a)

= arg max
j

ex
ᵀwj+aj∑K

k=1 e
xᵀwk+aj

,
(2)

where wj denotes the weights vector of class j and
aj the bias of class j.

Network parameters. Training the neural net-
work consists in learning the set of parameters
Θ = {E,F1,b1,F2,b2,W,a}, where E is the
sentence matrix, with each row containing the d-
dimensional embedding vector for a specific word;
Fi,bi(i = {1, 2}) the filter weights and biases of
the first and second convolutional layers; W the
concatenation of the weights wj for every output
class in the soft-max layer; and a the bias of the
soft-max layer.

Training. We pre-train the word embeddings on
an unsupervised corpus of 200M tweets. During
the distant-supervised phase, we use emoticons
to infer the polarity of a set of additional 100M
tweets (Read, 2005; Go et al., 2009). The result-
ing dataset contains positive 79M tweets and 21M
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Figure 2: The architecture of the CNNs used in our approach.

negative tweets. The neural network is trained
on these 100M tweets for one epoch. Then, the
neural network is trained in a supervised phase
on the labelled data provided by SemEval-2017.
To avoid over-fitting we employed early-stopping,
where we stop the training if the score on the val-
idation set did not increase for 50 epochs. The
word-embeddings E ∈ Rd×n are updated during
both the distant and the supervised training phases,
as back-propagation is applied through the entire
network.
The network parameters are learned using
AdaDelta (Zeiler, 2012), which adapts the learn-
ing rate for each dimension using only first or-
der information. We used the hyper-parameters
ε = 1e−6 and ρ = 0.95 as suggested by (Zeiler,
2012).

Computing Resources. The implementation of
the system is written in Python. We used
the Keras framework (Chollet, 2015) using the
Theano (Theano Development Team, 2016) back-
end. Theano allows to accelerate the computa-
tions using a GPU. We used an NVIDIA TITAN X
GPU to conduct our experiments. To generate the
word embeddings we used the Gensim framework
(Řehůřek and Sojka, 2010) which implements the
word2vec model in Python. It took about 2 days to
generate the word embeddings. The distant phase
takes approximately 5 hours and the supervised
phase up to 10 minutes.

3 Experiments & Results

3.1 Data
We evaluate our system on the datasets provided
by SemEval-2017 for subtask B (see Table 3.1).
The training-set is composed by Train 2016, Dev
2016, and DevTest 2016, whereas we use Test 2016
as validation set. The training and the validation

set have 100 topics each. Since our dataset of
200M tweets for the word embeddings consists
primarily of tweets from 2013, some of the top-
ics are not covered by the vocabulary. Thus, we
download an additional 20M tweets where we use
the topic-names as search key. This reduced the
percentage of unknown words from 14% to 13%.

Dataset Total Posit. Negat. Topics
Train 2016 5355 2749 762 60
Dev 2016 1269 568 214 20
DevTest 2016 1779 883 276 20
Test: Test 2016 20632 7059 3231 100

Table 1: Overview of datasets and number of
tweets (or sentences) provided in SemEval-2016.
The data was divided into training, development
and testing sets.

3.2 Setup
We use the following hyper parameters for the 2-
layer CNN: In both layers we use 200 filters, a
filter length of 6, and for the first layer we use a
pooling length of 4 with striding 2.
In order to optimize our results, we varied the
batch-sizes, we introduced class-weights to lessen
the impact of the unbalanced training set, and we
experimented with different schemes for shuffling
the training set (see below). To determine the
class-weight of class i we used the following for-
mula: n

c∗ni
, where n is the total number of sam-

ples in the training set, c is the number of classes,
namely 2, and ni is the number of samples that
belong to class i.

3.3 Results
The following results are computed on Test 2016.
We use the macroaveraged recall ρ as scoring
mechanism for our experiments, which is more ro-
bust regarding class imbalances (Rosenthal et al.,
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2017; Esuli and Sebastiani, 2015).
The results show that the usage of class weights in-
creases the score by approximately 2 points from
0.8225 to 0.8403 points.
Figure 3 shows the score depending on the batch
size used. The results show that higher batch sizes
tend to give higher scores. This effect however
subsides when batch sizes greater than 1200 are
used.
Figure 4 shows the result when different schemes
for shuffling the training set before training are
applied. When we do not shuffle the training
set, the macroaveraged recall score drops by 4-5
points. We compare two schemes for shuffling: (i)
the epoch based shuffling, where the training set
is shuffled entirely before each epoch, (ii) batch
based shuffling, where the training set is split into
batches and each batch is shuffled separately. The
results in Figure 4 show that there is just a small
difference of 1 point among the two strategies.

0.7318 

0.8258 

1 200 400 600 800 1000 1200 1400 1600 1800 2000

Batch Sizes 

Recall

Figure 3: The architecture of the CNNs used in
our approach.

0.7682 

0.8171 

0.8257 

None Epoch Batch

Shuffle 

Recall

Figure 4: The architecture of the CNNs used in
our approach.

Table 2 shows the results on the Test 2017 set,
which is the official test set of the competition.
The system achieves a macroaveraged recall of
0.846, thus, ranking at 4th place. The BB twtr
system, ranked 1st, outperforms our approach by
4 points, whereas the DataStories system and the
Tweester system outperform our system by only 1

point.

System ρ FPN
1 Acc

TopicThunder 0.846 0.847 0.854
BB twtr 0.882 0.890 0.897
DataStories 0.856 0.861 0.869
Tweester 0.854 0.854 0.863

Table 2: Official results on Test 2017. We compare
our system to the systems that ranked 1st, 2nd, and
3rd.

4 Conclusion

We described a deep learning approach to solve
the problem of topic-specific sentiment analysis
on twitter. The approach is based on a 2-layer
Convolutional Neural Network which is trained
using a large amount of data. Furthermore, we
experimented with different parameters to fine
tune our system. The system was evaluated at
SemEval-2017 for the task of Topic-Based Mes-
sage Polarity Classification, ranking at 4th place.
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Abstract
This paper describes the system used in
SemEval-2017 Task 4 (Subtask A): Mes-
sage Polarity Classification for both En-
glish and Arabic languages. Our pro-
posed system is an ensemble of two lay-
ers, the first one uses our generic frame-
work for multilingual polarity classifica-
tion (B4MSA) and the second layer com-
bines all the decision function values pre-
dicted by B4MSA systems using a non-
linear function evolved using a Genetic
Programming system, EvoDAG. With this
approach, the best performances reached
by our system were macro-recall 0.68 (En-
glish) and 0.477 (Arabic) which set us in
sixth and fourth positions in the results ta-
ble, respectively.

1 Introduction

Sentiment Analysis is the computational analysis
of people’s feelings or beliefs expressed in texts
such as emotions, opinions, attitudes, appraisals,
etc. (Liu and Zhang, 2012). At the same time,
with the growth of social media (review websites,
microblogging sites, etc.) on the Web, Twitter has
received particular attention because it is a huge
source of opinionated information (6, 000 tweets
each second) 1, and has potential uses for decision-
making tasks from business applications to politi-
cal campaigns.

In this context, SemEval is one of the fo-
rums that conducts evaluations of Sentiment
Analysis Systems on Twitter at different levels
such as polarity classification at global or topic-
based message, tweet quantifications, among other
tasks (Nakov et al., 2016; SemEval, 2017).

∗corresponding author: mario.graff@infotec.mx
1https://www.brandwatch.com/blog/44-twitter-stats-

2016/

In this research, the sentiment analysis task is
faced as a classification problem, thus supervised
learning techniques are used to tackle this prob-
lem. Particularly, we used Support Vector Ma-
chines (SVM) and a Genetic Programming system
called EvoDAG (Graff et al., 2016, 2017).

In this context, one crucial step is the procedure
used to transform the data (i.e., tweets) into the
inputs (vectors) of the supervised learning tech-
niques used. Typically, Natural Language Pro-
cessing (NLP) approaches for data representation
use n-grams of words, linguistic information such
as dependency relations, syntactic information,
lexical units (e.g. lemmas, stems), affective lex-
icons, etc.; however, selecting the best configura-
tion of those characteristics could be a huge prob-
lem. In fact, this selection can be seen as a combi-
natorial optimization problem where the objective
is to improve the accuracy (or any performance
measure) of the classifier being used. The pro-
posed system uses our generic framework for mul-
tilingual polarity classification (B4MSA) (Tellez
et al., 2016) to transform the data into the inputs
of an SVM. Furthermore, B4MSA uses random
search and hill climbing to find a suitable text
transformation pipeline among the possible ones.

Looking at systems that obtained the best results
in previous SemEval editions, it can be concluded
that it is necessary to include more datasets, see for
instance SwissCheese system (Deriu et al., 2016),
besides the one given in the competition. Here,
it was decided to follow this approach by includ-
ing an extra dataset for English, and a number of
datasets automatically labeled using a distant su-
pervision approach in both languages, English and
Arabic. Regarding this point, it was observed that
it is important to have a good balance between
quality and amount of samples. We take care of
this issue by removing the repeated samples in our
training set and at the same time using a lot of sam-
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ples.
In this paper, we describe our classification sys-

tem used in SemEval-2017 contest for Task 4,
subtask A: polarity classification at global mes-
sage. This task consists in classifying given a
tweet whether is positive, negative, or neutral sen-
timent according to its content. Our system was
evaluated on the English and Arabic languages.

2 System Description

Our framework comprises two subsystems:
B4MSA (Tellez et al., 2016), which is a su-
pervised learning system based on SVM; and
EvoDAG (Graff et al., 2016, 2017) that acts as
integrator of agreements among the decision
functions values predicted by a set of B4MSA
systems. Figure 1 shows the architecture of our
approach. The basic idea of this framework is to
make maximum use of synergies between both
approaches B4MSA and EvoDAG.

Figure 1: Prediction Scheme

Roughly speaking, our approach uses two lay-
ers. In the first layer, a set of B4MSA clas-
sifiers are trained with two kind of datasets;
datasets labeled by human annotators: SemEval
datasets from 2013-2016 and the English dataset
of (Mozetič et al., 2016), called HL dataset, and
also datasets generated by distant supervision ap-
proach, called DS dataset, (see section 3.2). In
case of HL datasets, each B4MSA classifier pro-
duces three real output values, one for each senti-
ment (negative, neutral and positive).

In the case of DS, the entire collection is di-
vided into a number of disjoint parts to obtain a

number of individually trained B4MSA classifiers.
Each B4MSA is only trained to predict if a tweet is
positive or negative, based on the distant supervi-
sion procedure described in §3.2. Since there are
only two classes, then each classifier produces a
real output. To improve the classification perfor-
mance, we fix the size of the parts to contain 30K
tweets (positive and negative) for large datasets.
Due to the large number of parts for very large DS
collections, we take into account just a few clas-
sifiers, k, in the decision process. To select the
k best classifiers, we define a vocabulary-affinity
measure that scores what a classifier knows about
the vocabulary (content) of a tweet to be classi-
fied. All B4MSA classifiers compute its vocabu-
lary affinity; then, the top k classifiers are selected
dynamically for each tweet according to its con-
tent using the vocabulary-affinity measure. The
optimal k should be experimentally determined.

Finally, EvoDAG’s inputs are the concatenation
of all the decision functions predicted by B4MSA.
The following subsections describe the internal
parts of our approach. The precise configuration
of our benchmarked system is described in §4.

2.1 B4MSA

B4MSA2 (Tellez et al., 2016, 2017) is a frame-
work to create multilingual sentiment analysis sys-
tems; in particular, it produces sentiment classi-
fiers that are weakly linked to language dependent
methods. For instance, B4MSA avoids the usage
of computational expensive linguistic tasks such
as lemmatization, stemming, part-of-speech tag-
ging, etc., and take advantage of data representa-
tions, mostly based on simple text transformations
and a number of text tokenizers.

The core idea of B4MSA is to determine au-
tomatically the best text transformation pipeline
along with the best performing set of tokenizers,
given a large set of possible configurations. In
B4MSA, the whole process is stated as a combina-
torial optimization problem, where the set of con-
figurations define the possible solutions. In prac-
tice, the best text configuration for a particular
problem has a high computational cost to evalu-
ate each configuration, due to the large configura-
tion space; however, a competitive solution can be
found using hyper-heuristics.

We use a plain B4MSA setup, see Table 1 for
details of text transformations used in our sys-

2https://github.com/INGEOTEC/b4msa
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tem. This set of text transformations was se-
lected among millions of possible configurations
through the combinatorial optimization solution
implemented in B4MSA.

2.2 EvoDAG

EvoDAG3 (Graff et al., 2016, 2017) is a Genetic
Programming system specifically tailored to tackle
classification and regression problems on very
high dimensional vector spaces and large datasets.
In particular, EvoDAG uses the principles of Dar-
winian evolution to create models represented as a
directed acyclic graph (DAG). An EvoDAG model
has three distinct node’s types; the inputs nodes,
that as expected received the independent vari-
ables, the output node that corresponds to the la-
bel, and the inner nodes are the different numerical
functions such as: sum, product, sin, cos, max, and
min, among others. Due to lack of space, we refer
the reader to (Graff et al., 2016) where EvoDAG is
described, and, we followed, in this research, the
steps mentioned there.

In order to provide an idea of the type of models
being evolved, Figure 2 depicts a model evolved
for the Arabic polarity classification at global mes-
sage task. As can be seen, the model is represented
using a DAG where direction of the edges indi-
cates the dependency, e.g., cos depends on X3,
i.e., cosine function is applied to X3. There are
three types of nodes; the inputs nodes are colored
in red, the inner nodes are blue (the intensity is re-
lated to the distance to the height, the darker the
closer), and the green node is the output node. As
mentioned previously, EvoDAG uses as inputs the
decision functions of B4MSA, then first three in-
puts (i.e., X0, X1, and X2) correspond to the deci-
sion function values of the negative, neutral, and
positive polarity of B4MSA model trained with
SemEval Arabic dataset, and the later two (i.e.,
X3 and X4) correspond to the decision function
values of two B4MSA systems each one trained
with our DS dataset. It is important to mention
that EvoDAG does not have information regarding
whether input Xi comes from a particular polar-
ity decision function, consequently from EvoDAG
point of view all inputs are equivalent.

3 Data Preparation

To determine the best configuration of parame-
ters for text modeling, B4MSA integrates a hyper-

3https://github.com/mgraffg/EvoDAG

Figure 2: An evolved model for the arabic task.

parameter optimization phase that ensures the per-
formance of the sentiment classifier based on the
training data. The text modeling parameters de-
termined for the English and Arabic languages re-
lated to text transformations, weighting scheme,
and tokenizers are described in Table 1. A text
transformation feature could be binary (yes/no)
or ternary (group/delete/none) option. Tokenizers
denote how texts must be split after applying the
process of each text transformation to texts. Tok-
enizers generate text chunks in a range of lengths,
all tokens generated are part of the text representa-
tion. B4MSA allows selecting tokenizers based on
n-words, q−grams, and skip-grams, in any combi-
nation. We call n-words to the well-known word
n-grams; in particular, we allow to use any combi-
nation of unigrams, bigrams, and trigrams. Also,
the configuration space allows selecting any com-
bination of character q-grams (or just q-grams) for
q = 3, 5, 7, and 9. Finally, we allow to use (2, 1)
and (3, 1) skip-grams (two words separated by one
word, and three words separated by a gap).

Our parameter set contains five binary features,
four ternaries ones, and nine individual tokenizers;
thus the configuration space contains 52 × 43 ×
(29 − 1) = 817, 600 different items. For instance,
for the English dataset, a commodity workstation
needs close to ten minutes to evaluate each con-
figuration,4 such that an exhaustive evaluation of
the configuration space will take 15 years. We use
a number of hyper-heuristics to find a competitive
model in a few hours, the interested reader on the
optimization process is referenced to (Tellez et al.,
2016, 2017).

Table 1 shows the final configurations for each
language, for example, remove diacritics is not
applied to English, but it is applied to Arabic.
Although lowercase transformation is weird for

4Only human labeled data, this time does not apply to the
distant supervision dataset.
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Text transformation English Arabic

remove diacritics no yes
remove duplicates no yes
remove punctuation no yes
emoticons none delete
lowercase yes yes
numbers group group
urls group delete
users delete none

Term weighting

TF-IDF yes yes

Tokenizers

n-words {2, 3} {2}
q-grams {3, 5, 9} {3, 5}
skip-grams – {(3, 1)}

Table 1: Set of configurations for text modeling

Arabic since there is no such concept in Arabic
text, it makes sense when text is not constrained
to Arabic, e.g., tweets are full of text in other lan-
guages, it has URLs, user’s names, or hashtags.

In case of English, the model selection proce-
dure performed by B4MSA determined to use tri-
grams, bigrams, and character q-grams of sizes 3,
5, and 9. In case of Arabic, each tweet must be
split into (3, 1)-skip-grams, bigrams and trigrams
of words, and 3-grams, 5-grams of characters. TF-
IDF term weighting is applied to both languages.

The processes associated to text modeling,
shown in Table 1, are applied to all datasets as text
representation model.

3.1 Training Data

For this year, SemEval provides training data from
2013 to 2016 (Nakov et al., 2016) evaluations
to train systems. In addition, we use an extra
dataset annotated by humans around 73 thousand
tweets and 2,000 available for English (Mozetič
et al., 2016) and Arabic (NRC, 2017) languages,
respectively. Table 2 shows the distribution of
classes for English and Arabic datasets. We con-
sider, essentially, three kind of datasets as training
data: all datasets provided from SemEval are as a
cross-domain dataset for evaluation on the contest,
Extra-data as out-of-domain dataset of SemEval
evaluations, and DS dataset (distant supervision)
as general domain dataset, mainly, for learning af-
fective vocabulary and related words. In case of
DS dataset, we obtained 11 million tweets for En-
glish after processing a huge amount of tweets,
and 16 thousand tweets for Arabic (see section
3.2). For Arabic, due to the lack of data, all hu-

man labeled tweets are considered as a dataset.

DataSet Positive Neutral Negative Total
Statistics of English training data

train2013 3,662 4,600 1,466 9,728
dev2013 575 739 340 1,654
test2013 1,572 601 1,640 3,813
test2014 982 669 202 1,853
test2015 1,040 987 365 2,392
train2016 3,094 863 2,043 6,000
dev2016 844 765 391 2,000
devtest2016 994 681 325 2,000
test2016 7,059 10,342 3,231 20,632
Extra-data 21,166 33,620 18,454 73,240
DS-dataset 5.5M - 5.5M 11M

Statistics of Arabic training data
train2017 743 1,470 1,142 3,355
Extra-data 448 202 1,350 2,000
DS-dataset 8,108 - 8,108 16,216

Table 2: Statistics of English and Arabic training
data. We used the labeled English extra-data from
(Mozetič et al., 2016), and the Arabic extra data
from (NRC, 2017).

3.2 External Data
In addition of the training datasets provided by Se-
mEval’17, and annotated Extra-datasets, we gen-
erate an affective dataset using distant supervision
approach. Distant supervision has been used for
tasks such as information extraction (Mintz et al.,
2009), or sentiment analysis (Go et al., 2009). In
sentiment analysis, emoticons, some words, and
hashtags are usually used as indicators of emo-
tion in order to create labeled dataset without hu-
man assistance. These new labeled datasets are
expected to improve the performance of systems
based on training data. We introduce a set of
heuristics for distant supervision based on affec-
tive lexicons to generate labeled datasets for posi-
tive and negative sentiment.

Our approach consists in filtering tweets con-
sidering the affective degree that each tweet con-
tains based on its affective words. First, we have
collected more than 220 million tweets for U.S.
English according to their geolocation (from July
to December 2016), and more than 130 thousand
tweets for Arabic without restriction of geoloca-
tion (one week of January 2017). Later, tweets
are filtered using a large affective lexicon built for
this purpose. The tweets are selected based on its
positive or negative words. Some heuristic rules
are used, for example, if a tweet contains nega-
tive markers that could reverse the sentiment such
as no, not, although, however, but, etc., question
marks, or both positive and negative words, then

774



the tweet is discarded; if a tweet has only pos-
itive or negative words (no contradiction), then
it is selected and labeled with the corresponding
sentiment according to the affective words. Also,
English and Arabic stemmers from NLTK (Bird
et al., 2009) are used in order to maximize the
matches between affective words and tweets.

Our distant supervision approach uses an affec-
tive lexicon that was created based on the Sen-
tiSense lexicon (de Albornoz et al., 2012) to ex-
tract affective tags (sadness, anger, love, etc.) re-
lated to WordNet synsets (Miller, 1995). A synset
defines a group of words with semantic similari-
ties, thus, a synset label defined in SentiSense is
applied to all words in the WordNet synset, these
words are part of our lexicon. Negative emotions
in SentiSense (sadness, fear, anger, hate, disgust)
are mapped to negative tag, and positive emo-
tions (love, joy, like) are mapped to positive tag.
In addition, opinion words from Bing Liu’s lexi-
con (Liu, 2017) are also added to our lexicon. In
case of Arabic language, the affective lexicon was
created translating the affective lexicon from En-
glish into Arabic by means of python translation
package for Bing translator service (LittleCoder,
2017). The same heuristic rules for English are
applied to Arabic to create the labeled dataset for
positive and negative emotions.

Finally, we remove near duplicated tweets to
reduce the final dataset (DS-dataset); the idea is
to select only the essential dataset while the vo-
cabulary around affective words is maximized.
The process of near duplicate removal is per-
formed as follows. We performed a linear scan
of the retrieved dataset, we transform the tweet
with a number of coarsening text transformations
(all those supported by B4MSA, see Table 1).
Whether the transformed text has not be seen; that
is, if the text was already generated, the tweet is
discarded. In the end, from an initial collection
of 220 million tweets, we obtained around 11 mil-
lion exemplars for English, and, from an initial set
of more than 130K of Arabic tweets, around 16
thousand exemplars were obtained (see Table 2 for
more details).

4 Results

We present the results of our system in subtask A
for both the English and Arabic languages. Ta-
ble 3 shows the performance on some configu-
rations for EvoDAG. 2-HL indicates the use of

two human labeled datasets, SemEval and the pre-
sented in (Mozetič et al., 2016); 44-DS indicates
the use of k = 44 for the 11 million DS-dataset.
More detailed, the best 44 classifiers are chosen
from 367; each classifier is trained over chunks
of 30K tweets. The selection is made based on
the vocabulary-affinity between an object and each
classifier, see §2 for more details. In the end, this
configuration produces 50 inputs for EvoDAG. Six
inputs correspond to 2-HL since each dataset con-
tributes with three inputs, i.e. the B4MSA’s deci-
sion functions for positive, negative, and neutral
classes. Also, the rest of the inputs correspond to
44 best B4MSA classifiers trained with our dis-
tant supervision process. Each value describes if
a tweet is just positive or negative, as decided by
the corresponding B4MSA classifier. We obtained
0.680 of macro-recall in our training stage, and
achieve 0.649 in the SemEval’s gold-standard.

In addition, we tested our system without using
DS-dataset in order to show the improvement of
our distant supervision approach (see 2-HL-train/4
configuration, Table 3). The training dataset was
divided into 4 subsets to train our scheme with
EvoDAG, this configuration, only with training
dataset annotated by humans, is below nearly 3%
of our best performance. Thus, we use the same
DS approach for both English and Arabic lan-
guages.

In the case of Arabic, due to the lack of data,
there are only five inputs for EvoDAG. As shown
in Figure 2: three inputs come from a B4MSA
trained with annotated datasets (1-HL), and two
additional inputs come from trained classifiers
with DS-dataset (16K tweets). The last dataset is
partitioned into two subsets of around 8K tweets
(2-DS), the only evaluation is shown in Table 4,
we obtained 0.642 of macro-recall in our training
stage and 0.477 in the SemEval’s gold-standard.

configuration macro-F1 macro-recall accuracy

2-HL, 44-DS (11M) 0.649 0.680 0.667
2-HL, 44-DS (3.5M) 0.648 0.679 0.666
2-HL, train/4 0.632 0.652 0.655

Performance on gold standard of SemEval’17

2-HL, 44-DS (11M) 0.645 0.649 0.633

Table 3: Results for substask A on English
datasets. (HL) Human labeled, (DS) Distant su-
pervision
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configuration macro-F1 macro-recall accuracy

1-HL, 2-DS (16K) 0.642 0.642 0.662

Performance on gold standard of SemEval’17

1-HL, 2-DS (16K) 0.455 0.477 0.499

Table 4: Results for substask A on Arabic datasets.
(HL) Human labeled, (DS) Distant supervision

5 Conclusions

In this paper was presented the proposed approach
combining a generic framework for multilingual
polarity classification, B4MSA, with a genetic
programming system, EvoDAG. For the training,
we use several datasets: human annotated datasets,
and our datasets generated with distant supervi-
sion approach. Our performance, macro-recall
0.649, brought us to the sixth position in the En-
glish language, and fourth position, macro-recall
0.477, for the Arabic language.
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Abstract 
 

1  Introduction  

Sentiment analysis is extracting subjective 

information from source materials, via natural 

language processing, computational linguistics, 

text mining and machine learning. 

Classification of users’ reviews about a 

concept or political view may bring different 

opportunities including customer satisfaction 

rating, making right recommendations to right 

target, categorization of users etc. Sentiment 

Analysis is often referred to as subjectivity 

analysis, opinion mining and appraisal 

extraction with some connections to affective 

computing.  Sometimes whole documents are 

studied as a sentiment unit (Turney and 

Littman, 2003), but it’s generally agreed that 

sentiment resides in smaller linguistic units 

(Pang and Lee, 2008).  

This paper describes our approach for 

SemEval-2017 Task 4: Sentiment Analysis in 

Twitter. We have participated in Subtask A: 

Message Polarity Classification subtask. We 

have developed two systems. The first system  

uses word embeddings for feature 

representation and Support Vector Machine 

(SVM), Random Forest (RF)  and Naive Bayes 

(NB) algorithms for classification Twitter 

messages into negative, neutral and positive 

polarity. The second system is based on Long 

Short Term Memory Recurrent Neural 

Networks (LSTM) and uses word indexes as 

sequence of inputs for feature representation.  

The remainder of this article is structured as 

follows: Section 2 contains information about 

the system description  and Section 3 explains  

methods, models, tools and software packages 

used in this work.  Test cases and datasets  are 

explained in Section 4. Results are given in 

Section 5 with discussions. Finally, section 6  

summarizes the conclusions and future work. 
 

2  System Description  

   We have developed two independent 

systems. The first system is word embedding 

centric and described in subsection 2.1. The 

second is LSTM based and described in 

subsection 2.2. Further details about both 

systems are given in Section 3.   

2.1 Word Embedding based System 

Description 

   In word embedding centric system approach, 

each word in a tweet is represented with a 

vector. Tweets consist of words and vectorial 

values of words (word vectors) are used to 

represent tweets as vectorial values.  Word 

Embedding system framework is shown Figure 

1. Two methods are used to obtain word 

vectors in this work. The first method is based 

on generating word vectors via constructing a 

word2vec model from semeval corpus as 

depicted in Figure 1 steps 1 and 2. The second 

This paper describes our approach for 

SemEval-2017 Task 4: Sentiment Analysis in 

Twitter. We have participated in Subtask A: 

Message Polarity Classification subtask and  

developed two systems. The first system  

uses word embeddings for feature 

representation and Support Vector Machine, 

Random Forest and Naive Bayes algorithms 

for the classification of Twitter messages into 

negative, neutral and positive polarity. The 

second system is based on Long Short Term 

Memory Recurrent Neural Networks and 

uses word indexes as sequence of inputs for 

feature representation.  
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method is based on Google News pre-trained 

word vectors model (step 3). 

Generate word2vec 
model 

Corpus

(2)

Word vectors

(1)

Vectorize tweets in the 
dataset

Vectorize each one of 
the tweets in the 

dataset using the word 
vectors

Dataset

Tweet 
vectors

Train and test a model
Train a classifier with 

train data and test the 
classifier with test data

(4)

(5)

(6)

(7)

(8)

Results
(9)

Use Google News 
pre-trained word 

vectors model

(3)

Figure 1: General framework of the system 

 

      In the first method, a word2vec model is 

construted by using the entire semeval tweet 

corpus and a vector space (word2vec model) 

has been created. This model contains vector 

values for all unique words in the corpus. 

Words which have similar contexts are 

positioned closer on this space. The parameters 

used in training word2vec model effect the 

performance of the whole framework. 

Therefore it is important to find optimal 

parameter values. This work is focused on the 

parameter named feature vector dimension size 

and its impact on the general performance. 

This parameter determines the dimensionality 

of the word vectors, which are generated via 

the word2vec model. 

   The second method is based on Google News 

pre-trained word vectors model. This method  

uses the Google News pre-trained word vectors 

model to obtain word vectors as shown in 

Figure 1 step 3. The Google news pre-trained 

model is a dictionary which contains word and 

vectorial value pairs, and it is generated via a 

word2vec model trained on the Google News 

text corpus.  

    Next stage includes using the obtained word 

vectors to vectorize tweets in the dataset which 

contains both training data and test data (steps 

5 and 6). This stage includes also the 

preprocessing of the tweets, e.g. deleting http 

links and twitter user names  included in the 

tweets, deleting the duplicate tweets which 

occur multiple times on the dataset etc. Later, 

preprocessed and formatted tweets are iterated 

to generate a tweet vector for each tweets by 

using the words they contained. Therefore, 

inputs of this stage are the dataset and the 

model which includes word vectors, while its 

output is a set containing tweet vectors, both 

for the train and the test data. 

   Outputted tweet vectors are in a numerical 

format which can be given as an input to 

multiple machine learning algorithms with the 

purpose of classifying them into categories or 

testing an existing model (step 8). At this 

stage, each tweet in the dataset is represented 

as a vector with multiple dimensions (step 7). 

It is possible to train a new classifier model or 

load a pre-trained and saved model. SVM, RF, 

and NB classifier models are trained in this 

work. Tweets are categorized into three classes 

which are negative, neutral and positive (step 

9). 

2.2 LSTM Based System Description  

   The pipeline of the second system consists of 

many steps : reading Tweets from Semeval 

datasets, preprocessing Tweets, representing 

each word with an index, then representing 

each Tweet with a set of word index sequence 

and training a LSTM classifier with sequence 

index array. The Flowchart of this system  is 

shown in Figure 2.  

Pre-processingDataset Indexing LSTM

 
Figure 2: LSTM based  system pipeline  

3 Methods and Tools  

3.1 Word Embedding  

   Word embedding stands for a set of natural 

language processing methods, where words or 

phrases from the vocabulary are mapped to 

vectorial values of real numbers (Bengio et 

al.,2003). Embeddings have been shown to 

boost the performance of natural language 

processing tasks such as sentiment analysis 
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(Socher et al., 2013). Vector representations of 

words can be used in vector operations like  

addition and subtraction. Vectors generated by 

word embedding can be used to represent 

sentences, tweets or whole documents as 

vectorial values. There are multiple methods to 

generate sentence vectors using the word 

vectors, a modified version of the sum 

representation method which is proposed by 

Blacoe is used in this work (Blacoe et al., 

2012). 

   The sum representation model, in its original 

state, is generated via summing the vectorial 

embeddings of words which a sentence 

contains. The related equations are given 

below with E.1, E.2 and E.3: 

𝑇𝑤𝑡: 𝑡𝑤𝑒𝑒𝑡, 𝑡𝑤𝑡𝑉𝑒𝑐: 𝑡𝑤𝑒𝑒𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 
𝑤: 𝑤𝑜𝑟𝑑, 𝑤𝑑𝑉𝑒𝑐: 𝑤𝑜𝑟𝑑 𝑣𝑒𝑐𝑡𝑜𝑟, 
𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡𝑤𝑒𝑒𝑡, 

𝑇𝑤𝑡𝑖 = (𝑤1
(𝑖), … , 𝑤𝑛

(𝑖))  ∶ words in tweet 

 

𝑡𝑤𝑡𝑉𝑒𝑐[𝑗] =  ∑ 𝑤𝑑𝑉𝑒𝑐𝑤𝑘

𝑘=1,…,𝑛𝑖

[𝑗] (E.1) 

 

A modified version is used in this work. Derived 

version considers the number of words. The related 

equations  are given below: 

 

𝑇𝑤𝑡𝑖 = (𝑤1
(𝑖), … , 𝑤𝑛

(𝑖)) (E.2) 

𝑡𝑤𝑡𝑉𝑒𝑐[𝑗] =  
∑ 𝑤𝑑𝑉𝑒𝑐𝑤𝑘𝑘=1,…,𝑛𝑖

[𝑗]

𝑛
 (E.3) 

 

3.2 Classification Models 

3.2.1 Support Vector Machine 

   SVM finds a hyper plane seperating tweet 

vectors according to their classes while making 

the margin as large as possible. After training, 

it classifies test records according to which 

side of the hyperplane their positions are 

(Fradkin et al, 2000). We have used SVM with 

the following parameters = {Kernel = 

PolyKernel, batchSize=100} 
 

3.2.2 Random Forest 

   Random forests, first proposed by Ho (Ho, 

1995) and later improved by Breiman 

(Breiman, 2001), operate by generating 

multiple decision trees and generate the final 

decision by evaluating the results of these 

individual trees. The mathematical expression 

is given in equation (E.4). We have used 

Random Forest with the following parameters 

={bagSizePercent =100, batchSize=100}  

{(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛    : 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡, 

𝑦 ∗    : 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 

𝑥′    ∶ 𝑛𝑒𝑤 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 

𝑊(𝑥𝑖 , 𝑥′)𝑦𝑖  ∶ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖′𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 

𝑊    ∶ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 

  

𝑦∗ =  
1

𝑚
∑ ∑ 𝑊𝑗(𝑥𝑖 , 𝑥′)𝑦𝑖

𝑛

𝑖=1

𝑚

𝑗=1

= ∑ (
1

𝑚
∑ 𝑊𝑗(𝑥𝑖 , 𝑥′)

𝑚

𝑗=1

) 𝑦𝑖

𝑛

𝑖=1

 

(E.4) 

 

3.2.3 Naïve Bayes 

   Naïve-Bayes is a probabilistic classifier 

based on Bayes’ theorem, based on 

independence of features (John et al, 1995). 

Mathematical expression is given in equation 

(E.5). 

 
𝑐 ∗∶ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑥 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒 

ℎ𝑁𝐵: 𝑛𝑎ï𝑣𝑒 𝑏𝑎𝑦𝑒𝑠 𝑓𝑢𝑛𝑐  

𝑐∗ = ℎ𝑁𝐵(𝑥) 

 
 

    = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1…𝑚𝑃(𝑐𝑗) ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝑐𝑗)  (E.5) 

 

 

3.2.4 Long Short Term Memory 

Recurrent Neural Nets 

    

   LSTM networks have similiar architecture to 

Recurrent Neural Nets (RNNs), except that 

they use  different functions and architecture to 

compute the hidden state. They were 

introduced by Hochreiter & Schmidhuber 

(1997) to avoid the long-term dependency 

problem and were refined and popularized by 

many people in next studies.  

    

    LSTMs have the form of a chain of 

repeating modules of a special kind of 

architecture.  The memory in LSTMs are 

called cells. Internally, these cells decide what 

to keep in and what to erase from memory. 

They then combine the previous state output, 

the current memory and the input to produce 

current state output. It turns out that these 

types of units are very efficient at capturing 
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long-term dependencies. Before feeding the 

LSTM Network,  preprocessing and indexing 

steps have been applied as shown in Figure 2. 
 

                          Preprocessing 

 

   We have pre-processed the dataset before we 

input it into the LSTM classifier. We used 

Deeplearning4J library1 to remove 

punctuations from tweets, and convert all 

content into lowercase. 

 

Indexing 

 

   Indexing is iterating over all tweets 

contained in the dataset to determine words 

used in them and enumerate them. The index 

values of words are combined sequentially so 

that each tweet is presented as a sequence of 

word index numbers.  

    

   The program iterates through the dataset, 

enumarates each word which has not been 

indexed before and generates a dictionary that 

contains word – index pairs. As a result, each 

tweet is represented as set of sequential 

indexes, each representation contains same 

number of values as the tweet word count. 

    

   Indexed tweets are in sequential structure 

and they can be given as input to neural 

networks directly. LSTM networks make it 

possible to take the data sequentially and take 

in consideration the order of words in the 

training and classifying stages. Therefore, we 

used LSTM upon indexed tweets. We have 

used categorical crossentropy  as loss function 

and softmax function. Our model parameters 

are given in Table 1 and the model is shown in 

Figure 3. 

 

3.3 Used Tools and Software Packages  

 

3.3.1  Deeplearning4J 

 
   Deeplearning4j  is a commercial-grade, 

open-source, distributed deep-learning library 

written for Java and Scala1.  There are multiple 

parameters to adjust when training a deep-

learning network. Deeplearning4j is used for 

generating a vectorized format of the Semeval 

dataset using the Google News trained word 

vectors model. 

 

 
              Table 1: Parameters for classifier stage 

max_features 
86000 : Maximum integer value of 
indexed  dataset. 

maxlen 
25 : Indexed tweets padded into this 

value. 

batch_size 32  

model Sequential(): sequential model 

Embedding 

max_features : Input dimension, size 

of the vocabulary. 
128 : Dimension of the dense 

embedding. 

dropout=0.2 

LSTM 

128 : dimension of the internal 

projections and the final output 

dropout_W=0.2 : Fraction of the 
input units to drop for input gates. 

dropout_U=0.2 : Fraction of the 

input units to drop for recurrent 

connections. 

Dense 3 : Output dimensions. 

Activation 
‘softmax’ : Normalized exponential 

function  

loss ‘sparse_categorical_crossentropy’ :. 

optimizer ‘adam’ : Adam optimizer. 

 

 
Figure 3: Plotted diagram of the LSTM classifier 

 

3.3.2 Keras 

    Keras2, developed by Chollet et al., is a 

high-level, open-source neural networks 

library written in Python (Chollet, 2015). It can 

use Theano or TensorFlow libraries as its 

backend. It is focused on fast experimentation 

with data. It includes implementations of 

commonly used neural network blocks such as 

layers, activation functions, etc., to enable its 

users to implement various neural networks in 

their work. We have used Keras library to 

develop LSTM  network for tweet polarity 

classification.  

 
1 Deeplearning4j, http://deeplearning4j.org (Referenced Nov 

2016) 
2 Keras, https://keras.io/ (Referenced February 2017) 
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3.3.3 Word2vec 

   Word2vec3, is a group of models used to 

generate word embeddings (Mikalov et al., 

2013). Word2vec models are based on two-

layer neural networks which takes a large 

corpus of text as its input and produces a 

vector space of several hundred dimensions. 

Each unique word in the corpus is assigned a 

corresponding vector in this space. 

Embeddings are used to represent words as 

vectors which are closer to each other when 

words have similar meanings and far apart 

when they do not. Therefore, the system can 

generalize similar words.  

   Representing words as vectorial values 

makes it possible to treat words as vectors and 

use vectorial operations on them. A properly 

trained Word2vec model can calculate an 

operation like [king] - [man] + [woman] and 

give the approximate result of [queen].  

   We have generated word2vec models in our 

tests from semeval datasets.  We have run 

word2vec models with the parameters shown 

in Table 2.  

Table 2: Parameters for word2vec generation stage 

minWordFreq 
MIN_WORD_FREQ = 5 : Minimal 

element frequency for elements 

found in the training corpus. 

iterations 
NETWORK_ITERATION = 25/50 

:How many iterations should be 

done over batched sequences. 

layerSize 
FEATURE_VECTOR_DIMENSIO
N_SIZE = 300/600/900 : Number 

of dimensions for outcome vectors. 

seed 
RANDOM_SEED = 42 : Sets seed 
for random numbers generator. 

windowSize 
WINDOW_SIZE = 25 : Sets 

window size for skip-Gram  

3.3.4  Google News Trained Word2vec 

Model 

   Google news trained word vectors compose a 

word vector model which has been pre-trained 

on part of Google News corpus that includes 

100 billion words. The model contains 300-

dimensional vectors for 3 million words and 

phrases4. It is 3.39 GB in size which is 

observable from the equality, 3 million words * 

300 features * 4bytes/feature = ~3.39GB. 

Some stop words like “a”, “and”, “of” are 

excluded, but others like “the”, “also”, 

“should” are included. It also includes 

misspellings of words. For example, it includes 

both “mispelled” and “misspelled”.  

We have used Google News pre-trained word 

vectors to generate vector representations of 

tweets with FEATURE VECTOR DIMENSION SIZE 

equals to 300 configuration.   

4 Dataset and Test Cases  

4.1  Dataset 
   SemEval-2016 Task4 Subtask A’s twitter 

train and test datasets have been used in this 

work5. The given datasets are dynamic which 

don’t include the tweets that are deleted by 

their authors. Thus, the available data changes 

dynamically as users make their tweets 

available or deleted. We have used all previous 

years’ tweets to construct the word embedding 

and classification models. 

4.2 Test Cases 

   We have tested many configurations to find 

the best configuration to achieve the highest 

accuracy rate. We have conducted five main 

test cases. In the first,  second and third test 

cases we have used word2vec model that has 

been constructed with previous years’ semeval 

tweet datasets.    

   In Test 01, Test 02 and Test 03 we have 

trained word2vec model with SemEval Tweet 

dataset corpus. Also we have used different 

vector dimension sizes including 300, 600 and 

900.  In test case 04 we have used google news 

based(trained) word vectors. Also in each test 

case classification has been done with SVM, 

RF and NB. Test 05 id done with LSTM 

classifier on SemEval dataset. The test cases 

are listed in Table 3.  

Table 3: Results obtained from tests 

Test 

No. 

Word 

Vectors 
Dimension Size 

S

V
M 

R

F 

N

B 

 

L

S
T

M 

01 SemEval 600 √ √ √  

02 SemEval 300 √ √ √  

03 SemEval 900 √ √ √  

04 

Google 

News 
trained  

300 

√ √ √  

05 
N/A 

(index) 
30 

   √ 

 
3 Word2vec https://deeplearning4j.org/word2vec.html 
4 Google News trained word vectors model, 

https://code.google.com/archive/p/word2vec/  

5 SemEval Dataset, 

alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools
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5 Results and Discussion 

5.1 Tests with Word Embedding and 

SVM, TF, NB  

   Purpose of the first three tests was observing 

the parameter feature vector dimension size’s 

and classifier type impact on the general 

performance. We have used SemEval training 

and test datasets pertaining to 2013, 2014, 

2015 and 2016 years to construct SemEval 

word2vec model. The tests have been done 

using this SemEval cumulative dataset. Results 

obtained from the classification tests are shown 

in Table 4. 

Table 4:  Accuracy / Results obtained from tests 

Test 

No. 

Word 

Vectors 

Dim.

Size 

SVM 

% 

RF 

% 

NB 

% 

01 Semeval 600 58.3  54.4  52.3  

02 Semeval 300 57.3  45.7  51.8  

03 Semeval 900 58.7  53.7  51.7  

04 

Google 
News 

trained 

word 
vectors 

300 62.8  57.2  53.1  

 

   For SVM, the difference is minimal, but the 

value 900 worked best. For RF, the value 300 

drastically reduced the overall performance 

while the value 600 worked best. NB 

accuracies are close to each other but it is 

observed that this method has the lowest 

overall accuracy values among three. With a 

word2vec model which is trained on the same 

dataset with the classifier, SVM method 

obtained the best results. 

   The fourth test has a different approach, 

which is not generating a word2vec model but 

obtaining the Google News pre-trained word 

vectors instead. This model has the standard 

value 300 for the feature vector dimension size 

and resulted in better accuracies for each one 

of the classification methods. It is observed 

that the model has positive impact on the 

overall system performance. 

 

5.2 Tests with LSTM  

   Keras library is used to train and test LSTM 

Recurent Neural Net. Test 05 id done with 

LSTM classifier on SemEval cumulative 

dataset and 62.6% accuracy rate has been 

achieved. 

5.3 Results over the SemEval 2017 Test 

Set 

  The test dataset  is used to test the system’s 

capability of predicting categories for 

unlabeled tweet data, and give them as an 

output.  The original test dataset includes 

12379 records, 95 of which are confirmed to 

be duplicates. These duplicate records are 

deleted from the dataset. Remaining 12284 

records are evaluated in this test. 

    Preprocessing stage strips all punctuation 

from the dataset and converts all tweets into 

lower case. This means, twitter user names, 

e.g. @username, are stripped from their ‘@’ 

symbol, but the user names themselves are 

preserved.  

   In SemEval 2017, the results are given with 

three scores: average 𝐹1 (𝐹1 averaged across 

the positives and the negatives), average R        

(recall averaged across the three classes) and 

accuracy. The 𝐹1 score measures test accuracy 

by considering precision and recall where a 𝐹1 

score reaches its worst value at 0 and best 

value at 1.  

   Using SemEval 2017 test data we have 

achieved  the following scores :   Average 𝐹1 = 

0.587, Average R = 0.605 and Accuracy = 

0.603.  

 

6 Conclusion and Future Work 

    

   The best result is obtained via support vector 

machine classifier, when Google News pre-

trained word vectors are used, which is 62.8% 

accuracy in average when applied to previous 

years’ training and test data.   

   On the  Semeval 2017 Test Dataset by using 

same Word embedding + SVM pipeline ( the 

first system), we have obtained 60.3% 

accuracy rate with the following scores scores :   

Average 𝐹1 = 0.587, Average R = 0.605 and 

Accuracy = 0.603. 

   There may be many approches to create a 

better system. One possible way to further 

improve our system could be to transfer word 

embedding features to other classifiers 

(Recurrent Tensor Neural Networks, 

combining LSTM and Convolutional Neural 

Networks etc. ). Another possible line of the 

future research is the combination of hand 

crafted features (bag of words, n-grams, 

lexicons) with word embedding features.  

 

782



 

References 

B. Pang, L. Lee, S. Vaithyanathan. 2002.  Thumbs 

up? Sentiment Classification using Machine 

Learning Techniques, Proceedings of EMNLP 

2002, pp. 79–86. 

B. Pang and L. Lee. 2008. Opinion mining and 

sentiment analysis. Foundations and Trends in 

Information Retrieval. 

Turney, P. & Littman, M. 2003. Measuring praise 

and Criticism: Inference of semantic orientation 

from association. ACM Transactions on 

Information Systems, 21(4), 315-346. 

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, “A 

Neural Probabilistic Language Model, Journal of 

Machine Learning Research 3 1137–1155, 2003 

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. 

Manning, A. Ng, C. Potts, “Recursive Deep Models 

for Semantic Compositionality Over a Sentiment 

Treebank”, Conference on Empirical Methods in 

Natural Language Processing, 2013 

W. Blacoe, M. Lapata, “A Comparison of Vector-

based Representations for Semantic Composition”, 

Proceedings of the 2012 Joint Conference on 

Empirical Methods in Natural Language Processing 

and Computational Natural Language Learning, 

546–556, 2012 

T. Mikolov, K. Chen, G. Corrado, J. Dean, 

“Efficient Estimation of Word Representations in 

Vector Space”, 2013 

D. Fradkin, I. Muchnik, “Support Vector Machines 

for Classification”, DIMACS Series in Discrete 

Mathematics and Theoretical Computer Science, 

2000 

T. K. Ho, “Random Decision Forests”, ICDAR '95 

Proceedings of the Third International Conference 

on Document Analysis and Recognition Vol.1, 

1995 

G. H. John, P. Langley, “Estimating Continuous 

Distributions in Bayesian Classifiers”, Proceedings 

of the Eleventh Conference on Uncertainty in 

Artificial Intelligence, 1995  

S. Hochreiter and J. Schmidhuber, "Long Short 

Term Memory", Neural Computation, vol. 9, no. 8, 

p. 1735–1780, 1997 

F. Chollet, “Keras: Deep Learning library for 

Tensor Flow and Theano”, GitHub, 

https://github.com/fchollet/keras, 2015 

L. Breiman, (2001). "Random Forests". Machine 

Learning. 45 (1): 5-32. 

doi:10.1023/A:1010933404324. 

 

783



Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 784–789,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

TakeLab at SemEval-2017 Task 4: Recent Deaths and the Power of
Nostalgia in Sentiment Analysis in Twitter
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Abstract

This paper describes the system we sub-
mitted to SemEval-2017 Task 4 (Sen-
timent Analysis in Twitter), specifically
subtasks A, B, and D. Our main focus
was topic-based message polarity classi-
fication on a two-point scale (subtask B).
The system we submitted uses a Support
Vector Machine classifier with rich set of
features, ranging from standard to more
creative, task-specific features, including a
series of rating-based features as well as
features that account for sentimental rem-
iniscence of past topics and deceased fa-
mous people. Our system ranked 14th out
of 39 submissions in subtask A, 5th out of
24 submissions in subtask B, and 3rd out
of 16 submissions in subtask D.

1 Introduction

Sentiment analysis (Pang et al., 2002), a task of
determining polarity of text towards some topic,
recently gained a lot of interest, mostly due to its
applicability in various fields, such as public rela-
tions (Pang et al., 2008) and market analysis (He
et al., 2013). Following the growing popularity of
social networks and an increasing number of user
comments that can be found there, sentiment anal-
ysis of texts on social networks, such as tweets
from Twitter, has been the focus of much research.

However, determining the sentiment of a tweet
is often not an easy task, since the length of the
tweet is limited and language is mostly informal,
including slang, abbreviations, and hashtags. Var-
ious systems have been proposed for tackling this
problem, ranging from simple unsupervised mod-
els that use precompiled sentiment lexicons for
evaluating polarity of tweets (O’Connor et al.,
2010) to more complex supervised models that

use textual feature representations in combination
with machine learning algorithms such as Sup-
port Vector Machines (SVM) (Khan et al., 2015;
Barbosa and Feng, 2010) or deep neural networks
(Dos Santos and Gatti, 2014; Tang et al., 2014).

In this paper, we present our system for de-
termining sentiment of tweets, which we submit-
ted SemEval-2017 Task 4 (Rosenthal et al., 2017),
more specifically to the English versions of sub-
tasks A, B, and D. In subtask A, the goal was to
predict the sentiment of a tweet as either positive,
neutral, or negative. Subtask B consisted of pre-
dicting the sentiment of a given tweet on a 2-point
scale (positive or negative) given a topic. In sub-
task D, the task was to determine the distribution
of positive and negative tweets for each topic in a
given set of tweets annotated with topics.

The system we submitted uses an SVM clas-
sifier with a linear kernel and a number of fea-
tures. We experiment with basic features such
as tf-idf and pretrained word embeddings, as well
as more task-specific features including sentiment
lexicons, ratings-based, “nostalgia features”, and
“recent deaths”. Ratings-based features use exter-
nal data from different online resources to leverage
the information such as rating of a movie or an ac-
tor mentioned in a tweet. “Recent deaths” features
make use of information about recent deaths of no-
table people, while “nostalgia feature” makes use
of topic’s “age” – the rationale being that people
usually reminisce about past events in a sentimen-
tal and positive way. Our system ranked 3rd out
of 16 teams in subtask D, 5th out of 24 teams in
subtask B, and 14th out of 39 teams in subtask A.

2 Features

To build our model, we first preprocess tweets and
extract various features. We use standard features
such as bag-of-words (more precisely tf-idf), pre-
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trained word embeddings, and count-based stylis-
tic features. Additionally, we design task-specific
features based on publicly available ratings for
certain topics. We next describe the preprocessing
and the features in more detail.

2.1 Preprocessing of Tweets

As a first preprocessing step, we tokenize tweets
using a basic Twitter-adapted tokenizer.1 After to-
kenization, we lemmatize and stem tweets and re-
move stopwords from each tweet using the NLTK
toolkit (Bird et al., 2009).

Additionally, since some of our features require
recognizing named entities in a tweet, we use the
named entity tagger, also from the NLTK toolkit,
for recognizing entities in tweet. Unfortunately,
using NLTK-provided named entity tagger yielded
unsatisfactory results, i.e., many of named entities
in tweets were not recognized correctly. We as-
sume this is due to tweets generally having poor
capitalization, which is something named entity
taggers in general are rather sensitive to.

As a remedy, we replaced the tagger with a
greedy search algorithm. This approach simply
looks for an occurrence of any string in tweet in
some of our named-entity databases (introduced in
the following sections). This proved to be a work-
ing solution for named entities longer than one
word, but led to problems with unigrams, which
were falsely recognized as named entities due to
the existence of a movie or a game with that exact
name. For instance, the word “her” would falsely
be recognized as the 2013 movie “Her”.

Finally, we settled for a combination of the two
approaches. We introduced parameters for the
length range of word sequences. For the named
entity tagger, we set the length range to [0, 1],
while for the greedy search algorithm we used the
range [2, 7]. This way, we try to reduce the number
of falsely recognized named entities in the greedy
search algorithm (by omitting single word entities
from its scope), while ensuring that some single
word entities still get recognized by the named en-
tity chunker.

2.2 Standard Features

We use a number of standard features typically
used in sentiment analysis and other text classi-
fication tasks.

1http://sentiment.christopherpotts.
net/codedata/happyfuntokenizing.py

Word embeddings. For word embeddings we
use GloVe (Pennington et al., 2014). We use 200-
dimensional word embeddings, pretrained on 2B
tweets. Final vector representation of a tweet is
calculated as an average of the sum of vectors of
all the words in a tweet.

Tf–idf. The standard tf–idf vectorizer from
Python’s scikit–learn package.2

Counting features. For each tweet we count the
number of occurrences of various stylistic fea-
tures: exclamation marks, question marks, elon-
gated words, capitalized words, emoticons, and
hashtags.

User information. We collected the informa-
tion about authors of the tweets using the script
provided by the organizers. From this data we
extracted the number of followers, friends, and
tweets of each user.

Sentiment polarity lexicons. We use senti-
ment lexicons developed by Bravo-Marquez et al.
(2016), which contain three weights per word, in-
dicating word’s positive, neutral, and negative sen-
timent. These lexicons are built from automat-
ically annotated tweets and existing hand-made
opinion lexicons. We use the most positive word
sentiment and the most negative word sentiment
in each tweet as features, together with the num-
ber of extremely positive and extremely negative
words in a tweet. A word is considered extremely
positive if its positive weight in lexicon is higher
than 0.75, and extremely negative if its negative
weight is higher than 0.8.

2.3 Nostalgia Feature
We presume that some topics, such as games,
movies, and music from years ago, are usually
mentioned in positive light due to nostalgia.3 To
leverage this, for many of our topic-based features
we try to take the age of the certain topic into ac-
count.

We use the following metric for calculating nos-
talgia feature, where applicable:

nost(y) = min(m, ycurr − y) (1)

where y is the year of the content’s release, ycurr

current year, and m empirically determined upper
bound for age.

2http://scikit-learn.org/
3Nostalgia is a sentimentality for the past, typically for a

period or place with happy personal associations. (Wikipedia)
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2.4 Ratings Features

We introduce a series of features that are calcu-
lated if a certain “rateable” topic is mentioned
in a tweet. In order to build those features, we
collected information from publicly available rat-
ings for various domains: movies and TV shows,
actors, games, musicians, historically influential
people, and companies. It is worth noting that we
are collecting these publicly available ratings in-
dependently of training the classifier, which makes
our system applicable to tweets about new movies,
TV shows, actors, etc.

Movies and TV shows. To gather movies’ and
TV shows’ data, we used IMDb’s publicly avail-
able plaintext database.4 As the plaintext database
is quite comprehensive, we filtered the data, leav-
ing only movies and TV shows released in 2005 or
later, with more than 50,000 user votes, and a min-
imum average rating of 4.0. This reduction left us
with an acceptable amount of ~4,300 entries.

Movie-ratings features are implemented as a
vector of 14 values: a binary value indicating if a
movie was found in a tweet, movie’s rating, num-
ber of user votes, movie’s nostalgia value (as de-
fined above), and 10 values representing user votes
distribution per rating (from 0 to 9).

Actors. In the same manner as for the movies,
we obtained the IMDb’s plaintext database of ac-
tors using the same resource. We filtered out all
actors that do not appear in the previously filtered
movies database, to reduce the number of entries
in an otherwise huge database. This left us with
approximately 135,000 actor entries.

If an actor is mentioned in a tweet, his or her
mention is represented with a single value in the
feature vector – actor’s rating. This rating is cal-
culated by taking into account actor’s appearances
in various movies, as well as actor’s position in
movie’s credits; the latter captures the intuition
that each actor in a movie does not equally con-
tribute to the movie’s overall rating.

We calculated each actor’s (a) rating for a single
movie (m) as follows:

r(a,m) = r(m) ·
(
1 + c

1−pos(a,m)
k

−1
)

(2)

where c is the percentage of the movie’s rating
taken into account, k is the rate of how much the

4ftp://ftp.fu-berlin.de/pub/misc/
movies/database/

position affects the rating, r(m) is the movie’s rat-
ing, and pos(a,m) is the actor’s position in the
movie’s credits. Actor’s final rating is then defined
as mean of their ratings in all the movies they par-
ticipated in. During the evaluation, we set the hy-
peparameters c and k to 0.1 and 50, respectively.

Games. We obtained the data about video games
by scraping GameRankings5 website for all games
with at least 10 reviews. This way we gathered
about 8,500 game entries.

A mention of a game in a tweet is represented
with three values in the feature vector: a binary
value representing game’s mention in a tweet,
game’s rating, and game’s nostalgia metric, as de-
fined in Section 2.3.

Musicians. For musicians’ data, we scraped
Metacritic’s Music People pages.6 This gave us
names, numbers of albums, and ratings for about
10,500 artists and bands.

Three values were added to the feature vector
for musicians: a binary value representing musi-
cian’s mention in a tweet, number of musician’s
albums, and musician’s rating.

Important people. We use MIT’s Pantheon7

list of historically influential people, with around
10,000 entries, to obtain a number of useful fea-
tures. Based on this list, we compute 28 features,
as follows:

• binary value indicating a person has been
found in the obtained list;

• person’s historic ranking on Pantheon;

• person’s nostalgia value, derived from their
birth year;

• person’s Wikipedia page views;

• person’s Wikipedia page views standard de-
viation;

• person’s historic popularity;

• person’s place of birth as a vector of 10 bi-
nary values representing the highest-ranked
birth sites by Pantheon: U.S., U.K., France,
Italy, Germany, Russia, Spain, Turkey,
Poland, the Netherlands;

5http://www.gamerankings.com/
6http://www.metacritic.com/browse/

albums/people
7http://pantheon.media.mit.edu/

rankings/people/all/all/-4000/2010/H15
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• person’s occupation as a vector of 10 bi-
nary values representing the most historically
influential occupations by Pantheon: Politi-
cian, Actor, Writer, Soccer Player, Religious
Figure, Singer, Musician, Philosopher, Physi-
cist, Composer.

Companies. Using Good Company Ratings’
2014 report,8 we gathered the data about various
companies, consisting of about 300 entries.

Company features contain four values: a binary
value indicating company’s mention in a tweet, its
Fortune rank, seller ratings, and steward ratings.

2.5 Recent Deaths
Due to the impact celebrity deaths have on social
media and the fact that people usually reminisce
in a positive way about deceased people, we posit
that the information whether a person mentioned
in a tweet died recently would prove useful for
sentiment analysis. To this end, we gathered from
Wikipedia9 a list of significant people who died in
the last three years.

We represent deaths using a single value indi-
cating the number of years that have passed from
the person’s death. While at first similar to nos-
talgia metric introduced above, the death metric
accounts for recent events and, therefore, empha-
sizes values that are the opposite of the values ob-
tained with nostalgia metric. The death metric is
given by 1−nost(y), where y is the year of death,
with m set to 3 (last three years only).

2.6 Controversy
We encode controversial topics as 41 binary val-
ues, one for each of the currently controversial
events listed in the University of Michigan-Flint’s
Frances Willson Thompson Library.10 To further
improve the performance of correct identification
of controversial topics, we additionally provide al-
ternative phrases for some of the issues, for exam-
ple “Affordable Care Act” is also triggered by its
popular nickname “Obamacare”.

2.7 Curse Words
We use a list of 165 curse words often used
in tweets, compiled by Kukovačec et al. (2017).

8http://www.goodcompanyindex.com/
ratings/

9http://en.wikipedia.org/wiki/Lists_
of_deaths_by_year

10http://libguides.umflint.edu/topics/
current

Presence of a curse word in a tweet is encoded
with a single binary value, indicating whether a
curse word was found in tweet or not.

2.8 Topics and Hashtags

We built the above-mentioned features for three
cases: topic identified from tweet’s text, topic ex-
plicitly given as tweet’s topic in subtasks B and D,
and for the topic that might appear in a hashtag as
a part of tweet.

Since hashtags usually contain more than one
word in a single string, we adapt the greedy split-
ting procedure proposed by Tutek et al. (2016),
which uses a dictionary of known words to split a
hashtag that is a concatenation of multiple words.
Additionally, for each word obtained from hashtag
splitting we generate sentiment lexicon features,
acknowledging that sentiment is often expressed
via a hashtag.

3 Evaluation

We started with a number of different classifiers
and chose the one that gave the best result on
a hold-out test set (2016 test set) (Nakov et al.,
2016) for each subtask. After the official results
were published, together with the gold labels for
test sets, we additionally performed a simple fea-
ture analysis over predefined feature groups to an-
alyze the impact each of these groups has on the
final result.

3.1 Evaluation Metrics

We submitted our solution to three subtasks: A, B,
and D. Subtask A uses macro-averaged recall (ρ)
over all three classes (positive, neutral, and nega-
tive) as an official metric. For subtask B, macro-
averaged recall over positive and negative classes
(ρPN ) is used, while subtask D uses Kullback-
Leibler Divergence (KLD) as the official measure.

3.2 Classifier Selection

We experimented with a number of classifica-
tion algorithms from the scikit-learn package (Pe-
dregosa et al., 2011): Support Vector Machine
with a linear kernel (SVM), Logistic Regression
(LR), Multinomial Naive Bayes (MB), Random
Forest (RF), and a Stohastic Gradient Descent
classifier (SGD). For training, we used all the
available data provided by the organizers, except
for the 2016 test set, which we used for testing the
classifiers. We performed 5-fold cross-validation
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Classifier Subtask A (ρ) Subtask B (ρPN )

LR 0.620 0.742
NB 0.467 0.663
RF 0.487 0.549
SGD 0.488 0.614
SVM 0.623 0.752

Table 1: Results for subtasks A and B on 2016 test
set using the official measures for both subtasks

on our training set for optimizing each classifier’s
parameters. We used all of the described features
for evaluating classifiers for subtask B and a subset
of features for subtask A (everything except rating
features extracted from explicit topic, features ex-
tracted from hashtags, user information features,
curse words presence, and controversial topics).11

We observed that macro-averaged recall in sub-
task B (the official measure) improved (from 0.705
to 0.752) when we completely excluded the rat-
ings and user information features, although the
accuracy notably dropped (from 0.899 to 0.855).
For this reason, we decided to submit our solution
to both subtasks B and D without those two feature
groups, since it led to higher recall at the expense
of lower overall accuracy.

Table 1 shows the results in terms of macro-
averaged recall on the 2016 test set for subtasks A
and B for all of the models we experimented with
and the final set of features that we included in the
final submissions. We chose SVM with a linear
kernel for all of our submissions, as it gave the
best result on both subtask A and B. For subtask
D, we used the outputs of the classifier built for
subtask B and calculated the distribution of tweets
using a simple “classify and count” approach.

Our submissions ranked 14th on the leader-
board for subtask A, 5th for subtask B, and 3rd
for subtask D. Table 2 shows scores of top 7 sub-
missions for subtasks B and D.

3.3 Feature Analysis

After the testing phase finished, we carried out
an analysis of the impact of the specific feature
groups in classification, for each of the three sub-
tasks we took part in. We performed an ablation
study over all feature groups. The results of these
analyses are shown in Table 3.

11Unfortunately, we did not finish our system in time for
the submission of subtask A, which resulted in differences
between submissions for subtask A and the other two sub-
tasks.

Team ρPN

BB twtr 0.882
DataStories 0.856
Tweester 0.854
TopicThunder 0.846
TakeLab 0.845
funSentiment 0.834
YNU-HPCC 0.834

Team KLD

BB twtr 0.036
DataStories 0.048
TakeLab 0.050
CrystalNest 0.056
Tweester 0.057
funSentiment 0.060
NileTMRG 0.077

Table 2: Official results for subtasks B and D (top
7 teams only)

Excluded group A (ρ) B (ρPN ) D (KLD)

None 0.615 0.849 0.054
Counting 0.616 0.852 0.050
Lexicon 0.617 0.850 0.052
Ratings 0.617 0.846 0.053
Tf-idf 0.610 0.840 0.061
User info 0.615 0.849 0.053
Word2vec 0.602 0.798 0.116

Table 3: Feature analysis results for all subtasks

The analysis confirmed that excluding some
feature groups indeed helps in obtaining higher re-
call in both subtask A and B. More specifically,
excluding counting or lexicon features improved
recall in subtask B, while excluding counting, lex-
icon, or ratings features from the set of features
used for subtask A led to an increase in recall as
well. Moreover, KLD score improves as well,
when the group of counting features is excluded
from complete set of features.

4 Conclusion

In this paper we described our solutions to Se-
mEval 2017 Task 4 – subtasks A, B, and D.
Our solution is based on a linear SVM classifier
with some standard and a series of task-specific
features, including rating-based features obtained
from various websites as well as features that ac-
count for sentimental reminiscence of past topics
and deceased famous people. Our system per-
formed relatively well in all three subtasks. We
ranked 14th out of 39 in subtask A, 5th out of 24th
in subtask B, and 3rd out of 14 in subtask D.

For future work, it would be interesting to ex-
pand our model’s feature set to non-covered do-
mains (e.g., sports), and also to investigate how
our model behaves on a more diverse set of topics.
Expanding the system with a topic classifier as a
pre-sentiment processing step might also be worth
investigating, since the way sentiment is expressed
varies across different domains.
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Abstract 

This paper describes two systems that 
were used by the NileTMRG for address-
ing Arabic Sentiment Analysis as part of 
SemEval-2017, task 4. NileTMRG partici-
pated in three Arabic related subtasks 
which are: Subtask A (Message Polarity 
Classification), Subtask B (Topic-Based 
Message Polarity classification) and Sub-
task D  (Tweet quantification).  For sub-
task A, we made use of our previously de-
veloped sentiment analyzer which we 
augmented with a scored lexicon. For sub-
tasks B and D, we used an ensemble of  
three different classifiers. The first classi-
fier was a convolutional neural network 
for which we trained (word2vec) word 
embeddings. The second classifier consist-
ed of a  MultiLayer Perceptron  while the 
third classifier was a Logistic regression 
model that takes the same input as the se-
cond classifier. Voting between the three 
classifiers was used to determine the final 
outcome. The output from task B, was 
quantified to produce the results for task 
D.   In all three Arabic related tasks in 
which NileTMRG participated, the team 
ranked at number one.   

1 Introduction 

Because of the potential impact of understanding 
how people react to certain products, events, peo-
ple, etc., sentiment analysis is an area that has at-
tracted much attention over the past number of 
years. The consistent increase in Arabic social 
media content since 2011 (Neal 2013)(Anon 

2012)(Farid 2013) resulted in increased interest in 
Arabic sentiment analysis.   Lack of Arabic re-
sources (datasets and lexicons), initially hindered 
research efforts in the area, but the area gradually 
gained attention, with research effort either focus-
ing on building missing resources (El-Beltagy 
2016; Refaee & Rieser 2014; El-Beltagy 2017), 
or on experimenting with different classifiers and 
features while creating needed resources as is 
briefly described in the related work section.  
In this paper we present our approach to address-
ing the following three SemEval related senti-
ment analysis subtasks (Arabic):  

A) Message Polarity Classification:  given a 
tweet/some text the task is to determine 
whether the tweet reflects positive, nega-
tive, or neutral sentiment. 

B) Topic-Based Message Polarity Classifica-
tion: given some text and a topic, deter-
mine whether the sentiment embodied by 
the text is positive or negative towards the 
given topic.  

D) Tweet quantification: given a set of tweets 
about a given topic, estimate their distri-
bution across the positive and negative 
classes.  

Two systems have been used to address these 
tasks. The first system is a slightly altered version 
of that presented in (El-Beltagy et al. 2016).  The 
second is composed on an ensemble of three dif-
ferent classifiers: a convolutional neural 
network(Kim 2014), a  Multi-Layer Perceptron, 
and   a Logistic regression classifier.   
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The rest of this paper is organized as follows: 
section 2 presents a brief overview of related 
work, section 3 describes the datasets used for 
training, section 4 overviews the developed sys-
tems, while section 5 presents the evaluation re-
sults, and section 6 concludes the paper. 

2 Related Work  

2.1 Task A 

Research in Arabic Sentiment analysis has 
been gaining momentum over the past couple of 
years.  The work of (El-Beltagy & Ali 2013) out-
lined challenges faced for carrying out Arabic 
sentiment analysis and presented a simple lexi-
con based approach for the task. (Abdulla et al. 
2013) compared machine learning and lexicon 
based techniques for Arabic sentiment analysis 
on tweets written in the Jordanian dialect. 

The best obtained results were reported to be 
those of SVM and Naive Bayes. The work pre-
sented in  (Shoukry & Rafea 2012) targeted 
tweets written in the Egyptian dialect and was 
focused on examining the effect of different pre-
processing steps on the task of sentiment analy-
sis. The authors used a SVM classifier in all their 
experiments. (Salamah & Elkhlifi 2014) devel-
oped a system for extracting sentiment from  the 
Kuwaiti-Dialect.  They experimented with a 
manually annotated dataset comprised of 
340,000 tweets, using SVM, J48, ADTREE, and 
Random Tree classifiers. The best result was ob-
tained using SVM. (Duwairi et al. 
2014) presented a sentiment analysis tool for 
Jordanian Arabic tweets. The authors experi-
mented with Naïve Bayes (NB), SVM and KNN 
classifiers. The NB classifier performed best in 
their experiments. (Shoukry & Rafea 2015) pre-
sented an approach that combines sentiment 
scores obtained using a lexicon with a machine 
learning approach applied it on Egyptian tweets. 
The experiments conducted by the authors, show 
that adding the semantic orientation feature does 
in fact improve the result of the sentiment analy-
sis task. (Khalil et al. 2015) experimented with 
various datasets, classifiers and features repre-
sentations to determine which configurations 
work best for Arabic sentiment analysis. They 
concluded that Multi-nominal Naïve Bayes and   
Complement Naïve Bayes tend to work best, es-
pecially when term features are represented using 
their idf weights.   

2.2 Tasks B and D  

To the knowledge of the authors, no previous 
work on “Topic-Based Message Polarity Classi-
fication” has been attempted on Arabic. The 
same task has been introduced last year at 
SemEval-2016, so a number of systems have 
been developed to address this task in English.  
For this task, most participants preferred to use a 
deep learning approach. The Finki team for ex-
ample (Stojanovski et al. 2016) developed a sys-
tem composed of a merged convolutional neural 
network with a gated recurrent neural network. 
In their system, pre-trained Glove word embed-
dings were used to represent tweet tokens. The 
“thecerealkiller” team (Yadav 2016) on the other 
hand, used only a recurrent neural network.  In 
their system, tweets were minimally pre-
processed before being fed to the network. The 
“LyS” team (Vilares et al. 2016) used a convolu-
tional neural network with support vector ma-
chines.  They trained the SVM using hidden 
CNN activations with additional linguistic in-
formation. The “Tweester” team  (Palogiannidi 
et al. 2016) used multiple independent classifi-
ers: neural networks, semantic-affective models 
and topic modeling. Each classifier predicts the 
result and late fusion is done to generate the final 
result.  

3 Used Data  

3.1 Task A  

The organizers provided a total of 3355 sentiment 
labeled tweets for training and an additional 671 
labeled tweets for validation/development. Close 
examination of the provided labeled tweets re-
vealed that some tweets in the training set were 
duplicated, sometimes even with conflicting la-
bels. To use those for training, the data was 
cleaned as follows: 

1) All tweets that had conflicting sentiment 
labels were removed.  

2) A single copy of tweets which were dupli-
cated, but had a consistent label, was kept.  

3) Any tweet in the training dataset which was 
found in the development dataset, was de-
leted.  

This brought down the number of training 
tweets to 2499. Initial experimentation using only 
this data for training resulted in rather low per-
formance. Additional data in the form of the NBI 
dataset described in (El-Beltagy et al. 2016) was 
augmented to this training data after balancing it 
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with some data from the Nile University (NU) da-
taset also described in (El-Beltagy et al. 2016). In 
addition, lexicon terms that had a score higher 
than a 0.8 threshold as determined by the work 
described in (El-Beltagy 2017) were added as en-
tries to the training dataset with their polarity as a 
label. The final training dataset consisted of 
13,292 tweets/entries.  

3.2 Tasks B and D 

The organizers provided 1322 tweets with topics 
and their sentiment labels for training and a fur-
ther 332 tweets for validation/development. The 
only additional data  that we have used, consisted 
of 4 million Arabic tweets which were used to 
train a word2vec model (Mikolov, Sutskever, et 
al. 2013; Mikolov, Corrado, et al. 2013) for use 
with a convolutional neural network (Kim 2014).  

4 System Descriptions   

4.1 The System used for Task A  

As mentioned earlier, the system used for task A, 
is a modified version of the NU sentiment analyz-
er described in (El-Beltagy et al. 2016). The ana-
lyzer was built using a Complement Naïve Bayes 
classifier (Rennie et al. 2003) with a smoothing 
parameter of 1 and trained using the  13,292 Ara-
bic tweets described in section 3.1.  Complement 
Naïve Bayes was selected as a classifier based on 
the work presented in (Khalil et al. 2015).  Input 
to the model consists of  feature vector representa-
tions of input tweets. Each vector represents   uni-
grams and bigram terms with their idf weights and 
has an additional set of lexical features for the in-
put tweet that can be summarized as follows: 

─ startsWithLink: a feature which is set to 1 if the 
input text starts with a link and to a 0 otherwise.  

─ endsWithLink: a feature which is set to 1 if the 
input text ends with a link and to 0 otherwise.  

─ numOfPos: a count of terms within the input 
text that have matched with positive entries in 
our sentiment lexicon.  

─ numOfNeg: a count of terms within the input 
text that have matched with negative entries in 
the sentiment lexicon.  

─ length: a feature that can take on one of three 
values {0,1,2} depending on the length of the 
input text.  The numbers correspond to very 
short, short and normal.  

─ segments: a count for the number of distinct 
segments within the input text.  

─ endsWithPostive: a flag that indicates whether 
the last encountered sentiment word was a posi-
tive one or not.  

─ endsWithNegative: a flag that indicates whether 
the last encountered sentiment word was a nega-
tive one or not.   

─ startsWithHashTag: a flag that indicates wheth-
er the tweet starts with a hashtag.  

─ numOfNegEmo: the number of negative emoti-
cons that have appeared in the tweet.  

─ numOfPosEmo: the number of positive emoti-
cons that have appeared in the tweet.  

─ endsWithQuestionMark: a flag that indicates 
whether the tweets ends with a question mark or 
not.  

 
In addition to these features that were originally 
described in (El-Beltagy et al. 2016), we have 
made use of our newly created weighted senti-
ment lexicon (El-Beltagy 2017) to add two addi-
tional features: 

─ negScore: a real number that represents that 
score of all negative terms in the input text.   

─ posScore: a real number that represents that 
score of all negative terms in the input text 

 
It is worth noting that these two features replaced 
the negPercentage and  posPercentage  features 
described in (El-Beltagy et al. 2016). As stated in 
(El-Beltagy 2017), an amplification factor for 
these scores does enhance the classifier’s per-
formance. When experimenting using the sup-
plied validation dataset, using these additional 
two features versus not using them, did make a 
difference. Additionally, the validation dataset 
was used to: 

 Determine whether the removal of any of 
the listed features would impact system 
performance positively. In the end, all 
features were kept.  

 Experiment with various training dataset 
combinations. 

 Determine the amplification factor to use.  
In task A, we only used the validation dataset for 
fine tuning. The model that performed best on 
the validation dataset, was the model used to 
generate sentiment labels for the test data. Addi-
tional pre-processing steps included character 
normalization, mention normalization, elonga-
tion removal, emoticon replacement, and light 
stemming. Further details on each of these steps 
can be found in (El-Beltagy et al. 2016).    
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4.2 The System used for Tasks B and D  

The approach followed for addressing task B, 
was one in which three independent classifiers 
were built using the provided training data. Vot-
ing among the three classifiers, determined the 
final label for any given tweet.  Task D is in fact 
highly dependent on task B, so we cannot say 
that we built a separate system for that task. In-
stead, the output of task B is simply counted and 
quantified to produce the output of task D. While 
validation data was used to fine tune this system, 
it was also augmented to the training data to 
build the final model which was used to generate 
labels for the test data.  In the following subsec-
tions we described each of the used classifiers.  

4.2.1 The convolutional Neural Network  

The CNN model (Kim 2014) that we employed,  
is composed of 2 convolutional layers with filters 
of window sizes 3 and 4.  A max pooling layer 
was added to extract the most important features, 
then a fully connected layer of size 25 nodes was 
connected to the pooling layer. A softmax layer 
generates the predicted class label. We have 
implemented this model using Keras (Chollet 
2015).  

Tweet Preprocessing  

The following preprocessing steps were carried 
out on tweets that were used with this classifier: 

 Hyperlinks and diacritics were removed 

 Elongation was eliminated (ex. Yessss -> 
Yes)  

 Text was normalized:  (أ, إ, آ) → (ا) , 
 (ه) → (ة) , (ى)→(ي)

 Positive emoticons were replaced by the 
word “حب” (love), and negative 
emoticons by  “غضب” (anger). 

 The word “حب” (love)  was added beside 
words that indicate positivity like:    
 (brave, excellent, great)  (شجاع, عظيم, ممتاز)
and the word “غضب” (anger) next to 
words that indicate   negativity  like   
  ,broke/destroyed, harms) (حطم, يسئ, هابط)
lowly)  

 If the target topic was found in the tweet’s 
text, it was replaced with a static keyword 

 
Input to the CNN 
Each word in a tweet is represented by its em-
beddings vector, the dimensionality of which is 
100. The whole tweet is thus represented by the 

aggregate of vectors for each of its words which 
is essentially a matrix. As a CNN requires a fixed 
size input, we chose to set the matrix size to the 
max tweet length (which was 35 words in our 
case). For tweets smaller than the max, word 
embeddings were centered in the middle and 
padded with zeros around. Note that the number 
of rows is constant (embedding vector length). If 
a word wasn’t found in the word2vec model, we 
set its embeddings vector to random numbers.  

4.2.2 The Multi-Layer Perceptron & Logistic 
Regression Classifiers 

We have grouped these two classifiers together 
as they essentially take in the same input fea-
tures. Tweets are preprocessed for these classifi-
ers in exactly the same way they are pre-
processed for the CNN except that we don’t re-
place the target topic with a static keyword. 
   
Input to the Classifiers 

The input to both the multi-layer perceptron and 
logistic regression classifiers is a set of feature 
vectors representing input tweets. A feature 
vector is composed to a bag of words 
representation of the tweet in addition to the 
following features: 

1) The overall sentiment of the tweet 
(regardless of the target).  The NU 
Sentiment analyzer (El-Beltagy et al. 
2016) was used to set this feature. Since 
two teams were working in parallel on 
tasks A and B respectively, the team 
working on task B simply used the older 
version of the system with old training 
data. We believe that using the modified 
version that was described for task A, 
might yield better results.  

2) The number of positive/negative words 
found in the tweet.  

3) A flag  indicating the presence of positive 
emoticons 

4) A flag indicating the presence of negative 
emoticons 

5) The position of the target in the tweet 

6) A flag to indicate if there are positive 
terms around the target topic  

7) A flag to indicate if there are  negative 
terms around the target topic  

8) A flag to indicate if there 
positive/negative words around the 
target? 
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9) The number of  positive terms in the first 

half of the tweet 

10) The number of  negative terms in the first 
half of the tweet 

11) The number of  positive term in the 
second half of the tweet 

12) The number of  negative terms in the 
second half of the tweet 

Features 1, 2, 6, and 7 were amplified to 
emphasize their importance. 

5 Results  

5.1 Task A 

The supplied test data for task A consisted of 
6100 unlabeled tweets. These tweets were classi-
fied using the system described in section 3.4.  
Based on the results supplied by the organizers of 
the task (Rosenthal et al. 2017), our system ranked 
at number 1 as shown in table 1. 

# System Ρ F1
P N Acc 

1 NileTMRG  0.5831  0.6101 0.5811 
2 SiTAKA 0.5502  0.5712 0.5632 
3 ELiRF-UPV 0.4783  0.4674 0.5083 
4 INGEOTEC 0.4774  0.4555 0.4994 
5 OMAM 0.4385  0.4226 0.4308 
6 LSIS 0.4385  0.4693 0.4456 
7 Iw-StAR 0.4317  0.4167 0.4545 
8 HLP@UPENN 0.4158  0.3208 0.4437 

Table 1: Results for Subtask A “Message Polari-
ty Classification”, Arabic. The systems are or-
dered by average recall ρ 

 
5.2  Task B 

The supplied test data for task B consisted of 
2757 tweets with each having a given topic. Vot-
ing amongst the 3 classifiers described in section 
4.2, determined the final label for the topic (posi-
tive or negative). The results for our system, 
which ranks us at number 1, are shown in table 2.  

# System Ρ F1
P N Acc 

1 NileTMRG  0.7681  0.7671 0.7701 
2 ELiRF-UPV 0.7212  0.7242 0.7342 
3 ASA 0.6933  0.6704 0.6724 
4 OMAM 0.6874  0.6783 0.6793 

Table 2: Results for Subtask B “Tweet classifica-
tion according to a two-point scale”, Arabic. The 

systems are ordered by average recall ρ 

To better understand the performance of the vot-
ing system, the performance of the individual 
classifiers which participated in the voting pro-
cess, is presented in table 3. 
 
# System ρ F1

P N Acc 
1 MLP  0.728  0.720 0.720 
2 LR 0.762  0.759 0.761 
3 CNN 0.747  0.737 0.738 

Table 3: Individual results of each of the used 
classifiers 

5.3 Task D 

Test data for task D was identical to that for 
task B. In order to obtain results for task B, a 
script was created that takes in the input from task 
B and converts it to the required output for task D. 
The results for our system, which ranks us at 
number 1, are shown in table 4.  

6 Conclusion  

In this paper, we have briefly described our sub-
missions to SemEval task-4, subtasks A, B, and D 
(Arabic). For task A, we have augmented our pre-
viously developed sentiment analyzer with a 
scored lexicon and trained it using a little more 
that thirteen thousand tweets. For tasks B and D, 
we have used three independent classifiers and 
employed a voting strategy to determine the final 
label for a given topic. The evaluation results for 
all three tasks have ranked our systems at number 
one.   
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Abstract 

In this paper, we propose a multi-channel 

convolutional neural network-long short-

term memory (CNN-LSTM) model that 

consists of two parts: multi-channel CNN 

and LSTM to analyze the sentiments of 

short English messages from Twitter. Un-

like a conventional CNN, the proposed 

model applies a multi-channel strategy that 

uses several filters of different length to ex-

tract active local n-gram features in differ-

ent scales. This information is then sequen-

tially composed using LSTM. By combin-

ing both CNN and LSTM, we can consider 

both local information within tweets and 

long-distance dependency across tweets in 

the classification process. Officially re-

leased results show that our system outper-

forms the baseline algorithm. 

1 Introduction 

Social network services (SNSs) such as Twitter, Fa-

cebook, and Weibo are used daily to express 

thoughts, opinions, and emotions. In Twitter, 6000 

short messages (tweets) are posted by users every 

second1. Therefore, Twitter is considered as one of 

the most concentrated opinion-expressing venues 

on the Internet. Subjective analysis of this type of 

user-generated content has become a vital task for 

politics, social networking, marketing, and adver-

tising. 

The potential application of sentiment analysis 

has been the motivation behind the SemEval 2017 

Task 4, which is a competition involving a series of 

subtasks that focus on Twitter sentiment classifica-

tions. Subtask A involves message polarity classi-

fication, which requires a system to classify 

                                                      
1 http://www.internetlivestats.com/twitter-statistics/ 

whether a message is of positive, negative, or neu-

tral sentiment. Subtasks B and C involve topic-

based message polarity classification, which re-

quire a system to classify a message on two- and 

five-point scales toward a certain topic. 

Various approaches have been proposed to ana-

lyze sentiment of text, and deep neural network 

has achieved state-of-the-art results in recent years. 

Proven successful text classification methods in-

clude convolutional neural networks (CNN) 

(LeCun et al., 1990; Y. Kim, 2014; Kalchbrenner 

et al., 2014) and Long Short-Term Memory 

(LSTM) (Hochreiter et al, 1997; Tai et al., 2015). 

In general, CNN applies a convolutional layer to 

extract active local n-gram features, but lost the or-

der of words. By contrast, LSTM can sequentially 

model texts. However, it focuses only on past in-

formation and draws conclusions from the tail part 

of texts. It fails to capture the local response from 

temporal data. 

In this paper, we propose a multi-channel CNN-

LSTM model for sentiment classification. It con-

sists of two parts: multi-channel CNN, and LSTM. 

Unlike a conventional CNN model, we apply a 

multi-channel strategy that uses several filters of 

different length. The model is thus able to extract 

active n-gram features of different scales. LSTM is 

then applied to compose those features sequentially. 

By combining both CNN and LSTM, both local in-

formation within tweets and long-distance depend-

ency across tweets can be considered in the classi-

fication process. To train the proposed neural 

model effectively using many parameters, we pre-

trained the model using a distant supervision ap-

proach (Go et al., 2009). In our experiment, we pre-

sented our participation of the proposed model for 
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the SemEval 2017 Task 4 Subtasks A, B, and C 

(Rosenthal et al., 2017).  

The remainder of this paper is organized as fol-

lows. In Section 2, we detail the architecture and 

multi-channel strategy of our model. Section 3 

summarizes the comparative results of our pro-

posed model against the baseline algorithm. Sec-

tion 4 offers a conclusion. 

2 Multi-Channel CNN-LSTM Model 

Figure 1 shows the architecture of our model. The 

model consists of six types of layers: embedding, 

convolution, max-pooling, LSTM, dense, and soft-

max. First, a tweet is input as a series of vectors of 

constituent words and transformed into a feature 

matrix by an embedding layer. The feature matrix 

is then passed into three parallel CNNs having dif-

ferent filter lengths. The max pooling layer extracts 

the max-over different CNNs results that are in-

tended to be the salient features, and input them to 

the LSTM layer. Then, normal dense and softmax 

layers use outputs from LSTM and output the final 

classification result. 

2.1 Embedding Layer 

The embedding layer is the first layer of the model. 

Each tweet is regarded as a sequence of word to-

kens t1, t2, …, tN, where N is the length of the token 

vector. According to statistics of tweets collected 

from twitter in Section 3.1, about 95% tweets is 

shorter than 30 words. Thus, we empirically limit 

the maximum of N to 30. Any tweet longer than 30 

tokens is truncated to 30, and any tweet shorter than 

30 is padded to 30 using zero padding. Every word 

is mapped to a d-dimension word vector. The out-

put of this layer is a matrix
N dT  . 

2.2 CNN Layer 

In each CNN layer, m filters are applied to a sliding 

window of width w over the matrix of previous em-

bedding layer. Let 
w dF   denote a filter matrix 

and b a bias. Assuming that Ti:i+j denotes the token 

vectors ti, ti+1, …, ti+j (if k > N, tk= 0), the result of 

each filter will be ,
 
where the i-th element 

of f is generated by: 

 : 1i i i wf T F b     (1) 

where   denotes convolution action. Before pro-

cessing f to the next layer, a nonlinear activation 

function is applied. Here, we use ReLU function 

(Nair and Hinton, 2010) for faster calculation. Con-

volving filters with window width w can extract w-

gram feature. By applying multiple convolving fil-

ters in this layer, we can extract active local n-gram 

features in different scales. To keep output sizes of 

different filters identical, we apply zero padding to 

token vectors before convolution. 

df 

 

Figure 1: Architecture of the proposed CNN-LSTM model. 
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2.3 Max-over Pooling Layer 

In this layer, the maximum value from different fil-

ters is taken as the most salient feature. Because the 

CNN layer with window width w can extract w-

gram features, the maximum values of the output 

from CNN layer are considered the most salient in-

formation in the target tweet. We choose max rather 

than mean pooling because the salient feature rep-

resents the most distinguishing trait of a tweet. 

2.4 LSTM Layer 

The architecture of a recurrent neural network 

(RNN) is suitable for processing sequential data. 

However, a simple RNN is usually difficult to train 

because of the gradient vanishing problem. To ad-

dress this problem, LSTM introduces a gating 

structure that allows for explicit memory updates 

and deliveries. As shown in Figure 2, LSTM calcu-

lates hidden state ht using the following equations: 

 Gates: 
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 Input transformation: 

 c 1 __ tanh( )t x t hc t c inc in W x W h b    (3) 

 State update: 
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tanh( )

t t t t t

t t t

c f c i c in

h o c

   

 
 (4) 

where xt is the input vector; ct is the cell state vector; 

W, U, and b are layer parameters; ft, it, and ot are 

gate vectors; and σ is a sigmoid function. Note that 

  denotes the Hadamard product.  

                                                      
2 Emoji and emoticons list are based on https://en.wikipe-

dia.org/wiki/List_of_emoticons 

2.5 Hidden Layer 

This is a fully connected layer. It multiplies results 

from the previous layer with a weight matrix and 

adds a bias vector. The ReLU activation function is 

also applied. The result vectors are finally input to 

the output layer. 

2.6 Output Layer 

This layer outputs the final classification result. It 

is a fully connected layer using softmax as an acti-

vation function. The output of this layer is a vector 

calculated by: 

 

1

( | )

T
j

T
j

x w

K x w

k

e
P y j x

e


 


  (5) 

where x is the input vector, w is the weight vector, 

and K is the number of classes. Thus, the final clas-

sification result �̂� will be: 

 ˆ argmax ( | )
j

y P y j x    (6) 

3 Experiments and Evaluation 

3.1 Data Preparation 

We implemented a simple tokenizer to process 

tweets into array of tokens. Because we are only 

participating in English tasks, all characters other 

than English letters or punctuations are ignored. 

Every tweet is applied with the patterns shown in 

Table 1. We applied the first four patterns and low-

ered all letters to accommodate the known tokens 

in GloVe (Pennington et al., 2014) pretrained word 

vectors. 

Before training on given tweets, we pretrained 

the model using data with distant supervision. Two 

external datasets were used. The first was crawled 

from Twitter. Thanks to the streaming API kindly 

provided by Twitter, we collected approximately 

428 million tweets (all tweets were published be-

tween Nov. 2016 and Jan. 2017). Approximately 

one sixth of them had only one emoji or emoticon2, 

which perfectly fit the condition for weak labeled. 

it

ctft

ht

ot

ct-1

(xt, ht-1)

c_int

 

Figure 2: Architecture of LSTM cell. 

 

Content Example Result 

Usernames start with @ @username1 <user> 

URLs http://t.co/short <url> 

Numbers 12,450 <number> 

Hashtags #topic <hashtag> 

Slash / or 

Table 1: Example of pre-processing pattern. 
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The second dataset was from Sentiment140, which 

provided 1.6 million balanced-distribution tweets. 

We used GloVe pretrained data3 to initialize the 

weight of the embedding layer. GloVe is a popular 

unsupervised machine learning algorithm to ac-

quire word embedding vectors. It is trained on 

global word co-occurrence counts and achieves 

state of the art performance on word analogy da-

tasets. In this competition, we used the 200-dimen-

sion word vectors that were pretrained on two bil-

lion tweets. 

3.2 Implementation 

We used Keras with Theano (Bergstra et al., 2010) 

backend, which can fully utilize the GPU compu-

ting resource. CUDA (Nickolls et al., 2008) and 

cuDNN (Chetlur and Woolley, 2014) were used to 

accelerate the system. The optimizer we used was 

Adadelta (Zeiler, 2012). 

The hyper-parameters were tuned in train and 

dev sets using the scikit-learn (Pedregosa et al., 

2012) grid search function, which can iterate 

through all possible parameter combinations to 

identify the best performance. The best-tuned pa-

rameters include as follows. The CNN filter count 

is m = 200; the length of multi-convolving filters 

are 1, 2, and 3; and the dimension of the hidden 

layer in LSTM is 512. To prevent over-fitting, we 

also applied dropout (Tobergte and Curtis, 2013) 

after LSTM layer and fully connected layer at rate 

of 0.5. The training also runs with early stopping 

(Prechelt, 1998), terminating processing if valida-

tion loss has not improved within the last 5 epochs. 

3.3 Evaluation Metrics 

We evaluated our system on Subtasks A, B, and C. 

Subtask A was a message polarity classification of 

three points. Subtasks B and C involved ordinal 

sentiment classification of two and five points. 

Metrics of Subtasks A and B were average F1-score, 
                                                      
3 http://nlp.stanford.edu/projects/glove/ 

average recall, and accuracy. The F1-score was cal-

culated as: 

 1

2 p p
p

p p
F

 

 



, (7) 

where 1

pF  is the F1-score of one class (p denotes 

positive here as an example), 
p   and p   denote 

precision and recall, respectively.  

Metrics of subtask C were MAEM and MAEμ, 

which were calculated as: 
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   (9) 

where yi is the true label of item xi, h(xi) is the pre-

dicted label, and Tej is the set of test documents 

whose true class is cj. A higher F1-score, recall, ac-

curacy, and a lower MAEμ and MAEM value indicate 

more accurate forecasting performance. 

3.4 Results and Discussion 

To prove the advantages of our system architecture, 

we ran a 5-fold cross validation on different sets of 

layers excepting embedding and hidden layers. A 

single LSTM achieved 0.617 accuracy on train and 

dev data. A single CNN achieved 0.606, a multi-

channel CNN 0.563, and a single CNN with LSTM 

0.603. Our multi-channel CNN with LSTM outper-

formed all other architecture with a 0.640 accuracy.  

Table 2 presents the detailed results of our eval-

uation against the baseline algorithm. That our sys-

tem achieved 0.647 accuracy on Subtask A is note-

worthy, as the best score for this subtask was 0.651. 

The evaluation results revealed that our proposed 

system is considerably improved than the average 

baseline, which we attribute to our multi-channel 

CNN with LSTM architecture and distant supervi-

sion training. The proposed system can effectively 

Subtask Metrics Final Result Baseline Rank Participants 

A 

Average Recall 0.633 0.333 12 39 

Average F1-Score  0.612 0.135 15 39 

Accuracy 0.647 0.333 7 39 

B 

Average Recall  0.834 0.5 6 23 

Average F1-Score 0.816 0.317 10 23 

Accuracy 0.818 0.5 10 23 

C 
MAEM 0.925 1.6 12 15 

MAEμ 0.567 1.315 8 15 

Table 2: The evaluation results on Subtask A, B, C of  

SemEval 2017 Task 4: Sentiment analysis in Twitter.  
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extract features from tweets and classify sentiments 

of them. 

4 Conclusion 

In this paper, we described our system submissions 

to the SemEval 2017 Workshop Task 4, which in-

volved sentiment analysis in Twitter. The proposed 

multi-channel CNN-LSTM model combines CNN 

and LSTM to extract both local information within 

tweets and long-distance dependency across tweets. 

A large number of tweets with distant supervision 

were leveraged to pretrain the model. Officially re-

leased results revealed that our system outper-

formed all baseline algorithms, and ranked 14th on 

Subtask A, 10th on Subtask B, and 8th on MAEμ of 

Subtask C. In the future, we will attempt to enhance 

the tokenizer and model architecture to achieve an 

improved classification system. 
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Abstract

This paper describes the submission of
team TSA-INF to SemEval-2017 Task 4
Subtask A. The submitted system is an
ensemble of three varying deep learning
architectures for sentiment analysis. The
core of the architecture is a convolutional
neural network that performs well on text
classification as is. The second subsystem
is a gated recurrent neural network imple-
mentation. Additionally, the third system
integrates opinion lexicons directly into a
convolution neural network architecture.
The resulting ensemble of the three archi-
tectures achieved a top ten ranking with
a macro-averaged recall of 64.3%. Ad-
ditional results comparing variations of
the submitted system are not conclusive
enough to determine a best architecture,
but serve as a benchmark for further im-
plementations.

1 Introduction

The SemEval competitions continually offer suit-
able dataset and resulting benchmarks for a va-
riety of natural language processing tasks. The
SemEval-2017 Task 4 Subtask A addresses the po-
larity classification task of informal texts (Rosen-
thal et al., 2017). Tweets serve as a very accessi-
ble sample of the abundant social media content.
Submitted systems must classify tweets into the
categories of negative, positive and neutral opin-
ion. Submitted results are compared over macro-
averaged recall.

In recent benchmarks across this task, deep
learning implementations achieved top re-
sults (Nakov et al., 2016). We seek to combine
three varying deep learning approaches in an
ensemble. Conventional methods seem to become

obsolete since convolutional neural networks
(CNN) have first shown state-of-the-art results
in sentiment analysis (Kim, 2014). SemEval
has since seen successful results by similar
models (Severyn and Moschitti, 2015) as well
as ensembles of CNNs (Deriu et al., 2016).
Long term short term recurrent neural networks
(LSTM) (Hochreiter and Schmidhuber, 1997)
have also been applied successfully in ensemble
with a CNN (Xu et al., 2016). As an alternative to
LSTMs gated recurrent neural networks (GRNN)
have been shown to be competitive in other
domains (Chung et al., 2014). These models are
well suited to model sequential data and were
successfully applied for sentiment analysis of
larger documents (Yang et al., 2016). The core
contribution of a recent non deep learning system
to win this task (Kiritchenko et al., 2014) back
to back in 2013 and 2014, was the integration of
opinion lexicons into a support vector machine
system. Opinion lexicons have since then also
been integrated into CNN architectures (Rouvier
and Favre, 2016; Shin et al., 2016). In this work
we combine these diverse architectures.

We use a CNN, thoroughly optimized for text
classification, as the foundation of our ensemble
approach. We add a lexicon integrated CNN to
take advantage of lexicon features. In order to di-
versify the approach we also include a GRNN ar-
chitecture as a sequential model. The idea is to get
better and more robust results with a broader ar-
chitecture. Results show that adding the latter two
systems does not improve overall results, though
the results for the core CNN approach were al-
ready good. Furthermore, results for individual
classes do improve, making this a viable option
when prioritizing specific classes or evaluation
metrics. With this work we seek to contribute to
the growing body of literature that presents com-
parable and reproducible solutions for this task.
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Figure 1: Ensemble component output vectors vi

are used as input to an ensemble, which deter-
mines a classification output vector o.

2 Approach

This section outlines the overall approach before
detailing the subcomponents of the architecture.
The purpose of the system is to classify an input
tweet into an element of the opinion classes C,
with |C| = 3. This is determined by the maxi-
mal value of an system output vector o ∈ R|C|.
As outlined in Fig. 1 we propose an ensemble of
three deep learning architectures to solve this task.
A CNN and a GRNN over word embeddings as
well as a CNN over lexicon embeddings. The en-
semble components output vector representations
v1/2/3 can be considered an abstraction of the in-
put tweet. These representations are the input to an
ensemble system which determines the final out-
put. We will describe preprocessing steps to cre-
ate the ensemble layer input before outlining the
ensemble architecture.

2.1 Preprocessing
First of all the tweet data is tokenized with NLP4J1

as a preprocessing step for creating embeddings.
In the following we refer to a tweet as a document,
which is a sequence of tokens, constrained to n =
120. If the actual document is less in size, it is
padded with zero vectors, otherwise it is truncated.

The tokens are then converted into either word
embeddings of dimension d or lexicon embed-
dings of dimension l. We use pretrained word
embeddings from Frederic Godin2 (Godin et al.,
2015), with d = 400. The embeddings were
trained on 400 million tweets. The lexicon embed-
dings are polarity scores from three different lexi-
cons, thus l = 3. We use Bing Liu’s Opinion lex-
icon (Hu and Liu, 2004), the Hashtag Sentiment

1https://github.com/emorynlp/nlp4j
2http://www.fredericgodin.com/software/

Lexicon and the Sentiment 140 Lexicon (Moham-
mad et al., 2013) to form the complete lexicon em-
bedding.

Tensorflow3(Abadi et al., 2016) is used as the
deep learning framework for implementing the
system. The next subsections describe the com-
ponents of this system, followed by an outline of
how their outputs are combined into an ensemble.

2.2 Convolution Neural Network

This component is based on a standard CNN ar-
chitecture used for text classification (Kim, 2014).
We make small changes for fine tuning to the task.
The input to this component are the word embed-
dings described in the preceding subsection. The
embeddings of dimension d are formed into a doc-
ument matrixD ∈ Rn×d across the n input tokens.
The document matrixD is passed through k filters
of filter size s. The convolution weights belong
to Rs×d. The convolutions result in k convolu-
tion output vectors of dimension Rn−s+1. A max
pool layer converts these vectors to a vector of size
Rk. We then add a normalization layer (Ioffe and
Szegedy, 2015) so as to merge outputs from dif-
ferent filter sizes. With f filter sizes, we finally ar-
rive at vector v1 ∈ Rk×f . This vector is passed to
a dense layer of 256 ReLu units. The dense layer
is followed by an output softmax layer. We apply
dropout (Hinton et al., 2012) at the beginning of
the dense layer as well as the output layer. The
implementation uses following the configuration:

• Weights are initialized using Xavier weight
initialization (Glorot and Bengio, 2010).

• The Learning rate is set to 0.0001 with a
batch size of 100.

• The architecture uses f = 5 filter sizes,
[1,2,3,4,5], and k = 256 filters per filter size
over n = 120 word embedding vectors of di-
mension d = 400.

• The input vector to the dense layer v1 thus
has a dimension of 1280.

• At the dense layer and output layer, we use
dropout with a keep probability of 0.7.

• We run 200 training iterations and select the
model that performed best on development
data.

3https://www.tensorflow.org/
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2.3 Gated Recurrent Neural Network
The GRNN is based on the gated recurrent unit
(GRU) (Cho et al., 2014), which uses a gating
mechanism while tracking the input sequence with
a latent variable. GRUs seemed to perform better
compared to other RNN cells like LSTM in our
experiments, which go beyond the scope of this
paper. The input to the GRNN are the word em-
beddings described in Section 2.1. The input is
read sequentially by a GRU layer. The GRU cell
is designed to learn how to represent a state, based
on previous inputs and the current input. The GRU
layer consists of g hidden units. After the last to-
ken of the sequence is processed, the output vector
v2 ∈ Rg of this layer is collected to be merged into
other architectures. The implementation is config-
ured by:

• g = 256 hidden units with tanh activation,

• resulting in the 256 dimensional output vec-
tor v2.

2.4 Lexicon Integrated Convolution Neural
Network

The lexicon integrated CNN (CNN-lex) is simi-
lar to the previously described CNN architecture.
The fundamental difference is that convolutions
are done over lexicon embeddings, described in
Section 2.1. The input to this component is a doc-
ument matrix L ∈ Rn×l across the l dimensional
lexicon embeddings of n input tokens. The archi-
tecture uses j filters per e convolution filter sizes.
The convolution layer output is passed through a
max pool and normalization layer. This results in
an output vector v3 ∈ Rj×e that is collected to be
merged into other architectures. The implementa-
tion uses following configuration:

• The architecture uses e = 3 filter sizes,
[3,4,5], and j = 64 filters per filter size over
n = 120 lexicon embeddings of dimension
l = 3.

• The ensemble output vector v3 thus has a di-
mension of 192.

2.5 Ensembles
The previously described architectures can be
combined into ensemble systems. The CNN-lex
and GRNN architectures are already defined as en-
semble subsystems through their output vectors v2
and v3. While the CNN architecture was previous

Twitter Corpus Pos Neg Neut Total
2013-train 3640 1458 4586 9684
2013-dev 575 340 739 1654
2013-test 1475 559 1513 3547
2014-sarcasm 33 40 13 86
2014-test 982 202 669 1853
2015-test 1038 365 987 2390
2016-train 3094 863 2043 6000
2016-dev 843 391 765 1999
2016-devtest 994 325 681 2000
2016-test (A) 7059 3231 10342 20632
2017-test (B) 2375 3972 5937 12284

Table 1: SemEval data subsets as available to au-
thors. Aside from development test (A) and test
(B) split, all sets where combined for a train and
dev split.

introduced as a stand alone system it is naturally
described as an ensemble component. The vector
v1 described in Section 2.2 is the output vector of
the CNN as a subsystem. The three vectors are
concatenated as inputs to the ensemble layer. The
ensemble layer consists of a dense layer of 256
ReLu units followed by a softmax output layer,
which results in the output vector o of dimension
|C|. The CNN is combined into three ensembles
by concatenating its input vector v1 with v2 (CNN,
GRNN) and with v3 (CNN, CNN-lex) as well as
with both v2 and v3 (CNN, CNN-lex, GRNN). The
latter is the submission architecture while the other
two are evaluated for comparison. These ensem-
bles are trained as a single system. Training is con-
ducted as previously described for the CNN archi-
tecture.

3 Data

The training data for this approach was con-
strained to data published in the context of the Se-
mEval workshops. Table 1 lists the data available
to the authors. It is important to note that the data
is heavily imbalanced. Before submission the sys-
tem was tested with the 2016-test set as develop-
ment test data. The results described in this pa-
per focus on the 2017-test data, which was used
to rank the submissions. All other data in Table 1
was combined into one data set, shuffled and split
four to one into training and development data.

4 Results

The following results compare the core CNN ar-
chitecture against ensembles with the CNN as a
subsystem. The ranked submission marked by
∗ in Table 4 ranked ninth out of 37 participants.
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2017-test, detailed
Recall Precision F1

pos neg neut pos neg neut pos neg neut
CNN 68.3 78.3 47.6 54.8 57.7 71.7 60.8 66.5 57.2
CNN, CNN-lex 74.3 85.6 33.1 50.3 54.7 76.7 60.0 66.7 46.3
CNN, GRNN 73.2 71.0 50.1 50.4 61.2 70.3 59.7 65.7 58.5
CNN, CNN-lex, GRNN ∗ 74.1 64.0 55.0 50.9 63.6 67.6 60.3 63.8 60.6

Table 2: Per class results of recall precision and F1 on test data (2017-test, Table 1) for CNN and
ensemble architectures, where ∗ marks the submission system

2016-test ρ FPN
1 Acc.

CNN 66.1 62.6 62.8
CNN, CNN-lex 64.9 61.0 56.4
CNN, GRNN 64.2 61.9 61.3
CNN, CNN-lex, GRNN 64.0 62.4 64.1

Table 3: Macro-averaged recall ρ, negative posi-
tive macro-averaged F1 and accuracy on develop-
ment test data (2016-test, Table 1) for CNN and
ensemble architectures.

2017-test ρ FPN
1 Acc.

CNN 64.7 63.6 61.5
CNN, CNN-lex 64.3 63.4 58.0
CNN, GRNN 64.8 62.7 61.3
CNN, CNN-lex, GRNN 64.3∗ 62.0 61.6

Table 4: Macro-averaged recall ρ, negative posi-
tive macro-averaged F1 and accuracy on test data
(2017-test, Table 1) for CNN and ensemble archi-
tectures, where ∗ marks the ranked submission.

For detailed rankings we refer to the task descrip-
tion (Nakov et al., 2016), we only put this result in
context with the described architectures. Three en-
sembles are used for comparison, the basic CNN
combined with either the GRNN or the lexicon in-
tegrated CNN as well as both. The two result data
sets are the 2016-test set as pre-submission test
data and the final 2017-test data set used to bench-
mark the submissions.

Overall the CNN performs en par or better
than the ensembles on macro-averaged recall and
macro-averaged positive negative F1. For both de-
velopment test data in Table 3 and test data in
Table 4 we observe that the CNN outperforms
the ensembles across macro-averaged F1. Though
there is a substantial difference between macro-
averaged recall of the CNN versus the ensembles
on the development test data, macro-averaged re-
call on the test data is consistent across all sys-
tems.

The strongest fluctuation in averaged results is
the drop in accuracy for the CNN, CNN-lex en-
semble across both data sets. Detailed results in
Table 2 show that this is due to a steep drop in neu-
tral class recall, a class the data is heavily biased
towards (Table 1). We note that though macro-
averaged recall stays consistent on the test data
(Table 4), per class results do fluctuate substan-
tially (Table 2). These class trends were gener-
ally consistent across both 2017-test and 2016-test
data, thus the later results are omitted for brevity.

5 Conclusions

In the previous sections we described experiments
of adding various deep learning architecture ele-
ments to a basic CNN. Results show that the de-
rived ensembles of approaches did not improve
performance over the more relevant metrics of
macro-averaged recall and F1. To give further
context it is important to mention that substan-
tially more effort went into engineering and tuning
of the CNN model than of the additional architec-
tures. Just as the submission system, the CNN ar-
chitecture itself would have ranked within the top
ten of this sentiment analysis task. Room for im-
provement was thus limited. We do note that per
class results do fluctuate quite a bit across ensem-
bles, which means these architecture can be used
to prioritize class specific recall and precision.

It remains open whether the more complex ar-
chitectures perform more robustly across diverse
datasets. We will seek more clarity on this issue
by experimenting with different data sets. Another
architecture choice to pursue is to include an atten-
tion mechanism so that the ensemble system can
learn which subcomponents to prioritize.
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Abstract

This paper describes the system submit-
ted to SemEval-2017 Task 4-A Senti-
ment Analysis in Twitter developed by
the UCSC-NLP team. We studied how
relationships between sense n-grams and
sentiment polarities can contribute to this
task, i.e. co-occurrences of WordNet
senses in the tweet, and the polarity. Fur-
thermore, we evaluated the effect of dis-
carding a large set of features based on
char-grams reported in preceding works.
Based on these elements, we developed a
SVM system, which exploring SentiWord-
Net as a polarity lexicon. It achieves an
F1 = 0.624 of average. Among 39 sub-
missions to this task, we ranked 10th.

1 Introduction

To determine whether a text expresses a POSI-
TIVE, NEGATIVE or NEUTRAL opinion has at-
tracted an increasingly attention. In particular,
sentiment classification of tweets has immediate
applications in areas such as marketing, political,
and social analysis (Nakov et al., 2016)

Different approaches have shown to be very
promising for polarity classification of tweets such
as Convolutional Neural Networks trained with
large amounts of data (Deriu et al., 2016).

Several authors have studied Machine Learning
approaches based on lexicon, surface and semantic
features. The proposal of Mohammad et al. (2013)
as well as an improved version of Zhu et al. (2014)
show very competitive scores.

The latter approach was re-implemented by Ha-
gen et al. (2015) as a part of an ensemble of twitter
polarity classifier which is top-ranked in the Se-
mEval 2015 Task 9: Sentiment Analysis in Twit-
ter. Our system proposes to enrich the set of fea-

tures used by Mohammad et al. (2013). We de-
scribe here only the features more relevant for our
experiments, further details in all features could
be found in Mohammad et al. (2013); Hagen et al.
(2015).

• Lexicon Based Features (LB)

NRC-Emotion, NRC-Sentiment140, NRC-
Hashtag (Mohammad et al., 2013), BingLiu (Hu
and Liu, 2004) and MPQA (Wilson et al., 2005)
lexicons have been used to generate features.
Given a tweet, the following features were
computed:

- Number of words with positive score

- Number of words with negative score

- Sum of the positive scores

- Sum of the negative scores

- Maximum positive score

- Minimum negative score

- Score of the last positive word

- Score of the last negative word

For unigrams, bigrams and non-contiguous
pairs were computed separated feature sets.

• N-gram Based Features (WG and CG)

Each 1 to 4-word n-gram present in the training
corpus is associated with a feature which indicates
if the tweet includes or not the n-gram. For char-
acters, all different occurrences of 3 to 5 grams are
considered.

Given its definition, the number of generated n-
gram based features is variable and related with
the training corpus. In experiments with SemEval
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2017 training data, we got near three million of
features of this type that is much largest than the
number of tweets.

• Cluster Based Features (CB)

For each one of the 1000 clusters identified
by Owoputi et al. (2013) using Brown algorithm
(Brown et al., 1992) a feature indicates whether
the terms of the tweet belong to them.

Mohammad et al. (2013) studied the effect of
removing individual set of features as well a whole
group of them. Empirical results suggest that lexi-
con and n-gram based features are the most impor-
tant since removing them causes the greatest drop
on the classifier efficacy measured as the macro-
average F-score in the test set.

In this work, we studied how to reduce the num-
ber of generated features by removing some of the
n-gram based. Next sections describe further de-
tails of our approach.

2 System Description

We trained a Support Vector Machine (SVM) as
in (Mohammad et al., 2013; Zhu et al., 2014; Ha-
gen et al., 2015). SVM algorithm has proved to
be very effective in the Sentiment Analysis task.
Moreover, to better assess the effect of the removal
or inclusion of new features we decided to use the
same classifier as the aforementioned authors.

In the first stage of our system, the tweets were
preprocessed like Hagen et al. (2015). To avoid
missing some emoticon symbols we ensure UTF-8
encoding in all stages. In addition, instead of de-
tect emoticons using a regular expression 1 we use
the tag provided by the CMU pos-tagging tool. In
our case, negation was not considered to generate
the word n-gram features.

2.1 New Predictor Features
We aim to explore the relation between the polar-
ity and the presence or not of certain sense combi-
nations in the text. Due to synonymy, two semanti-
cally equivalent tweets could lead to very different
word n-grams while the sense n-grams could be
the same in both tweets.

After a word sense disambiguation (WSD)
stage, we generated a new version of the tweet
where each word is replaced by its sense. A set
of new n-grams features are computed using the
new text. This approach allows one sense n-gram

1http://sentiment.christopherpotts.net/tokenizing.html

to represent two or more different word n-grams if
the words have the same sense.

To enrich our model respect to those in (Mo-
hammad et al., 2013; Hagen et al., 2015) we
have considered SentiWordNet (Baccianella et al.,
2010) as a polarity dictionary, idea explored in
(Günther and Furrer, 2013). In this case, after
WSD, we can use SentiWordNet to compute posi-
tive or negative scores for a given word generating
features as with the other lexicons.

Considering that elongated (e.g. greaaaat)
words could emphasize the sentiment expressed,
similar features were computed but only allowing
for the lengthened words in the tweet. In this case,
we not considered bi-grams lexicons and normal-
ized the elongated words before query the lexi-
cons.

Finally, we studied the following set of new fea-
tures.

• Additional Features

- Sense n-grams (SG): one feature for each
sense n-gram in the training corpus.

- SentiWordNet polarity scores (SW): eight
features similar to those defined to other lex-
icons in section 1.

- Polarity scores of elongated words (EW):
eight features similar to those defined to other
lexicons in section 1 but only considering
lengthened words if any. All lexicons but
NRC-Sentiment140 and NRC-Hashtag for
bi-grams were used.

- Polarity of the last emoticon (LE), if any, ac-
cordingly to Hogenboom et al. (2015).

2.2 Model Ensemble

With the available training data, we trained sev-
eral models using different combinations of fea-
ture types. Our final submission was an ensem-
ble of the top 10 models trained. Classifiers was
combined by weighted voting as explained by
Kuncheva (2004). To classify a tweet, we query
a model that output a single label and a weight for
that label, proportional to the accuracy of the clas-
sifier for that class in previous tests. Querying the
10 models, the final classification of the tweet is
the most voted class.

Given AC
ij the accuracy of the model i over the

classC in test data j the weight of that category for
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C is computed as wC
i =

∑S

j=1
AC

ij∑M

m=1

∑S

j=1
AC

mj

where

j = 1 refers to SemEval 2013 test data and so on
to S = 4 and M = 10 is the number of models in
the ensemble.

The next section describes the experiments we
carried out to assess different feature sets, how
weights were computed as well the results.

3 Experiments

Our predictor is based in an ensemble of Sup-
port Vector Machines with linear kernel, and C =
0.005 trained with all the features proposed by
Mohammad et al. (2013); Hagen et al. (2015) plus
the new ones detailed in section 2.1. LibLIN-
EAR (Fan et al., 2008) implementation available
in Weka (Frank et al., 2016) was used.

As Mohammad et al. (2013), we want to eval-
uate how removing n-gram and cluster based fea-
tures affect the results of our models. Table 1 show
eight base models resulting of removing combina-
tions of features of the types WG, CG and CB;
with X indicating the characteristic set included in
the model.

Table 1: Base models
1 2 3 4 5 6 7 8

WG x x x - x - - -
CG x x - x - x - -
CB x - x x - - x -

Table 2 show different arrangements of the new
features which were combined with the based
models for a total of 96 experiments.

Table 2: Combinations of new features.
Exp 1 2 3 4 5 6 7 8 9 10 11 12
SG - - - x x - x x x x x x
SW - - - - x - - x - x - x
EW - - x - - x - - x x x x
LE - x - - - x x x - - x x

We replicated twice the experiments that in-
cluded SG, one time disambiguating with Lesk
(Lesk, 1986) algorithm and other considering the
most frequent sense for a word. In all experiments,
we used implementations from the NLTK (Bird
et al., 2009) to disambiguate. In total, 160 dif-
ferent models were evaluated. Note that some of
these models just augmented the features in (Mo-
hammad et al., 2013) with some of the new ones.

With the training data of previous SemEval,
2013 to 2016, we mock our participation in these

competitions. We trained SVMs for each model
and evaluated it with the corresponding test data
using the F1 score for the POSITIVE class. Table
3 show the best (B) and the worst (W) results for
each test dataset.

These results allowed us to rank the models. A
final ranking was computed averaging the differ-
ent positions across different test data of the same
model. However, a drawback of this approach
is that, besides one model could be ranked bet-
ter than other, the result difference between them
could be very small. The 10 top ranked mod-
els are the result of the based model 3 (charac-
ter n-grams discarded) combined with new fea-
tures [4, 2, 5, 9, 4∗, 12, 9∗, 8, 10, 1] where * indi-
cates that the WSD was using Lesk algorithm.

Given the results in all previous SemEval test
data, the accuracy over each category was ob-
tained for each model as well the weights for the
top 10.

Finally, the system submitted was built as fol-
low. We train versions of each of the top 10 mod-
els using the SemEval-2017 training data. After
removing duplicates, we get 52, 780 tweets. The
10 trained classifiers were combined by weighted
voting with weights computed as explained be-
fore. Table 4 show results for each category over
the 12, 284 test tweets. As regard of the measures
used to evaluate systems, our proposal gets an av-
erage recall of ρ = 0.642, FPN

1 = 0.624 and ac-
curacy Acc = 0.565. The submitted system stood
10th among participants. Further details about the
train and test datasets and results of other partici-
pants can be found in (Rosenthal et al., 2017)

4 Conclusions and Future Works

Our proposal is based in (Mohammad et al., 2013).
We assessed a new set of features as well analyzed
the effect of removing some of the features used in
this system.

Data in Table 3 as well the top 10 model trained
show that the inclusion of the new features cold
improve results.

Experiments in (Mohammad et al., 2013) sug-
gest that removing character n-grams attributes de-
grades the classifier outcome. We also got these
results, but when the feature set is extended with
the new ones, character n-grams exclusion seems
to be convenient. A look of model results and
rankings, show that all models in the top 10, fur-
thermore, in the top 30 are models where character

809



Table 3: Best (B) and worst (W) results in previous
SemEval test data. In parenthesis, the number of
the base model. An * indicates that the WSD was
using Lesk algorithm.

2013 2014 2015 2016
B W B W B W B W

1
70.82
(3)

65.34
(8)

70.85
(3)

67.58
(6)

66.02
(3)

61.13
(8)

59.30
(3)

56.80
(8)

2
70.92
(3)

65.24
(8)

70.77
(3)

63.67
(8)

63.37
(3)

58.85
(8)

59.00
(3)

55.30
(8)

3
70.52
(3)

65.58
(8)

70.6
(3)

64.3
(8)

65.66
(3)

61.89
(8)

59.40
(3)

56.70
(8)

4
71.33
(3)

66.75
(8)

71.64
(3)

67.54
(2)

66.24
(3)

61.67
(8)

59.5
(3)

57.10
(8)*

5
70.89
(3)

67.39
(8)

71.87
(7)

67.89
(4)

65.83
(3)

62.02
(8)

59.5
(3)

57.10
(8)

6
70.77
(3)

67.5
(8)

71.97
(7)

67.90
(6)

63.44
(1)

58.46
(8)

59.00
(3)

55.50
(8)

7
70.74
(3)

67.46
(8)

71.77
(7)

68.05
(4)

64.84
(3)

61.37
(8)

59.10
(3)

57.30
(6)

8
70.98
(3)

67.63
(8)

71.79
(7)

68.08
(2)

63.57
(3)*

60.4
(8)*

59.00
(3)*

57.30
(8)*

9
71.26
(3)

67.58
(8)*

71.86
(7)*

68.36
(6)*

65.96
(3)

61.76
(8)

59.50
(3)*

57.20
(8)*

10
70.96
(3)

67.62
(8)

72.01
(7)

68.09
(4)

65.88
(3)*

62.05
(8)*

59.60
(3)*

57.10
(8)

11
70.83
(3)

67.48
(8)

72.05
(7)

67.96
(4)

63.71
(3)*

60.80
(8)*

59.10
(3)

57.50
(6)

12
70.94
(3)

67.68
(8)

71.82
(7)*

68.25
(6)*

63.63
(3)*

60.31
(8)*

59.00
(3)*

57.40
(8)*

Table 4: Results in SemEval 2017 test, Precision
(P), Recall (R) and F1.

P R F1
POSITIVE 0.4505 0.8156 0.5804
NEGATIVE 0.5694 0.8072 0.6678
NEUTRAL 0.7617 0.3020 0.4325

n-grams were excluded but some of the new ones
considered.

Another interesting fact is that systems seem
to be more sensitive to word n-grams and clus-
ter based attributes. The best ranked model with-
out n-grams, stood 23 in our ranking. Character
n-grams were also omitted in this model, which
was extended with SG, SW and LE features. Af-
ter the release of the gold labels, we evaluated the
predictions of other models not submitted but also
trained with the SemEval 2017 training data. The
aforementioned model shows a FP

1 N = 0.652,
better than the model we submitted. It is important
to say that this model used only 822, 650 features,
substantially less than the 2, 993, 189 used by the
best of our single models over test data which only
discards character n-grams plus SG, EW and LE
features and achieves a FP

1 N = 0.654
These results open an interesting direction of fu-

ture work, further study how to minimize the set

of features used without a noticeable degradation
of prediction results. Ideally, identifying a set of
features of size independent of the corpus as the
lexicon based ones.
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Abstract

This paper reports our submission to sub-
task A of task 4 (Sentiment Analysis in
Twitter, SAT) in SemEval 2017, i.e., Mes-
sage Polarity Classification. We investi-
gated several traditional Natural Language
Processing (NLP) features, domain specif-
ic features and word embedding features
together with supervised machine learn-
ing methods to address this task. Official-
ly released results showed that our system
ranked above average.

1 Introduction

In recent years, with the emergence of so-
cial media, more and more users have shared
and obtained information through microblog-
ging websites, such as Twitter. The study on
this platform is increasingly drawing attention
of many researchers and organizations. Se-
mEval 2017 provides a universal platform for re-
searchers to explore sentiment analysis in Twitter
(Rosenthal et al., 2017) (Task 4, Sentiment Analy-
sis in Twitter, SAT) which includes five subtasks,
and we participated in subtask A: Message Polar-
ity Classification. It aims at sentiment polarity
classification of the whole tweet on a three-point
scale(i.e., Positive, Negative and Neutral).

Given the character limitations on tweets, the
sentiment orientation classification on tweets can
be regarded as a sentence-level sentiment analysis
task. Following previous work (Mohammad et al.,
2013; Zhang et al., 2015; Wasi et al., 2014), we
adopted a rich set of traditional NLP features,
i.e., linguistic features (e.g., word n-gram, part-
of-speech (POS) tags, etc), sentiment lexicon fea-
tures (i.e., the scores calculated from eight senti-
ment lexicons), and domain content features (e.g.,
emoticons, capital words, elongated words, etc).

In consideration of rich information in the meta-
data of tweets, we also extracted metadata fea-
tures from tweets. Moreover, several word em-
beddings (including general word embeddings and
sentiment word vectors) were adopted. We per-
formed a series of experiments to explore the ef-
fectiveness of each type of features and supervised
machine learning algorithms.

2 System Description

We first performed data preprocessing, then ex-
tracted several types of features from tweets and
metadata for sentiment analysis and constructed
supervised classification models for this task.

2.1 Data Preprocessing
Firstly, we used about 5, 000 abbreviations and s-
langs1 to convert the informal writing into regular
forms, e.g., “3q” replaced by “thank you”, “asap”
replaced by “as soon as possible”, etc. And we re-
covered the elongated words to their original form-
s, e.g., “soooooo” to “so”. Then the processed da-
ta was performed for tokenization, POS tagging,
parsing, stemming and lemmatization using Stan-
ford CoreNLP (Manning et al., 2014).

2.2 Feature Engineering
In this task, we evaluated four types of features,
i.e, linguistic features, sentiment lexicon features,
domain-specific features and word embedding fea-
tures.

2.2.1 Linguistic Features
• Word RF n-grams: We extracted unigrams,

bigrams and trigrams features at two differ-
ent levels, i.e., the original word level and the
word stem level. Considering that differen-
t words make different contribution to senti-
mental expression, for each n-gram feature,

1https://github.com/haierlord/resource/blob/master/slangs
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we calculated rf (relevance frequency) value
(Lan et al., 2009) to weight its importance.

• POS: Generally, the sentences carrying sub-
jective emotions (i.e., positive and nega-
tive sentiment) are inclined to contain more
adjectives and adverbs while the sentences
without sentiment orientation (i.e., neutral)
would contain more nouns. Therefore, we
recorded the number of each POS tag in one
sentence.

• Negation: Negation in a message always re-
verses its sentiment orientation. We manually
collected 29 negations2 from previous work
in (Zhang et al., 2015) and designed two bi-
nary features. One is to indicate whether
there is any negation in the tweet and the oth-
er is to record whether this tweet contains
more than one negation.

2.2.2 Sentiment Lexicon Features (SentiLexi)
We employed the following eight sentiment lex-
icons to extract sentiment lexicon features: Bing
Liu lexicon3, General Inquirer lexicon4, IMD-
B5, MPQA6, NRC Emotion Sentiment Lexicon7,
AFINN8, NRC Hashtag Sentiment Lexicon9, and
NRC Sentiment140 Lexicon10. Since certain words
may consist of mixed sentiments based on differ-
ent contexts, it is not appropriate to assign only
one sentiment score for this type of word. There-
fore, the first five lexicons use two values for each
word to represent its sentiment scores, i.e., one for
positive sentiment and the other for negative sen-
timent. In order to unify the formats, we trans-
formed the two scores into a one-dimensional val-
ue by subtracting negative emotion scores from
positive emotion scores. Then in all sentiment lex-
icons, for each word the positive number indicates
a positive emotion and the minus sign represents a
negative emotion.

Given a tweet, we first converted all words in-
to lowercase. Then on each sentiment lexicon, we

2https://github.com/haierlord/resource
3http://www.cs.uic.edu/liub/FBS/sentiment-

analysis.html#lexicon
4http://www.wjh.harvard.edu/inquirer/homecat.htm
5http://www.aclweb.org/anthology/S13-2067
6http://mpqa.cs.pitt.edu/
7http://www.saifmohammad.com/WebPages/lexicons.html
8http://www2.imm.dtu.dk/pubdb/views/publication

details.php?id=6010
9http://www.umiacs.umd.edu/saif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
10http://help.sentiment140.com/for-students/

calculated the following six scores for one mes-
sage: (1) the ratio of positive words to all words,
(2) the ratio of negative words to all words, (3) the
maximum sentiment score, (4) the minimum sen-
timent score, (5) the sum of sentiment scores, (6)
the sentiment score of the last word in tweet. If
the word does not exist in one sentiment lexicon,
its corresponding score is set to 0.

2.2.3 Domain-Specific Features
Domain-specific features are extracted from two
sources. One is from the content of tweets and the
other is from tweet metadata information.

Firstly, the domain specific features extracted
from tweet content are shown as follows:

• All-caps: One binary feature is to check
whether this tweet has words in uppercase.

• Bag-of-Hashtags: We constructed a vocabu-
lary of hashtags appearing in the training data
and then adopted the bag-of-hashtags method
for each tweet.

• Elongated: It indicates whether the raw text
of tweet contains words with one continuous
character repeated more than two times, e.g.,
“gooooood”.

• Emoticon: We manually collected 67 emoti-
cons from Internet11 and designed the follow-
ing 4 binary features:

– to record the presence or absence of pos-
itive and negative emoticons respective-
ly in the tweet;

– to record whether the last token is a pos-
itive or a negative emoticon.

• Punctuation: Punctuation marks (e.g, ex-
clamation mark (!) and question mark (?))
usually indicate the expression of sentiment.
Therefore, we designed the following 6 bina-
ry features to record:

– whether the tweet contains an exclama-
tion mark;

– whether the tweet contains more than
one exclamation mark;

– whether the tweet has a question mark;
– whether the tweet contains more than

one question mark;
11https://github.com/haierlord/resource/blob/master/

Emoticon.txt
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– whether the tweet contains both excla-
mation marks and question marks;

– whether the last token of this tweet is an
exclamation or question mark.

Recently, several studies using tweet metadata
are reported to have good performance on senti-
ment classification (Tang et al., 2015; Chen et al.,
2016). Inspired by them, the second tweet
domain-specific features we used are extracted
from tweet metadata information. We first used
Twitter API12 to collect tweet metadata and then
designed the following two types of features.

• Tweet metadata: Two binary features are to
check whether this tweet has been retweeted
and whether it has been liked by authenticat-
ing users. Furthermore, given one tweet, two
numeric features are to record the count of
retweeted and the count of liked. These two
numeric features were standardized using [0-
1] normalization.

• User metadata: In addition to the metadata of
tweets, users who write tweets may also con-
tain useful information. Thus the following 5
user metadata features are collected: friends
count, followers count, statuses count, veri-
fied and default profile image. The first three
numeric items are standardized using [0-1]
normalization and the rest are binary values.

In total, we collected 9 metatdata features.

2.2.4 Word Embedding Features
Word embedding is a continuous-valued vector
representation for each word, which usually car-
ries syntactic and semantic information. In this
work, we employed five different types of word
embeddings. The GoogleW2V and GloVe are t-
wo pre-trained word vectors downloaded from In-
ternet. The former is pre-trained on News do-
main and the latter is pre-trained on tweets. We
also trained the TweetW2V on tweet domain us-
ing Google word2vec tool. Besides, taking into
consideration the sentiment information of each
word, previous work in (Tang et al., 2014) and
(Lan et al., 2016) presented methods to learn sen-
timent word vectors rather than general word vec-
tors. The last two word vectors i.e., SWV and SS-
WE, are expected to endow word embeddings with
sentiment information and semantic information.

12https://dev.twitter.com/overview/api

• GoogleW2V: The 300-dimensional word vec-
tors are pre-trained on Google News with 100
billion words, available in Google13.

• GloVe: The 100-dimensional word vectors
are pre-trained on Twitter using GloVe, avail-
able in GloVe14.

• TweetW2V: We adopted the word2vec tool15

to obtain 100-dimensional word vectors
(i.e., TweetW2V) on NRC140 tweet cor-
pus(Go et al., 2009), where the corpus is
made up of 1.6 million tweets (0.8 million
positive and 0.8 million negative).

• SWV: Our previous work in (Lan et al., 2016)
proposed a combined model to learn senti-
ment word vector (SWV) for sentiment anal-
ysis task. In this work, we learned the SWV
on NRC140 tweet corpus and the dimension
is set as 200.

• SSWE: The sentiment-specific word em-
bedding (SSWE) model has been proposed
by (Tang et al., 2014) used a multi-hidden-
layers neural network to train SSWE on 10
million tweets with dimensionality of 50.

In order to obtain a sentence vector, we simply
adopted the min, max and mean pooling operations
on all words in a tweet message. Obviously, this
combination strategy neglects the word sequence
in tweet but it is simple and straightforward. As a
result, the final sentence vector V (s) was concate-
nated as [Vmin(s)

⊕
Vmax(s)

⊕
Vmean(s)].

2.3 Learning Algorithms

We granted this task as a three-way classification
task and explored four supervised machine learn-
ing algorithms: Logistic Regression (LR) imple-
mented in Liblinear16, Support Vector Machine
(SVM), Stochastic Gradient Descent (SGD) and
AdaBoost all implemented in scikit-learn tools17.

2.4 Evaluation Metric

To evaluate the system performance, the offi-
cial evaluation criterion is macro-averaged recall,

13https://code.google.com/archive/p/word2vec
14http://nlp.stanford.edu/projects/glove
15https://code.google.com/archive/p/word2vec
16https://www.csie.ntu.edu.tw/ cjlin/liblinear/
17http://scikit-learn.org/stable/
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which is calculated among three classes (i.e., pos-
itive, negative and neutral) as follows:

Rmacro =
RPos + RNeg + RNeu

3

3 Experiments

3.1 Datasets

For training set, the organizers provided only the
list of tweet ID and a script for all participants to
collect tweets and their corresponding metadata.
However, since not all tweets and their metada-
ta are available when downloading, participants
may collect slightly different numbers of tweets
for training data. Table 1 shows the statistics of the
tweets we collected in our experiments. Similarly,
due to missing tweets or metadata and system er-
rors when downloading, the metadata of training,
development and test set is not complete. Specif-
ically, approximately 21% training, 18% develop-
ment and 39% test sets lost their metadata infor-
mation.

Dataset Positive Negative Neutral Total
train 7,310 (43%) 2,613 (15%) 7,077 (42%) 17,000
dev 7,059 (34%) 3,231 (16%) 10,342 (50%) 20,632
test 2,375 (19%) 3,972 (32%) 5,937 (48%) 12,284

Table 1: The statistics of data sets in training, de-
velopment and test data. The numbers in brackets
are the percentages of different classes in each da-
ta set.

3.2 Experiments on Training Data

Firstly, in order to explore the effectiveness of
each feature type, we performed a series of exper-
iments. Table 2 lists the comparison of differen-
t contributions made by different features on de-
velopment set with Logistic Regression algorithm.
We observe the following findings.

(1) All feature types make contributions to sen-
timent polarity classification. Their combination
achieves the best performance (i.e., 63.14%).

(2) Linguistic features act as baseline and have
shown their effectiveness for sentiment polarity
prediction. Besides, SentiLexi makes more con-
tributes than other domain-specific and word em-
beddings features. Since sentiment lexicons are
constructed by expert knowledge, it is beneficial
for tweet sentiment polarity prediction.

(3) The domain-specific metadata is not as ef-
fective as expected. One possible reason results

from the missing metadata downloaded by Twitter
API.

Features Rmacro

Linguistic 0.584
.+SentiLexi 0.621 (+0.037)
.+Domain Metadata 0.623 (+0.002)
.+Domain Content 0.628 (+0.005)
.+Word Embedding 0.631 (+0.003)

Table 2: Performance of different features on de-
velopment data. “.+” means to add current fea-
tures to the previous feature set. The numbers in
the brackets are the performance increments com-
pared with the previous results.

Algorithms Rmacro

LR 0.631
SVM 0.612
SGD 0.623
AdaBoost 0.603

Table 3: Performance of different learning algo-
rithms on development data.

Secondly, we also explored the performance of
different learning algorithms. Table 3 lists the
comparison of different supervised learning algo-
rithms with all above features. Clearly, Logis-
tic Regression algorithm outperformed other algo-
rithms.

Therefore, the system configuration for submis-
sion is all features and LR algorithm.

3.3 Results on Test Data

Table 4 shows the results of our system and the
top-ranked systems provided by organizers for this
sentiment classification task. Compared with the
top ranked systems, there is much room for im-
provement in our work. There are several possible
reasons for this performance lag. First, although
the linguistic features are effective, the dimension-
ality of word RF n-gram features is quite huge
(approximately 79K n-grams), which dominates
the performance of classification rather than oth-
er low dimension features. Second, the usage of
word embeddings is simple and straightforward,
which neglects the word sequence and sentence
structure. Third, the effects of metadata may be
reduced due to lots of missing metadata.
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Team ID Rmacro Fmacro Acc
ECNU 0.628 (15) 0.613 (13) 0.630 (12)

DataStories 0.681 (1) 0.677 (2) 0.651 (5)
BB twtr 0.681 (1) 0.685 (1) 0.658 (3)

LIA 0.676 (3) 0.674 (3) 0.661 (2)

Table 4: Performance of our system and the top-
ranked systems. The numbers in the brackets are
the official rankings.

4 Conclusion

In this paper, we extracted several traditional NLP
features, domain specific features and word em-
bedding features from tweets and their metada-
ta and adopted supervised machine learning algo-
rithms to perform sentiment polarity classification.
The system performance ranks above average. In
future work, we consider to focus on developing
neural networks method to model sentence with
the aid of sentiment word vectors.
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Abstract

In this paper, we describe a methodology
to infer Bullish or Bearish sentiment to-
wards companies/brands. More specifi-
cally, our approach leverages affective lex-
ica and word embeddings in combination
with convolutional neural networks to in-
fer the sentiment of financial news head-
lines towards a target company. Such ar-
chitecture was used and evaluated in the
context of the SemEval 2017 challenge
(task 5, subtask 2), in which it obtained the
best performance.

1 Introduction

Real time information is key for decision mak-
ing in highly technical domains such as finance.
The explosive growth of financial technology in-
dustry (Fintech) continued in 2016, partially due
to the current interest in the market for Artificial
Intelligence-based technologies1.

Opinion-rich texts such as micro-blogging and
news can have an important impact in the finan-
cial sector (e.g. raise or fall in stock value) or in
the overall economy (e.g. the Greek public debt
crisis). In such a context, having granular access
to the opinions of an important part of the popula-
tion is of key importance to any public and private
actor in the field. In order to take advantage of
this raw data, it is thus needed to develop machine
learning methods allowing to convert unstructured
text into information that can be managed and ex-
ploited.

1F. Desai, “The Age of Artificial Intelligence in
Fintech” https://www.forbes.com/sites/
falgunidesai/2016/06/30/the-age-of-
artificial-intelligence-in-fintech

S. Delventhal, “Global Fintech Investment Hits Record
High in 2016” http://www.investopedia.com/
articles/markets/061316/global-fintech-
investment-hits-record-high-2016.asp

In this paper, we address the sentiment analysis
problem applied to financial headlines, where the
goal is, for a given news headline and target com-
pany, to infer its polarity score i.e. how positive
(or negative) the sentence is with respect to the tar-
get company. Previous research (Goonatilake and
Herath, 2007) has highlighted the association be-
tween news items and market fluctiations; hence,
in the financial domain, sentiment analysis can be
used as a proxy for bullish (i.e. positive, upwards
trend) or bearish (i.e. negative, downwards trend)
attitude towards a specific financial actor, allowing
to identify and monitor in real-time the sentiment
associated with e.g. stocks or brands.

Our contribution leverages pre-trained
word embeddings (GloVe, trained on
wikipedia+gigaword corpus), the DepecheMood
affective lexicon, and convolutional neural
networks.

2 Related Works

While image and sound come with a natural high
dimensional embedding, the issue of which is the
best representation is still an open research prob-
lem in the context of natural language and text. It
is beyond the scope of this paper to do a thorough
overview of word representations, for this we refer
the interest reader to the excellent review provided
by (Mandelbaum and Shalev, 2016). Here, we will
just introduce the main representations that are re-
lated to the proposed method.

Word embeddings. In the seminal paper (Ben-
gio et al., 2003), the authors introduce a statisti-
cal language model computed in an unsupervised
training context using shallow neural networks.
The goal was to predict the following word, given
the previous context in the sentence, showing a
major advance with respect to n-grams. Collobert
et al. (Collobert et al., 2011) empirically proved
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the usefulness of using unsupervised word repre-
sentations for a variety of different NLP tasks and
set the neural network architecture for many cur-
rent approaches. Mikolov et al. (Mikolov et al.,
2013) proposed a simplified model (word2vec)
that allows to train on larger corpora, and showed
how semantic relationships emerge from this train-
ing. Pennington et al. (Pennington et al., 2014),
with the GloVe approach, maintain the semantic
capacity of word2vec while introducing the sta-
tistical information from latent semantic analysis
(LSA) showing that they can improve in semantic
and syntactic tasks.

Sentiment and Affective Lexica. In recent
years, several approaches have been proposed to
build lexica containing prior sentiment polarities
(sentiment lexica) or multi-dimensional affective
scores (affective lexica). The goal of these meth-
ods is to associate such scores to raw tokens or
tuples, e.g. lemma#pos where lemma is the
lemma of a token, and pos its part of speech.

There is usually a trade-off between coverage
(the amount of entries) and precision (the accu-
racy of the sentiment information). For instance,
regarding sentiment lexica, SentiWordNet (Esuli
and Sebastiani, 2006), (Baccianella et al., 2010),
associates each entry with the numerical scores,
ranging from 0 (negative) to 1 (positive); follow-
ing this approach, it has been possible to auto-
matically obtain a list of 155k words, compensat-
ing a low precision with a high coverage (Gatti
et al., 2016). On the other side of the spectrum,
we have methods such as (Bradley and Lang,
1999), (Taboada et al., 2011), (Warriner et al.,
2013) with low coverage (from 1k to 14k words),
but for which the precision is maximized. These
scores were manually assigned by multiple an-
notators, and in some cases validated by crowd-
sourcing (Taboada et al., 2011).

Finally, a binary sentiment score is provided
in the General Inquirer lexicon (Stone et al.,
1966), covering 4k sentiment-bearing words, and
expanded to 6k words by (Wilson et al., 2005).

Turning to affective lexica, where multiple di-
mensions of affect are taken into account, we
mention WordNetAffect (Strapparava and Valitutti,
2004), which provides manual affective annota-
tions of WordNet synsets (ANGER, JOY, FEAR,
etc.): it contains 900 annotated synsets and 1.6k
words in the form lemma#PoS#sense, which
correspond to roughly 1k lemma#PoS entries.

AffectNet (Cambria and Hussain, 2012), con-
tains 10k words taken from ConceptNet and
aligned with WordNetAffect, and extends the lat-
ter to concepts like ‘have breakfast’. Fuzzy Af-
fect Lexicon (Subasic and Huettner, 2001) con-
tains roughly 4k lemma#PoS manually anno-
tated by one linguist using 80 emotion labels.
EmoLex (Mohammad and Turney, 2013) contains
almost 10k lemmas annotated with an intensity la-
bel for each emotion using Mechanical Turk. Fi-
nally, Affect database is an extension of Senti-
Ful (Neviarouskaya et al., 2007) and contains 2.5k
words in the form lemma#PoS. The latter is the
only lexicon providing words annotated also with
emotion scores rather than only with labels.

In this work, we exploit the DepecheMood af-
fective lexicon proposed by (Staiano and Guerini,
2014): this resource has been built in a completely
unsupervised fashion, from affective scores as-
signed by readers to news articles; notably, due
to its automated crowd-sourcing-based approach,
DepecheMood allows for both high-coverage
and high-precision. DepecheMood provides
scores for more than 37k entries, on the following
affective dimensions: Afraid, Happy, Angry, Sad,
Inspired, Don’t Care, Inspired, Amused, Annoyed.
We refer the reader to (Staiano and Guerini, 2014;
Guerini and Staiano, 2015) for more details.

The affective dimensions encoded in
DepecheMood are directly connected to
the emotions evoked by a news article in the
readers, hence it seemed a natural choice for the
SemEval 2017 task at hand.

Sentence Classification. A modification
of (Collobert et al., 2011) was proposed by
Kim (Kim, 2014) for sentence classification,
showing how a simple model together with
pre-trained word representations can be highly
performing. Our method builds on this conv-net
method. Further, we took advantage of the
rule-based sentiment analyser VADER (Hutto and
Gilbert, 2014) (for Valence Aware Dictionary
for sEntiment Reasoning), which builds upon a
sentiment lexicon and a predefined set of simple
rules.

3 Data

The data consists of a set of financial news head-
lines, crawled from several online outlets such as
Yahoo Finance, where each sentence contains one
or more company names/brands.
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Each tuple (headline, company) is annotated
with a sentiment score ranging from -1 (very neg-
ative, bearish) to 1 (very positive, bullish). The
training/test sets provided contain 1142 and 491
annotated sentences, respectively.

A sample instance is reported below:

Headline: “Morrisons book sec-
ond consecutive quarter of sales
growth”

Company name: “Morrisons”

Sentiment score: 0.43

4 Method

In Figure 1, we can see the overall architecture of
our model.

Figure 1: Network architecture

4.1 Sentence representation and
preprocessing

Pre-processing. Minimal preprocessing was
adopted in our approach: we replaced the target
company’s name with a fixed word <company>
and numbers with <number>. The sentences
were then tokenized using spaces as separator and
keeping punctuation symbols as separate tokens.

Sentence representation. The words are repre-
sented as fixed length vectors ui resulting from the
concatenation of GloVe pre-trained embeddings
and DepecheMood (Staiano and Guerini, 2014)

lexicon representation. Since we cannot directly
concatenate token-based embeddings (provided in
GloVe) with the lemma#PoS-based representa-
tion available in DepecheMood, we proceeded to
re-build the latter in token-based form, applying
the exact same methodology albeit with two dif-
ferences: we started from a larger dataset (51.9K
news articles instead of 25.3K) and used a fre-
quency cut-off, i.e. keeping only those tokens that
appear at least 5 times in the corpus2.

These word-level representation are used as the
first layer of our network. During training we al-
low the weights of the representation to be up-
dated. We further add the VADER score for the
sentence under analysis. The complete sentence
representation is presented in Algorithm 1.

Algorithm 1: Sentence representation
Input : An input sentence s, and the GloVe

word embeddings W
Output: The sentence embedding x

1 v = VADER(s)
2 foreach wi in W do
3 ui = [GloVe(wi,W ), DepecheMood(wi)]
4 end
5 x = [v, {ui}i=1,...,|W |]

4.2 Architectural Details

Convolutional Layer. A 1D convolutional layer
with filters of multiple sizes {2, 3, 4} is applied
to the sequence of word embeddings. The filters
are used to learn useful translation-invariant rep-
resentations of the sequential input data. A global
max-pooling is then applied across the sequence
for each filter output.

Concat Layer. We apply the concatenation layer
to the output of the global max-pooling and the
output of VADER.

Activation functions. The activation function
used between layers is ReLU (Nair and Hinton,
2010) except for the out layer where tanh is used
to map the output into [-1, 1] range.

2Our tests showed that: (i) the larger dataset allowed im-
proving both precision on the SemEval2007 Affective Text
Task (Strapparava and Mihalcea, 2007) dataset, originally
used for the evaluation of DepecheMood, and coverage
(from the initial 183K unique tokens we went to 292K en-
tries) of the lexicon; (ii) we found no significant difference in
performance between lemma#PoS and token versions built
starting from the same dataset.
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Regularization. Dropout (Srivastava et al.,
2014) was used to avoid over-fitting to the training
data: it prevents the co-adaptation of the neurones
and it also provides an inexpensive way to average
an exponential number of networks. In addition,
we averaged the output of multiple networks with
the same architecture but trained independently
with different random seeds in order to reduce
noise.

Loss function. The loss function used is the
cosine distance between the predicted scores
and the gold standard for each batch. Even
though stochastic optimization methods like
Adam (Kingma and Ba, 2014) are usually applied
to loss functions that are written as a sum of per-
sample loss, which is not the case for the cosine, it
converges to an acceptable solution. The loss can
be written as :

Loss =
∑

B∈Batches

1− cos(V̂B, VB), (1)

where V̂B and VB are the predicted and true sen-
timent scores for batch B, respectively.

The algorithm for training/testing our model is
reported in Algorithm 2.

Algorithm 2: Training/Testing algorithm. To
build our model, we set N=10.
Input : A set of training instances S,

with ground-truth scores y, and
the set of test sentences So

Output : A set of trained models M , and
the predictions yo for the test set
So

Parameters: The number N of models to
train

1 preprocess(X) // see sec 3.1
2 foreach si in S do
3 Xi = sentence representation(si)

// see Alg. 1

4 end
5 foreach n ∈ N do
6 Mn = minLoss(X) // see Eq. 1
7 end
8 foreach n ∈ N do
9 yn = evaluate(Xo, Mn)

10 end
11 yo(u) = 1

N

∑N
n yn(u)

5 Results

In this section, we report the results obtained by
our model according to challenge official evalua-
tion metric, which is based cosine-similarity and
described in (Ghosh et al., 2015). Results are re-
ported for three diverse configurations: (i) the full
system; (ii) the system without using word embed-
dings (i.e. Glove and DepecheMood); and (iii)
the system without using pre-processing. In Ta-
ble 1 we show model’s performances on the chal-
lenge training data, in a 5-fold cross-validation set-
ting.

Algorithm mean±std
Full 0.701 ±0.023

No embeddings 0.586 ±0.017
No pre-processing 0.648 ±0.022

Table 1: Cross-validation results

Further, the final performances obtained with
our approach on the challenge test set are reported
in Table 2. Consistently with the cross-validation
performances shown earlier, we observe the ben-
eficial impact of word-representations and basic
pre-processing.

Algorithm Test scores
Full 0.745

No embeddings 0.660
No pre-processing 0.678

Table 2: Final results

6 Conclusions

In this paper, we presented the network architec-
ture used for the Fortia-FBK submission to the
Semeval-2017 Task 5 (Cortis et al., 2017), Sub-
task 2 challenge, with the goal of predicting posi-
tive (bullish) or negative (bearish) attitude towards
a target brand from financial news headlines. The
proposed system ranked 1st in such challenge.

Our approach is based on 1d convolutions and
uses fine-tuning of unsupervised word representa-
tions and a rule based sentiment model in its in-
puts. We showed that the use of pre-computed
word representations allows to reduce over-fitting
and to achieve significantly better generalization,
while some basic pre-processing was needed to
further improve the performance.
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Abstract

The system developed by the
SSN MLRG1 team for Semeval-2017
task 5 on fine-grained sentiment analysis
uses Multiple Kernel Gaussian Process for
identifying the optimistic and pessimistic
sentiments associated with companies
and stocks. Since the comments on the
same companies and stocks may display
different emotions depending on time,
their properities like smoothness and
periodicity may vary. Our experiments
show that while single Kernel Gaussian
Process can learn some properties well,
Multiple Kernel Gaussian Process are
effective in learning the presence of
different properties.

1 Introduction

Sentiments have been widely studied as they play
an important role in human intelligence, ratio-
nal decision making, social interaction, percep-
tion, memory, learning and creativity (Pang and
Lee, 2008; Strapparava and Mihalcea, 2008; Maas
et al., 2011; Li et al., 2015). The ability to dis-
cern and understand human sentiments is criti-
cal for making interactive human-like computer
agents, and requires the use of machine learning
approaches (Alm et al., 2005).

2 Gaussian Process

Gaussian Process (GP) is a Bayesian non-
parametric approach to machine learning. A Gaus-
sian Process is a collection of random variables,
any infinite number of which have a joint Gaus-
sian distribution (Rasmussen and Williams, 2006).
Using a Gaussian process, we can define a distri-
bution over functions f(x),

f(x) ∼ GP (m(x), k(x, x′)) (1)

where m(x) is the mean function, usually defined
to be zero, and k(x, x′) is the covariance function
(or kernel function) that defines the prior prop-
erties of the functions considered for inference.
Gaussian Process has the following main advan-
tages (Cohn and Specia, 2013; Cohn et al., 2014).
• The kernel hyper-parameters can be learned

via evidence maximization.
• GP provides full probabilistic prediction, and

an estimate of uncertainty in the prediction.
• Compared to SVMs which need unbiased

datasets for good performance, GPs do not
usually suffer from this problem.
• GP can be easily extended and incorporated

into a hierarchical Bayesian model.
• GP works really well when combined with

kernel models.
• GP works well for small datasets too.

2.1 Gaussian Process Regression

The Gaussian Process regression framework as-
sumes that, given an input x, output y is a noise
corrupted version of a latent function evaluation.
In a regression setting, we usually consider a
Gaussian likelihood, which allows us to obtain a
closed form solution for the test posterior (Ebden,
2008). Gaussian Process model, as they are ap-
plied in machine learning, is an attractive way
of doing non-parametric Bayesian modeling for
a supervised learning problem. GP-based model-
ing has the ability to learn hyper-parameters di-
rectly from data by maximizing the marginal like-
lihood. Like other kernel methods, the Gaussian
Process can be optimized exactly, given the values
of their hyper-parameters and this often allows a
fine and precise trade-off between fitting the data
and smoothing.

A practical implementation of Gaussian Pro-
cess Regression (GPR) (Rasmussen and Williams,
2006) is outlined in the following algorithm:
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Algorithm: Predictions and log-marginal likeli-
hood for GP regression.
Input: X (training inputs) , y (training targets),
k (covariance function), σ2

n (noise level), x∗ (test
input).
Output: Predictive mean, variance and log-
marginal likelihood.

1. L := cholesky(K + σ2
nI)

2. α := LT \(L\y)
3. f∗ := k∗Tα
4. v := L\k∗
5. V [f∗] := k(x∗,x∗)− vTv
6. log p(y|X) := −1

2y
Tα − ∑

i logLii −
n
2 log 2π

7. return f∗ (mean), V [f∗] (variance),
log p(y|X) (log-marginal likelihood)

2.2 Multiple Kernel Gaussian Process
The heart of every Gaussian process model is a
covariance kernel. The kernel k directly specifies
the covariance between every pair of input points
in the dataset. The particular choice of covari-
ance function determines the properties such as
smoothness, length scales, and amplitude, drawn
from the GP prior. Therefore, it is an important
part of GP modelling to select an appropriate co-
variance function for a particular problem. Multi
Kernel Learning (MKL) — using multiple kernels
instead of a single one — can be useful in two
ways:

• Different kernels correspond to different no-
tions of similarity, and instead of trying to
find which works best, a learning method
does the picking for us, or may use a combi-
nation of them. Using a specific kernel may
be a source of bias which is avoided by allow-
ing the learner to choose from among a set of
kernels.

• Different kernels may use inputs coming
from different representations, possibly from
different sources or modalities.

(Gonen and Alpaydin, 2011; Wilson and Adams,
2013) explain how multiple kernels definitely give
a powerful performance. (Gonen and Alpaydin,
2011) also describes in detail various methodolo-
gies to combine kernels. (Wilson and Adams,
2013) introduces simple closed form kernels that
can be used with Gaussian Processes to discover
patterns and enable extrapolation. The kernels
support a broad class of stationary covariances, but

Gaussian Process inference remains simple and
analytic.

We studied the possibility of using multiple ker-
nels to explain the relation between the input data
and the labels. While there is a body of work on
using Multi Kernel Learning (MKL) on numerical
data and images, yet applying MKL on text is still
an exploration. We have used Exponential kernel
and Multi-Layer Perceptron kernel together with
Squared Exponential kernel, and found the com-
binations to give better results. The text data used
in sentiment analysis is collected over a period of
time. Comments on the same topic may exhibit
different emotions, depending on the time it was
made, and hence their properties, such as smooth-
ness and periodicity, also vary with time. Since
any one kernel learns only certain properties well,
multiple kernels will be effective in detecting the
presence of different emotions in the data.

The MKL algorithms use different learning
methods for determining the kernel combination
function. It is divided into five major categories:
Fixed rules, Heuristic approaches, Optimization
approaches, Bayesian approaches and Boosting
approaches. The combination of kernels in differ-
ent learning methods can be performed in one of
the two basic ways, either using linear combina-
tion or using non-linear combination. Linear com-
bination seems more promising (Gonen and Al-
paydin, 2011), and have two basic categories: un-
weighted sum (i.e., using sum or mean of the ker-
nels as the combined kernel) and weighted sum.
Non-linear combination use non-linear functions
of kernels, namely multiplication, power, and ex-
ponentiation. We have studied the fixed rule linear
combination in this work which can be represented
as

k(x, x′) = k1(x, x′)+k2(x, x′)+. . .+kn(x, x′).
(2)

For training, we have used one-step method to-
gether with the simultaneous approach. One-step
methods, in a single pass, calculate both the pa-
rameters of the combination function, and those
of the combined base learner; and the simultane-
ous approach ensures that both sets of parameters
are learned together.

3 System Overview

The system comprises of the following modules:
data extraction, preprocessing, feature vector gen-
eration, and multi-kernel Gaussian Process model
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building. The algorithm for preprocessing of the
data and feature vector building is outlined below:
Algorithm: Preprocess the data and generate fea-
ture vectors.
Input: Input dataset.
Output: Dictionary with the key - value pair and
BoW Feature vector.
begin

1. Perform lemmatization using WordNet
Lemmatizer from the NLTK tool kit.

2. Perform tokenization using the wordpunct
tokenize function of the NLTK toolkit.

3. Set the integer value for the train variable.
4. Build data dictionaries for training sentences.
5. Build a data dictionary with words mapped to

their indices.
6. Generate feature vectors for the train sets that

encode a BoW representation.
7. Build a dictionary with the key-value pairs.

The key is the emotion and the value is a ma-
trix where rows are BoW vectors.

end
The Multi-Kernel Gaussian Process (MKGP)

model building is outlined in the following algo-
rithm.
Algorithm: Build a Multi-Kernel Gaussian Pro-
cess model.
Input: Input dataset with BoW feature represen-
tation.
Output: Learned model,
begin

1. Split the training dataset into XTrain which
contains the features and YTrain that contains
the emotion scores.

2. Build the initial regression model using ap-
propriate kernel function.

3. Optimize the regression model with the
hyper-parameters (length scale, variance,
noise).

4. Return the learned model.

end
The Multi-Kernel Gaussian Process model is im-
plemented using linear combination method which
takes the unweighted sum of the kernels.

4 Comparison Using Different Kernels

The output submitted for the task was based on the
linear combination of Squared Exponential kernel
and Exponential kernel.

4.1 Kernels
The Squared Exponential (SE) kernel, sometimes
called the Gaussian or Radial Basis Function
(RBF), has become the default kernel in GPs. To
model the long term smooth-rising trend we use a
Squared Exponential covariance term.

k(x, x′) = σ2 exp

(
−(x− x′)2

2l2

)
. (3)

where σ2 is the variance and l is the length-scale.
The usage of Exponential kernel is particularly

common in machine learning and hence is also
used in GPs. They perform tasks such as statis-
tical classification, regression analysis, and cluster
analysis on data in an implicit space.

k(x, x′) = σ2 exp
(
−(x− x′)

2l2

)
(4)

The Multi-Layer Perceptron kernel has also
found use in GP as it can learn the periodicity
property present in the dataset; its k(x, x′) is given
by

2σ2

π
sin−1 (σ2

wx
Tx′ + σ2

b )√
σ2

wx
Tx+ σ2

b + 1
√
σ2

wx
′Tx′σ2

b + 1
(5)

where σ2 is the variance, σ2
w is the vector of the

variances of the prior over input weights and σ2
b

is the variance of the prior over bias parameters.
The kernel can learn more effectively because of
the additional parameters σ2

w and σ2
b .

4.2 Performance Evaluation
Other combinations of the kernel were also tried
after submission. One such kernel used for ex-
perimentation purpose was Multi-Layer Percep-
tion Kernel. The results of the Single Kernel and
Multi-Kernel GP on subtask 1 dataset are collated
in Table 1. The results of the Single Kernel and

Table 1: A performance comparison based on
Cosine Similarity (CS), Pearson Score (PS) and
Mean Absolute Error (MAE) for subtask 1 dataset

Model CS PS MAE

SGP 0.6942 0.6694 0.2003
MKGP(R+E) 0.7044 0.6809 0.1965
MKGP(R+E+M) 0.7099 0.6864 0.1931
MKGP(R+M) 0.7106 0.6872 0.1930

Multi-Kernel GP on subtask 2 dataset are shown
in Table 2. The kernel combinations used in Ta-
ble 1 and Table 2 are
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Table 2: A performance comparison based on
Cosine Similarity (CS), Pearson Score (PS) and
Mean Absolute Error (MAE) for subtask 2 dataset

Model CS PS MAE

SGP 0.5590 0.5615 0.2506
MKGP(R+E) 0.5530 0.5569 0.2558
MKGP(R+E+M) 0.5864 0.5870 0.2445
MKGP(R+M) 0.5931 0.5928 0.2426

SGP: Single Kernel Gaussian Process with Ra-
dial Basis Function (RBF) kernel,

MKGP(R+E): Multi Kernel Gaussian Process
with sum of RBF and Exponential kernels,

MKGP(R+E+M): Multi Kernel Gaussian Process
with sum of RBF, Exponential, and Multi-
Layer Perceptron kernels,

MKGP(R+M): Multi Kernel Gaussian Process
with sum of RBF and Multi-Layer Perceptron
kernels.

The evaluation considered 70% of the dataset for
training and 30% for testing. The greater the Co-
sine Similarity (CS) and the Pearson Score (PS),
and the smaller the Mean Absolute Error (MAE),
the better the performance of the system. The ta-
bles show that MKGP(R+M), Multi Kernel Gaus-
sian Process with sum of Squared Exponential and
Multi-Layer Perceptron kernels, performs better.

5 Official Evaluation

The systems developed were evaluated based on
Cosine Similarity measure. Our system ranked
fifth position with Cosine Similarity of 0.7347 for
subtask 1 and fifteenth position with Cosine Simi-
larity of 0.6657 for subtask 2.

6 Conclusion

In this paper, we have presented a Multi Kernel
Gaussian Process(MKGP) regression model for
fine-grained sentiment analysis of financial mi-
croblogs and news. We used Bag of Words input
feature vectors as input and fixed rule multi ker-
nel learning to build GP model and found it to per-
form better than single kernel learning. The results
can be further enhanced by using different feature
generation approaches and multi kernel learning
approaches.
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Abstract

This paper presents the details of our sys-
tem IBA-Sys that participated in SemEval
Task: Fine-grained sentiment analysis on
Financial Microblogs and News. Our sys-
tem participated in both tracks. For mi-
croblogs track, a supervised learning ap-
proach was adopted and the regressor was
trained using XgBoost regression algo-
rithm on lexicon features. For news head-
lines track, an ensemble of regressors was
used to predict sentiment score. One re-
gressor was trained using TF-IDF features
and another was trained using the n-gram
features. The source code is available at
Github 1

1 Introduction

Sentiment Analysis has become a very active area
of research during the last decade. The reason be-
hind this rising popularity is twofold. First, senti-
ment analysis has a great number of applications
varying from academia to commercial domains
such as customer support, brand management, so-
cial media marketing e.t.c. Second, sentiment
analysis involves a number of challenges such as
handling unstructured and noisy text, anaphora
resolution, context understanding and many oth-
ers.

Sentiment Analysis now becomes an interest-
ing area of research in the Financial domain
also. Researchers have shown that the consumer
opinions and sentiments have a profound impact
on market dynamics [(Goonatilake and Herath,
2007),(Van de Kauter et al., 2015)]. This fur-
ther leads to the research interest in predicting
stock market from social media discussions and

1https://github.com/zarmeen92/
IBA-Sys-SemEval-2017

news text (Bollen et al., 2011). Earlier attempts
of sentiment analysis in Financial domain includes
the work of McDonald and Loughran (Loughran
and McDonald, 2011) in 2011. They developed
the list of words with associated sentiment po-
larities for classifying sentiment in financial text.
The SemEval 2017 Fine-grained sentiment analy-
sis on financial microblogs and news task (Cortis
et al., 2017) aims at identifying bullish(optimistic)
and bearish(pessimistic) sentiment associated with
companies and stocks. This task involved two
tracks. Track 1 included microblog messages and
track 2 included the dataset of news statements and
headlines. In both tracks, the task was to predict
the sentiment score for a stock (in track 1) and for
a company (in track 2) in a given instance of text.
The challenging part was that the sentiment values
are on a continuous scale between -1(very nega-
tive) to +1(very positive) rather than discrete la-
bels.

IBA-Sys participated in both subtasks. For sub-
task 1, our system was trained to predict the senti-
ment score on the given microblog with relevance
to the given cashtag. For subtask 2, our system
was trained to predict the sentiment score on the
given piece of headline with relevance to the given
company name. Our system IBA-Sys participated
in both tracks. In track 1, we were among top 5
teams whereas, in track 2, our system secured 14th
position.

The remainder of this paper is organized as fol-
lows. Section 2 describes the datasets in detail.
Section 3 presents the preprocessing steps applied
to clean the dataset. Section 4 and Section 5 dis-
cusses the features and methodology used to build
our system. Section 6 discusses experimental re-
sults and official submission. Finally, Section 7
concludes this paper.
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Table 1: Statistic of Dataset
Subtask Training Set Test Set
Microblogs 1694 799
News Headlines 1142 491

2 Datasets

This section presents the details of the datasets
provided by SemEval organizers.

2.1 Subtask 1 - Microblogs
The dataset provided by SemEval for fine-grained
sentiment analysis on Microblogs comprises of
microblog messages related to the Financial do-
main. Each message is annotated with the fol-
lowing information. Table 1 presents statistics of
dataset provided by SemEval organizers.

1. Source: Source identifies the name of the
platform where the message was posted. This
contains either ”Twitter” or ”Stocktwits”.

2. Id: Id provides a unique identifier of the mes-
sage.

3. Cashtag: Cashtag provides the stock ticker
symbol to which the span and sentiment are
related.

4. Sentiment: Sentiment is a floating point value
between -1 and 1 (very negative to very posi-
tive).

5. Spans: Spans contains piece of message ex-
pressing sentiment.

The data set contains 1694 microblog messages
for training and 799 microblog messages for eval-
uation purpose.

2.2 Subtask 2 - News Headlines
The dataset provided for this subtask consisted of
news headlines. Each message is annotated with
the following information. Table 1 presents statis-
tics of dataset provided by SemEval organizers.

1. Id: Id provides a unique identifier of the mes-
sage.

2. title: Title contains the textual content of
headline.

3. Sentiment: Sentiment is a floating point value
between -1 and 1 (very negative to very posi-
tive).

4. Company: Company contains the name of a
company to which the sentiment is related to.

The data set contains 1142 headlines for training
and 491 headlines for evaluation purpose.

3 Preprocessing

Preprocessing is an important step in any natural
language processing task. This section describes
the preprocessing steps applied on the datasets.

3.1 Subtask 1 - Microblogs

Microblogs often contain noisy text such as spe-
cial characters, URLs, punctuations e.t.c. Prepro-
cessing is an important step applied in machine
learning before proceeding to train phase. For pre-
processing the actual microblog message, follow-
ing tasks were performed.

1. Removal of special characters, punctuations
and numbers.

2. Removal of URLs, user names mentioned in
a tweet message.

3. Removal of words with length less than three
in order to reduce the dimensionality of fea-
ture space.

4. Conversion of tweet text into lower case.

5. Concatenation of spans to form a unified
string. For the empty spans field, we con-
sidered the whole preprocessed message text
for feature extraction.

3.2 Subtask 2 - News Headlines

The textual content of news headlines contains
the name of organizations. In the train and test
datasets, the organization for which the sentiment
needs to be extracted was given. However, it was
found that often more than one organization name
was mentioned in the headline content. There-
fore, we applied named entity recognition to ex-
tract names of organizations that were included in
the given headline. To extract the names of organi-
zations we used NLTK Named Entity Recognition
(NER) Tagger (Bird et al., 2009). After applying
NER tagging, following steps were performed.

1. Removal of special characters and punctua-
tions and numbers.
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2. Removal of words with length less than three
in order to reduce the dimensionality of fea-
ture space.

3. News text often contains important words be-
ginning with capital letter. After applying
NER tagging, words with Named Entity tags
other than {Person, Organization} were con-
verted to lower case.

4 Features

This section describes features used in training our
system for predicting sentiment score on the given
microblog message or news headline.

4.1 Subtask 1 - Microblogs
Following features were used in system training
for subtask 1.

4.1.1 Lexicon Features
We used sentiment lexicons constructed for the
Financial domain to compute sentiment polarity
score of the microblog message under consider-
ation. Lexicons have been widely used for sen-
timent analysis. The use of domain-specific lex-
icon can greatly improve the performance of the
system. We used following lexicons to compute
lexicon based features.

1. Loughran and McDonald Sentiment Word
Lists
(Loughran and McDonald, 2011) identified
that the sentiment lexicons constructed for
other domains often misclassify words com-
monly used in financial blogs. They devel-
oped a list of positive and negative words
used in the financial text. For modeling
our system to predict sentiment score of mi-
croblog text, we used the word list con-
structed by (Loughran and McDonald, 2011).
For each message, we compute a positive
word count and negative word count. Positive
word count refers to the number of positive
words occurred in the message and negative
word count refers to the number of negative
words occurred in the message.

2. Stock Market Lexicon
(Oliveira et al., 2016) created a lexicon using
a large set of labeled messages from Stock-
Twits. For each word with a Part of Speech
(POS) tag in a lexicon, sentiment score in
range -∞ to +∞ is determined in positive

context and negated context. In order to com-
pute sentiment score of a microblog message
using Stock Market Lexicon, a message is
tagged with POS tags using NLTK POS tag-
ger (Bird et al., 2009). Then for each word in
a message, a positive and negative sentiment
score was determined using the lexicon. The
total positivity of a message was determined
by the sum of positive scores of each word in
a message and the total negativity of a mes-
sage was determined using the sum of nega-
tive scores of each word in a message.

4.1.2 Term Frequency - Inverse Document
Frequency (TF-IDF)

TF-IDF feature determines the importance of a
word to a document in a collection or corpus. TF-
IDF assigns higher weights to to words occurring
less frequently in a corpus. This helps in reduc-
ing the importance of commonly used words. A
matrix of TF-IDF features was computed using
sklearn library (Pedregosa et al., 2011).

4.2 Subtask 2 - News Headlines

Following features were used in system training
for subtask 2.

4.2.1 Lexicon Features
For subtask 2, we used following lexicons to com-
pute sentiment polarity scores.

1. Loughran and McDonald Sentiment Word
Lists
Lexicon scores using Loughran and McDon-
ald Sentiment Word Lists were computed in
a similar way as done for subtask 1.

2. Harvard Inquirer Sentiment Lexicon
Harvard IV sentiment lexicon was used to
determine the sentiment polarity of a given
headline.

3. NRC Hashtag Sentiment Lexicon (Mo-
hammad et al., 2013) constructed a list of
words associated with a positive and nega-
tive sentiment score. Sentiment score is a
real number, where values greater than zero
indicates positive sentiment and values less
than zero indicates negative sentiment. For
each headline text, the polarity score was
computed by summing the sentiment score of
each word in the text.
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4.2.2 Term Frequency - Inverse Document
Frequency (TF-IDF)

TF-IDF feature determines the importance of a
word to a document in a collection or corpus. A
matrix of TF-IDF features was computed using
sklearn library (Pedregosa et al., 2011).

4.2.3 N-gram Features
N-gram refers to the sequence of N words in the
given text. In this paper, we used unigrams to learn
a vocabulary from the given training set and then
constructed a square matrix of size equal to the
size of vocabulary. Each entry in a matrix repre-
sents the occurrence of a corresponding word in a
given text.

5 Modeling

This section describes our approach for training
system.

5.1 Subtask 1 - Microblogs

We trained our system on the provided training
data using features described in Section 4. Since
the task was determined the sentiment score as a
real number ranging from -1 to +1, we trained our
model using XGBoost Regression algorithm2. 3-
fold cross-validation was also performed to tune
XGBoost regression parameters.

5.2 Subtask 2 - News Headlines

For subtask 2, we used ensembling of two regres-
sors trained on the different set of features. For
model 1, we trained XgBoost Regressor on fea-
ture set including McDonald and Loughran Posi-
tive Word Count, McDonald and Loughran Nega-
tive Word Count, Sentiment score computed using
NRC Hashtag sentiment lexicon, sentiment polar-
ity score computed using Harvard IV sentiment
lexicon and TF-IDF features.

Our second model was trained using XgBoost
Regressor on features including same lexicon fea-
tures as used in model 1 training and n-gram fea-
tures. For predicting sentiment score on test data,
we computed the average of the sentiment scores
predicted by each of our models.

6 Results and Discussion

This section presents evaluation results of our sys-
tem on subtask 1 and subtask 2. Evaluation of the

2https://github.com/dmlc/xgboost

participating systems was based on cosine simi-
larity metric. Cosine similarity was computed as
follows,

cosine(G, P ) =
∑n

i=1 Gi ∗ Pi√∑n
i=1 G2

i ∗
√∑n

i=1 P 2
i

where, G represents the vector of true sentiment
polarity values and P represents the vector of pre-
dicted sentiment polarity values by the system.

Table 2 presents evaluation results of our official
submission. Our system secured 4th position in
subtask 1 and 14th position in subtask 2.

On subtask 2 which was related to News head-
lines dataset, our system did not perform well. The
subtask2 was more challenging as compared to
subtask 1. In subtask 1, participants are also given
with the spans related to cashtag towards which
the sentiment is expressed. Whereas, in subtask
2, spans were not given. It was quite challeng-
ing to identify the orientation of sentiment towards
a company under consideration, in cases where
more than one company is mentioned in the head-
line. We did not consider this issue while model-
ing our system and considered the whole text for
extracting features.

Table 2: Official Results of System Evaluation

Subtask Test Set Cosine Similarity
Score

Microblogs 799 0.655
News Headlines 491 0.547

7 Conclusion

This paper presented our approach to fine grained
sentiment analysis on financial microblogs and
news headlines SemEval Task 5. The task in-
cludes two subtasks including Sentiment analy-
sis on Financial Microblogs and sentiment anal-
ysis on News Headlines. Our system was among
top scorers for subtask 1. However, we did not
performed well in subtask 2. In future, we can
improve the system by further integrating depen-
dency parsing to extract phrases from sentences.
This will help in identifying different sentiments
oriented towards specific companies with in the
same text.
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Abstract

In this Paper a system for solving
SemEval-2017 Task 5 is presented. This
task is divided into two tracks where
the sentiment of microblog messages and
news headlines has to be predicted. Since
two submissions were allowed, two dif-
ferent machine learning methods were de-
veloped to solve this task, a support vec-
tor machine approach and a recurrent neu-
ral network approach. To feed in data for
these approaches, different feature extrac-
tion methods are used, mainly word rep-
resentations and lexica. The best submis-
sions for both tracks are provided by the
recurrent neural network which achieves a
score of 0.729 in track 1 and 0.702 in track
2.

1 Introduction

Analysing texts from the finance domain is a task
that can help market traders to make important
decisions because research has shown that senti-
ments and opinions can affect market dynamics
(Goonatilake and Herath, 2007). In the mean-
time, the internet contains a huge corpus of fi-
nance news from news websites or social media
platforms. Natural language processing methods
can be used to analyse this data as, for instance,
sentiment analysis. To improve the understand-
ing of the special characteristics of the domain,
SemEval-2017 provides Task 5.

2 Related Work

In the task of sentiment analysis, machine learning
methods are widely used. One approach is shown
in (Agarwal et al., 2011) where a sentiment anal-
ysis on twitter messages is performed by combin-
ing different features. It was found out that the use

of multiple features processed by a support vector
machine leads to good classification scores.

The work of (Yadav, 2016) shows that recurrent
neural networks can provide a good performance
for this task. A powerful system can be created
even with doing only a little preprocessing on the
text data.

3 Task Description

The SemEval-2017 Task 5 is divided into two
tracks which each consider a different data basis
(Cortis et al., 2017). The objective of both tracks
is the prediction of a sentiment score with refer-
ence to a company or a stock in a given piece of
text. The sentiment score is a number within the
interval [−1, 1] with −1 denoting a very bearish
sentiment and +1 denoting a very bullish senti-
ment.

Track 1 is focused on microblog messages
about stock market events. The data corpus
consists of 1710 annotated messages taken from
StockTwits1 and Twitter2, whereas a cashtag and
the related spans are given in each case.

Track 2 refers to financially relevant news head-
lines. The annotated data given for the system’s
training comprises 1156 headlines. For every
headline-score pair the corresponding company
name is specified. Spans are not given.

4 System Description

Below, the system is outlined. In doing so, pre-
processing steps, feature selection, and the used
machine learning techniques are described.

4.1 Preprocessing

Preceding the feature extraction, the texts are pro-
cessed by first expanding contractions and remov-

1https://stocktwits.com/
2https://twitter.com/
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ing URLs in the text.
Emotions generally take an important part in the

microblog domain and it was shown that the con-
sideration of punctuation and bracket characters
can improve the score because they can express
special meaning like facial expressions (Agarwal
et al., 2011). After the revision of the data, it
shows that these characters rarely occur in the data
of track 1 and apparently never occur in the track
2 data. Therefore, these characters are removed.

Furthermore, character strings of multiple white
spaces are normalized to length 1 and case insen-
sitivity is introduced. Additional tokenization is
done using SpaCy.3

4.2 Features
Two different types of features are examined for
the construction of the system. In the first fea-
ture set the preprocessed data is transformed into
a numerical word representation. The second fea-
ture set consists of multiple sentiment lexicon re-
sources.

4.2.1 Text Representations
Textual input has to be transformed into a
machine-readable representation. For this, the en-
suing two approaches are selected.

Word2vec (Mikolov et al., 2013) generates a
vector space based representation for a word in
the text. Each unique word in the corpus is rep-
resented by a feature vector having similar words
being positioned near each other in the space. A
pre-trained Levy and Goldberg dependency-based
model (Levy and Goldberg, 2014) from SpaCy is
used as well as a self-trained model which is con-
structed using gensim4. In contrast to the pre-
trained model, the self-trained model contains the
whole input vocabulary, but bases on a smaller
corpus.

4.2.2 Lexica
Since there is only a small amount of training data,
it was decided to bring additional information into
the system by using different lexica.

SentiWordNet (Baccianella et al., 2010) con-
sists of WordNet’s synset corpus (Fellbaum,
1998). Every synset term has a positive and a neg-
ative score between zero and one named PosScore
and NegScore. It is also possible to calculate the

3https://spacy.io/
4https://radimrehurek.com/gensim/

objectivity of a word by subtracting one from the
sum of PosScore and Negscore. Since a word can
have more than one score according to different
meanings, the final score for a word is the mean of
all found scores in the SentiWordNet.

VADER lexicon (Hutto and Gilbert, 2014) is a
gold-standard sentiment lexicon that is geared to
social media platforms. Hence, words and sym-
bols that are not included in conventional lexical
resources are contained and scored with continu-
ous values.

Opinion Lexicon (Hu and Liu, 2004) is a re-
source that is constantly being updated since 2004.
The words in this lexicon are classified binary as
positive or negative. Like in the VADER lexicon,
this resource was also trained on social media data.

MaxDiff Twitter Sentiment Lexicon (Kir-
itchenko et al., 2014) is an additional lexicon that
delivers a continuous score for words. This corpus
is mainly trained on Twitter data.

Financial Sentiment Lexicon As word polari-
ties might depend on a specific domain, a lexi-
con based on the training data from the respective
track is created. The Financial Sentiment Lexi-
con is built from the training data: First, the score
of a short message is assigned to all words of the
message. Then a vocabulary of all distinct words
is built and the scores of identical words are av-
eraged. In the final pruning step words with oc-
currence less than 0.1% in the data are removed to
prevent that very infrequent words have an impact
on the score. Also words with occurrence greater
than 10% in the data are removed so that very fre-
quent words like stop words don’t influence the
score.

4.3 Regression Methods

On the one hand, support vector regression is ap-
plied. This regression method bases upon a sup-
port vector machine (SVM) which is a widely used
machine learning method and which delivers good
results for various tasks. The implementation of it
is realized by the python package Scikit-Learn.5

The other regression method that is used is a re-
current neural network (RNN) using a Long Short-
Term Memory Cell (Hochreiter and Schmidhuber,
1997). This is an improvement of a standard RNN
in which the network is able to keep information

5http://scikit-learn.org
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Figure 1: Results of the cross validation of Track 1

over a larger amount of time steps. Unlike the
SVM, the RNN can process a message sequen-
tially observing the sentence structure. The imple-
mentation is realized by the python package Ten-
sorFlow.6 The model consists of two LSTM cells
and a layer count of 10.

5 Results

For every track, the support vector regression and
the RNN approach are tested on the testing data
using the depicted features. The predicted values
are rated by the cosine similarity between the gold
standard and the predicted sentiment score. For
evaluation of the system, cross-validation is used
by creating five subsets out of the training data set.

5.1 Track 1
The results for track 1 are presented in Figure 1.
The Figure shows the results of the regression of
the features, which are determined by a recurrent
neural network and a support vector machine. The
presented combination of features has delivered
the best result when the average score was formed.

The lexicon feature is the sentiment score of ev-
ery single word in a message, aggregated to the
mean for the whole message. w2v gensim relates
to the word2vec representation through gensim
that has been described in chapter 4.2.1. All word
vectors of a short message are averaged to a sin-
gle feature vector. w2v spacy refers to the second
word2vec model named in chapter 4.2.1 which
bases on SpaCy. Like described for w2v gensim,
the definite feature vector of a message consists
of the average of every word’s representation vec-
tor. The two matrix features w2v spacy matrix
and w2v gensim matrix are created in the same
way as the word vector features describes before,

6https://tensorflow.org

but they don’t average the single word vectors to
one vector. Instead, every word vector is repre-
sented by a line of a matrix with a fixed count
so that every matrix for a message has the same
shape. This representation is optimized for the
recurrent neural network because it can process
one line at a single time step. To use the matrix
features in a support vector machine, the matrix
will be reshaped to a vector where all word vec-
tors are concatenated to one single vector. The
large features are further matrix features, where a
word representation is concatenated to the lexicon
scores of a single word. For that, a 50-dimensional
word vector is created by gensim and then a five-
dimensional vector is built by looking up the score
for the word in the lexica. This feature has a ma-
trix representation with a fixed line count as in the
matrix features described before.

All feature combinations were tested. Figure
1 shows the similarity scores obtained by the in-
dividual features and the mean score of all sin-
gle feature predictions. As the figure shows, this
aggregation leads to a cosine similarity which is
higher than all single features. The combinations,
that are not explicitly presented, did not lead to
better results.

When comparing the scores of the SVM and the
RNN, it is noticeable that the SVM scores for the
single features are the same or better than those
of the RNN. But after aggregating the results of
the features for the final score, the RNN yields a
slightly better result than the SVM. Another con-
siderable thing is the comparison of the matrix fea-
ture scores. Due to the optimized representation
for a RNN, it is expected that the score of the ma-
trix features processed by the RNN is better than
processing them by the SVM. Though, the evalu-
ation shows a different result: The matrix features
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Figure 2: Results of the cross validation of Track 2

perform better when processed by a SVM. This
could be caused by the length and structure of the
data in track 1. Since the data only contains short
snippets of the full message text, which is often
only one word, the step-wise data processing of
the RNN offers no advantage.

5.2 Track 2

The results of the cross-validation of track 2 are
shown in Figure 2. The same features as in track
1 were used to make the results comparable. The
mean over all single feature predictions has also
been approved as best and been used for the final
score.

In comparison to the first track, the cosine simi-
larity is lower for most of the features. This might
be due to the fact that, unlike track 1, the full text
of a headline is delivered so that the average mes-
sage length is higher and more words influence the
score.

Another fact that is show in figure 2 is that the
RNN outputs better results over most of the sin-
gle features and also over the mean. This can be
explained by the structure of the data. Since the
full headline text has to be processed, a message
consists of more words than in track 1. The three
matrix features keep most of the information of
the words in a message and the step-wise process-
ing of the feature matrix by the RNN shows much
better results than reshaping the matrix to a single
vector and processing it by a SVM.

5.3 Official results

In this project, the prediction of the mean-feature-
SVM approach and of the mean-feature-RNN ap-
proach were each chosen to be submitted.

The official evaluation for track 1 has resulted
in a better score for the RNN approach with an

overall rank of 6 and a score of 0.729. The SVM
approach has a slightly worse result with a score of
0.720. In track 2, also the RNN approach reached
a better score than the SVM with a rank of 7 and
a cosine similarity of 0.702. The SVM achieved
a similarity of 0.655. The official evaluation con-
firms the cross-validation results by the better per-
formance of the RNN over the SVM.

6 Conclusion and Future Work

It has been shown that the extraction and aggrega-
tion of multiple features can lead to a score that
performs better than every single feature score.
The best single scores are represented by the word
vectors where the cosine similarity is near the
mean score for track 1 and in one case better than
the mean score in track 2. It can also be empha-
sized that the RNN outputs better scores on longer
messages than the SVM, especially when the step-
wise procedure is used with the matrix-shaped fea-
tures.

To further improve the results it is possible to
weight the single features before averaging them.
To learn the weights, a neural network can be used
which takes all single feature scores as input and
outputs one value as the sentiment prediction.

Another method to improve the scores is to no-
tice the cashtag or company name. By adding fea-
tures that take the dependency of the words into
account, it is possible to find out which words have
an influence on a specific entity. When using a
RNN as regression method, it is also possible to
pass the entity as an input, for example as a word
vector.
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Abstract

This paper describes a supervised solu-
tion for detecting the polarity scores of
tweets or headline news in the financial
domain, submitted to the SemEval 2017
Fine-Grained Sentiment Analysis on Fi-
nancial Microblogs and News Task. The
premise is that it is possible to understand
market reaction over a company stock by
measuring the positive/negative sentiment
contained in the financial tweets and news
headlines, where polarity is measured in a
continuous scale ranging from -1.0 (very
bearish) to 1.0 (very bullish). Our sys-
tem receives as input the textual content
of tweets or news headlines, together with
their ids, stock cashtag or name of target
company, and the polarity score gold stan-
dard for the training dataset. Our solution
retrieves features from these text instances
using n-gram, hashtags, sentiment score
calculated by a external APIs and others
features to train a regression model capa-
ble to detect continuous score of these sen-
timents with precision.

1 Introduction

Sentiment analysis involves the automatic identifi-
cation of opinions, feelings, evaluations, attitudes
expressed by people in the written language. A
popular line of work in this field is opinion mining
(Liu, 2012; Tsytsarau and Palpanas, 2012). Grow-
ing attention has been dedicated to sentiment anal-
ysis in the financial domain, given its links to mar-
ket dynamics. The challenges are to detect how
sentiment is expressed in documents in this do-
main, and how it can translate to a reaction over
a company stock, ranging from bullish to bear-
ish. This problem is addressed as part of SemEval-
2017 (International Workshop on Semantic Evalu-

ation 2017), Task 51. The task was defined as fol-
lows: ”given a text instance (microblog message
in Track 1, news statement or headline in Track 2),
predict the sentiment score for each of the compa-
nies/stocks mentioned. Sentiment values need to
be floating point values in the range of -1 (very
negative/bearish) to 1 (very positive/bullish), with
0 designating neutral sentiment.” The task was di-
vided into two subtasks, according to the type of
document (i.e. tweets and financial headlines) and
sentiment target, and this paper describes our so-
lution for both problems.

We addressed these sub-tasks by building a su-
pervised model to do regression of sentiment value
in the documents based solely on their textual con-
tent. The target of the sentiment in Task 5-1 is the
company stocks for which two sets of annotated
tweets were supplied: a training corpus with 1700
annotated tweets and a test corpus with 800 unan-
notated tweets for task evaluation purpose. Two
sets of news headlines were made available as part
of Task 5-2, where the target of opinion is a com-
pany. The training set was composed of 1142
annotated instances, and the test corpus has 491
unannotated instances for task evaluation. Details
of Task 5 can be found at (Cortis et al., 2017).

The regression of sentiment in a text can be
complex, because the sentiment can be related in
different levels and complexities to the document
or just with an aspect or even with a comparison
between entities (Feldman, 2013). Our strategy
was to address the regression as an opinion min-
ing problem. In addition, sentiment score detec-
tion faces challenges common to sentiment analy-
sis in general, such as use of vocabulary and slang
specific of the stock market, orthography errors,
sarcasm, etc.

Our method extracts a set of features from fi-
nancial texts and associate this data with annotated

1http://alt.qcri.org/semeval2017/task5/
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sentiment score provided by each task to train a
prediction model specific to sentiment found in
tweets and an other for sentiment found in head-
lines. To explain the details of our solution the
remaining of the paper describes the obtained re-
sults, the proposed solution and the experiments
developed in the next sections respectively.

2 Results

Tasks 5-1 and 5-2 evaluated the proposed solu-
tions according to the cosine similarity of bearish
and bullish, considering the respective test dataset.
The evaluation was based on cosine similarity as
defined by Equation 3, where Gi is the gold stan-
dard of instance and Pi is value predicted by our
system. The cosine similarity ranges from 0.0 to
1.0. We calculate the cosine similarity considering
G like a single vector with all instances of the gold
standard, and P with all instances of predictions.

cosine(G, P ) =
∑n

i Gi · Pi√∑n
i Gi ·

√∑n
i Pi

(1)

weight cosine =
∣∣∣∣PG
∣∣∣∣ (2)

final cs = weight cosine · cosine(G, P ) (3)

In the Task 5-1, our solution was ranked 17th
among 25 participants, with a cosine similarity
of 0.6142038157. Similarly, in the Task 5-2, we
ranked 21srt among 29 participants, with a cosine
similarity of 0.6081537843.

3 The Process

This section explains the sequence of steps to pre-
process the documents, extract features and train
the regression model.

3.1 Text Pre-processing
Before extracting text features, we preprocessed
the content of tweets and headlines messages. Full
URLs, company cashtags and company names
were replaced by the symbols ”url”, ”$cashtag”
and ”company” respectively. Numbers, monetary
values, percentages were replaced by the symbols
”positive number”, ”negative number”, ”money”,
”positive percentage”, and ”negative percentage”.
We do the replacing of expression with numeric
digits from the more complex to more simple ones,
being the more simple case a numeric part of a se-
quence of characters being replaced by the ”posi-
tive number” word. Other substitutions were also

performed with dates and other types of num-
bers. Special character sequences, like emoticons,
were replaced by symbols designating their posi-
tive or negative value. Emoji’s special characters,
when identified, were also replaced by the symbol
” emoji ”. We also identified expressions that de-
termine negation in a sentence, and replaced these
expressions by the symbol ” NOT ”, maintaining
the adjacent related words unchanged.

Additional pre-processing was implemented
over the spans field provided in each tweet input
instance. The Span field corresponds to the part of
the tweet message related to the target of annotated
sentiment. The adjustment done is concatenating
its text with the prefix ”SPAN ” in order to differ
the features derived from spans, from the ones ex-
tracted from the complete tweet text.

All these substitutions aim to preserve the origi-
nal meaning and context of the expressions within
the documents, given that these properties would
be lost if the textual features were extracted before
the pre-processing.

3.2 Features

We extracted the following groups of features
from the preprocessed text instances:

Features Common For Both Tasks: The features
present in the model of both tasks are:

a) n-grams: we experimented with different
variations of n-grams (n = [1..4]), which were
extracted from both tweet contents/headlines and
tweet spans. To deal with sparsity and non-
discriminant features, we removed all n-grams
whose frequency was below and above given
thresholds. Experimentally, we defined as min-
imum threshold at least 2 times, and as maxi-
mum threshold, at most in 95% or 100% of the
instances. We chosen a Boolean representation for
these features;

b) sentiment polarity and score: we used IBM
Alchemy2 API, providing the tweet text/headline
as input. This choice was motivated by our earlier
experience on the use of this tool (Dias and
Becker, 2016).

Features For Tweets: These are features explored
just for tweets:

a) has-hashtag: indicates the presence of hash-
tag in the document;

b) external stock features: based on the tweet

2http://www.alchemyapi.com/
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date, we used the Python module Yahoo Finance3

to get data about stock quotes of cashtag men-
tioned in the tweet at opening and close time of
market. We also calculate the variation from the
stock quote price from this date and a future date,
using two lags: 7 days and 1 month. We used this
data to build three features with the variation in
percentage, and three aditional features with infor-
mation about variation delta symbolized by ”in-
crease”, ”decrease” or ”none”. Despite the good
results provided by the adoption of these features,
they could not be not included in the final mi-
croblog model because, differently from training
dataset, the test dataset had very few instances that
included tweet creation date.

3.3 Training
We used the group of features selected for each
subtask as detailed in Section 3.2 to train a re-
gression model using a algorithm named Support
Vector Regression (SVR), available in the Scikit-
learn4 tools for Python language. The SVR learn-
ing was configured only with parameters of linear
kernel and C = 1.0.

3.4 Training Results
Using annotated sentiment score provided by the
SSIX project (Davis et al., 2016), we run our re-
gression models over the test data and compared
the results to build a confusion matrix for each
subtasks. Tables 1 and 2 describe these matrix in
terms of precision and recall, where Bullish is rep-
resented by scores greater than 0, and Bearish by
negative scores. It is interesting to observe that

3https://pypi.python.org/pypi/yahoo-finance
4http://scikit-learn.org

Predicted
Bullish Bearish Neutral Recall

A
ct

ua
l Bullish 449 72 0 86.02

Bearish 96 161 0 62.64
Neutral 5 9 0 0

Precision 81.04 67.64 0
F-score 83.46 65.05 0

Table 1: Confusion Matrix - Microblog

Predicted
Bullish Bearish Neutral Recall

A
ct

ua
l Bullish 208 68 0 75.36

Bearish 148 55 0 72.90
Neutral 6 6 0 0

Precision 77.32 66.66 0
F-score 76.33 69.65 0

Table 2: Confusion Matrix - News Headline

our solution did not predict any Neutral sentiment,
probably because neutral score is exactly 0. It is
also possible to observe that recall and precision
for Bullish detection is much higher (about 15 per-
centage points), compared to Bearish. This result
might be explained by the prevalence of positive
scores in the training instances, as detailed on Ta-
ble 3.

Subset Polarity Quantity
Microblog Bullish 1092
Microblog Bearish 581
Microblog Neutral 27
Headline Bullish 653
Headline Bearish 451
Headline Neutral 38

Table 3: Polarity Distribution in the Training
Datasets

Our solution achieved a higher evaluation score
in the first subtask, apparently because the tweets
contained more textual information and were
freely written using emoticons, Emojis, slangs, fi-
nancial values and financial language. News head-
lines were shorter and written in a more formal and
standard style. Thus, more discriminative features
to train the regression model could be extracted
from tweets.

Another difference was the use of cashtags, a
compact form to identify one type of company
stock, in the tweets. They simplified the detec-
tion of company, while the news headlines, in
most cases, expressed the companies as composed
names. Many news headlines were written entirely
using upper case, complicating the distinction of
proper names parts from words that have impor-
tant meaning.

4 Experiments

We made experiments as the basis for our pro-
posed solutions. The experiments for Tasks 5-1
and 5-2 are described in subsections 4.1 and
4.2, respectively. In the both experiments we
use different baselines. For each subtask we add
some features and test the improvements in cosine
similarity measurements.

Based on the models built with improvement re-
sults reported in the experiment of each subtask
(using 70% of instances for training the model and
30% of them to test the cosine similarity) we eval-
uate the test instances provided for each subtask.
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4.1 Experiments for Subtask of Microblogs
The results of our experiments are reported in Ta-
ble 4. To evaluate the performance of the proposed
system, we adopted as baseline a simple model
trained over n-grams (with n = [1, 2, 3]). As an
improvement, we kept the same n-gram textual
features that appeared least twice, and at most in
95% of tweets instances. Then we added the “has-
hashtag’ feature and the Alchemy score. These re-
sults are reported in Table 4 as Final, as it corre-
sponds to the solution submitted to Task 5-1.

We further improved this model (labeled Inter-
mediate in Table 4) using the previous features,
and in addition, all external stock features men-
tioned in Section 3.2. The only exception was the
feature variation delta in tweet date. Despite the
better result, this model was not submitted to the
task, because the features added were not trustwor-
thy in the test data due to the reasons explained in
Section 3.2.

4.2 Experiments for Subtask of Headlines
To evaluate the performance of the proposed sys-
tem, we compare it to a baseline trained over n-
grams with n = [1, 2, 3, 4] and keeping only its
features that are present at least two instances of
headlines. Using the same algorithm we add the
feature of sentiment polarity and score of Alchemy
API. Results are reported in table 4.

Task Baseline Final Intermediate
Microblog 0.487855 0.518896 0.524003
Headline 0.413345 0.468760 -

Table 4: Improvements gained after the changes
in the initial baseline of models in the metric of
cosine similarity

5 Conclusions and Future Work

The results obtained by the participants of Se-
mEval Task 5-1 and Task-5-2 and specially our re-
sults reveals that polarity regression using cosine
similarity as target metric is a hard problem, for
which available solutions could evolve.

One of the difficulties we faced was assum-
ing there were no significant differences in the
structure of the tweets in the training and testing
datasets. As the testing dataset contained very few
instances with date information, we could not ex-
plore the external features that provided the best
results in the training dataset. Another difficulty
common to many participant of Task 5 was deal-
ing with the ambiguity in the definition of simi-

larity calculation of the cosine proposed in the de-
scription of the tasks. Maybe a standard regres-
sion measure like Mean Squared Error would have
been a more direct evaluation choice.

The publication of the gold standard for the
tasks of Task 5 will allows to us to improve the
process, focusing mainly in strategies for increas-
ing the performance with regard to the more com-
plex sentences. Among the strategies are combine
Alchemy score with score of others external APIs
like Haven On Demand5 and Vivekn6 , and the
investigation of pre-processed issues like Emojis
sentiment. Another approach would be do experi-
ments of deep learning approach.
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Abstract

Task 5 of SemEval-2017 involves fine-
grained sentiment analysis on financial
microblogs and news. Our solution for
determining the sentiment score extends
an earlier convolutional neural network for
sentiment analysis in several ways. We
explicitly encode a focus on a particular
company, we apply a data augmentation
scheme, and use a larger data collection
to complement the small training data pro-
vided by the task organizers. The best re-
sults were achieved by training a model on
an external dataset and then tuning it using
the provided training dataset.

1 Introduction

This paper describes our approach to Task 5 of
the SemEval-2017 Challenge—fine-grained senti-
ment analysis on financial microblogs and news.
The task is to determine the sentiment score (posi-
tive or negative) of a mention of a given company
in a business-related text document—a microblog
message (Track 1) or a news headline (Track 2).

Our solution, “HCS,” is a convolutional neural
network to classify sentiment scores. The model’s
input takes two kinds of information: an article
text, a list of focus points—positions in the text
where a given company is mentioned. Foci allow
the model to distinguish company mentions within
the text, and to assign different scores to them.

The data provided by the task organisers,
(Handschuh et al., 2016), is short, one-sentence
messages, with a given focus company. To train
the model on additional data, we use the Named
Entity (NE) recognition module of PULS (Yangar-
ber and Steinberger, 2009; Huttunen et al., 2013;
Atkinson et al., 2011), a news monitoring system,
to find company mentions in arbitrary text.

2 Data

The SemEval training set contains 1700 sentences
for the microblog track and 1300 news headlines
for the headline track, which is a very limited re-
source for training flexible models. To compensate
for the small size of the provided training sets, we
built an extended training set. The PULS news
monitoring system1 collects articles from a range
of sources of business news (Pivovarova et al.,
2013; Du et al., 2016). One of our data sources is a
collection of news summaries written by business
analysts, which contain metadata annotations.

The metadata does not include sentiment scores.
However, the metadata does provide labels that
indicate business events mentioned in the article,
e.g., Investment, Fraud or Merger. The labels
are not mutually exclusive, and some documents
may have more than one label. There are ap-
proximately 300 labels, some of which imply—
or weakly imply—positive or negative sentiment.
However, most labels do not. We selected only
those labels with the most clear sentiment implica-
tions: e.g. Investment, New Product, Sponsorship,
etc., are considered “positive,” while Fraud, Lay-
off, Bankruptcy, etc., are considered “negative.” In
total, we used 26 positive and 12 negative labels.

Using these labels, we collected a training set
from the corpus of short articles. We selected only
documents for which we can infer a clear senti-
ment score; if a document has event several la-
bels with conflicting sentiment, it is not used for
training. Further, we used only those documents,
whose headline and first sentence mention exactly
one company. The rationale for this is that two
companies mentioned together may have different
scores. Since our event labels do not provide such
detailed information, we avoid these cases to keep
the training data as clean as possible. A positive

1http://puls.cs.helsinki.fi
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label is considered to have a score of 1 and a neg-
ative label is -1.

The dataset produced in this fashion is highly
skewed: 90% of the data are positive. We ap-
ply a random undersampling strategy (Stamatatos,
2008; Erenel and Altınçay, 2013) by randomly se-
lecting a subset of positive documents so that pos-
itive and negative training data are more balanced.
In our corpus, 100,000 documents have a negative
label and mention exactly one company. Thus, the
total dataset consists of 200,000 documents. Of
these, 10% are used as a development set to deter-
mine when to stop training.

3 Approach

Our model is based on a convolutional neural
network (Kim, 2014), which demonstrated state-
of-the-art performance on sentiment analysis (Tai
et al., 2015). The original model is relatively sim-
ple, and we adapt it for determining sentiment
score for a given company. We add an indicator
of focus to the input, i.e., the position of the com-
pany of interest, for which we wish to determine a
sentiment score. We also augment the network by
incorporating additional convolutional layers.

An overview of our model is shown in Figure 1.
The inputs are fed into the network as zero-padded
sentences of a fixed size, where each word is rep-
resented as a fixed-dimensional embedding, com-
plemented with a scalar indicator of focus. The
inputs are fed into a layer of convolutional fil-
ters with multiple widths, optionally followed by
deeper convolutional layers. The results of the last
convolutional layer are max-pooled, producing a
vector with one scalar per filter, which is then fed
into a fully-connected layer with dropout regular-
isation, and a soft-max output layer. The output is
a 2-dimensional vector that is interpreted as prob-
ability distributions over two possible outcomes:
positive and negative. Thus, if an instance has
a sentiment score -1 it is mapped into [1, 0], a
score of 1 is mapped into [0,1]. A cross-entropy
loss function is computed between the network’s
output and the true value to update the network
weights via back-propagation.

Next, we briefly describe the details of the com-
ponents of the model.

Embeddings: Words are represented by 128-
dimensional embeddings. The initial embeddings
were trained using GloVe (Pennington et al., 2014)
on a corpus of 5 million business news articles.

Each document was pre-processed using lemma-
tisation and named entity (NE) recognition. All
NEs of a certain type are mapped to the same to-
ken, e.g., all company names have the same em-
bedding.

Following the suggestion of Kim (2014), we
tune the embeddings during training by updating
them at each iteration. This allows the model to
learn word properties that are significant for sen-
timent detection, such as the difference between
antonyms, that are not necessarily captured well
in the initial embeddings.

Focus: One crucial extension beyond the model
in (Kim, 2014) is the focus vector, indicating the
position(s) of a given company in the text. The
focus vector is shown in darker grey in Figure 1,
with the company position in a red frame. This
provides an additional dimension to the word em-
bedding, and helps to distinguish between training
instances that differ only in focus and sentiment.

The reason for introducing focus is that senti-
ment is not a feature of the text as a whole, but of
each company mention. Two mentions in the same
text may have different sentiments and a model
needs be able to distinguish them. In this sense,
this task is similar to aspect-based sentiment anal-
ysis (Pontiki et al., 2016), where the task is not
to classify a text or sentence, but an entity within
the text. The notion of focus is similar to atten-
tion (Bahdanau et al., 2016; Yin et al., 2016), with
the difference that attention is learned during train-
ing whereas focus is given as an additional input.

We experiment with three alternative represen-
tations for focus. The baseline model has no fo-
cus, and uses only lexical features without NEs. In
the binary strategy, the focus vector contains ones
in positions where the target company is appears,
and zeros elsewhere. In the smoothed strategy, the
focus value for each word indicates the proximity
of the current word to the position of the nearest
mention of the target company. Proximity is com-
puted according to the formula:

Prox(p) =
1

1 + |p−m|
where p is the position of the current word and m
is the position of the nearest mention of the tar-
get company. Thus, proximity is 1 for a company
mention, 1/2 for its immediate neighbours, 1/3
for the next neighbours, etc. It is never 0, which al-
lows a convolution filter to use information about
focus points, even if it exceeds the filter length.
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Figure 1: Model architecture with focus vector and two convolution layers

Data augmentation: Since the training set con-
tains only “simple” instances—that mention ex-
actly one company, as described in Section 2—we
introduce a method for data augmentation which
allows us to generate more realistic data. By feed-
ing our model instances that mention several com-
panies, we force the network to make use of the
focus information, so it can learn to handle more
complex test instances, producing a better model.

To augment the data we randomly select
two simple instances—which gives them a 50%
chance of having different sentiments—and con-
catenate them. We then randomly decide which of
them should receive focus. As a result, we get an
instance that mentions a focus company and a dis-
tractor company either on the left or on the right
of the focus. We expect that using these examples
the model would learn to ignore sentiment signals
if they are far removed from the focus.

Model tuning: We have two different
corpora—a large one collected by us and a small
training set provided by the task organisers. We
used a two-stage learning procedure, where the
model is first trained using the large corpus and
then it is refined using the shared task data. The
core idea is that the first stage is used to learn a
coarse solution for the problem on rich data, while
the latter stage is used to fine-tune the model for
the specific task at hand. In particular, in the sec-
ond stage the model should calibrate an output to
the exact values of the scores, since in the first
stage all instances are labelled using only 1 or -1.

For the first training phase we used 10K sen-
tences as a development set to determine when to

stop training. For the second phase we take an-
other approach since we want to use as much data
as possible for training. First, we split the data
into two halves and tune the model, using the sec-
ond half as a development set to define the num-
ber of steps before it overfits. Then we tune the
model using the entire training set (and no devel-
opment set) and allow it to train the same number
of epochs, which means the model has seen each
training instance the same number of times.

4 Results

Table 1 shows the results for a selection of models
trained on our data and tested on the shared task’s
training set. For the experiments we use only En-
glish microblogs. The evaluation is done in terms
of cosine similarity between a model’s output and
the correct answer, as well as accuracy.2

We explore several hyper-parameters of the
model: the number of convolution layers and the
number and size of convolution filters. We also
report the effect of using (or not) the data aug-
mentation scheme described above. We also ma-
nipulate the instances, where the same company is
mentioned several times, by considering instances
with (many) foci or splitting them into several in-
stances with only one focus point.

As shown in the table, the data augmentation
scheme does not help the performance for this par-

2 To compute accuracy, we map the sentiment score into
three classes: negative (-1:-0.2), neutral (-0.2:0.2), and posi-
tive (0.2:1). This is a rather arbitrary split into three classes,
which provides a rough estimate of the model’s accuracy. In
actual training we optimise the loss, i.e. the cross-entropy
between the model’s output and the true value.
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Au Focus FP CL Filter Fi Headlines Blogs
acc cos acc cos

no no (baseline) one 1 3,4,5 128 70.67 53.92 63.59 32.71
no binary one 1 3,4,5 128 69.88 52.53 63.98 30.40
no binary many 1 3,4,5 128 70.05 52.15 60.14 26.59
no smooth one 1 3,4,5 128 68.48 51.36 58.91 25.91
no smooth one 2 3,4,5 128 70.32 53.35 62.03 33.19
yes smooth one 1 3,4,5 128 69.53 51.14 61.83 31.41
yes smooth many 1 3,4,5 128 70.32 52.11 58.91 21.52
yes binary one 3 3,4,5 128 70.40 52.78 62.09 30.43
yes binary one 1 3,4,5 200 68.91 49.77 61.31 27.91
yes binary many 1 3,4,5 128 70.05 50.09 61.64 29.63
yes binary many 3 3,4,5 128 69.00 50.28 60.60 26.03
yes smooth one 1 3,7,11 128 70.05 50.29 58.19 24.90
yes smooth one 2 3,7,11 128 69.53 49.53 63.00 29.13
yes smooth many 2 3,7,11 128 69.26 49.68 61.64 25.12
yes binary one 6 3,8 40 64.27 42.68 57.35 24.22

Table 1: A selection of best-performing models. Legend: Au—augmentation, FP—number of focus
points per instance, CL—number of convolution layers, Fi—number of filters (of each size).

Example True score Model output
1 Tesco names Deloitte as new auditor after accounting scandal. -0.452 0.289
2 Tesco breaks its downward slide by cutting sales decline in half. 0.172 -0.703

Table 2: Problematic examples.

Headlines Blogs
without tuning 51.30 36.03
with tuning 67.95 60.73

Table 3: Official results for SemEval 2017 Task 5:
cosine similarity.

ticular task. Thus, we submitted a solution without
augmentation. Using foci increases performance
for microblogs but not for headlines, probably be-
cause most instances in the task have only one
mention. However, we submitted a solution with
(smooth) focus since we believe it will be crucial
in more realistic settings.

It can also be seen from the table that, although
the results for headlines and microblogs have com-
parable accuracy, microblog classification is sub-
stantially worse in terms of cosine similarity.

The model we chose for the SemEval submis-
sion (for both subtasks) is highlighted in blue in
the table. For each subtask, we made two submis-
sions: one without tuning—using only our data,
and one with the tuning step—we continue refin-
ing the model, using headlines and microblog data
respectively. The final results of the shared task
are shown in Table 3. As can be seen in the table,
tuning provides a substantial improvement—16%
for headlines and 24% for microblogs. Table 2
shows some examples of the more problematic
cases that we found during error analysis.

Example 1 would require processing of long-
distance dependencies. In this sentence the key
phrase accounting scandal is far from the focus
company Tesco, so none of the convolutional fil-
ters is applied to the company name and the phrase
at the same time. The focus mechanism reduces
the weight of the phrase, since another company
name appears between the focus and the phrase,
which may indicate a drawback of our model on
such short input strings. Some sentences are in-
correctly classified due to a complicated syntactic
structure.

Example 2 contains a string of strongly negative
cues (breaks, downward slide, cutting, sales de-
cline), which should cancel each other out, but cor-
rect processing of such sentences would require
deeper semantic analysis. Note, that in this task
we have rather short pieces of text; in a more re-
alistic setting the model should classify an entire
document, where the company of interest would
be mentioned multiple times with different key-
words in context.
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Abstract 

Short length, multi-targets, target relation-

ship, monetary expressions, and outside 

reference are characteristics of financial 

tweets. This paper proposes methods to 

extract target spans from a tweet and its 

referencing web page. Total 15 publicly 

available sentiment dictionaries and one 

sentiment dictionary constructed from 

training set, containing sentiment scores 

in binary or real numbers, are used to com-

pute the sentiment scores of text spans. 

Moreover, the correlation coefficients of 

the price return between any two stocks 

are learned with the price data from 

Bloomberg. They are used to capture the 

relationships between the interesting tar-

get and other stocks mentioned in a tweet. 

The best result of our method in both sub-

task are 56.68% and 55.43%, evaluated by 

evaluation method 2. 

1. Introduction 

Nowadays the discussion of finance on social 

media such as twitter reveals the feeling of a mar-

ket in some degrees. Market sentiment analysis 

becomes an important financial technology in 

trading strategies (Kazemian, 2014).  Financial 

tweet sentiment classification differs from tradi-

tional sentiment classification in several ways. 

Firstly, the sentiment degree is a real number ra-

ther than discrete numbers such as 1 (positive), 0 

(neutral), and -1 (negative). 

Secondly, a financial tweet usually concerns 

multiple targets. In the tweet, “Oil To Break Out: 

Adding Chevron https://t.co/IrZkAVxjiE $AXP 

$CLGRF $CSCO $ERX $IBM $MCD $SSRI 

$VLO $WMT $XOM $CVX”, all companies de-

noted by the cashtag $ticker-symbol share only 

one description. The activity, oil to break out, is a 

good news for energy companies, but may be bad 

for shipping companies. Domain knowledge 

about the targets is necessary for suitable interpre-

tation in this case. 

Thirdly, numbers in the financial tweets are 

quite important. In the tweet, “MarketWatch: RT 

wmwitkowski: Guess who sold off about $800 

million in $MDLZ after losing about $1 billion on 

$VRX???https://t.co/SHiJutyenv”, large number 

means more negative. In contrast, in the tweet 

(named T1 hereafter), “$AAPL now up 2.2% 

w/div since my original call, while $SPY up only 

0.6% even w/ this Fri's div. #EMH be damned. 

Still holding”, the larger the number is, the more 

positive score the target will get. The activity re-

lated to numbers determines the polarity and its 

degree. 

Fourthly, sentiment scores depend on the activ-

ity of the companies, and their relationships, e.g., 

the adversarial relation versus the cooperate rela-

tion. In the tweet, “Report: Apple signs up for 

Google's cloud, uses much less of Amazon's 

$AAPL $GOOG $GOOGL $AMZN $DROPB 

https://t.co/zN3KDGYvGT”, $AAPL $GOOGL 

$AMZN and $DROPB are assigned sentiment 

scores 0.15, 0.443, -0.38 and -0.213, respectively, 

by human annotators because Amazon and Drop-

box are two competitors of Google in the cloud 

market. 

This paper explores various types of features 

selected from the text span related to the interest-

ing targets for fine-grained financial tweet senti-

ment classification. Both human and machine la-

belled text spans are used and compared. This pa-

per is organized as follows. Section 2 surveys the 

related work. Section 3 presents the identification 

of text spans and extraction of features from them. 

847



 

Section 4 shows and discusses the experimental 

results. Section 5 concludes the remarks. 

2. Related Work 

Go et al. (2009) employ Naïve Bayes, Maxi-

mum Entropy, and SVM to classify sentiment of 

Twitter messages to positive, neutral, and nega-

tive categories. Usernames, usage of links and re-

peated letters are taken as features. Jiang et al. 

(2011) consider target-dependent features and re-

lated tweets in the target-dependent Twitter senti-

ment classification, and achieve an accuracy of 

68.2%. The sentiments of the tweets are still dis-

crete, i.e., positive, negative, or neutral. 

Takala et al. (2014) develop an evaluation da-

taset for topic-specific sentiment analysis in finan-

cial and economic domain, where financial news 

are sampled from Thomson Reuters newswire. 

Each news story is annotated by 7-point scale 

from very positive to very negative. The 

SemEval-2017 Task 5 deals with fine-grained 

sentiment analysis on financial microblogs and 

news. Financial tweets and news headlines are 

taken as evaluation data. 

This paper is different from the above coarse-

grained approaches. Multi-targets in a short text is 

one of the major issues to be tackled. We will find 

the sentiment of an interesting target in a tweet  

3. Features 

The twitter dataset in SemEval-2017 Task 5 is 

used in this study. It consists of 1,539 financial 

tweets. Total 55.6% of tweets contain more than 

one target. The sentiment scores of the targets in a 

tweet are labeled into the real numbers between -

1 to 1 by 3 experts.  

Figure 1 shows the structure of a financial tweet. 

The following sections will discuss how to extract 

features from each component. The 21 features 

used in the experiments are shown in Table 1. 

 

 
Figure 1. Structure of a financial tweet 

Table 1. Features 

3.1 Text Span 

In the SemEval-2017 dataset, experts labeled a 

“text span” for each target. In the tweet T1 speci-

fied in Section 1, the spans “$SPY up only 0.6%, 

Still holding” and “now up 2.2%, Still holding” 

are assigned to $SPY and $AAPL, respectively.  

Besides human-annotated text span, we also 

explore two span determination algorithms shown 

as follows. Here, we collect a mapping table of 

tickers and company names from Bloomberg, and 

use it to find the canonical form of the company 

mentions in a tweet. 

(1) Position-based approach (EP) 

First, a tweet will be separated into sentences. 

Then, the sentence containing the cashtag or the 

company name of a target is deemed as the span 

for the target. The sentence without any company 

names or cashtags will be regarded as the span for 

all targets shown in the tweet.  Here, a hashtag is 

regarded as a word. 

(2) Dependency-based approach 

(2.1) Stanford Parser (ED-S) 

A tweet is parsed by Stanford dependency par-

ser (Marneffe, 2006). To reduce the effects of out 

of vocabulary (OOV) words in parsing, cashtags 

and company names are replaced by common 

names like “Bob”. A dependency tree for n-word 

tweet is composed of n triples in the form of 

dep(wordi,wordj), where wordi and wordj has a de-

pendency dep, wordi is a parent of wordj, and 

wordj is a child of wordi. We take the ancestors 

and the decedents of a target as its span. 

(2.2) TweeboParser (ED-T) 

TweeboParser is a dependency parser, designed 

for tweets (Kong et al., 2014). It tries to deal with 

the following challenges: token selection, multi-

word expressions, multiple roots, and structure 

within noun phrases. The multiple roots property 

Type Source Dictionary/Operations #Fea-

tures 

text span in tweet 15 dictionaries/aver-

age 

15 

text span in tweet trained dict/avg or 

max 

2 

text span via 

URL 

SenticNet 4/avg or 

max 

2 

number in tweet not applicable 1 

relation in tweet not applicable 1 
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tends to provide shorter span than ED-S with the 

same extracted algorithm.  

The average length of the tweets, manual spans, 

EP spans, ED-S and ED-T spans are 17.61, 6.26, 

12.17, 10.27, and 7.78 words, respectively. Com-

pared with 140-character word limit in twitter, a 

financial tweet is very short. In particular, manual 

spans are much shorter. 

Besides text span in tweets, tweets may contain 

URLs as reference (shown in Figure 1). To collect 

as much information as possible, we parse the web 

page designated by the URL and retrieve the sen-

tences containing the target. Those sentences are 

considered as additional text for sentiment classi-

fication. 

Table 2 shows the example of span for the sin-

gle target case: “$ATVI ooks pretty bullish for 

now. from a short-term perspective, it's got a good 

chance of maybe sliding back to 33.70 #stocks 

#investing” 

Table 3 shows the example of span for: “Report: 

Apple signs up for Google's cloud, uses much less 

of Amazon's $AAPL $GOOG $GOOGL $AMZN 

$DROPB https://t.co/zN3KDGYvGT” The target 

of span is $AAPL.  

As shown in the above two examples, ED-T 

method provides the shortest span and extracts the 

span more similar to Manual span. The extract re-

sults may sometimes include all words in tweet. 

 
Manual ooks pretty bullish for now 

EP '$ATVI ooks pretty bullish for now.', 

'from a short-term perspective', " it's got 

a good chance of maybe sliding back to 

33.70 #stocks #investing" 

ED-S Bob ooks pretty bullish for now from a 

short term perspective it s got a good 

chance of maybe sliding back to 33 70 

stocks investing 

ED-T $atvi ooks pretty bullish for now 

Table 2. Example of Single Target Span 

 

                                                                                                            
1 Download from http://sentiwordnet.isti.cnr.it/ 
2 Download from http://sentic.net/ 

 

 

Table 3. Example of Multi-Target Span 

3.2 Ensemble of Sentiment Dictionaries 

In the lexicon-based sentiment analysis, the 

sentiment score of a text span is determined by the 

sentiment scores of the sentiment words it con-

tains. We use the max or the average of the senti-

ment scores of the related words as the features 

shown in Table 1. Total 15 sentiment dictionaries 

of two forms, real value and binary, are consulted. 

In addition to the publicly available dictionaries, 

we also construct a sentiment dictionary from the 

training set automatically. 

(1) Real value: SentiWordNet1, SenticNet 42, 

NRC Hashtag Emotion Lexicon, NRC Hashtag 

Affirmative Context Sentiment Lexicon and NRC 

Hashtag Negated Context Sentiment Lexicon uni-

grams and bigrams, Yelp Restaurant Sentiment 

Lexicon unigrams and bigrams, Amazon Laptop 

Sentiment Lexicon unigrams and bigrams, Senti-

ment140 Affirmative Context Lexicon unigrams 

and bigrams, Emoticon Lexicon aka Senti-

ment140 Lexicon unigrams, bigrams3 

(2) Binary (1 for positive, -1 for negative): 

NRC Word-Emotion Association Lexicon, Mac-

quarie Semantic Orientation Lexicon 

SentiWordNet is quite different from the other 

sentiment dictionaries in the above. Words of dif-

ferent senses are assigned different sentiment 

scores. In the experiments, we use Babelfy (Moro 

et al., 2014) to disambiguate the word senses be-

fore consulting SentiWordNet. 

We separated all words in training set, then 

counted the average sentiment score for each 

word to construct the other sentiment dictionary. 

3 Other dictionaries can download from http://saifmoham-

mad.com/WebPages/lexicons.html 

Manual Report: Apple signs up for Google's 

cloud 

EP Report: Apple signs up for Google's 

cloud, uses much less of Amazon's 

ED-S Report Bob signs up for Google s cloud 

uses much less 

ED-T apple signs up for google's cloud 
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3.3 Numbers and Relationships 

As described in Section 1, numbers such as 

monetary expressions are important cues for ana-

lyzing financial tweets. We use the position be-

tween a target and numbers to decide which num-

ber in a tweet is related to a target, and calculate 

the ratio of this number and sum of all numbers 

mentioned in the tweet as a feature.  

In finance, the correlation coefficient of the 

price return between two stocks has been used to 

capture their relationship. We calculate the corre-

lation coefficients by the stock prices during 

2015/01/01 to 2016/10/31 downloaded from 

Bloomberg, and use them to compute the geomet-

ric mean of the absolute value of the correlation 

coefficients between the interesting target and 

other stocks in a tweet. The sign of this feature de-

pends on the plurality voting. 

4. Experimental Results 

In coarse-grained classification, we classify the 

sentiment of a given target mentioned in a tweet 

into positive, negative, or neutral. The SVM 

model with the proposed 21 features are used. In 

fine-grained classification, we predict the senti-

ment score of the given target in real number. The 

SVR is adopt for this task. Both model followed 

the default parameters used in python Scikit-learn 

(Pedregosa et al., 2011) Accuracy and cosine sim-

ilarity are used to measure the performance of the 

coarse-grained and the fine-grained tasks, respec-

tively. The ground truth is represented as a vector 

of targets’ sentiment scores in cosine measure-

ment. Four-fold cross-validation is conducted. 

Table 4 shows the experimental results. Using 

manual spans achieves the ideal performance be-

cause the critical text span for the target is known 

beforehand. Using EP spans is better than using 

the complete tweet, but worse than using manual 

spans. The performance of the ED-S Span ap-

proach does not meet our original expectation due 

to the noise results in dependency parsing in 

tweets, which are usually incomplete sentences. 

The ensemble of the first five methods show in 

                                                                                                            
4 Description of evaluation method 2 : 

http://alt.qcri.org/semeval2017/task5/data/uploads/descrip-

tion_second_approach.pdf  

Table 4 show the best accuracy in the 4-fold vali-

dation for both coarse-grained and fine-grained 

case. 

Table 4. Experimental Results 

Although ED-T method provides the span 

whose average length is the closest to manual span, 

it gets the worse accuracy.  It’s worth to leave no 

stone unturned. We leave this part in the future 

works. 

Due to the limited amount of submission, we 

submit two test results: manual span and the en-

semble. The final result for the SemEval-2017 

Task 5 by cosine similarity are 35.66% and 

38.28%, and by evaluation method 24 are 55.34% 

and 56.68%, as the test of 4-fold validation that 

ensemble result got the best accuracy. 

   The same dictionaries and SVR model are used 

to subtask 2, using the news headline data. The 

best result is 55.43% using evaluation method 2. 

5. Conclusion and Future Work 

In this paper, we analyze the specific properties 

of the financial tweets, and propose methods to 

extract features from a tweet and its mentioned 

URL.  

We illustrate some of the challenges of analyz-

ing financial tweets. For the multi-targets problem, 

in order to extract the specific part of tweet for the 

target, we provide three methods, making the pro-

cess automatically. The comparison of “spans” 

similarity will be provided in the future works. 

Moreover, we will also handle the number and the 

relationship between targets more precisely. 

Methods Coarse-

grained 

Fine-

grained 

Complete Tweet 64.91% 59.40% 

Manual Span 86.94% 82.17% 

EP Span 72.00% 62.83% 

ED-S Span 64.52% 39.48% 

ED-T Span 34.50% 34.05% 

Ensemble 89.60% 82.60% 
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Abstract 

This paper describes the approach we used for 

SemEval-2017 Task 5: Fine-Grained Sentiment Anal-

ysis on Financial Microblogs. We use three types of 

word embeddings in our algorithm: word embeddings 

learned from 200 million tweets, sentiment-specific 

word embeddings learned from 10 million tweets us-

ing distance supervision, and word embeddings 

learned from 20 million StockTwits messages.  In our 

approach, we also take the left and right context of the 

target company into consideration when generating 

polarity prediction features. All the features generated 

from different word embeddings and contexts are in-

tegrated together to train our algorithm.   

1 Introduction 

Domain specific Sentiment Analysis has re-

ceived much attention recently. The financial 

domain is a high-impact use case for Sentiment 

Analysis because it has been shown that senti-

ments and opinions can affect market dynamics 

[9, 48]. Given the link between sentiment and 

market dynamics, the analysis of public senti-

ment becomes a powerful method to predict the 

market reaction. One main source of public sen-

timent is social media, such as Twitter and 

StockTiwts.  

In this paper, we describe our approach for 

SemEval-2017 Task 5: Fine-Grained Sentiment 

Analysis on Financial Microblogs (Cortis et al., 

2017). The task is: given a microblog message, 

predict the sentiment score for each of the com-

panies/stocks mentioned. Sentiment values need-

ed to be floating point values within the range of 

-1 (very negative/bearish) to 1 (very positive/ 

bullish), with 0 designating neutral sentiment. 

Our approach uses word embeddings (WE-

Twitter) learned from general tweets, sentiment 

specific word embeddings (SSWE) learned from 

distance supervised tweets, and word 

embeddings learned from StockTwits messages 

(WE-StockTwits).  
Message or sentence level sentiment classifi-

cation has been studied by many previous works 

(Go et al., 2009; Mohammand et al., 2013; Pang 

et al., 2002; Liu, 2012; Tang et al., 2014), but 

there are few studies on target-dependent, or en-

tity level, sentiment prediction (Jiang et al., 

2011; Dong et al., 2014; Vo and Zhang, 2015). A 

target entity in a message does not necessarily 

have the same polarity type as the message, and 

different entities in the same message may have 

different polarities. For example, in the tweet 

“iPhone is better than Blackberry”, the two 

named entities, iPhone and Blackberry, will have 

different sentiment polarities. Recent studies 

have focused on learning features directly from 

tweet text. One approach is to generate sentence 

representations from word embeddings. Several 

word embedding generation algorithms have 

been proposed in previous studies (Collobert et 

al., 2011; Mikolov et al., 2013). Using the gen-

eral word embeddings directly in sentiment anal-

ysis is not effective, since they mainly model a 

word’s semantic context, ignoring the sentiment 

clues in text. Therefore, words with opposite po-

larity, such as worst and best, are mapped onto 

vectors embeddings that are close to each other 

in some dimensions. Tang et al. (2014) propose a 

sentiment-specific word embedding (SSWE) 

method for sentiment analysis, by extending the 

word embedding algorithm. SSWE encodes sen-

timent information in the word embeddings. 

Many terms in financial market have different 

meanings, especially sentiment polarity, from 

that in other domains or sources, such as general 

news articles and Twitter. For example, terms 
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long, short, put and call have special meanings in 

stock market. Another example is the term un-

derestimate, which is a negative term in general, 

but it can suggest an opportunity to buy when 

used in stock market messages. Therefore, in this 

study we also build word embedding specifically 

from StockTwits messages.  

The context of an entity will affect its polari-

ty value, and usually an entity has a left context 

and also a right one, unless it is at the beginning 

or end of a message.  Both the context infor-

mation and the interaction between these two 

contexts are included in the algorithm features of 

our approach. In this task, the financial 

microblogs are from StockTwits and Twitter, so 

in our approach, we incorporate features generat-

ed from WE-Twitter, SSWE and WE-StockTwits 

to represent these contexts, since they comple-

ment each other.  

2 Previous Studies 

Sentence or Message Level Sentiment: Tradi-

tional sentiment analysis approaches use senti-

ment lexicons (Mohammad et al., 2013; Thelwall 

et al., 2012; Turney, 2002) to generate various fea-

tures. Pang et al. treat sentiment classification as a 

special case of text categorization, by applying 

learning algorithms (2002). Many studies follow 

Pang’s approach by designing features and apply-

ing different learning algorithms on them (Feld-

man, 2013; Liu, 2012). Go et al. (2009) proposed 

a distance supervision approach to derive features 

from tweets obtained by positive and negative 

emotions. Some studies (Hu et al., 2013; Liu, 

2012; Pak and Paroubek 2010) follow this ap-

proach. Feature engineering plays an important 

role in microblog sentiment analysis; Mohammad 

et al. (2013) implemented hundreds of hand-

crafted features for tweet sentiment analysis. 

Deep learning has been used in the sentiment 

analysis tasks, mainly by applying word 

embeddings (Collobert et al., 2011; Mikolov et al., 

2013). Learning the compositionality of phrase 

and sentence and then using them in sentiment 

classification is also explored by some studies 

(Hermann and Blunsom, 2013; Socher et al., 

2011; Socher et al., 2013). Using the general word 

embeddings directly in sentiment analysis may not 

be effective, since they mainly model a word’s 

semantic context, ignoring the sentiment clues in 

text. Tang et al. (2014) propose a sentiment-

specific word embedding method by extending 

the word embedding algorithm from (Collobert et 

al., 2011) and incorporating sentiment data in the 

learning of word embeddings.  

Entity or Target Level Sentiment: Jiang et al. 

(2011) use both entity dependent and independ-

ent features generated based on a set of rules to 

assign polarity to entities. By using POS features 

and the CRF algorithm, Mitchell et al. (2013) 

identify polarities for people and organizations in 

tweets. Dong et al. (2014) apply adaptive recur-

sive neural network on the entity level sentiment 

classification. These two approaches use syntax 

parsers to parse the tweet to generate related fea-

tures. In our approach, we consider both the left 

and right contexts of a target when generating 

features. 

3 Methodology 

In this section, we describe the three main com-

ponents used in our method, the WE-Twitter, 

SSWE and WE-StockTwits models, and how the 

learning features are generated from them and in-

tegrated together.  

3.1 WE-Twitter  and WE-StockTwits Word 

Embedding  

Word Embedding: A word embedding is a 

dense, low-dimensional and real-valued vector 

for a word. The embeddings of a word capture 

both the syntactic structure and semantics of the 

word. Traditional bag-of-words and bag-of-n-

grams hardly capture the semantics of words. 

Word embeddings have been used in many NLP 

tasks. The C&W model (Collobert et al., 2011) 

and the word2vec model (Mikolov et al., 

2013), which is used in this study to generate the 

WE-Twitter and WE-StockTwits embeddings, 

are the two popular models.  

The embeddings are learned to optimize an 

objective function defined on the original text, 

such as likelihood for word occurrences. One 

implementation is the word2vec from Mikolov et 

al. (2013). This model has two training options, 

continuous bag of words and the Skip-gram 

model. The Skip-gram model is an efficient 

method for learning high-quality distributed vec-

tor representations that capture a large number of 

precise syntactic and semantic word relation-

ships. This model is used in our method for 

building WE-Twitter and WE-StockTwits mod-

els. Generating word embeddings from text cor-

pus is an unsupervised process. To get high qual-

ity embedding vectors, a large amount of training 
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data is necessary. After training, each word, in-

cluding all hashtags in the case of tweet, is repre-

sented by a low-dimensional, dense and real-

valued vector.  

WE-Twitter model construction: The tweets 

for building the WE-Twitter model include 

tweets obtained through Twitter’s public stream-

ing API and The Decahose data (10% of Twit-

ter’s streaming data) obtained from Twitter. Only 

English tweets are included in this study. In total 

there are about 200 million tweets. Each tweet 

text is preprocessed to get a clean version, fol-

lowing steps blow: 

 all URLs and mentions are removed. 

 dates are converted to a symbol. 

 all ratios are replaced by a special symbol. 

 integers and decimals are normalized to 

two special symbols. 

 all special characters, except hashtags, 

cashtags,  emoticons, question marks and 

exclamations, are removed. 

Stop words are not removed, since they provide 

important information on how other words are 

used. In total, about 2.9 billion words were used 

to train the WE-Twitter model. Based on our pi-

lot experiments, we set the embedding dimension 

size, word frequency threshold and window size 

as 300, 5 and 8, respectively. There are about 1.9 

million unique words in this model.  

WE-StockTwits model construction: 

StockTwits is a financial social network for shar-

ing ideas among traders. Anyone on StockTwits 

can contribute content – short messages limited 

to 140 characters that cover ideas on specific in-

vestments.  Most messages have a cashtag, 

which is a stock symbol, such as $aapl, to speci-

fy the entity (stock) this message is about. We 

received the permission from StockTwits to ac-

cess their historical message archive from 2011 

to 2016. We extract 20 million messages from 

this data set to build the WE-StockTwits model. 

Some preprocessing steps are performed to clean 

the messages: 

 messages that contain only cashtags, URLs, 

or mentions are discarded, since they do not 

have meaningful terms.  

 message text is converted to lower case.  

 all URLs are removed.  

 all mentions are converted to a special sym-

bol, for privacy reason. 

 all cashtags are replaced by a special sym-

bol, to avoid cashtags to gain a polarity val-

ue related to a particular time period. 

The embedding dimension size, word frequency 
threshold and window size are set as 300, 5 and 
8, respectively. 

3.2 Sentiment-Specific Word Embedding 

SSWE: The C&W model (Collobert et al., 2011) 

learns word embeddings based on the syntactic 

contexts of words. It replaces the center word 

with a random word and derives a corrupted n-

gram. The training objective is that the original 

n-gram is expected to obtain a higher language 

model score than the corrupted n-gram. The orig-

inal and corrupted n-grams are treated as inputs 

of a feed-forward neural network, respectively.  

SSWE extends the C&W model by incorpo-

rating the sentiment information into the neural 

network to learn the embeddings; it captures the 

sentiment information of sentences as well as the 

syntactic contexts of words (Tang et al., 2014). 

Given an original (or corrupted) n-gram and the 

sentiment polarity of a tweet as input, it predicts 

a two-dimensional vector (f0, f1), for each input 

n-gram, where (f0, f1) are the language model 

score and sentiment score of the input n-gram, 

respectively. The training objectives are twofold: 

the original n-gram should get a higher language 

model score than the corrupted n-gram, and the 

polarity score of the original n-gram should be 

more aligned to the polarity label of the tweet 

than the corrupted one. The loss function is the 

linear combination of two losses - loss0 (t, t’) is 

the syntactic loss and loss1 (t, t’) is the sentiment 

loss: 

  loss (t, t’) = α * loss0 (t, t’) + (1-α) * loss1 (t, t’) 

The SSWE model used in this study was trained 

from massive distant-supervised tweets, collect-

ed using positive and negative emotions.  

SSWE model construction: The SSWE model 

for Twitter was trained from massive distant-

supervised tweets, collected using positive and 

negative emoticons, such as :), =), :( and :-(. A 

total of 10 million tweets were collected, where 5 

million contain positive emotions and the other 5 

million contain negative ones. The embedding 

dimension size was set as 50 and the window 

size as 3. 

3.3 Feature Generation 

3.3.1 Features 

Given a message and the target entity, nine types 

of features are generated based on WE-Twitter, 

SSWE, and WE-StockTwits models.  They are 

integrated together to train the algorithm. Figure 

1 shows the nine types of features. Three types of 
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features are generated from SSWE embeddings 

for a target entity. The red ones are SSWE 

embeddings, and the blue ones are WE-Twitter 

and WE-StockTwits embeddings. The subscript 

letter L and R refer to the left and right side of an 

entity, respectively. These features are described 

below:  

 

Figure 1. The features generated from different word 

embedding models and different contexts. 

 

WE-TwitterL and WE-TwitterR: These are the 

WE-Twitter embeddings for the text on the left 

side and right side of the target entity, respective-

ly. In this task, occasionally, the given cashtag 

(company stock symbol) does not appear in the 

message text. In this case, the whole tweet text is 

used for both the left and right contexts, and this 

case is handled in the same way when generating 

WE-StockTwitsL, WE-StockTwitsR, SSWEL and 

SSWER described below. 

WE-StockTwitsL and WE-StockTwitsR: These 

are the WE-StockTwits embeddings for the text 

on the left side and right side of the target entity, 

respectively.  

SSWEL and SSWER: These are the SSWE 

embeddings for the text on the left side and right 

side of the target entity, respectively.  

WE-Twitter, WE-StockTwits and SSWE: the-

se are the embeddings generated from the whole 

message text, which means they are entity inde-

pendent features.  We use these three features to 

capture the whole message, which reflects the in-

teraction between the left and right sides of the 

entity. 

These nine types of embeddings together cap-

ture different types of information we are inter-

ested: the entity’s left and right contexts, the in-

teraction of the two sides, the sentiment specific 

word embedding information, and the general 

word embedding information learned from Twit-

ter and StockTwits.  

3.3.2 Text Representation from Term 

Embeddings 

A message or text segment, such as the left/right 

context of an entity, has multiple words and each 

word has its own embedding vector. How to 

combine them together to represent this message 

so that all messages will have the same size of 

embedding vector needs to be explored. There 

are different ways to do this, e.g. for each em-

bedding dimension, using the max value of all 

the words. In our approach, we use the concate-

nation convolution layer, which concatenates the 

layers of max, min and average of word 

embeddings, because this layer gives the best 

performance based on our pilot experiments. The 

concatenation layer is expressed as follow: 

Z(t) = [Zmax(t), Zmin(t), Zave(t)] 

where Z(t) is the representation of text segment t. 

4 Experiment and Result 

For this task, the training data are provided by 

the task organizers. There are 1,704 tweets and 

StockTwits messages. We downloaded them 

from Twitter and StockTwits. To build our mod-

el, we split this data set into three parts: 80% as 

training data and 20% as development data.  

Since the predicted output in this task is a real 

value, so we use a liner regression algorithm in 

our approach.  Based on the cosine similarity 

metric and the evaluation data set, which consists 

of 800 tweets and StockTwits messages (Cortis 

et al., 2017), the score of our approach is 0.7153, 

and our team is ranked at #6 among the 38 sub-

missions. 

5 Conclusion 

This paper describes the approach we used for 

SemEval-2017 Task 5: Fine-Grained Sentiment 

Analysis on Financial Microblogs.  We use three 

types of word embeddings in our algorithm: gen-

eral word embeddings learned from 200 million 

tweets, sentiment-specific word embeddings 

learned from 10 million tweets using distance 

supervision, and word embeddings learned from 

20 million StockTwits messages.  We treat the 

task as a target-dependent sentiment analysis 

problem and consider the context of the target 

company.  
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Abstract 

Sentiment analysis is the process of identi-
fying the opinion expressed in text. Re-
cently it has been used to study behavioral 
finance, and in particular the effect of 
opinions and emotions on economic or fi-
nancial decisions. SemEval-2017 task 5 
focuses on the financial market as the do-
main for sentiment analysis of text; specif-
ically, task 5, subtask 1 focuses on finan-
cial tweets about stock symbols. In this 
paper, we describe a machine learning 
classifier for binary classification of finan-
cial tweets. We used natural language pro-
cessing techniques and the random forest 
algorithm to train our model, and tuned it 
for the training dataset of Task 5, subtask 
1. Our system achieves the 7th rank on the 
leaderboard of the task.  

1 Introduction 

The recent explosion of textual data creates an 
unprecedented opportunity for investigating peo-
ple’s emotions and opinions, and for understand-
ing human behavior. Although there are several 
methods to do this, sentiment analysis is an espe-
cially effective method of text categorization that 
assigns emotions to text (positive, negative, neu-
tral, etc.). Sentiment analysis methods have been 
used widely on blogs, news, documents and mi-
croblogging platforms such as Twitter. 

Although social media and blogging are pop-
ular and widely used platforms to discuss many 
different topics, they are challenging to analyze. 
This is to large extent due to the specific of vo-
cabulary and syntax, which are dependent on top-
ics, with the same words possibly expressing dif-
ferent sentiments in different contexts. For exam-
ple, a word in a casual context might have positive 
or neutral sentiment (e.g., crush), while the same 
word generally has a negative sentiment in fi-

nance. Therefore, with the absence of general nat-
ural language understanding, context-dependent 
and domain-specific approaches allow us to in-
crease the accuracy of sentiment analysis at a rela-
tively low implementation cost.  

Domain-specific sentiment analysis is being 
used to analyze or investigate various areas in fi-
nance, such as corporate finance and financial 
markets, investment and banking, asset and deriv-
ative pricing. Ultimately, the goal is to understand 
the impact of social media and news on financial 
markets and to predict the future prices of assets 
and stocks. 

The proposed task in SemEval-2017 targets a 
sentiment analysis task, which we should identify 
a range of negative to positive affect on the stock 
of certain companies. The objective of the task 
was to predict the sentiment associated with com-
panies and stock with floating point values in the 
interval from -1 to 1.  

Previous research on textual analysis in a fi-
nancial context has primarily relied on the use of 
bag of words methods, to measure tone (Tetlock, 
2007) (Loughran & McDonald, 2011) which is 
one of the prominent efforts to improve sentiment 
analysis in financial domain, showed that using 
non-financial word lists for sentiment analysis 
will produce misclassifications and misleading re-
sults. To illustrate this, they used the Harvard-IV-
4 list on financial reports, and found that 73.8% of 
the negative word counts were attributable to 
words that were not actually negative in a finan-
cial context. 

Recently, there has been an increasing interest 
towards the use of machine learning techniques to 
get better sentiment result; e.g., naïve Bayesian 
classifier (Saif, He and Alani 2012) with various 
features got the accuracy of 83.90%. Other report-
ed results include the use of support vector ma-
chines (SVMs) with the accuracy of 59.4% 
(O’Hare et al., 2009), and multiple-classifier 
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voting systems with the 72% accuracy (Das & 
Chen, 2007).  

In this paper, we describe our approach to 
building a supervised classifier predicting the sen-
timent scores of financial tweets provided by 
SemEval-2017.  The classifier is fed pre-
processed tweets as input and it predicts the bina-
ry labels of the tweets.  Once tweets were pre-
process and features were extracted, various clas-
sification models were applied using Weka tool 
(Hall et al., 2009). This environment contains a 
collection of machine learning-based algorithms 
for data mining tasks, such as, classification, re-
gression, clustering, association rules, and visuali-
zation. We ultimately used Random Forest as our 
classifier as in our various tests it showed the best 
and accuracy in classifying the tweets.  After pre-
dicting the binary labels, we then use the probabil-
ity of the tweets being correctly classified to cre-
ate a range of predictions from -1 to 1 as it was 
requested in the task. 

2 Method  

2.1 Preprocessing the data  

SemEval task 5, subtask 1 provided a training da-
taset with 1800 tweets.  Every tweet had a senti-
ment score between -1 to 1 and it showed its sen-
timent toward the stock symbol that was assigned 
to that tweet. Table 1 describes variables in the 
training dataset we used for analyzing the tweets: 
 

Label Description 

ID Each tweet was assigned a unique 
ID 

Span Part of tweet that was considered 
to carry the sentiment toward the 
company or stock. 

Sentiment Score provided to us with num-
bers between -1 to 1.  

Cashtag Stock symbol that was the target 
of each tweet, e.g. $GE.  

Table 1. Attributes used to create the sentiment 
classification model. 

To prepare the dataset for classification, we 
first converted the sentiment scores to -1, 0 and 1. 
Tweets with sentiments between -0.01 and 0.01 
were labeled as zero, positive sentiments labeled 
as 1 and negative tweets were labeled as -1. We 
then disregarded the tweets with neutral senti-
ment, which left us 1560 tweets to train our mod-

el. Some tweets had multiple Spans, describing 
the sentiment toward the Cashtag. To keep things 
simple, we concatenated the spans of each tweet 
with each other. Then using the Python NLTK1 li-
brary we deleted the punctuations, tokenized the 
spans, and deleted the stop words. 

Since certain stop words in financial context 
can have impact on the sentiment of the tweets, 
we excluded them from the stop word list. Words 
like “up”, and “down” were not removed from 
tweets. We also removed the negations from the 
stop word lists, as we later handle the negations 
on our own when creating the features. 

2.2 Feature Selection Process 

To add features to our training dataset, we used 
the McDonald’s wordlist (Loughran & McDonald, 
2011). This is a list of positive and negative words 
for financial 10-K reports containing the summary 
of the company’s performance.  
    We calculated number of positive or negative 
words in each Span, using the McDonald’s word-
list in the added features. There were some words, 
such as “short” which was not in any wordlist as a 
negative word, yet shorting a stock expresses a 
negative sentiment toward that stock. For this rea-
son, we manually added positive or negative 
words to each list that to our best knowledge carry 
those sentiments. Table 2 shows some of the 
words were added to McDonald’s wordlist: 
 

Word Sentiment 
Profit Positive 
Long Positive 

Short Negative 
Decay Negative 

Table 2. Example of the words added to McDon-
ald’s wordlist. (See full list in Appendix A) 

Adding these words to the wordlist improved 
our results. Then we realized in context of fi-
nance, co-occurrence of some words with each 
other in one tweet changes the sentiment of the 
tweet completely. For example, “short” and “sell” 
are both negative words in context of finance, but 
selling a short contains a positive sentiment in 
stock market context. Another example would be 
the co-occurrence of “go” and “down”, or “pull” 
and “back” in our tweets. In a similar fashion we 
                                                        
1 http://www.nltk.org/ 
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also we handled the negations. Once we found 
these patterns, we normalized our data, i.e. we re-
placed the combinations of words in the tweet 
with a single positive or negative label, which we 
treated just as another positive or negative word. 
We then re-counted the number of positive or 
negative words in the tweet and updated our fea-
ture vectors. Table 3 shows examples of patterns 
we found in the tweet to have changed the senti-
ment of the word. The normalization had a benefit 
of increasing the counts of rarely occurring ex  

Word 1 Word 2 Replaced with 
Go  Up  OKAY 
Go  Down NOTOKAY 
Sell Short OKAY 
Pull Back NOTOKAY 

Table 3. Example of the word couples and their 
replacements used to normalize the data (tweets). 

(See full list in Appendix B.) 

2.3 Sentiment Prediction 

Classi-
fier 

Accuracy F-score Preci-
sion 

Recall  

Random 
Forest 

91.26% 86.5% 91.3% 82.2% 

SVM 90.43% 85.4% 88.9% 82.2% 

Logistic 
Regres-
sion 

84.69% 79% 74.3% 84.3% 

Naïve 
Bayes 

83.73% 73.3% 83.3% 65.4% 

Table 4. Results of different Weka classifiers us-
ing 10-fold cross validation and default settings. 

After pre-processing our data and creating all our 
features (Tweet, Positive-Count, Negative-Count), 
we used WEKA to classify our tweets. Our feature 
vectors were the combination of document vectors 
generated by Weka’s StringToWordVector filter, 
followed by the features extracted from the data as 
explained above. Among all the classification 
methods that we used, Random Forest did give us 
the best result with accuracy of 91.2%. Table 4 
shows results from various classifiers using our 
training data. The random forest model in WEKA 
provided both a class prediction and class proba-
bility for each tweet in the training and test set. 
   Since the final float score needed to be be-
tween -1 and 1, for tweets classified as negative 
we made the sentiment score the negative of the 

class probability; for positive classifications, the 
sentiment score was simply the class probability.  

2.4 Other Experiments 

We have done several other experiments first to 
find a promising approach, and to gauge alterna-
tive methods of classification and data prepro-
cessing.  
     In our initial experiment, after pre-processing 
the tweets, we first ran the tweets on WEKA to 
classify using only the feature vector, WEKA’s 
StringToWordVector which is a term document 
matrix. Random forest and Logistic regression 
had the highest accuracy of 83.3% and 85.3% re-
spectively. This experiment shows the    impact 
of our additional features to be around 6%.   
    Before deciding on the final features of the 
model, we tried other types of features. Although 
many of them did not improve the model, we still 
thought they were worth mentioning, with de-
scription of them following: 

Bigrams: In the first experiment, bigrams were 
used. (Kouloumpis, Wilson, & Moore, 2011) 
showed that using unigrams and bigrams are ef-
fective in improving sentiment analysis. (Dave et 
al., 2003) reported that bigrams and trigrams 
worked better than unigrams for polarity classifi-
cation of product reviews. Unfortunately, bigrams 
reduced accuracy of Random Forest and Logistic 
regression to 76.7% and 73.9% respectively. We 
imagine that with a larger data set, bigrams might 
be valuable.  

Feature selection using logistic regression: In 
another experiment, we used logistic regression to 
produce a list of words with the higher odds ratio. 
We then removed other words from tweets, in an 
attempt to amplify the stronger signals. However, 
applying filtered tweets, with various ranges of 
odds ratio did not help with improving the results. 
The best result was when words only with odds 
ratio of [-5, 5] stayed in our training set; this gave 
us the accuracy of 83.5%. 

Using word embedding (GloVe vectors): 
GloVe vectors (Pennington, Socher, & Manning, 
2014) are vector representations of the words. In 
two separate experiments, we used vectors based 
on the Common Crawl (840B tokens, 2.2M vo-
cab, cased, 300 dimensions), and the pre-trained 
word vectors for Twitter (2B tweets, 27B tokens, 
1.2M vocab, 200 dimensions). We represented 
every word in each tweet by a corresponding vec-
tor. We then calculated the tweet vector, using the 
mean of word vectors of the tweet. In this expe-
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riment, McDonald’s (Loughran & McDonald, 
2011) positive and negative wordlist again were 
used. That is, we created a positive and negative 
vector using words in those lists. Comparing the 
cosine similarity of tweet vectors with positive 
and negative vector, we classified the tweets. The 
accuracy of this method was 72% and 73.8% for 
tweet and common crawl respectively.  

3 Conclusion 

The purpose of this paper was to create a classifi-
cation method for SemEval-2017 task 5, subtask 
1. In our approach after pre-processing the data, 
negation handling, and feature selection ap-
proaches, we used Weka to classify our data using 
Random Forest algorithm. Our classifier was 
ranked 7th and achieved accuracy of 91.26%. 

In the next step, we think it is important to 
capture more complex linguistic structure, irony, 
idioms, and poorly structured sentences in finan-
cial domain. To this regard, we would like to ap-
ply dependency parser trees for tweets to see if 
that would improve our results; it might also be 
necessary to capture some of the idiomatic con-
structions in this domain.  

 Also, SemEval-2017 training dataset was a 
relatively small dataset, which would prevent us 
from implementing any neural network models 
for prediction. Therefore, we think a step to create 
a better model is to increase the size of training 
dataset. 
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Appendix A. Words Added to McDonald’s 
Wordlist. 

Negative words: cult, brutal, fucked, suck, de-
cay, bubble, bounce, bounced, low, lower, 
selloff, disgust, meltdown, downtrend, bullshit, 
shit, breakup, dropping, cry, dumped, torture, 
short, shorts, shorting, fall, falling, sell, selling, 
sells, bearish, slipping, slip, sink, sinked, sinking, 
pain, shortput, nervous, damn, downtrends, cen-
sored, toppy, scam, censor, garbage, risk, steal, 
retreat, retreats, sad, dirt, flush, dump, plunge, 
crush, crushed, crying, unhappy, drop, broke, 
overbought. 

Positive words: epic, highs, recover, profit, long, up-
side, love, interesting, loved, dip, dipping, secure, 
longs, longput, rise, able, buy, buying. 

Appendix B. Full List of Word Couples to 
Detect the Semantic of a Tweet. 

Positive word couples: (go, up), (short, trap), 
(exit, short), (sell, exhaust), (didnt, stop), (short, 
cover), (close, short), (short, break), (cant, risk), 
(not, sell), (dont, fall), (sold, call), (dont, short), 
(exit, bankruptcy), (not, bad), (short, nervous), 
(dont, underestimate), (not, slowdown), (aint, 
bad). 
Negative word couples: (high, down), (lipstick, pig), 
(doesnt, well), (bounce, buy), (isnt, cheap), (fear, sell), 
(cant, down), (not, good), (wont, buy), (dont, trade), 
(buy, back), (didnt, like), (profit, exit), (go, down), 
(not, guaranteed), (not, profitable), (doesn't, upward), 
(not, dip), (pull, back), (not, optimistic).  
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Abstract

We present the system developed by
the team DUTH for the participation in
Semeval-2017 task 5 - Fine-Grained Sen-
timent Analysis on Financial Microblogs
and News, in subtasks A and B. Our ap-
proach to determine the sentiment of Mi-
croblog Messages and News Statements
& Headlines is based on linguistic pre-
processing, feature engineering, and su-
pervised machine learning techniques. To
train our model, we used Neural Network
Regression, Linear Regression, Boosted
Decision Tree Regression and Decision
Forrest Regression classifiers to forecast
sentiment scores. At the end, we present
an error measure, so as to improve the per-
formance about forecasting methods of the
system.

1 Introduction

Social media sentiment is an important indica-
tor of public opinion. Determining sentiment can
be valuable in a number of applications including
brand awareness, product launches, and detecting
political trends. Many microblogging platforms
such as Twitter and StockTwits have become very
popular and are employed by many traders and in-
vestors. Recently, many studies (Piñeiro-Chousa
et al., 2016; Van de Kauter et al., 2015; Kordo-
nis et al., 2016) used sentiment from social media
and financial news articles trying to analyze mar-
ket movements.

This paper describes our submissions to Se-
mEval 2017 task 5 (Cortis et al., 2017), which
deals with sentiment analysis in microblog mes-
sages for SubTask A, and sentences for news head-
lines for SubTask B. In SubTask A, our model
was ranked last because of a submission format

error. We perform error measures in order to ob-
tain a better understanding of the strengths of these
particularly new tasks and to improve the perfor-
mance about forecasting methods of our model
(Armstrong and Collopy, 1992). For Subtask B,
our team was ranked 24th from 29 teams.

The rest of this paper is structured as follows:
Section 2 provides our system’s description. Sec-
tion 3 presents the experiments and some unoffi-
cial results used in analyzing the system’s perfor-
mance. Finally, conclusions and further directions
for research are presented in Section 4.

2 System Description

In this section we present the details of our senti-
ment analysis system, feature extraction and some
statistics about preprocessing.

2.1 Dataset
The Task 5 organizers (Cortis et al., 2017) pro-
vided a training and testing set for both subtasks.
For subtask A, resources of Microblog messages
were Stocktwits and Twitter, which have been an-
notated for fine-grained sentiment 1. A collection
of financially relevant news headlines which have
been annotated for fine-grained sentiment, from
sources such as Yahoo Finance, are given from
Task Organizers for subtask B 2. Some statistics
about the datasets are presented in table 1.

2.2 Pre-processing and Feature Engineering
To make it suitable for reliable analysis, the
data had to be pre-processed. Moreover, feature
hashing was used as an approach according to
(Da Silva et al., 2014), to reduce the number of
features provided as input from pre-processing to

1https://bitbucket.org/ssix-project/semeval-2017-task-5-
subtask-1/

2https://bitbucket.org/ssix-project/semeval-2017-task-5-
subtask-2/
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train test
Task A 1534 799
Task B 1142 491

Table 1: Number of tweets in training (train) and testing (test) data for subtask A and B.

a learning algorithm. As first step of our approach
we chose to normalize the tweet text by perform-
ing the following operations:

• Remove numbers

• Remove punctuation

• Replace all user mentions and URL ad-
dresses, which were normalized to “@user”
and “URL”

• Convert to lower case

Furthermore, we chose to compute the counts
and cumulative frequencies of the words in the
tweets. The NLTK (Bird et al., 2009) package con-
tains two tools to help:

• The regexp tokenize function tokenizes the
text. Tokenization is the process of dividing
the text into its component tokens. In this
case, the tokens are all words, since we are
working with normalized text.

• The FreqDist function computes the fre-
quency distribution of words in a text cor-
pus. A Python Pandas data frame (McKin-
ney, 2010) is then computed from the word
frequency array.

The most frequent words are in the head of the
new data frame. Of these 20 most frequent words
none are likely to give much information on senti-
ment.

In addition, we implemented a method in order
to create a bar plot of word frequency for the 60
most common words, as presented in Figure 1,
to comprehend the vocabulary of microblogging
messages and news headlines. Unfortunately, we
saw that many of the most frequent words are stop-
words, such as ‘the’, ‘and’, and ‘you’, which are
not likely to be helpful in determining sentiment.

Another tool for examining the frequency of
words in a corpus of documents is the cumulative
distribution frequency (CDF) plot, as presented in
Figure 2.

Figure 1: Frequencies of the most common words

Figure 2: Cummulative fraction of total words vs.
words

These frequent words, which are largely extra-
neous, are known as stopwords and should be re-
moved from the text before further analysis, unlike
with few studies which take stopwords as features
(Mohammad et al., 2013). So, we implemented a
method to remove the stopwords from each tweet
using nested list comprehensions and execute the
code from previous implementation in order to vi-
sualize the word frequency.

As before, Figure 3 shows a number of frequent
words which are likely to convey sentiment. How-
ever, note that these 60 most frequent words only
make up about 17% of the total words, where used
in feature extraction.
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Figure 3: Frequencies of the most common words
after preprocessing

Figure 4: Wordcloud of frequent words after pre-
processing

Figure 4 shows the most frequent words on
dataset as a wordcloud and helps the researcher
to understand if something went wrong in pre-
processing.

Now, that we have cleaned the tweet text and
removed stopwords, there is one last data prepa-
ration step required, stemming the words. Stem-
ming is a process of reducing words to their stems
or roots, reduce the vocabulary size and manage
the case of data sparseness (Lin and He, 2009).
For example, conjugated verbs such as ‘goes’, ‘go-
ing’, and ‘gone’ are stemmed to the word ”go”.
Depending on suitable choice, the results can be
more or less suitable for the application. In our
case, we used the so popular Porter stemmer im-
plemented by the PorterStemmer function in the
nltk.stem.porter library.

In subsection 2.2, we described the pre-
processing techniques and the features that were
extracted for training our model. Section 3
presents the machine learning techniques and al-
gorithms which were used for our experiments.

3 Experiments

In this section we present the main methodology
implemented in our system for the SemEval 2017
Task 5. In order ti select the feature sets to use for
each classifier, we have carried out a number of
experiments.

3.1 Evaluation Metrics

The evaluation metric used by the task organizers
was the cosine similarity, specifically, the metric
of Ghosh et al. (2015). Sentiment scores had to be
in scale between -1 and 1. The degree of agree-
ment between predicted values and values from
gold labels calculate the final result. In Section
4 the error metrics about our model are presented
which are the following:

• Mean Absolute Error

• Root Mean Squared Error

• Relative Absolute Error

• Relative Squared Error

• Coefficient of Determination

The selection of error measures to calibrate our
model are based on other related studies (Hippert
et al., 2001; Armstrong and Collopy, 1992).

3.2 Machine Learning Methods

All system implementation was done using Python
and the open-source machine learning toolkit
scikit-learn (Pedregosa et al., 2011). In our system
we implemented four classification techniques as
follows:

• Linear Regression, which attemps to model
the relationship between two variables by fit-
ting a linear equation to the training data.

• Boosted Decision Tree Regression, which
uses boosting to create an ensemble of re-
gression trees. Boosting aims to learn any
tree by fitting the continuing of the trees that
preceded ands depends on prior trees. As a
result, boosting in a decision tree ensemble
contributes to small risk accruracy.

• Decision Forrest Regression, which is a
model using an ensemble of decision trees.
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• Neural Network Regression. Although neu-
ral networks are known for use in deep learn-
ing problems like recognition in images, and
for regression problems they are adapted
too. So, where a more traditional regression
model is not fitting to a solution, neural net-
work regression is suited to these problems.

The above four techniques were chosen empir-
ically and based on related studies (Mittal and
Goel, 2012; Ghiassi et al., 2013).

4 Results

Below, error measures of our model was done to
improve our system’s performance about forecast-
ing methods of the system for subtask A. Fig-
ure 5 and 6 present the results for Mean Abso-
lute Error, Root mean Squared Error, Relative Ab-
solute Error, Relative Squared Error, and Coeffi-
cient of Determination. These metrics represent
the performance of our system, without consid-
ering the metrics of Task. The results of error
measures are promising for accuracy of our model
and the prices of errors are not big to have dispro-
portionate impacts for forecasting. According to
Task Organizers results, our team got cosine score
0.5879725192 for Subtask B and 0.003076891426
for Subtask A (because of a submission format er-
ror).

Figure 5: Linear Regression and Boosted Decision
Tree Regression error metrics

5 Conclusions

We presented a supervised regression sentiment
analysis system to detect the semantic interpreta-
tion of financial texts. Given the above error anal-
ysis results, we conclude that our methods for sen-
timent analysis on financial microblogs and news,

Figure 6: Decision Forrest Regression and Neural
Network Regression error metrics

are promising. Future work will focus on feature
selection and usage of some lexicons resources to
achieve better results.
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Abstract

This paper describes our system for fine-
grained sentiment scoring of news head-
lines submitted to SemEval 2017 task 5,
subtask 2. Our system uses a feature-light
method that consists of a Support Vector
Regression (SVR) with various kernels and
word embedding vectors as features. Our
best-performing submission scored 3rd on
the task out of 29 teams and 4th out of 45
submissions, with a cosine score of 0.733.

1 Introduction

Sentiment analysis (Pang and Lee, 2008) is a task
of predicting whether the text expresses a posi-
tive, negative, or neutral opinion in general or with
respect to an entity of interest. Developing sys-
tems capable of performing highly accurate senti-
ment analysis has attracted considerable attention
over the last two decades. The topic has been one
of the main research areas in recent shared tasks,
with main focus on social media texts, which are
of particular interest for social studies (O’Connor
et al., 2010; Wang et al., 2012) and marketing anal-
ysis (He et al., 2013; Yu et al., 2013). At the same
time, social media texts pose a big challenge for
sentiment analysis due to their short, informal and
often ungrammatical format.

This work focuses on the second subtask of
SemEval-2017 Task 5, which aims to perform fine-
grained sentiment analysis of the financial news.
Given that sentiments can affect market dynam-
ics (Goonatilake and Herath, 2007; Van de Kauter
et al., 2015), sentiment analysis of financial news
can be a powerful tool for predicting market reac-
tions. Similar to social media posts, finance news
are short texts, but, unlike social media posts, the
text is edited and hence grammatically correct. On
the other hand, news headlines are notorious for

the use of a specific language (Reah, 2002), which
is often elliptical and compressed, and thus differs
from the language used in the rest of the news story.

Many approaches to sentiment analysis resort to
rich, domain-specific, hand-crafted features (Wil-
son et al., 2009; Abbasi et al., 2008). At the same
time, there has been a growing interest in feature-
light methods, including kernel-methods (Culotta
and Sorensen, 2004; Lodhi et al., 2002a; Srivastava
et al., 2013) and neural embeddings (Maas et al.,
2011; Socher et al., 2013). These methods alleviate
the need for manual creation of domain-specific
features, while maintaining high accuracy. Most of
the recently published work focuses on sentiment
analysis problems that are framed as a classifica-
tion task, while fine-grained analysis is framed as a
regression problem. However, most of the high per-
forming classification methods can be easily tuned
to perform regression.

In this work we focus on feature-light methods
as they do not require complex, time consuming
feature engineering. More specifically, we focus
on string kernels (Lodhi et al., 2002b) and meth-
ods using neural word embeddings (Mikolov et al.,
2013a). Developing domain-specific, rich feature
sets would probably make the method highly depen-
dent to the specific problem and would be hardly
applicable to similar problems in other domains.
Feature-light methods have no such constrains:
they typically offer satisfactory performance across
different domains and may therefore be preferred
to other domain-specific methods which use hand-
crafted features.

2 Related Work

There has been considerable research focusing on
sentiment analysis of short texts (Thelwall et al.,
2010; Kiritchenko et al., 2014), especially within
recent SemEval campaigns (Nakov et al., 2016;
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Rosenthal et al., 2015, 2014). A large body of
recent work focuses on sentence-level sentiment
prediction. Socher et al. (2012) and Socher et al.
(2013) reported impressive results working with
matrix-vector recursive neural network (MV-RNN)
and recursive neural tensor networks models over
sentence parse trees. Working with sentence parse
trees Kim et al. (2015) and Srivastava et al. (2013)
obtained competitive results using tree kernels as
an alternative to recursive neural networks. These
methods, while producing promising results, are
highly dependent on parse trees. In practice, we
often work with informal texts, where syntactic
parsing often produces inaccurate results, which
in turn heavily affects performances of the afore-
mentioned methods. Furthermore, as noted by Le
and Mikolov (2014), it is not straightforward how
to extend these methods when working with text
spans that range over multiple sentences.

There has been a growing amount of interest in
methods that are not based on syntax. The most
promising results have been achieved using neural
word embeddings (Mikolov et al., 2013a), while
string kernels (Zhang et al., 2008; Lodhi et al.,
2002a; Leslie et al., 2002) offer a viable alterna-
tive. Maas et al. (2011) and Tang et al. (2014)
reported promising results by learning sentiment
specific word embeddings. By extending word em-
beddings to more complex paragraph embeddings
Le and Mikolov (2014) reported state-of-the-art
results on sentiment classification for both short
and long English texts. Building on word embed-
dings, Joulin et al. (2016) developed an end-to-end,
domain independent, high-performance text classi-
fication model.

3 Dataset

Our task was, given a news headline, to predict the
sentiment score for a specific company mentioned
in the headline. The dataset consisted of the name
of the company, the text of the news headline and a
value denoting the sentiment.

The sentiment was on a scale between −1 and 1
(inclusive), where −1 corresponds to very negative
sentiment, 0 is considered neutral, while 1 stands
for a very positive sentiment. The news headlines
were on average 10 words in length and largely
composed of abbreviations.

The training set was composed of 1142 news
headlines, while the test set contained 491 head-
lines, i.e., a 70:30 train-test split. The training set

id 5
company Ryanair
title EasyJet attracts more passengers

in June but still lags Ryanair
sentiment 0.259

Table 1: Sample training data instance

and the test set mention 294 and 168 unique com-
panies, respectively. The distribution of headlines
for a specific company was not uniform, and only
58 companies in the train set were targets of more
than 4 news headlines, while “Barclays” – the most
frequently mentioned one – was the target 67 times.
In total, 112 companies occur in both the train and
test set.

An example of a training data instance is given
in Table 1. This particular example also illustrates
a possible difficulty regarding the headlines as they
might refer to more than one company. Such exam-
ples, however, are pretty rare in the dataset.

As for the class breakdown in the training set,
we observe that the number of positively labeled
instances is significantly larger than the number of
negatively labeled instances (a ratio of 653 : 451
in favor of headlines with positive sentiment, in-
cluding 38 headlines with a perfectly neutral score
of 0.0). However, the distribution of the target
variable has an almost zero mean value of 0.031
and a standard deviation of 0.39. All things con-
sidered, we conclude that the dataset was fairly
well-balanced and the dependent variable was not
skewed towards either class.

4 Methods

While working on fine-grained sentiment analy-
sis, we focus on feature-light, domain indepen-
dent methods. In all considered methods, we use
support vector regression (SVR) model for senti-
ment prediction. The SVR allows us to experiment
with both different features and kernels. Model
training is performed using LIBSVM (Chang and
Lin, 2011) for the non-linear kernel and LIBLIN-
EAR (Fan et al., 2008) for the linear kernel.

BoW baseline. We use the standard bag-of-
words (BoW) methods as a sensible baseline. BoW
methods are implemented by creating a dictionary
of words appearing in the train set. We imple-
mented the BoW baseline using all uni-, bi-, and tri-
grams that occur at least twice in the dataset, while
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filtering out words from the standard stopword list.
We experiment with TF-IDF and Bernoulli weight-
ing schemes for the word features. For generating
the n-grams, we used NLTK toolkit (Bird et al.,
2009), and filtered out n-grams consisting of stop-
words.

String kernels. String kernels offer a dictionary-
free alternative compared to other commonly-used
methods. There are several known string kernels
in use, the most popular being the spectrum kernel
(SK) (Leslie et al., 2002) and the subsequence ker-
nel (SSK) (Lodhi et al., 2002a). The SSK measures
string similarity by first mapping each input string
s to:

ϕu(s) =
∑

i:u=s[i]

λl(i) (1)

where u is a subsequence searched for in s, i is
a vector of indices at which u appears in s, l is a
function measuring the length of a matched subse-
quence and λ ≤ 1 is a weighting parameter giving
lower weights to longer subsequences. Using (1),
the SSK kernel is defined as:

Kn(s, t) =
∑
u∈Σn

〈ϕu(s), ϕu(t)〉

where n is maximum subsequence length for which
we calculate the kernel and Σn is a set of all finite
strings of length n. Spectrum kernel can be defined
as a special case of SSK where λ = 1 and i must
yield continuous sequences. We experiment with
both SK and SSK kernels, which we computed
using the string similarity tool Harry.1

Word embeddings. Word embedding are task
independent features, yet they offer competitive
results on many text classification tasks. We
experimented with pretrained word embeddings,
namely GloVe (Pennington et al., 2014) and Skip-
gram (Mikolov et al., 2013b) trained on the Google
News corpus.2 We achieved the best results with
the 300-dimensional Google News vectors.

The feature vector that is fed to the classifier is
computed as the linear aggregate of the words mak-
ing up the headline, simply as the average of the
word embeddings of the individual words. Lower-
casing the words that appear in the title gave us a
considerable performance gain, which is expected

1http://www.mlsec.org/harry/index.html
2https://code.google.com/archive/p/

word2vec/

since most of the words appearing in news head-
lines are title-cased. We refer to this method as the
word embeddings method (WEM).

We further experimented with additional filter-
ing of the word tokens we use for building word
embedding vectors. Our motivation was based on
the observation that sentiment-bearing words typi-
cally exclude the named entities. We therefore used
StanfordNLP (Manning et al., 2014) named entity
recognition (NER) tools to filter out all named enti-
ties before building adding up the word embedding
vectors. We refer to this method as the filtered word
embeddings method (FWEM).

When using word embeddings as features, we ex-
perimented with the linear, RBF, and cosine kernel
(CK). The latter is defined as:

CK (x,y) =
[1

2

(
1 +

〈x,y〉
‖x‖‖y‖

)]α
5 Results

Model evaluation was performed as defined on the
task description page.3 From the instances given in
the test set, we create a vector containing ground
truth annotations G and a vector containing our
model predictions P . Model performance score is
computed using cosine similarity between the two
vectors, as follows:

cosine(G,P ) =
∑n

i=1Gi · Pi√∑n
i=1G

2
i

√∑n
i=1 P

2
i

(2)

To optimize the hyperparameters of the models
(C for linear SVR, n and λ SSK, n for SK, α and
C for cosine kernel, and C and γ for RBF kernel),
we performed a grid search in a nested K-folded
cross-validation on the train set, using 10 folds in
the outer and 5 folds in the inner loop. To select the
best parameters for a model, we choose the ones
that consistently provided the best result across the
10 outer loops. Using the chosen hyperparameters,
we finally train that model on the complete train set.
The best results for all of the considered models
are reported in Table 2.

While working with BoW models, the best re-
sults were obtained using the simple Bernoulli fea-
ture weighting scheme, indicating whether a term
appeared in the headline with a weight of 1 and 0
otherwise.

3http://alt.qcri.org/semeval2017/
task5/index.php?id=evaluation
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Method Cosine score

BoWBernoulli 0.539
SSK 0.654
SK 0.671
WEMlinear 0.610
WEMRBF 0.724
WEMCosine 0.730
FWEMlinear 0.612
FWEMRBF 0.727
FWEM∗Cosine 0.733

Table 2: Cosine similarity between ground truth
annotations and model predictions (higher is bet-
ter). Subscript displayed with (F)WEM methods
indicate the kernel used to train the model. Model
marked with (∗) is the submitted model.

String kernels gave us a considerable perfor-
mance gains in comparison to the BoW baseline.
Interestingly, experiments showed that the SK ker-
nel outperformed the SSK kernel.

Using word embeddings provided us with signif-
icant performance gains compared to the other two
methods. Word embedding features combined with
the linear kernel did not outperform string kernels.
However, using non-linear kernel such as RBF and
especially cosine kernel yielded substantial perfor-
mance gains.

6 Conclusion

We described our system for fine-grained sentiment
scoring of news headlines, which we submitted to
the SemEval 2017 task 5, subtask 2. We imple-
mented a number of feature-light methods for sen-
timent analysis with basic preprocessing. Our best
performing method used skip-gram word embed-
dings trained on the Google News corpus, which
were fed as features to a cosine kernel Support Vec-
tor Regression. We report our results on the gold
set, where our system ranked 3rd place out of 29
teams, with a cosine score of 0.733.

It should be note that we did not use the infor-
mation about which company the sentiment is mea-
sured for in any way. Arguably, not using this
information leads to performance decreases when
dealing with (1) headlines entirely unrelated to the
company of interest and (2) headlines containing
mentions of multiple companies. For future work,
it would be interesting to consider encoding this
information into the model or using additional pre-

processing methods to detect specific parts of the
headline related to the company of interest.
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Abstract

This paper discusses the approach taken
by the UWaterloo team to arrive at a solu-
tion for the Fine-Grained Sentiment Anal-
ysis problem posed by Task 5 of SemEval
2017. The paper describes the document
vectorization and sentiment score predic-
tion techniques used, as well as the de-
sign and implementation decisions taken
while building the system for this task.
The system uses text vectorization mod-
els, such as N-gram, TF-IDF and para-
graph embeddings, coupled with regres-
sion model variants to predict the senti-
ment scores. Amongst the methods exam-
ined, unigrams and bigrams coupled with
simple linear regression obtained the best
baseline accuracy. The paper also explores
data augmentation methods to supplement
the training dataset. This system was de-
signed for Subtask 2 (News Statements
and Headlines).

1 Introduction

The goal of this SemEval task is to identify fine-
grained levels of sentiment polarity in financial
news headlines and microblog posts. Specifically,
the task aims at identifying bullish (optimistic)
sentiment, expressing the belief that the stock
price will increase, and bearish (pessimistic) sen-
timent, expressing the belief that the stock price
will decline. The expressed sentiment is quan-
tified as floating point values in the range of -1
(very negative/bearish) to 1 (very positive/bullish),
with 0 denoting neutral sentiment. (Cortis et al.,
2017). This paper describes our system developed
for subtask 2 (News Statements and Headlines).

While developing the system for this subtask,
we systematically evaluated a number of alterna-

tive solutions for each step in the pipeline. Specif-
ically, we investigated different document vector-
ization approaches, such as N-gram models, TF-
IDF and paragraph vectors. A number of regres-
sion models were evaluated, namely, Simple Lin-
ear Regression, Support Vector Regression and
XGBoost Linear Regression.

One of the challenges with performing senti-
ment analysis in the financial domain is scarcity
of training data. We explored different approaches
to augment the training data provided by the task
organizers with training data from other sources
in the financial domain, as well as using out-of-
domain sentiment resources.

2 Approach

The overall approach to predicting the sentiment
of the test dataset headlines is detailed below.

• Pre-Processing & Cleaning

This step is needed to simplify and sanitize
the input set of headlines. In the context of
this task, since the headlines were short snip-
pets ranging from 5 to 15 words in length,
the only pre-processing done was replacing
the name of the organization being spoken of
in the headlines, with a generic organization
name, to reduce the feature space.

• Text Vectorization

The objective is to vectorize the textual con-
tent of the headlines into a numeric repre-
sentation that a statistical learning model can
then be trained on. N-gram models, TF-
IDF and Paragraph Vector implementations
were explored for this purpose. N-gram mod-
els generally performed the best on the trial
dataset, followed by TF-IDF, and Paragraph
Vectors. Of the different N-gram configura-
tions experimented with, word N-grams that
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used a combination of unigrams and bigrams
achieved the best baseline scores. These tech-
niques are further discussed in Section 3.

• Statistical Model Learning

The objective is to use the vector representa-
tions of the headlines as features and learn a
model to predict the sentiment scores. Simple
Linear Regression, Support Vector Regres-
sion and XGBoost Linear Regression were
the learning methods that were used. The lin-
ear regression methods consistently outper-
formed Support Vector Regression and XG-
Boost regression in experiments on the train-
ing dataset. These techniques are discussed
in Section 4.

3 Document Vectorization

Document vectorization is needed to convert the
text content of the SemEval headlines into a nu-
meric vector representation that can be utilized as
features, which can then be used to train a machine
learning model on. The methods for vectorization
used are listed in the subsections below.

3.1 N-gram Model

For the purpose of this task, a vectorizer imple-
mentation using Scikit-Learn (Pedregosa et al.,
2011) was used to obtain vector representations
of the SemEval headlines, since they have been
proven to be an effective representation of tex-
tual content for sentiment classification in general
(Wang and Manning, 2012).

3.2 TF-IDF Model

The TF-IDF implementation in Scikit-Learn (Pe-
dregosa et al., 2011) was used to obtain vector rep-
resentations of the SemEval headlines.

3.3 Paragraph Vector Model

A Paragraph Vector representation model is com-
prised of an unsupervised learning algorithm
that learns fixed-size vector representations for
variable-length pieces of texts such as sentences
and documents (Le and Mikolov, 2014). The
vector representations are learned to predict the
surrounding words in contexts sampled from the
paragraph. In the context of the SemEval head-
lines, the vector representations were learned for
the complete headline.

Two distinct implementations were explored
while attempting to vectorize the headlines using
the Paragraph Vector approach.

• Doc2Vec: A Python library implementation
in Gensim1.

• FastText: A standalone implementation in
C++ (Bojanowski et al., 2016) (Joulin et al.,
2016).

Doc2Vec was the final choice that was opted for
due to the ease of integration into the existing sys-
tem. The paragraph embeddings for Doc2Vec are
trained using the SemEval training headlines cor-
pus.

4 Regression Models

Three different regression implementations were
used to train models to predict the sentiment
scores of the headlines:

• Simple Linear Regression

This is the standard version of linear regres-
sion that simply learns the weights for the
feature vector that minimize the cost func-
tion, which is represented as a Euclidean loss
function.

• Support Vector Regression

The idea of SVR is based on the computation
of a linear regression function in a high di-
mensional feature space where the input data
is mapped using a non-linear function (Basak
et al., 2007).

Instead of minimizing the observed training
error, Support Vector Regression (SVR) at-
tempts to minimize the generalization error
bound so as to achieve generalized perfor-
mance.

• XGBoost Regression

This is an ensemble method for regression
that coalesces several ‘weak’ learners into
a single ‘strong’ learner by iteratively min-
imizing the least squares error or Euclidean
loss incurred by the cost function (Chen and
Guestrin, 2016).

The hyper-parameters applicable are the reg-
ularization parameter (λ) and the gradient de-
scent step-size / learning rate (α).

1https://radimrehurek.com/gensim/models/doc2vec.html
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Vectorization Method Learning Model R2 Score Cosine Similarity
Unigrams & Bigrams Simple Linear Regression 0.38 0.63
Unigrams & Bigrams Support Vector Regression 0.38 0.63
Unigrams & Bigrams XGBoost Regression 0.21 0.50

TF-IDF Simple Linear Regression -0.10 0.50
TF-IDF Support Vector Regression 0.38 0.63
TF-IDF XGBoost Regression 0.19 0.47

Doc2Vec Simple Linear Regression -4.69 0.04
Doc2Vec Support Vector Regression -0.05 0.08
Doc2Vec XGBoost Regression -0.06 0.06

Table 1: Experimental Results

The implementation library utilized for the Sim-
ple Linear Regression and Support Vector Regres-
sion techniques is Scikit-Learn (Pedregosa et al.,
2011), whereas the XGB Python library was used
for the XGBoost regression implementation.

5 Training Dataset Augmentation

A few different datasets were used to train the
models on, in an attempt to identify the best rep-
resentative training set. The dataset augmentation
strategies used are enumerated below.

• Article Content Expansion

To increase the number of features to train on,
it was decided to retrieve the full text con-
tent of the articles corresponding to the arti-
cle headlines. This was achieved by creating
an application to search for the article head-
lines that were part of the training set using
an online search engine, and to retrieve the
full-text of the article by scraping the content
from the source websites.

This application is implemented in Java and
is open-source2. The implementation can
be extended to augment any set of headlines
with the corresponding article content.

The assumption made here is that the senti-
ment expressed in the article headline suffi-
ciently proxies the sentiment in the actual ar-
ticle content.

• Amazon Product Reviews

This corpus is a set of Amazon product re-
views3, each consisting of the review text and

2https://github.com/v1n337/news-article-extractor
3http://jmcauley.ucsd.edu/data/amazon/

a star rating on the scale of 1-5. To normal-
ize the dataset, the rating scores 1 & 2 are as-
sumed to be associated with negative reviews,
3 with neutral and 4 & 5 with positive re-
views. This score range was then mapped to
a -1 to 1 scale to match the sentiment scores
of the training data. In total, 100, 000 docu-
ments from this dataset were used to augment
the existing training dataset.

• Financial Phrasebank

This dataset is specific to the financial do-
main and is manually annotated (Malo et al.,
2014). It is comprised of a set of financial
snippets from stock market related news that
have been annotated with the classes positive,
negative and neutral.

To normalize the labels, neutral was assigned
a sentiment score of 0 and experiments were
run for positive ∈ (1, 0.5) and negative ∈
(−1,−0.5).

None of the above strategies proved to be a good
augmentation of the existing data, since their ad-
dition to the training datasets did not show any im-
provements in the overall cross-validated accuracy
score.

6 System Implementation

The entire system was coded in Python with the
use of the Scikit-Learn (Pedregosa et al., 2011),
XGB and Gensim libraries. This includes a frame-
work for automated testing of accuracy scores to
arrive at the best hyper-parameters to be used for
unigram & bigram word count combinations, as
well as Doc2Vec hyper-parameters.

The system implementation includes all the plu-
gins pertaining to the different document vector-
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Vectorization Method Learning Model Cosine Similarity
Unigrams & Bigrams Simple Linear Regression 0.644
Unigrams & Bigrams XGBoost Regression 0.547

Table 2: SemEval Task 5 Submissions

ization techniques and statistical learning tech-
niques discussed in sections 3 and 4 respectively.

The code is open source4 and is available to
replicate the results published in this paper along
with the instructions to operate the system.

7 Experimental Results

For arriving at the baseline scores, an exhaustive
set of tests were conducted using each of the docu-
ment vectorization techniques in combination with
the regression techniques described in the previous
sections.

Using the automated test-suite included as part
of the system, it was concluded that the Doc2Vec
model performed best when the number of dimen-
sions (features) of text is around 832 and the learn-
ing algorithm completes 40 passes before settling
on a vector representation. It was also concluded,
that a combinations of unigrams & bigrams had
the best baseline accuracy scores for the training
datasets.

The measure of accuracy used was theR2 score,
also called the co-efficient of determination. The
R2 score can be computed using the below for-
mula:

R2 = 1−
∑N

i=1(yi − fi)2∑N
i=1(yi − ȳ)2

where y is the gold set score vector and f is the
predicted score vector, andN is the number of test
samples.

The experimental results for the Training and
the Trial datasets are shown in Table 1. The best
baselines scores seem to favor the simplest vector-
ization model, i.e. unigrams & bigrams.

8 System Evaluation

For the two submissions permitted by SemEval,
the methods used for the submissions made are de-
scribed in Table 2.

The evaluation was done using the task evalua-
tion metric, the cosine score (Cortis et al., 2017).

cosine score = cosine weight ∗ cosine(G,P )

4https://github.com/v1n337/semeval2017-task5

where

cosine(G,P ) =
∑N

i=1Gi ∗ Pi√∑N
i=1Gi

2 ∗
√∑N

i=1 Pi
2

and

cosine weight =
|P |
|G|

and G, P are the gold set scores and the predicted
scores respectively, for N test samples.

The simplest model implemented, using Uni-
grams & Bigrams, combined with Simple Lin-
ear Regression, was what yielded the best per-
formance by the system, with a cosine similarity
score of 0.644.

9 Conclusions and Future Work

This paper has described the UW-FinSent system
developed by the UWaterloo team for Task 5, Sub-
task 2 during SemEval 2017.

The experimental results indicate that the us-
age of simpler techniques like N-gram text vec-
torization and linear regression to predict the
continuous-valued scores achieve better results
than bag-of-words or deep learning feature extrac-
tion techniques.

A recurring topic that needed to be addressed
during the progress on this task was the fact there
there were no reliable datasets that could accu-
rately augment the training set. In the future, we
plan to develop automatic methods for generating
high quality, sentiment-annotated training datasets
for the financial domain.
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Abstract

In this paper, we present our systems for
“SemEval-2017 Task-5 on Fine-Grained
Sentiment Analysis on Financial Mi-
croblogs and News”. In our system, we
combined hand-engineered lexical, senti-
ment, and metadata features with the rep-
resentations learned from Convolutional
Neural Networks (CNN) and Bidirectional
Gated Recurrent Unit (Bi-GRU) having
Attention model applied on top. With
this architecture we obtained weighted co-
sine similarity scores of 0.72 and 0.74 for
subtask-1 and subtask-2, respectively. Us-
ing the official scoring system, our system
ranked in the second place for subtask-2
and in the eighth place for the subtask-1.
However, it ranked first in both subtasks
when evaluated with an alternate scoring
metric1.

1 Introduction

Predicting sentiments of financial data has a wide
range of applications. The most important ap-
plication is being able to predict the ups and
downs of the share market as the changes in sen-
timents and opinions can change the market dy-
namics (Goonatilake and Herath, 2007; Van de
Kauter et al., 2015). Stock market related informa-
tion is typically found in newspapers (Malo et al.,
2013) and people discuss them in social media
platforms like Twitter and StockTwits. Positive
news has the capability to boost the market by in-
creasing optimism among people (Van de Kauter
et al., 2015; Schuster, 2003). SemEval-2017 Task

∗Both authors contributed equally.
1http://alt.qcri.org/semeval2017/

task5/data/uploads/description_second_
approach.pdf

5 on ‘Fine-Grained Sentiment Analysis on Finan-
cial Microblogs and News’ aims at analyzing the
polarity of public sentiments from financial data
found in newspapers and social media. In this
paper, we describe our systems, which exploit
automatically learned representations using deep
learning architecture based methods along with
hand-engineered features in order to predict the
sentiment polarity of financial data.

2 Dataset

Task Training Trial Test
Subtask-1 1,694 10 799
Subtask-2 1,142 14 491

Table 1: Data distribution for subtask-1 and subtask-2.

Table 1 shows the distribution of training, trial,
and test data for subtask-1 and subtask-2. For
the subtask-1, the financial microblogs and tweets
were collected from Twitter2 and StockTwits3

whereas for subtask-2, the financial news head-
lines were collected from different financial news
sources such as Yahoo Finance4. Each instance
was labeled with a floating point value ranging
from -1 to +1, indicating the sentiment score.
A score of -1 means very negative or bearish
whereas, a score of +1 means very positive or
bullish. A score of 0 means neutral sentiment.
The dataset is noisy and contains URLs, cashtags,
digits, usernames, and emoticons. The messages
are short with an average number of 13 tokens for
the microblog data and 10 tokens for the headlines
data.

2https://twitter.com
3https://stocktwits.com
4https://finance.yahoo.com

877



3 Methodology

We designed two systems for predicting senti-
ment polarity scores. The first system exploits
the hand-engineered features and uses Support
Vector Regression (SVR) to predict the sentiment
scores. The next system combines the hand-
engineered features with representation learned
using CNN and Bi-GRU to predict the sentiment
scores. These systems are explained below:

3.1 System 1

With the hand-engineered features explained in
Section 3.1.1, we built a support vector regres-
sion (SVR) model with linear kernel using the
implementation of Scikit-learn (Pedregosa et al.,
2011). We only used linear kernel as most of
the text classification problems are linearly sepa-
rable (Joachims, 1998). We tuned the C parameter
through grid search cross-validation over the val-
ues {10, 1, 0.1, 1e-02, 1e-03, 1e-04, 1e-05, 1e-06}
during the training phase.

3.1.1 Hand-crafted Features
Before extracting the features, we first lowercased,
applied stemming and removed stopwords from
the messages. We also replaced named entities
(NE), and digits with common identifiers to reduce
noise.
Lexical: We extracted word n-grams (n=1,2,3)
and character n-grams (n=3,4,5) from the mes-
sages as they are strong lexical representa-
tions (Cavnar and Trenkle, 1994; Mcnamee and
Mayfield, 2004; Sureka and Jalote, 2010).
Sentiment: SenticNet (Cambria et al., 2016) have
been used successfully in problems related to sen-
timent analysis (Bravo-Marquez et al., 2014; Po-
ria et al., 2016; Maharjan et al., 2017) as it pro-
vides a collection of concept-level opinion lexi-
cons with scores in five dimensions (aptitude, at-
tention, pleasantness, polarity, and sensitivity).
We used both of the stemmed and non-stemmed
versions of the messages to extract concepts from
the knowledge base. We modeled the concepts as
bag-of-concepts (BoC) and used them as binary
features. We averaged the concept scores of five
dimensions for each text and used them as numeric
features.
Word Embeddings: Word embeddings have been
shown to capture semantic information. Hence, in
order to capture the semantic representation of the
messages, we used publicly available word vec-

tors5 trained on Google News. It was trained by
the method proposed by (Mikolov et al., 2013) and
has 3M vocabulary entries. We averaged the word
vectors of every word in the messages and repre-
sented them with a 300-dimensional vector. If any
word is not available in the pre-trained vectors vo-
cabulary, we skipped that word. The coverage of
the Google word embedding is 73% and 82% for
the microblog and headlines data, respectively.
Metadata: We used the message sources, cash-
tags and company names as metadata features.

3.2 System 2

Figure 1: Architecture of System 2

Figure 1 shows the overall system architecture
of our neural network model. The main motiva-
tion to use deep learning methods is the wide suc-
cess these methods have achieved in various NLP
tasks (Bahdanau et al., 2014; Attia et al., 2016;
Samih et al., 2016; Collobert and Weston, 2008).
It is a combination of two deep learning architec-
ture based models and a multilayer perceptrons
(MLP) model operating on hand-engineered fea-

5https://code.google.com/archive/p/
word2vec/
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tures discussed in Section 3.1.1.
Si → x1:T = [x1, x2, ..., xT ] (1)

We tokenized each messages and represented them
as sequences of word vectors as in Equation 1. The
maximum length (T ) of the sequences was set to
18 for headlines and 33 for microblogs. These
lengths were determined from the training data.
The embeddings for the words were initialized us-
ing pre-trained word embeddings. We used zero
vectors to pad the shorter sequences and represent
the missing words in the pre-trained vectors. We
used Keras (Chollet, 2015) to build the model with
Theano (Theano Development Team, 2016) as the
back end.

3.2.1 Convolutional Neural Network (CNN)
We used two parallel deep learning architecture
based models on the embeddings. As the first
model, we used a Convolutional Neural Network
(CNN) (LeCun et al., 1989). In this model, we
stacked 4 sets of convolution modules with 512 fil-
ters each for filter sizes 1, 2, 3, and 4 to capture the
n-grams (n = 1 to 4). The t-th convolution output
using filter size c is defined by:

hc,t = ReLU(Wcxt:t+c−1 + bc) (2)
The filter is applied from window t to window t+
c − 1 of size c. Each convolution unit calculates
a convolution weight Wc and a bias bc. Each filter
of size c produces a high-level feature map hc.

hc = [hc,1, hc,2, ..., hc,T−c+1, ] (3)
On those filters, we apply pooling operation us-

ing an attention layer. Attention models have been
used effectively in many problems related to com-
puter vision (Mnih et al., 2014; Ba et al., 2014)
and adopted successfully in natural language re-
lated problems (Bahdanau et al., 2014; Seo et al.,
2016). An attention layer applied on top of a fea-
ture map hi computes the weighted sum ci.

ci =
∑

j

αijhij (4)

The weight αij is defined by

αij =
exp(u>ijuw)∑
j exp(u

>
ijuw)

, (5)

where
uij = tanh(Wwhij + bw) (6)

Here, Ww, bw and uw are model parameters. A
dense layer containing 128 neurons were applied
on the attention layer to get the final representation
for the high-level features produced by the CNN
model.

3.2.2 Bidirectional GRU (Bi-GRU)

The second model was based on a bidirectional
GRU (Bahdanau et al., 2014). It summarized the
contextual information from both directions of a
sequence and provided annotation for the words.
The bidirectional GRU contains a forward GRU
of 200 units and another backward GRU of 200
units. The forward GRU

−→
f reads a sequence si

of size n from w1 to wn to calculate a sequence of
forward hidden states (

−→
h1, ...,

−→
hn) and the back-

ward GRU
←−
f reads the same sequence from wn

to w1 to calculate a sequence of backward hidden
states (

←−
h1, ...,

←−
hn). For each word wj , we get an

annotation hj by concatenating the forward hid-
den state

−→
hj and backward hidden state

←−
hj , i.e.

hj = [
−→
hj ;
←−
hj ].

We applied an attention layer similar to CNN
on the word annotations to find out the important
features and got a vector of 200 dimensions.

3.2.3 Multilayer Perceptrons (MLP)

To use the hand-engineered features we employed
a multilayer perceptron in parallel with the deep
learning architecture based models. We fed the
extracted features in the input layer and used four
hidden dense layers having 200, 100, 50, and 10
neurons respectively. For the feature vector repre-
sentation −→xi = [xi,1, xi,2, ..., xi,T ] of message mi,
each neuron of a hidden layer j calculates a vector−→
hj defined by the following equation.−→

hij = ReLU(Wijxi + bj) (7)
Here, Wij is the weight matrix and bj is the bias
vector of the layer j. This model produced a high-
level feature representation in the output layer of
size 10.

By concatenating the outputs of these three mod-
els we created a merged layer of size 338. It con-
tained the three types of high-level features com-
puted by three different types of models. CNN
captured the local information, Bi-GRU captured
the sequence information and MLP represented
the hand-engineered features. We apply a dense
layer of 128 neurons on top of this merged layer.
It was similar to the layers used in the MLP model
but we used tanh as the activation function in-
stead of ReLU here. The outputs of this layer were
passed to the activation layer containing only one
neuron having tanh as the activation function. We
used tanh in the final two layers as it produces val-
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Model ST-1 : Microblogs ST-2 : Headlines
Baseline 0.29 0.68
System 1 0.70 0.67
MLP 0.66 0.64
CNN 0.58 0.65
Bi-GRU 0.68 0.68
System 2 0.69 0.71

Table 2: Results of 10-fold cross-validation on training and
trail data with different models using the official scorer.

ues between -1 and +1 and it is also the range of
sentiment scores.

4 Experiments and Results

As the trial dataset too small compared to the train-
ing data, we merged it with the training data and
ran 10-fold cross-validation to evaluate different
models. We tuned the hyper-parameters during the
training phase through grid-search cross validation
method for System 1. We also experimented with
different architectures to build System 1 in this
phase.

We evaluated our models using the official scor-
ing system that measures the weighted cosine sim-
ilarity, similar to the scorer used in Ghosh et al.
(2015). As the predictions are continuous values
between -1 and +1, cosine similarity measures the
degree of alignment between the true values and
the predictions. The final weighted score is com-
puted by multiplying the cosine similarity with the
ratio of predicted values against the number of test
cases. As no official baseline scores were pro-
vided, we did a baseline experiment using a simple
linear regression model with the hand-engineered
features to compare our models.

Table 2 presents the weighted cosine scores
achieved by the models we experimented with.
System-1 achieved weighted cosine scores of 0.70
and 0.67 for subtask-1 and subtask-2, respectively.
Among the neural network models, Bi-GRU per-
formed better than the others. It achieved 0.68
for both of the subtasks. The combination of
the three neural network based model (System-
2) performed better than the individual models.
The neural network models were trained for 10
epochs. We observed issue of overfitting when we
increased the number of epochs beyond this.

From the results for subtask-1 we can see that
all the other models performed better than CNN.
It indicates that other features captured by Bi-
GRU and hand-engineering process were more in-
formative than the local information captured by

ST-1 : Microblogs ST-2 : Headlines
Official
scorer

sub-2 0.72 (8) sub-2 0.74 (2)
sub-1 0.70 (11) sub-1 0.74 (2)

Alternate
scorer

sub-2 0.73 (1) sub-2 0.71 (1)
sub-1 0.70 (11) sub-1 0.70 (3)

Table 3: Weighted cosine scores with ranks achieved by the
submissions using the official scorer and the alternate scorer.

Text True Pred.

MB1

Worst performers
today: $RIG -13%
$EK -10% $MGM $IO
-6% $CAR -5,5% / best
stock: $WTS +15%

0.857 -0.365

MB2

$GDX $GDXJ $JNUG
- strong move today for
the Junior Gold Miners
- keep an EYE out for a
gap fill

0.750 0.750

MB3 Weird day $GPRO up
$amba down -0.649 0.588

HL1
MarketsWolseley
shares wilt 8.8% after
full year results

-0.787 0.192

HL2
Kingfisher share price:
FY statutory pre-tax
profit falls 20.5%

-0.426 -0.425

HL3
Shell eyes $700 million
exit from Gabon -
sources

0.562 -0.123

Table 4: Sample texts from both subtasks with anno-
tated scores and predicted scores by the systems. (MB: Mi-
croblogs, HL: Headlines)

CNN. We can understand the strength of the hand-
crafted features also by observing the performance
of SVR. Although it did not perform as expected
on the test data of subtask-1, it showed good per-
formance on the validation set.

We submitted predictions by System-1 (sub-1)
and System-2 (sub-2) for subtask-1 as they were
the best models. Due to comparatively better per-
formance of System-2 in subtask-2, we submit-
ted predictions from two different models with
this system but varied the number of epochs from
10 (sub-1) to 20 (sub-2). For subtask-1, sub-1
and sub-2 was ranked eleventh and eighth, respec-
tively. For subtask-2, both of the submissions
achieved almost similar scores and ranked second.

Submitted systems were evaluated simultane-
ously with an alternate scoring system that mea-
sures cosine similarity by grouping instances
based on the related company. Our systems ranked
the first for both subtasks when evaluated with this
scorer.

Table 4 shows that our system worked well
when there are more plain texts (MB2, HL2). But
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it struggles when the text contains more statistics
(e.g. $RIG -13% $EK -10%) than plain texts or mix
of words with strong positive and negative senti-
ments (worst, strong, weird, wilt, falls, exit). If we
look at MB1, it is very difficult to determine the
sentiment polarity from the message. The mes-
sage starts with ‘Worst performers today’, which
indicates a negative polarity. Rest of the message
contains statistics for different companies. Among
them four indicate a drop in prices and only one
indicates a rise in the stock price. It is noticeable
that, although the message started with negative
impression, it ended with a positive impression by
saying ‘best stock: $WTS +15%’. As this is the
only possible reason for the highly positive true
sentiment polarity score of 0.857 for this message,
we get a hint that our systems might need to put
more attention on how a message ends.
MB3 starts with the phrase ‘Weird day’ followed
by a positive and a negative news about stock
prices of two companies and our model predicted
0.588 as the polarity score where gold score is
-0.649. We tried to find out the possible reason be-
hind our prediction by simply looking at the distri-
bution of the words in this message. In the training
data, the word ‘weird’ appeared only once. 68% of
the 241 messages that contain ‘day’ are positive in
the training data. Out of 270 messages that contain
‘up’, 201 messages (75%) are positives. We found
118 messages that contain ‘down’ and 80 (68%) of
them are negative. So, we can see that if a message
contains ‘up’ and ‘down’, chance of predicting it
as positive is higher. Related cashtag $GPRO was
found in three messages and $amba appeared only
in one message.
Our model predicted a positive sentiment for HL1
although it contains a clear indication of a negative
polarity by the word ‘wilt’. To find out the rea-
son we observed that, ‘wilt’ did not appear in the
headlines training data at all. Its polarity is -0.087
in the scale of -1 to +1 according to the SenticNet
database we used. So we can say that, our model
needs to handle this type of trigger word that can
control the polarity itself.

5 Conclusions

In this paper, we presented our system for analyz-
ing sentiments from microblogs and news head-
lines. We used deep learning architecture based
models to automatically identify important local
and sequential features from the texts and concate-

nated them with multilayer perceptron-based rep-
resentation of hand-engineered features extracted
from the data. Future works include analyzing the
statistics of ups and downs in stock prices of com-
panies from the messages to incorporate them as
features of the model.
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Fabio A. González, and Thamar Solorio. 2017. A
multi-task approach to predict likability of books.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers. Association for
Computational Linguistics, Valencia, Spain, pages
1217–1227. http://www.aclweb.org/anthology/E17-
1114.

Pekka Malo, Ankur Sinha, Pyry Takala, Pekka J.
Korhonen, and Jyrki Wallenius. 2013. Good
debt or bad debt: Detecting semantic orienta-
tions in economic texts. CoRR abs/1307.5336.
http://arxiv.org/abs/1307.5336.

Paul Mcnamee and James Mayfield. 2004. Character
n-gram tokenization for european language text re-
trieval. Inf. Retr. 7(1-2):73–97.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and
their compositionality. In Proceedings of
the 26th International Conference on Neural
Information Processing Systems. Curran As-
sociates Inc., USA, NIPS’13, pages 3111–3119.
http://dl.acm.org/citation.cfm?id=2999792.2999959.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and
Koray Kavukcuoglu. 2014. Recurrent mod-
els of visual attention. CoRR abs/1406.6247.
http://arxiv.org/abs/1406.6247.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Soujanya Poria, Erik Cambria, Newton Howard,
Guang-Bin Huang, and Amir Hussain.
2016. Fusing audio, visual and textual

clues for sentiment analysis from multi-
modal content. Neurocomput. 174(PA):50–59.
https://doi.org/10.1016/j.neucom.2015.01.095.

Younes Samih, Suraj Maharjan, Mohammed Attia,
Laura Kallmeyer, and Thamar Solorio. 2016. Mul-
tilingual code-switching identification via lstm re-
current neural networks. In Proceedings of the
Second Workshop on Computational Approaches
to Code Switching. Association for Computa-
tional Linguistics, Austin, Texas, pages 50–59.
http://aclweb.org/anthology/W16-5806.

Thomas Schuster. 2003. Meta-communication and
market dynamics. reflexive interactions of financial
markets and the mass media. Finance, EconWPA.

Paul Hongsuck Seo, Zhe Lin, Scott Cohen, Xiao-
hui Shen, and Bohyung Han. 2016. Hierarchi-
cal attention networks. CoRR abs/1606.02393.
http://arxiv.org/abs/1606.02393.

Ashish Sureka and Pankaj Jalote. 2010. Detecting du-
plicate bug report using character n-gram-based fea-
tures. In Proceedings of the 2010 Asia Pacific Soft-
ware Engineering Conference. IEEE Computer So-
ciety, Washington, DC, USA, APSEC ’10, pages
366–374. https://doi.org/10.1109/APSEC.2010.49.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Marjan Van de Kauter, Diane Breesch, and Véronique
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Abstract

This paper describes our submission to
Task 5 of SemEval 2017, Fine-Grained
Sentiment Analysis on Financial Mi-
croblogs and News, where we limit our-
selves to performing sentiment analysis on
news headlines only (track 2). The ap-
proach presented in this paper uses a Sup-
port Vector Machine to do the required
regression, and besides unigrams and a
sentiment tool, we use various ontology-
based features. To this end we created a
domain ontology that models various con-
cepts from the financial domain. This al-
lows us to model the sentiment of actions
depending on which entity they are affect-
ing (e.g., decreasing debt is positive, but
decreasing profit is negative). The pre-
sented approach yielded a cosine distance
of 0.6810 on the official test data, resulting
in the 12th position.

1 Introduction

Many companies in the financial sector are in the
business of gathering and selling information, in-
cluding news and sentiment analysis information,
because of the profound influence this has on in-
vestor behavior (Van de Kauter et al., 2015). The
relation between news and movements in the fi-
nancial market is intricate, with news influencing
the market (Schuster, 2003) as well as the mar-
ket being a source of news itself. Price fluctu-
ations of financial instruments can be linked to
supply and demand and thus to the desirability of
that financial product, which changes when new
facts related to this product are published. Sen-
timent analysis in the context of financial news
headlines aims to capture the change in desirabil-
ity of a given product. Assigning a negative senti-
ment score to a certain news headline for a given

product then represents a decrease in desirabil-
ity and thus a decrease in price for that product,
while assigning a positive sentiment has the oppo-
site meaning.

In track 2 of Task 5 at SemEval 2017 (Cortis
et al., 2017), each news headline contains one or
more company names, and for a given company
name, the sentiment, modeled as a real number
between -1 and 1, needs to be determined. When
multiple companies are mentioned, the same sen-
tence can appear multiple times in the data, each
time asking for the sentiment with respect to a dif-
ferent company. In financial headlines, there are
two reasons why the expressed sentiment can dif-
fer for the various companies that are mentioned.
The first is that expressed sentiment is often oppo-
site for competitors, while the second is that news
often reflects on the stock movements of the day
mentioning both the biggest winners and biggest
losers in the same headline.

Besides directly mentioning the stock move-
ments of a company, news headlines often report
on changes with respect to a certain aspect of a
company (e.g., its profit or debt) or on actions that
influence the company (e.g., opening stores or be-
ing sued). The expressed sentiment often depends
on what particular aspect is in scope. A decrease in
profit, for example, is considered negative, while a
decrease in debt is generally considered positive.

The issue of aspect-dependent sentiment is ad-
dressed in our approach by classifying aspects and
actions in such a way that an ontology reasoner,
with the help of a set of class axioms, can infer
which sentiment is expressed by a given pair of
aspect and (increase or decrease) action. Besides
aspect-dependent sentiment expressions, there are
also sentiment expressions that always convey a
positive (e.g., lift or good) or negative sentiment
(e.g., drown or bad), and those are also stored in
the ontology.

The ontology information is used a source of
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features for the Support Vector Regression model
that is employed in our approach. Hence, we
present an approach that is a hybrid between
knowledge-based methods and machine learning
methods (Cambria, 2016).

This paper is structured as follows. In Sect. 2,
the method is presented, followed by an extensive
evaluation in Sect. 3. Conclusions and suggestions
for future work are given in Sect. 4.

2 Method

At the heart of the method is a Support Vector
Regression (SVR) model, for which we use the
Weka implementation (Frank et al., 2016; Shevade
et al., 2000). To provide features that describe the
news headline, all headlines are preprocessed us-
ing the Stanford CoreNLP library. This involves
tokenization, Part-of-Speech tagging, lemmatiza-
tion, dependency parsing, and sentiment annota-
tion. Furthermore, after tokenization, the head-
lines are scanned for company names that are in
the ontology, and all text is set to lowercase. The
company field in the annotations is also linked to
a URI in the ontology. The sentiment tool (Socher
et al., 2013) that is part of the CoreNLP package
assigns a sentiment score to various parts of the
text (using the parse tree), but for this research we
use only the sentiment assigned to the complete
headline. This is a number in the range of -2 to
2, but in practice, sentence sentiment tends to be
between -1 and 1. Besides the sentiment value,
which is a feature for the SVR, we also use the
presence or absence of unigrams as features (i.e.,
classical bag-of-words), denoting presence with 1
and absence with 0. This unigrams plus sentence
sentiment forms our baseline method.

2.1 Ontology Design

To the baseline method, we add various ontol-
ogy features. To that end, we first designed and
manually populated an ontology that models ex-
pressions in the financial domain (Schouten et al.,
2017). The ontology contains four main classes:
Sentiment, modeling mentions of a certain sen-
timent value, Entity, modeling nouns that rep-
resent entities like companies or aspects of entities
like profit and debt, Property, modeling adjec-
tives like lower, better, etc., and Action, repre-
senting verbs in the text. Hence, the ontology is a
model of mentions or expressions of the concepts
in the financial domain rather than a model of the

concepts themselves.
In accordance with the two main polar direc-

tions: up or increase, and down or decrease, all
subclasses of Entity are split into two groups
that correspond to these two directions. The first
group consist of positively oriented entities for
which an ‘up’ or ‘increase’ movement is positive
(e.g., profit). The second group is comprised of
negatively oriented entities for which a ‘down’ or
‘decrease’ movement is positive (e.g., debt).

Actions and properties are giving information
about some entity and these are divided into four
categories. The first two are aspect-dependent,
representing an Increase and Decrease ac-
tion, while the other two categories repre-
sent actions that are inherently Positive and
Negative. Actions in the Increase or
Decrease category can only be assigned a senti-
ment if they are linked with an entity from the on-
tology, while actions in the two sentiment classes
always denote that sentiment value regardless of
what entity they affect. A similar reasoning holds
for properties. An overview of the main ontology
classes is given in Figure 1.

2.2 Ontology Features

The presence or absence of subclasses of
Entity, Property, and Action, which are
the domain components of our ontology, are
recorded as additional features for the SVR. To
avoid fitting the model on certain companies
that occur in predominantly positive (or negative)
headlines in this particular set of news headlines,
we filter out company name URLs from the set of
features. Ontology concepts are linked to the text
by means of lexicalizations that have been added
to each non-abstract concept in the ontology. Once
a concept has been found, all its superclasses are
also added as features to the SVR model. Hence, if
we find the action Lift, we also add the concepts
Action, Positive, and Sentiment, since
the concept Lift always denotes a positive senti-
ment in our domain ontology.

On top of these ontology lookup features, we
define a set of class axioms that will allow the rea-
soner to infer the sentiment of a given combina-
tion of an Entity and either a Property or a
Action, where the action or property on its own
is not already a subclass of Sentiment. Us-
ing the two polar categories of entities (i.e., the
positively oriented group and the negatively ori-
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Figure 1: The main classes of the used ontology

ented group) in conjunction with the Increase
and Decrease classes that contain actions and
properties, we can infer the sentiment of the four
different combinations that are possible. The class
axioms that describe this behavior are:

1. Increase u PosEntity v Positive
2. Increase u NegEntity v Negative
3. Decrease u PosEntity v Negative
4. Decrease u NegEntity v Positive

Besides these general class axioms, we also de-
fined a number of specific axioms that will allow
the reasoner to infer the sentiment for certain par-
ticular expressions. For example, closing a deal is
considered positive, while closing stores generally
is not. While we could get the right behavior by
classifying Store as a positively oriented entity,
and Deal as a negatively oriented entity, this did
not match with our intuition that a deal is some-
thing positive and more deals is not necessarily
bad, which is a conclusion that would follow from
classifying Deal as a negatively oriented entity.
Hence we have specific axioms that deal with this
scenario and the related Open action:

1. Close u Deal v Positive
2. Close u CompanyPart v Negative
3. Open u CompanyPart v Positive

In the above axioms, a CompanyPart is the
class that models all parts of a certain company,
including things like headquarters, stores, web-
shops, departments, etc. An example of the rea-
soner in action is visualized in Figure 2.

2.3 Company-specific Sentiment

The above model, with all the described ontology
features, would still result in a sentence-level sen-
timent algorithm that would not be able to give dif-

direct object

“ Kingfisher is set to open another 200 Screwfix stores ”

Open Store

Open Store

CompanyPart

Open and 

CompanyPart 

SubClassOf 

Positive

Positive

Figure 2: A schematic overview of the given rea-
soning example.

ferent sentiment scores for different companies in
the same sentence. Since this problem does ap-
pear, we add a company-specific sentiment feature
to the feature set. This feature denotes a positive
(1), neutral (0), or negative (-1) sentiment score
for the company that is mentioned in the com-
pany field of the annotation. Since we already an-
notated this field with a URL, we can locate the
company within the headline. After that, we use
the grammatical dependencies to find all words di-
rectly connected to the company. If these words
are either a property or an action, we can use those
to compute the company-specific sentiment as we
can safely assume that directly connected words in
the dependency graph pertain to that company.

Since a company is positively oriented en-
tity, all actions and properties with superclass
Decrease or Negative convey a negative sen-
timent towards the company, while Increase or
Positive communicate a positive sentiment. A
positive sentiment is quantified as +1, and a neg-
ative sentiment is represented by -1. Then, the
company-specific sentiment feature is computed
as the sum of all sentiment conveying words di-
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rectly related in the dependency graph to the com-
pany mention in the headline.

3 Evaluation

In this section we evaluate our submission on the
training data and report the results obtained on the
official test data. The data consist of news head-
lines in the financial domain, and each headline
is annotated with the name of the target company.
For the training data the target sentiment score is
also provided. Note that the same headline can
appear multiple times in the data, each time with a
different target company. On the official test data,
a cosine distance of 0.6810 is achieved, resulting
in the 12th position. The feature set experiments
have been performed on the training data by run-
ning 5 times a 10-fold cross-validation setup, each
time with different random folds, to ensure robust
results.

To measure the effect of the various employed
ontology features, the method is run with different
subsets of all features. The results of this experi-
ment are reported in Table 1. In this way, we can
compare the benefit of adding entities, properties,
and actions from the ontology, separately. From
the reported results we can see that entities and
properties are not particularly useful for sentiment
analysis. For entities, this makes sense, as these
convey no sentiment information. For properties,
it is less intuitive, as adjectives, the word types that
usually correspond to a subclass of Property
from the ontology, are often strong indicators of
sentiment (e.g., good, bad, etc.).

On the other hand, matching verbs in the text
to subclasses of Action shows a large improve-
ment to sentiment analysis. We hypothesize that
the division into four categories (i.e., Positive,
Negative, Increase, and Decrease) is a
meaningful categorization in the domain of finan-
cial news. We observe that verbs are often the cen-
tral word in conveying information to the reader,
and hence, a lot of sentiment information is com-
municated using this type of concept.

Adding the class axioms to determine the
sentiment of combinations with subclasses of
Increase and Decrease is also useful, with
a 2% increase compared to not using it. Adding
the company specific sentiment, however, does not
seem to help much.

Table 1: The change in performance when using
different feature sets, reporting the average perfor-
mance on the training data, using 5 runs with 10-
fold cross-validation. Feature sets that are statisti-
cally indistinguishable from each other in terms of
performance are grouped together

avg. cosine
distance st.dev.

base (B) 0.6311 0.0482
B + entities (E) 0.6361 0.0455
B + properties (P) 0.6300 0.0478
B + actions (A) 0.6815 0.0498
B + E + P + A 0.6883 0.0502
B + E + P + A + 0.7041 0.0450

class axioms
B + E + P + A + 0.7050 0.0441

class axioms +
company-specific

sentiment

4 Conclusions

In this work we presented our submission to Task
5 of SemEval 2017: fine-grained sentiment anal-
ysis on financial news headlines (track 2). We
showed that by categorizing entities (nouns), prop-
erties (adjectives), and actions (verbs), and link-
ing them to concepts in an ontology, we can har-
ness the power of the ontology reasoner to in-
fer the sentiment of expressions that indicate a
typical up/increase or down/decrease movement.
This is achieved by defining class axioms within
the ontology. In terms of contribution to perfor-
mance, we can state that the categorization of ac-
tions into Positive, Negative, Increase,
and Decrease gave the highest increase in per-
formance, followed by adding class axioms for
sentiment inference.

For future work, we want to invest more in the
company-specific sentiment so we can assign dif-
ferent sentiment values to different companies in
the news headline. Given the fact that headlines
often contain companies with opposite sentiment,
this is a highly desirable feature to have. By using
a form of spreading activation, we could compute
the sentiment for the whole dependency graph, not
with respect to the root which would result in the
sentence sentiment, but with respect to the node
in the graph representing the company. Negators
and other valence shifters can be used to properly
spread the sentiment from one node to the next.
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Abstract

This paper describes our systems submitted to
the Fine-Grained Sentiment Analysis on Finan-
cial Microblogs and News task (i.e., Task 5) in
SemEval-2017. This task includes two subtasks in
microblogs and news headline domain respective-
ly. To settle this problem, we extract four types
of effective features, including linguistic features,
sentiment lexicon features, domain-specific fea-
tures and word embedding features. Then we em-
ploy these features to construct models by using
ensemble regression algorithms. Our submissions
rank 1st and rank 5th in subtask 1 and subtask 2
respectively.

1 Introduction

SemEval-2017 Task 5 is Fine-Grained Senti-
ment Analysis on Financial Microblogs and
News(Cortis et al., 2017), focusing on identify-
ing positive (bullish; believing that the stock price
will increase) and negative (bearish; believing that
the stock price will decline) sentiment associated
with stocks and companies from microblogs and
news domains. Unlike previous sentiment analy-
sis, in this task, the fine-grained sentiment analysis
not only contains sentiment orientation (i.e., pos-
itive or negative of the sentiment score) but also
sentiment strength (i.e., the value of the sentimen-
t score) attached to a particular company or stock
explicitly or implicitly expressed in given texts.

Given a text instance (a microblog message
from Twitter or StockTwits in subtask 1, a news
statement or a headline in subtask 2), the goal of
participants is to predict the sentiment score for
each of the stocks and companies mentioned. The
sentiment score is a floating value in the range
of -1 (very negative) to 1 (very positive), with
0 designating neutral sentiment. Each microblog

instance contains the following 5 items: “id”,
“source” (i.e., Twitter or StockTwits), “cashtag”
(i.e., the company stock symbols to be predicted,
e.g. “$AAPL”), “spans” and “sentiment score”.
And each news headline instance contains 4 items:
“id”, “company” (i.e., the company to be predict-
ed), “title” and “sentiment score”.

There are several differences between the span-
s in subtask 1 and the title in subtask 2: (1) The
spans are sentence fragments related to the cash-
tag to be predicted, whereas the title is a complete
sentence; (2) The spans almost regard one cashtag
while the title usually contains one or more com-
panies; (3) Due to (1) and (2), the spans contain
less words but more effective information and less
noises, which is contrary to the title.

In this work, the similar method is adopted for
two subtasks. We extract a series of elaborately
designed features. In addition to linguistic fea-
tures, sentiment lexicon features and word em-
bedding features, we also extract some domain-
specific features for this task. Besides, we ex-
amine multiple different regression algorithms and
ensemble methods are used to improve the perfor-
mance of our models.

The rest of this paper is structured as follows.
Section 2 describes our system in details, includ-
ing data preprocessing, feature engineering, learn-
ing algorithms and evaluation measure. Section
3 reports datasets, experiments and results discus-
sion. Finally, Section 4 concludes our work.

2 System Description

To solve these two subtasks, we extract lots of
traditional NLP features combined with multiple
machine learning algorithms to build supervised
regression models. Due to the differences of da-
ta forms and data sources between the two sub-
tasks, we adopt different features and algorithms
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for each subtask.
Specifically, for subtask 1, we rebuild the meta-

data of training and test set respectively with the
official API of Twitter and StockTwits. The meta-
data contains the following information: tweets in-
fo or StockTwits info (e.g., “retweet count”), user-
s info (e.g., “favourites count”) and entities info
(e.g., “sentiment”). As most of metadata of Twit-
ter in test dataset is missing, we only extract the
metadata features for StockTwits.

2.1 Data Preprocessing

Since the differences between the spans and the
title described in section 1, for subtask 2, we re-
place the target company with “TCOMPANY” and
replace other company with “OCOMPNAY” in the
title.

For both subtasks, the subsequent preprocess-
ing is the same. We firstly replace all URLs with
“url” and transform the abbreviations, punctua-
tion with a special format, slangs and elongated
words to their normal format. Then, we use Stan-
ford CoreNLP tools(Manning et al., 2014) for tok-
enization, POS tagging, named entity recognizing
(NER) and parsing. Finally, the WordNet-based
Lemmatizer implemented in NLTK1 is adopted to
lemmatize words to their base forms with the aid
of their POS tags. And the word stemmer based
on the Porter stemming algorithm and implement-
ed in NLTK is adopted to remove morphological
affixes from lemmatized words.

2.2 Feature Engineering

We extract the following four types of features
to construct supervised regression models for two
subtasks, i.e., linguistic features, sentiment lexi-
con features, domain-specific features and word
embedding features.

2.2.1 Linguistic Features
N-grams: We remove the cashtag, punctuation,
words that contain numbers and words with a
length less than 2 from the sentence, and then ex-
tract 3 types of Bag-of-Words features as N-grams
features, where N = {1,2,3} (i.e., unigram, bi-
gram, and trigram features).

RF N-grams: Differ from the N-grams features
where each token shares the same weight, we cal-
culate the weight for each token similar to (Lan
et al., 2009). We firstly count the number of oc-

1http://nltk.org

currences of each token in the positive and nega-
tive samples in the training data. Then we calcu-
late the weight (i.e., rf ) for each token in unigram,
bigram and trigram as follows:

rf = max

(
ln(2 +

a

max(1, c)
), ln(2 +

c

max(1, a)
)

)

where a is the number of sentences in the pos-
itive category that contain this token and c is the
number of sentences in the negative category that
contain this token.

Finally, using a method similar to the N-grams
features, we extract 3 types of RF N-grams fea-
tures, where N = {1,2,3}. The difference between
these two features is that RF N-grams features use
the corresponding rf weight whereas N-grams fea-
tures use 1 to represent the occurrence of words.

Verb: Verbs usually contain more subjective
tendencies. Thus, we also extract verbs (whose
corresponding POS tags are VB, VBD, VBG, VB-
N, VBP and VBZ) from the sentence as Verb fea-
tures with the Bag-of-Words form.

NER: Considering that the money, number and
percent informations might be useful for predict-
ing the sentiment score of stocks in financial
domain, we extract 11 types of named entities
(i.e., DATE, DURATION, LOCATION, MONEY,
NUMBER, ORDINAL, ORGANIZATION, PER-
CENT, PERSON, SET, TIME) from the sentence
and represent each type of named entity as a binary
feature to check whether it appears in the current
sentence.

Word Cluster: Since the high dimension of N-
grams features, we also extract word cluster fea-
tures to reduce the dimension of sentence repre-
sentation (compared with N-grams features).

The word cluster features are extracted as fol-
lows: Firstly, we used the publicly available
Google word2vec23 that were trained on 100 bil-
lion words from Google News with the Skip-
gram model (Mikolov et al., 2013) to get a 300-
dimensional vector for each word in sentence.
Then we use the K-means algorithm (k = 50) to
cluster the words in the 300-dimensional vector s-
pace, and the value of k is chosen according to the
preliminary experiment. After that, the word in
sentence is replaced by its corresponding cluster
assignment to get word cluster features.

2https://code.google.com/archive/p/word2vec
3https://drive.google.com/file/d/0B7XkCwpI5KDYNlN

UTTlSS21pQmM/edit
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2.2.2 Sentiment Lexicon Features
We also extract sentiment lexicon features (Sen-
tiLexi) to capture the sentiment information of the
given sentence.

For each word in the sentence, we calculate
five sentiment scores for each sentiment lexicon to
construct SentiLexi: (1) the ratio of positive words,
(2) the ratio of negative words, (3) the maximum
sentiment score, (4) the minimum sentiment score,
(5) the sum of sentiment scores. We transform the
sentiment scores in all sentiment lexicons to the
range of [−1, 1], where “−” denotes negative sen-
timent. If the word does not exist in one sentiment
lexicon, its corresponding score is set to zero. The
following 8 sentiment lexicons are adopted in our
systems: Bing Liu opinion lexicon4, General In-
quirer lexicon5, IMDB (Zhu et al., 2013), MPQA6,
AFINN7, SentiWordNet8, NRC Hashtag Sentiment
Lexicon9, NRC Sentiment140 Lexicon10.

2.2.3 Domain-specific Features
Observing data, we found that the data in financial
domain usually contains numbers. These numbers
can indicate the degree of bullish or bearish, which
has an important impact on the sentiment score of
stocks or companies in financial domain. More-
over, we found that “call” and “put” are terminolo-
gies usually used in microblog domain and related
to sentiment score. Therefore, we design the fol-
lowing domain-specific features.

Number: We design 14 binary features to in-
dicate whether there are the following types of
numbers in the sentence: (1) +num (with a “+”
in front of the number, e.g., “+5” ); (2) -num;
(3) num%; (4) +num%; (5) -num%; (6) $num;
(7) num word (the number mixed with characters,
e.g., “5am”); (8) ordinal number (e.g., “2nd”); (9)
num-num; (10) num-num%; (11) num-num-num;
(12) num/num; (13) num/num/num; (14) only num-
ber (there are no symbols and characters before
and after the number).

Keyword+Number: Based on the Num-
ber features, we defined 4-dimensional Key-
word+Number features to indicate whether there

4http://www.cs.uic.edu/liub/FBS/sentiment-analysis.html
5http://www.wjh.harvard.edu/inquirer/homecat.htm
6http://mpqa.cs.pitt.edu/
7http://www2.imm.dtu.dk/pubdb/views/publication details

.php?id=6010
8http://sentiwordnet.isti.cnr.it/
9http://www.umiacs.umd.edu/saif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
10http://help.sentiment140.com/for-students/

is “call” (or “calls”, “called”) or “put” (or “puts”)
before “+num%” or “-num%” in the sentence.

Metadata usually contains information on the
user who posted this tweet or StockTwits. The us-
er information is useful, because it reflects the de-
gree of authority or confidence of the posed tweet
and StockTwits. Moreover, it also includes some
extra useful informations about this tweet or S-
tockTwits. Therefore, we extract the following
Metadata features.

Metadata: As most of metadata in Twitter is
missing in test dataset, we used 8 items of the
metadata in StockTwits to design following three
types of features: (1) Binary features include the
following items corresponding to the key in the
metadata (json format): “source”, “user/official”,
‘entities/sentiment”, “liked by self” and “conver-
sation/parent”. (2) Value features contain the
values of “conversation/replies” and “likes/total”.
And the Value features are standardized using [0-
1] normalization. (3) Other features: “created at”
indicates whether the StockTwits is created in
[0am, 9am), [9am, 3pm) or [3pm, 24pm). In to-
tal, we obtain 12 features from metadata.

Punctuation (Punc): People often use excla-
mation mark(!) and question mark(?) to express
surprise or emphasis. Therefore, we extract the
following 6 features: (1) whether there is “!” in
sentence; (2) whether there is “?” in sentence; (3)
the number of “!” in sentence; (4) the number of
“?” in sentence; (5) the number of “$” in sentence;
(6) the number of continuous “!” and “?” in sen-
tence, e.g., “!!!”, “????” or “!!??”.

2.2.4 Word Embedding Features
The previous work (Zhang and Lan, 2016; Jiang
et al., 2016) on sentiment analysis task has proved
the effectiveness of word embedding features. In
this part, we utilize the Google word2vec to get the
representation of the sentence.

GoogleW2V: Unlike the word cluster features,
the Google word2vec features (GoogleW2V) are
extracted as follows: We firstly use the Google
word2vec to get a 300-dimensional vector for each
word in sentence. Then, the simple min, max, av-
erage pooling strategies are adopted to concate-
nate sentence vector representations with dimen-
sionality of 900.

2.3 Learning Algorithms

For both tasks, we explore 7 algorithms as follows:
AdaBoost Regressor (ABR), Bagging Regressor
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(BR), Random Forest (RF), Gradient Boosting Re-
gressor (GBR) and LASSO implemented in scikit-
learn toolkit(Pedregosa et al., 2011), Support Vec-
tor Regression (SVR) implemented in liblinear
toolkit(Fan et al., 2008) and XGBoost Regressor
(XGB)11 provided in (Friedman, 2001). All these
algorithms are used with default parameters.

2.4 Evaluation Measure
To evaluate the performance of different system-
s, the official evaluation measure weighted cosine
similarity (WCS) is adopted for two subtasks. Co-
sine similarity and cosine weight will be calcu-
lated according the equation 1 and 2 respective-
ly, where G is the vector of gold standard scores
and P is the vector of scores predicted by the sys-
tem. The final score is the product of the cosine
and the weight (i.e., WCS = cosine weight ∗
cosine(G, P )).

cosine(G, P ) =
∑n

i=1 Gi × Pi√∑n
i=1 G2

i ×
√∑n

i=1 P 2
i

(1)

cosine weight =
|P |
|G| (2)

3 Experiment

3.1 Datasets
We conduct the experiments on the official
datasets constructed by SSIX project (Davis et al.,
2016), which consist of microblog messages (from
Twitter or StockTwits) in subtask 1 and news head-
lines in subtask 2. Table 1 shows the statistics of
the datasets used in our experiments.

Domain Dataset Instance Metadata Positive Negative Neutral

Microblog
( subtask 1)

Twitter train 765 603 246 510 9
test 371 6 116 243 6

StockTwits train 934 926 330 586 18
test 429 423 141 280 8

Headline ( subtask 2) train 1156 - 658 460 38
test 491 - 276 203 12

Table 1: Statistics of training and test datasets of
two subtasks. Positive, Negative and Neural stand
for the number of corresponding instances whose
sentiment score is positive, negative and zero.

3.2 Experiments on Training Data
3.2.1 Comparison of Different Algorithms
Table 2 shows the results of different algorithms
using all features described before. Note that we

11https://github.com/dmlc/xgboost

did not use the Metadata feature in subtask 2 as
there is no metadata in news headline domain. The
5-fold cross validation is performed for system de-
velopment.

Method Algorithm Subtask 1 Subtask 2

Single

SVR 0.7450 0.7078
XGB 0.7412 0.5875
ABR 0.7382 0.6310
BR 0.7441 0.5655
RF 0.7373 0.5856
GBR 0.7358 0.6763
LASSO 0.3344 0.3297

Ensemble SVR + GBR 0.7679 0.7231
SVR + XGB + ABR + BR 0.7827 0.6875

Table 2: Results of algorithm selection experi-
ments for two subtasks in terms of WCS on train-
ing datasets.

From Table 2, we find that for both subtasks,
SVR outperforms other algorithms and LASSO
performs the worst among all algorithms. Oth-
er algorithms perform differently on two subtasks.
Therefore, we also perform experiments using an
ensemble method. The last two rows in Table 2
list the results of using the top two and top four al-
gorithms to build the ensemble regression models
(named EN(2) and EN(4)), which average the out-
put scores of all regression algorithm. From Table
2, we find that the ensemble classifier greatly in-
creased the performance on both subtasks. Specif-
ically, for subtask 1, the ensemble with top 4 al-
gorithms improve 4% and for subtask 2, ensemble
with top 2 improved 2% compared with the top
score using a single regression algorithm. There-
fore, we chose the EN(4) for subtask 1 and EN(2)
for subtask 2 as the regression algorithm in follow-
ing experiments.

3.2.2 Feature Selection
Table 3 shows the best feature sets for two sub-
tasks. Based on previous ensemble algorithms,
we adopt hill climbing algorithm to select best
features. That is, keep adding one type of fea-
ture at a time until no further improvement can be
achieved. From Table 3, we find that: (1) The RF
N-grams, Verb, Word Cluster, SentiLexi, Number,
Punctuation and GoogleW2V features are benefi-
cial for both subtasks; (2) Specially, the NER fea-
tures and Keyword+Number features are more ef-
fective in subtask 1 than subtask 2.

To further analysis the significance of different
features, we conduct the ablation experiments for
both systems. Table 4 lists the comparison of top
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Features Linguistic SentiLexi Domain-specific Word embedding WCSunigram bigram trigram rf 1 rf 2 rf 3 Verb NER Word Cluster SentiLexi Number Keyword+Number Metadata Punc GoogleW2V
Subtask 1

√ √ √ √ √ √ √ √ √ √ √ √
0.7912

Subtask 2
√ √ √ √ √ √ √ √ √

0.7264

Table 3: Results of feature selection experiments for both subtasks on training datasets. rf 1, rf 2 and
rf 3 stand for rf unigram, rf bigram and rf trigram features respectively.

Subtask 1
Feature set WCS change (%)
Best features 0.7912 -
- rf unigram 0.7643 -3.40
- SentiLexi 0.7664 -3.10
- metadata 0.7841 -0.90
- number 0.7869 -0.54

Subtask 2
Feature set WCS change (%)
Best features 0.7264 -
- GoogleW2V 0.6951 -4.31
- rf unigram 0.6964 -4.13
- SentiLexi 0.7144 -1.65
- rf bigram 0.7245 -0.27

Table 4: Ablation study: the comparison of top 4
most important features.

4 most important features.
From Table 3 and the ablation study results in

Table 4, it is interesting to find that: (1) rf unigram
feature plays a key role in both subtasks and is
more effective than unigram feature. The rea-
son may be that RF N-grams features endow each
word with a weight, which can capture how much
the word contributes to the sentiment analysis of
the sentence. Besides, the weight also contain-
s some sentiment information. (2) SentiLexi fea-
tures also make great contribution to both sub-
tasks, which indicates that SentiLexi features are
beneficial not only in traditional sentiment analy-
sis tasks, but also in predicting the sentiment score
of stocks in financial domain. (3) The Number fea-
tures and Keyword+Number features are more ef-
fective in subtask 1 than subtask 2. The reason
may be that there are plenty of numbers in the da-
ta of microblog domain but only a few numbers in
news headline domain. (4) Although we only ex-
tract the Metadata features from the StockTwits, it
perform better than most of other features, which
indicates that the metadata is indeed significant.
(5) The GoogleW2V feature is more effective in
subtask 2 than subtask 1. The reason may be that

the spans in microblog domain contain less word-
s and many word vectors of the spans can not be
obtained from the pre-trained Google word2vec.
(6) The bigram feature and trigram feature are not
beneficial in both subtasks. The possible reason
lies in the large dimensions of these two features
leading to sparse representation in two domains.

Overall, the system configurations for two sub-
tasks are: using the optimum feature sets shown
in Table 3 and the algorithms described in section
3.2.1 (i.e., ensemble with top 4 regression algo-
rithm for subtask 1 and ensemble with top 2 re-
gression algorithm for subtask 2) to build super-
vised regression models.

3.3 Results and Discussion on Test Data

Subtask 1 Subtask 2
Our system 0.7779 0.7107

Rank 1 0.7779 0.7452
Rank 2 0.7600 0.7437
Rank 3 0.7590 0.7327

Table 5: Performance of our systems and the top-
ranked systems for two subtasks in terms of WCS
on test datasets.

Using the system configurations described
above, we train separate model for each subtask
and evaluate them against the test set in SemEval-
2017 Task 5.

Table 5 shows the results on test datasets. From
Table 5, we find that: (1) Our system achieves
lower performance on test data compared with the
training data, the possible reason might be the d-
ifferent data distribution held between them. (2)
Our results perform best among all submissions in
subtask 1 and rank 5th in subtask 2, which proves
the effectiveness of the method we proposed.

4 Conclusion and Future Work

In this paper, we extract four types of features,
i.e., linguistic features, sentiment lexicon features,
domain-specific features and word embedding fea-
tures, and employ the ensemble regression model-
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s to predict the sentiment score for two subtasks.
The results on test and training data show the ef-
fectiveness of our method for this task.

For the future work, we would explore domain-
specific sentiment lexicons and use the deep learn-
ing method (e.g., attention neural networks) to im-
prove the performance. Due to the limitation of
annotated data, we would like to first pre-train
a neural network model on similar tasks (e.g.,
aspect-level sentiment analysis task), and then fine
tune the neural network model on the current fine-
grained sentiment analysis task to boost the per-
formance.
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Keith Cortis, André Freitas, Tobias Dauert, Manuela

Huerlimann, Manel Zarrouk, Siegfried Handschuh,
and Brian Davis. 2017. Semeval-2017 task 5:
Fine-grained sentiment analysis on financial mi-
croblogs and news. In Proceedings of the 11th
International Workshop on Semantic Evaluation
(SemEval-2017). Association for Computational
Linguistics, Vancouver, Canada, pages 519–535.
http://www.aclweb.org/anthology/S17-2089.

Brian Davis, Keith Cortis, Laurentiu Vasiliu, Adaman-
tios Koumpis, Ross McDermott, and Siegfried
Handschuh. 2016. Social sentiment indices powered
by x-scores. ALLDATA 2016 page 21.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research 9(Aug):1871–1874.

Jerome H Friedman. 2001. Greedy function approxi-
mation: a gradient boosting machine. Annals of s-
tatistics pages 1189–1232.

Mengxiao Jiang, Zhihua Zhang, and Man Lan. 2016.
Ecnu at semeval-2016 task 5: Extracting effective
features from relevant fragments in sentence for
aspect-based sentiment analysis in reviews. Pro-
ceedings of SemEval pages 361–366.

Man Lan, Chew Lim Tan, Jian Su, and Yue Lu. 2009.
Supervised and traditional term weighting method-
s for automatic text categorization. IEEE transac-
tions on pattern analysis and machine intelligence
31(4):721–735.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. 2014. The Stanford CoreNLP
natural language processing toolkit. In As-
sociation for Computational Linguistics (A-
CL) System Demonstrations. pages 55–60.
http://www.aclweb.org/anthology/P/P14/P14-5010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.
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Abstract

This paper reports team IITPB’s partic-
ipation in the SemEval 2017 Task 5 on
‘Fine-grained sentiment analysis on finan-
cial microblogs and news’. We developed
2 systems for the two tracks. One sys-
tem is based on an ensemble of Support
Vector Classifier and Logistic Regression.
This system relis on Distributional The-
saurus (DT), word embeddings and lexi-
con features to predict a continuous senti-
ment value between -1 and +1. The other
system is based on Support Vector Regres-
sion using word embeddings, lexicon fea-
tures, and PMI scores as features. Our sys-
tems are ranked 5th in track 1 and 8th in
track 2.

1 Introduction

We are living in a world where stock market di-
rectly affects the economic system of a country.
Therefore, a reliable and prompt delivery of in-
formation plays an important role in the financial
market. Up until the last decade printed/television
news were the major source of stock market-
related information. However, with the introduc-
tion of micro-blogging websites (e.g. Twitter etc.)
the trend has been shifted. The rise of Twitter and
StockTwits has given the people and organizations
an opportunity to vent out their feelings and views.
This information can be used by an individual or
an organization to make an informed prediction re-
lated to any company or stock (Si et al., 2013).
This opens a new avenue for sentiment analysis in
the financial domain of microblogs and news.

News headlines are a short piece of text de-
scribing the nature of an article. Due to space
constraints, headlines normally follow a compact
writing style, known as headlinese, which limits

the usage of articles, the verb form of to be, con-
junctions etc.

Similarly, social media platforms text is prone
to noise. There is a very high possibility of
the data lacking a proper structure, grammar and
appropriate punctuations. These inconsistencies
make it challenging to solve any NLP prob-
lems including sentiment analysis (Khanarian and
Alwarez-Melis, 2012). Moreover, each tweet can
have reference to multiple company names (or
stock symbols) and the expressed sentiment can
be different towards different companies. Hence,
there is a need to perform fine-grained sentiment
analysis wherein, generally, a context is used to
decide the relevant portion of a tweet for a particu-
lar company. Another inherent challenge with the
microblog and news data is the use of short lan-
guages, hashtag, emoticons and embedded URL.
Special attention should be given to these as they
can provide some important hidden information
(Mohammad et al., 2013). Example - #bullish-
Market and #increasingProfit can reflect positive
sentiment. These are some of the major challenges
associated with fine-grained sentiment analysis of
microblogging and news data.

The SemEval-2017 task 5 (Fine-Grained Senti-
ment Analysis on Financial Microblogs and News)
has two tracks (Cortis et al., 2017). For both
the tracks, the overall aim was to assign a senti-
ment score to a cashtag/company over a continu-
ous range of -1 (very negative/bearish) to 1 (very
positive/bullish).

First track involves finding a sentiment score to-
wards a given ‘cashtag’ (stock symbol preceded
by a $, e.g. $AAPL for Apple Inc.) in microblog
messages while the second track involves finding
a sentiment score towards a given company name
in the news headlines.Instances in track 1 datasets
also contain ‘span’. It is the section of a tweet
from where sentiment score should be derived.
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Track 1 Microblogs
Message: Putting on a little $F short, prevail-

ing wisdom notwithstanding.
Score: -0.454
Span: Putting on a little $F short
Cashtag: $F

Track 2 News headlines
Message: RBS and Barclays shares temporar-

ily suspended amid heavy losses.
Score: -0.941
Company: Royal Bank of Scotland Group

Table 1: Instances of of microblog and news head-
line dataset.

We participated and submitted our system for
both the tracks. A total of 27 and 29 teams par-
ticipated in track 1 and track 2 respectively. Our
system ranked 5th in the first track with a cosine
similarity of 0.725. In the second track, our sys-
tem scored cosine similarity of 0.695 and ranked
8th overall.

The rest of the paper is organized as follows:
Section 2 briefly describes the proposed systems.
Description of the feature set is given in Section
3. Section 4 is devoted to experimental result and
error analysis. Lastly, we conclude in Section 5.

2 System Overview

In this section, we present a brief description of
the proposed systems. We adopted a supervised
approach for solving the problem of both the tasks.
We employed Logistics Regression, Support Vec-
tor Machine (SVM) and Support Vector Regres-
sion (SVR) as the base classifier for the prediction.
We tried various combinations of the feature set
for training the model. Following this approach,
we select a feature set that best suited for the prob-
lem at hand. To further improve the efficacy of the
system we ensemble the outputs of various classi-
fiers at the end. For ensemble, the final sentiment
value was calculated by taking the harmonic mean
of both the system’s prediction and then, linearly
scaling it in between -1 and +1.

2.1 Distributional Thesaurus

Missing words in word2vec or Glove vector rep-
resentation makes it non-trivial to learn from the
data. We employ Distributional Thesaurus (DT)
(Biemann and Riedl, 2013) expansion strategy for

those words whose representation was missing in
word2vec or GloVe model. Distributional The-
saurus is an automatically computed word list
which ranks words according to their semantic
similarity. It finds words that tend to occur in
similar contexts as the target word. We use a
pre-trained DT model to expand a source word.
If the representation of a word is not present in
word2vec or GloVe model, then its corresponding
most similar expanded word is used to replace it.
If the replaced word does not have its correspond-
ing representation also we select next similar word
and so on. For a source word, we took top 5 similar
words in the expanded list as targets. An example
is listed in Table 2. For the source word ‘drinks’,
its DT expanded word list contains ‘beer’, ‘wine’,
‘coffee’, ‘liquids’ and ‘beverages’.

Word DT expanded list
drinks beer, wines, coffee, liquids, beverages
price prices, pricing, cash, cost, pennies
laptop pc, computer, notebook, tablet, imac

Table 2: Example of DT expansion

3 Feature set

We use following set of features for training the
model.

3.1 Track 1 - Microblogs messages
• Word Embedding: Word embeddings are

known to capture the syntactic and semantic
similarity in a better and representative way.
We used 200 dimensional twitter based pre-
trained GloVe vectors1 for word representa-
tion. Averaging of words representation was
done for calculating sentence embeddings.

• Tf-Idf Score: We use Tf-Idf score as a fea-
ture value in the work. The score reflects how
important a word is to a document in a cor-
pus.

• Sentiment Lexicon: We compiled a list
of positive and negative words using NRC
Hashtag Sentiment Lexicon (Kiritchenko
et al., 2014), MPQA Subjectivity Lexicon
(Wilson et al., 2009) and Bing Liu Opinion
Lexicon (Hu and Liu, 2004). Using these we
created hand-engineered features. Mpos and

1http://nlp.stanford.edu/projects/
glove/
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Mneg are the number of positive and negative
words in span and text.

– Agreement Score: It is the agreement
value of the positive and negative words
in the data instance. This was calculated
both for span or text. If we have all pos-
itive or all negative words then A = 1.
We have modified the proposal in (Rao
and Srivastava, 2012) to make the fea-
ture more effective.

A = 1−
√

1−
∣∣∣∣Mpos −Mneg

Mpos +Mneg

∣∣∣∣
– Polar word occurrence: We count the

number of occurrences of all positive
and negative words in the text and as-
sign values +1, -1 and 0 if the difference
betweenMpos &Mneg are positive, neg-
ative and zero respectively.

3.2 Track 2 - News headlines

• Word Ngrams: We extracted and used uni-
grams and bigrams as features for this task.

• Sentiment Lexicon: Sentiment lexicons
have been known to be a decisive feature in
sentiment analysis tasks. We use the fol-
lowing four sentiment lexicons to get lexicon
based features:

– Bing Liu’s Sentiment Lexicon (Hu and
Liu, 2004)

– Harvard General Inquirer (Stone et al.,
1966)

– SentiWordNet (Baccianella et al., 2010)
– Loughran and McDocnald’s Finance

Lexicon (Loughran and McDonald,
2011)

For each instance, we extract 3 features: pos-
itive score, negative score, and cumulative
score. Each token is assigned a score of +1 or
-1 if it belongs to positive or negative list re-
spectively. We followed stated approach for
all lexicons except SentiWordNet. In the case
of SentiWordNet lexicon, we use the posi-
tive and negative score as given in the lexicon
rather than +1 or -1.

• Semantic Orientation (SO): Semantic ori-
entation (Hatzivassiloglou and McKeown,

1997) finds the association of a token with re-
spect to its positivity and negativity. We cal-
culate a score for each term in our training
corpus to get the association value.

score(w) = PMI(w, pos)−PMI(w, neg)

where PMI is point-wise mutual information
and calculated as follows:

PMI(w, pos) = log2

freq(w, pos) ∗N
freq(w) ∗ freq(pos)

In the above equation pos is the collection of
positive reviews and N is the total number of
tokens in the corpus.

• Word Embeddings: We use the 300-
dimensional pre-trained word2vec (Mikolov
et al., 2013) vectors trained on part of Google
News dataset (about 100 billion words). The
sentence embedding is obtained by averaging
the embedding vectors of all words in the sen-
tence.

4 Experiments and Results

4.1 Dataset

The training datasets contains 1700 and 1142 in-
stances of microblog messages and news headlines
respectively. Test data comprises of 800 and 491
resp. of such instances for the two tracks. We use
20% of the training dataset as validation set.

4.2 Preprocessing

We used CMU ARK toolkit2 for tokenization of
microblog tweets. For preprocessing the text, each
url, username and number was replaced by<url>,
<user> and <number> respectively. Example
- ’www.twitter.com’ by <url>, ’@johnSnow’ by
<user> and ’9.7’ by <number>. Since the data
was collected from the web all HTML entities
were converted to their corresponding unicode
characters e.g. ’&amp;’ to ’and’. Datasets analy-
sis suggests that few hashtags convey explicit sen-
timent in the text. Therefore, we replace hashtags
by ’#’ followed by the associated word with the
hashtag. For example - ’#happy’ by ’# happy’.
Lastly, all the characters are converted to lower
case and for the news headline we use NLTK3 for
the tokenization.

2http://www.cs.cmu.edu/˜ark/
3http://www.nltk.org/
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4.3 Experiments

We used python based machine learning package
scikit-learn4 for the implementation. As classi-
fication algorithm, we used Logistic Regression
(LR), Support Vector Machine (SVM) and Sup-
port Vector Regression (SVR). As discussed ear-
lier, each instance of the dataset need a score over
a continuous range of -1 to +1. Since SVM pre-
dicts discrete class labels, as post-processing we
use the probability of predicted class as the score.
During validation phase we observed that models
trained on SVM work better than that of SVR for
the microblog datasets. In contrast, SVR works
better than SVM in news headline datasets. The
hyperparameters of the SVM were C = 30 and
γ = 0.01, for SVR we used C = 10 and γ = 0.01
and for LR we set C = 6. Cosine similarity of
various combinations of the feature set is listed
in Table 3 and 4 for microblogs and news head-
lines validation set respectively. For fine tuning
of hyper-parameters, we did an exhaustive grid
search evaluated through ten-fold cross-validation
on the training set.

Model Cosine Similarity
LR SVM SVR

W.E 0.649 0.654 0.691
Tf-Idf 0.727 0.729 0.736
W.E + Lexicon 0.656 0.678 0.684
W.E + Tf-Idf 0.745 0.762 0.726
Tf-Idf + Lexicon 0.749 0.752 0.759
W.E + Tf-Idf + Lexicon 0.760 0.775 0.717

Table 3: Microblog messages: Cosine similarity
on validation set.

Model Cosine similarity
LR SVM SVR

Unigrams 0.507 0.58 0.566
Unigrams + Lexicon 0.598 0.609 0.640
(Uni+Bi)grams + Lexicon 0.603 0.609 0.648
(Uni+Bi)grams + Lexicon + SO 0.738 0.713 0.794
Unigrams + Lexicon + SO 0.736 0.713 0.789
W.E 0.619 0.584 0.673
W.E + Lexicon 0.613 0.580 0.639
W.E + Lexicon + PMI 0.746 0.708 0.80

Table 4: News headline: Cosine similarity on val-
idation set.

As a result, we observed that the word embed-
ding along with lexicon based features produce the

4http://scikit-learn.org

best cosine similarity for both the datasets. Fur-
ther, we observed the output of different classifier
are contrasting in nature, therefore we merge the
outputs of different classifiers using averaging and
harmonic mean. We found that harmonic mean
of LR and SVM produces better cosine similar-
ity score than other combinations for microblogs
messages. However, for news headline perfor-
mance did not improve on the ensemble, so we
choose the best feature combination to train an
SVR. Table 5 shows the results for harmonic mean
of SVM and LR cosine similarities in microblogs
datasets.

Model Cosine similarity
W.E 0.687
Tf-Idf 0.733
W.E + Lexicon 0.697
W.E + Tf-Idf 0.768
Tf-Idf + Lexicon 0.755
W.E + Tf-Idf + Lexicon 0.778

Table 5: Microblog messages: Ensemble of SVM
& LR on validation set.

After finalizing the proposed approach on vali-
dation set, we evaluated it on the test datasets. For
microblogs messages we got the cosine similarity
of 0.725. In news headline, our system produces
cosine similarity of 0.695. Table 6 depicts evalua-
tion results on test datasets.

Datasets Cosine similarity
Track 1: Microblogs 0.725
Track 2: News headlines 0.695

Table 6: Cosine similarity on test dataset.

5 Conclusion

In this paper we proposed a supervised sentiment
analyzer for financial texts as part of our partici-
pation in SemEval 2017 shared task. As base clas-
sification algorithm we used Logistic Regression
(LR), Support Vector Machine (SVM) and Sup-
port Vector Regression (SVR) for predicting the
sentiment score. In second stage we combine the
predictions of two best performing models using
harmonic mean. Evaluation shows encouraging
results on the shared task dataset. In future we
would like to explore other relevant features to im-
prove the performance of the system.
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Abstract

In this paper we propose an ensemble
based model which combines state of the
art deep learning sentiment analysis algo-
rithms like Convolution Neural Network
(CNN) and Long Short Term Memory
(LSTM) along with feature based mod-
els to identify optimistic or pessimistic
sentiments associated with companies and
stocks in financial texts. We build our sys-
tem to participate in a competition orga-
nized by Semantic Evaluation 2017 Inter-
national Workshop. We combined predic-
tions from various models using an artifi-
cial neural network to determine the opin-
ion towards an entity in (a) Microblog
Messages and (b) News Headlines data.
Our models achieved a cosine similarity
score of 0.751 and 0.697 for the above two
tracks giving us the rank of 2nd and 7th
best team respectively.

1 Introduction

Sentiment analysis of financial text is an impor-
tant area of research. It has been shown that sen-
timents and opinions can affect market dynam-
ics (Goonatilake and Herath, 2007). Social me-
dia has created a new world of venting customer
voice. People tend to express their personal sen-
timent about the stock market through tweets. On
the other hand, news presents the macroeconomic
factors, company-specific or political information.
Positive news tend to bring optimism and lift the
market where as negative news effect the market
in opposite direction (Van de Kauter et al., 2015).
Sentiment analysis gives organizations the ability
to observe the various social media sites in real
time and then act accordingly. Twitter is consid-
ered to be an ocean of sentiment data.

A study indicates that sentiment analysis of
public mood derived from Twitter feeds can be
used to eventually forecast movements of individ-
ual stock prices (Smailović et al., 2014). All these
evidences show us that financial sentiment analy-
sis has a lot of untapped power and extensive re-
search in the field can help us gain great insight
about the financial market. The fundamental prob-
lem with classifying financial tweets is the pres-
ence of noise. The natural use of short, infor-
mal languages, emoticons, hashtag and sarcasm in
tweets makes the sentiment analysis problem es-
pecially challenging.

News headlines usually use limited number of
words to summarize the article. Moreover, as-
pects like language patterns, writing style, irony
usage differs notably among different news cate-
gories and articles. Use of articles, verb form of
‘to be’, conjunction are very rare in practice.

In this paper we describe our proposed system
as part of the ‘SemEval-2017 Task 5 on Fine-
Grained Sentiment Analysis for Financial Mi-
croblogs and News’ (Cortis et al., 2017). We pro-
pose a multilayer perceptron (MLP) based ensem-
ble method that leverages the combination of deep
learning and feature based models for the predic-
tion. Our system produces 4th and 8th best cosine
similarity score for microblogs messages and news
headline respectively. A total of 25 teams partic-
ipated for the microblogs messages task while 29
teams submitted their systems for the news head-
line track.

The task defines sentiment score prediction in
two separate tracks i.e. microblogs and news head-
lines. The objective of the task is to predict a senti-
ment score associated with a company/cashtag in
the text. The sentiment score lies in a continu-
ous range of -1(very bearish) to +1(very bullish).
Cashtag refers to a stock symbol that uniquely
identifies a company. For e.g. $AAPL represents
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stock symbol for the company Apple Inc. Every
instance of microblogs messages also include a
span which indicates a part of text from where pre-
diction should be derived.

This rest of the paper is organized as follows:
Section 2 illustrates our system architecture in de-
tail. We present our experimental results in Sec-
tion 3. Finally, Section 4 presents our conclusions.

2 System Description

In this section we discuss our proposed system for
the task. We developed a multi-layer perceptron
(MLP) based ensemble approach which learns on
top of a convolution neural network (CNN), a long
short term memory network (LSTM), a vector av-
eraging MLP and a feature driven MLP model. We
separately train and tune all the models and then
feed the prediction scores of each model as input
to an MLP for ensembling. Training and tuning
of this system is performed separately. The resul-
tant pipeline is used to predict the final sentiment
score.

2.1 Word Embeddings

Word embeddings are generally helpful in many
natural processing tasks due to it’s excellence in
capturing hidden semantic structures. For word
embeddings we used two pre-trained embedding
models: GloVe1 and Word2Vec2. For microblogs
messages we used GloVe (Pennington et al., 2014)
and Word2Vec (Godin et al., 2015) twitter model
trained on 2 billion and 400 million tweets respec-
tively. For news headline we used GloVe com-
mon crawl model trained on 802 billion words and
Word2Vec Google News model (Mikolov et al.,
2013). We experimented with 200, 300 and 400
dimension vectors and observed that 200 & 300
dimension vectors are the near-optimal case for
microblogs messages and news headlines respec-
tively. We have used concatenation of word em-
beddings to form sentence embeddings.

2.2 Convolutional Neural Network (CNN)

Convolutional neural network consists of one or
more convolution and pooling layers followed by
one or more dense layers. Our system uses 2 con-
volution layers followed by a max pool layer, 2
dense layers and an output layer. Size of convo-
lution filters dictates the hidden features to be ex-

1http://nlp.stanford.edu/projects/glove/
2https://code.google.com/archive/p/word2vec/

tracted. We employ 50 such filters while sliding
over 1, 2, 3 and 4 word(s) at a time.

2.3 Long Short Term Memory (LSTM)
LSTMs are special kind of recurrent neural net-
work which can efficiently learn long-term depen-
dencies. We use two layers of LSTM on top of
each other followed by 2 dense layers and a output
layer. We fix number of neurons on each LSTM
layers as 100. For the dense layer we use 50 and
10 neurons in the hidden layers.

2.4 Multilayer Perceptron (MLP) - Vector
Averaging Model

Concatenation of word vectors for generating sen-
tence embeddings often face the curse of high-
dimensionality. In an attempt to get a constant
low-dimensional feature vector we employ vector
averaging technique for producing sentence vec-
tor. We perform an element wise averaging of the
word vectors in a tokenized tweet/headline. We
then use the sentence embeddings to train a 3-
layered neural network for the prediction.

2.5 Multilayer Perceptron (MLP) - Feature
Driven Model

This model is based on various lexical and seman-
tic features. We trained a multilayer perceptron on
top of the following features.

• Character ngrams: tf-idf weighted counts
of continuous sequences of 2, 3, and 4 char-
acters;

• Word ngrams: tf-idf weighted counts of
continuous sequences of 1, 2, 3, and 4 words;

• POS-tag: parts of speech tags of each token
in the text;

• Lexicons:

– Following set of features are used for
each of the four lexicons: Opinion
Lexicon (Liu et al., 2005), Loughran
and McDonald Sentiment Word Lists
(Loughran and McDonald, 2011),
MPQA Lexicon [+1.0 for strong posi-
tive, +0.5 for weak positive, similarly
for negative] (Wilson et al., 2005) and
Harvard’s General Inquirer (Stone et al.,
1962):
∗ positive count: number of positive

tokens in a tweet/title.
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∗ negative count: number of negative
tokens in a tweet/title.
∗ net count: positive count - negative

count in tweet/title.
– In addition we use four NRC Lexicons:

Hashtag Context, Hashtag Sentiment,
Sentiment140, Sentiment140 Context
(Svetlana Kiritchenko and Mohammad,
2014; Mohammad et al., 2013) for the
microblogs messages. Following set of
features are extracted for each of them:
∗ positive count, negative count and

net count.
∗ sum of positive scores, negative

scores and all scores.
∗ maximum of positive and negative

scores.

• Pointwise Mutual Information (PMI): We
calculate a sentiment score for each term in
our training corpus to get the association of
each term with positive as well as negative
sentiment.

score(w) = PMI(w, pos)−PMI(w, neg)

PMI is calculated as follows:-

PMI(w, pos) = log2

freq(w, pos) ∗N

freq(w) ∗ freq(pos)

In the above equation freq(w, pos) is the fre-
quency of word w in positive text, freq(pos)
is the number of words in positive headlines
and N is the total number of tokens in the
corpus.

• Microblog Specific Features: We use fol-
lowing features only for microblogs mes-
sages track:

– the number of words with all characters
in upper case.

– the number of favorite and retweet
counts of a message (tweet).

– the number of hashtags in the message.

The multilayer perceptron network has three hid-
den layers and one output layer consisting of 500,
50, 10 and 1 neurons respectively.

2.6 Ensemble Model
Ensemble of various systems is an effective tech-
nique to improve the overall performance by as-
sisting each other. Ensembling usually reduces the

generalization error, which in turn reduces over-
fitting. Here we discuss second stage of the our
proposed system. We merge predicted sentiment
scores of all four models (CNN, LSTM, Vector
Averaging, Feature Driven) to create a new feature
vector, and then fed it into a multilayer perceptron
(MLP) network for training. Figure 1 shows, an
overall schema of the proposed approach.

Figure 1: Ensembling Network Structure

3 Dataset, Experiments and Results

3.1 Datasets
The training datasets comprises of 1700 and 1142
instances of microblogs messages and news head-
lines respectively. We used the span in microblogs
message track and the title in news headlines track
as the textual feature for all our experiments de-
scribed in this paper. For validation we did a
80:20, train:development split of the full datasets.
The split was done such that the relative percent-
age of sources (twitter and stocktwits), mean and
standard deviation of sentiment scores were same
in the training and development data. We trained
our model on the train data and selected models
for ensembling, based on results on development
data. Figure 2 and 3 shows the distribution of sen-
timent scores for the two datasets.

3.2 Experiments
We used python based neural network package
Keras3 for the implementation. We use ReLU acti-
vations for the intermediate layers and tanh activa-
tion for the final layer. Dropout (Srivastava et al.,
2014) is a very effective regularization technique
to prevent over-fitting of a network. It restrict
convergence of weights to identical positions by
randomly turning off the neurons during forward
propagation. We use 15% dropout and ‘Adam’ op-
timizer (Kingma and Ba, 2014) for regularization
and optimization.

3www.keras.io
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Figure 2: Histogram plot of sentiment scores in
microblogs messages

Figure 3: Histogram plot of sentiment scores in
news headlines

We train and validate each model on 80% &
20% of the full data respectively. Table 1 shows
our results of deep learning models (D), feature
based model (F) and vector averaging models (V)
on the validation set. It also depicts the results of
our ensemble model (E) on the development set. It
should be observed that use of ensemble improves
the performance by a margin of 2-3%.

We submitted the E1 and E6 systems for the fi-
nal evaluation and got a test cosine similarity score
of 0.751 and 0.697 for microblogs messages and
news headlines tracks respectively. Table 2 reports
cosine similarity of our system.

4 Conclusion

In this paper we presented an MLP based ensem-
ble technique for predicting the sentiment score.
The proposed approach is a robust regression al-
gorithm which predicts optimistic or pessimistic
sentiments of associated stocks and companies

SNo Models Cosine Similarity
Microblogs Headlines

D1 W2V CNN 0.752 0.670
D2 W2V LSTM 0.725 0.652
D3 GloVe CNN 0.768 0.649
D4 GloVe LSTM 0.765 0.644
F1 Feature Based 0.792 0.784
V1 W2V Average 0.804 0.663
V2 GloVe Average 0.781 0.643
E1 D3 + D4 + F1 + V1 0.834 -
E2 D3 + F1 + V1 0.826 -
E3 D4 + F1 + V1 0.821 -
E4 D3 + D4 + V1 0.812 -
E5 D3 + D4 + F1 0.799 -
E6 D1 + D2 + F1 + V1 - 0.802
E7 D1 + F1 + V1 - 0.795
E8 D2 + F1 + V1 - 0.788
E9 D1 + D2 + V1 - 0.683
E10 D1 + D2 + F1 - 0.791

Table 1: Cosine similarity score on validation set.

Tracks Cos Sim Rank
Track-1: Microblogs Messages 0.751 2nd
Track-2: News Headlines 0.697 7th

Table 2: Cosine similarity score on test dataset.

in financial text. We implemented a variety of
semantic and linguistic features for our analysis
of the noisy text such as tweets and news head-
lines. We combined predictions of four mod-
els (i.e. CNN, LSTM, Vector Averaging MLP
and Feature Driven MLP) for calculation of fi-
nal prediction. Our submission stood 2nd and 7th
in two tracks that involves microblogs messages
and news headlines respectively in SemEval 2017
shared task on ’Fine-Grained Sentiment Analysis
of Financial Microblogs and News’.

References
Keith Cortis, Andre Freitas, Tobias Daudert, Manuela

Huerlimann, Manel Zarrouk, and Brian Davis. 2017.
Semeval-2017 task 5: Fine-grained sentiment anal-
ysis on financial microblogs and news. Proceedings
of SemEval .
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Martin Žnidaršič. 2014. Stream-based active learn-
ing for sentiment analysis in the financial domain.
Information Sciences 285:181–203.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: A simple way to prevent
neural networks from overfitting. Journal of
Machine Learning Research 15:1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Philip J Stone, Robert F Bales, J Zvi Namenwirth, and
Daniel M Ogilvie. 1962. The general inquirer: A
computer system for content analysis and retrieval
based on the sentence as a unit of information. Be-
havioral Science 7(4):484–498.

Xiaodan Zhu Svetlana Kiritchenko and Saif M. Mo-
hammad. 2014. Sentiment analysis of short infor-
mal texts 50:723–762.

Marjan Van de Kauter, Diane Breesch, and Véronique
Hoste. 2015. Fine-grained analysis of explicit and
implicit sentiment in financial news articles. Expert
Systems with applications 42(11):4999–5010.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing. Associ-
ation for Computational Linguistics, pages 347–354.

903



Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 904–908,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

FEUP at SemEval-2017 Task 5: Predicting Sentiment Polarity and
Intensity with Financial Word Embeddings

Pedro Saleiro1,2, Eduarda Mendes Rodrigues1, Carlos Soares1,3, Eugénio Oliveira1,2

Faculdade de Engenharia da Universidade do Porto1,
LIACC2, INESC-TEC3

Rua Dr. Roberto Frias, s/n, Porto, Portugal
{pssc,eduarda,csoares,eco}@fe.up.pt

Abstract

This paper presents the approach devel-
oped at the Faculty of Engineering of Uni-
versity of Porto, to participate in SemEval
2017, Task 5: Fine-grained Sentiment
Analysis on Financial Microblogs and
News. The task consisted in predicting a
real continuous variable from -1.0 to +1.0
representing the polarity and intensity
of sentiment concerning companies/stocks
mentioned in short texts. We modeled the
task as a regression analysis problem and
combined traditional techniques such as
pre-processing short texts, bag-of-words
representations and lexical-based features
with enhanced financial specific bag-of-
embeddings. We used an external collec-
tion of tweets and news headlines men-
tioning companies/stocks from S&P 500
to create financial word embeddings which
are able to capture domain-specific syntac-
tic and semantic similarities. The result-
ing approach obtained a cosine similarity
score of 0.69 in sub-task 5.1 - Microblogs
and 0.68 in sub-task 5.2 - News Headlines.

1 Introduction

Sentiment Analysis on financial texts has received
increased attention in recent years (Nardo et al.,
2016). Neverthless, there are some challenges yet
to overcome (Smailović et al., 2014). Financial
texts, such as microblogs or newswire, usually
contain highly technical and specific vocabulary or
jargon, making the develop of specific lexical and
machine learning approaches necessary. Most of
the research in Sentiment Analysis in the financial
domain has focused in analyzing subjective text,
labeled with explicitly expressed sentiment.

However, it is also common to express finan-
cial sentiment in an implicit way. Business news
stories often refer to events that might indicate a
positive or negative impact, such as in the news
title “company X will cut 1000 jobs”. Economic
indicators, such as unemployment and future state
modifiers such as drop or increase can also pro-
vide clues on the implicit sentiment (Musat and
Trausan-Matu, 2010). Contrary to explicit expres-
sions (subjective utterances), factual text types of-
ten contain objective statements that convey a de-
sirable or undesirable fact (Liu, 2012).

Recent work proposes to consider all types of
implicit sentiment expressions (Van de Kauter
et al., 2015). The authors created a fine grained
sentiment annotation procedure to identify polar
expressions (implicit and explicit expressions of
positive and negative sentiment). A target (com-
pany of interest) is identified in each polar expres-
sion to identify the sentiment expressions that are
relevant. The annotation procedure also collected
information about the polarity and the intensity of
the sentiment expressed towards the target. How-
ever, there is still no automatic approach, either
lexical-based or machine learning based, that tries
to model this annotation scheme.

In this work, we propose to tackle the afore-
mentioned problem by taking advantage of unsu-
pervised learning of word embeddings in finan-
cial tweets and financial news headlines to con-
struct a domain-specific syntactic and semantic
representation of words. We combine bag-of-
embeddings with traditional approaches, such as
pre-processing techniques, bag-of-words and fi-
nancial lexical-based features to train a regressor
for sentiment polarity and intensity. We study
how different regression algorithms perform using
all features in two different sub-tasks at SemEval-
2017 Task 5: microblogs and news headlines men-
tioning companies/stocks. Moreover, we compare
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Sub-task Company Text Span Sentiment Score
5.1 - Microblogs JPMorgan “its time to sell banks” -0.763
5.2 - Headlines Glencore “Glencore’s annual results beat forecasts” +0.900

Table 1: Training set examples for both sub-tasks.

how different combinations of features perform
in both sub-tasks. The system source code and
word embeddings developed for the competition
are publicly available.1

The remainder of the paper is organized as fol-
lows. We start by describing SemEval-2017 Task
5 and how we created financial-specific word em-
beddings. In Section 4 we present the implemen-
tation details of the system created for the com-
petition followed by the experimental setup. We
then present the experimental results and analysis,
ending with the conclusions of this work.

2 Task Description

The task 5 of SemEval 2017 (Cortis et al., 2017)
consisted of fine-grained sentiment analysis of fi-
nancial short texts and it was divided in two sub-
tasks based on the type of text. Sub-task 5.1 –
Microblogs – consisted of stocktwits and tweets
focusing on stock market events and assessments
from investors and traders. Companies/stocks
were identified using stock symbols, the so called
cashtags, e.g.“$AMZN” for the company Ama-
zon.com, Inc. Sub-task 5.2 – News Headlines –
consisted of sentences extracted from Yahoo Fi-
nance and other financial news sources on the in-
ternet. In this case, companies/stocks were iden-
tified using their canonical name and were previ-
ously annotated by the task organizers.

The goal of both sub-tasks was the follow-
ing: predict the sentiment polarity and intensity
for each of the companies/stocks mentioned in a
short text instance (microblog message or news
sentence). The sentiment score is a real con-
tinuous variable in the range of -1.0 (very nega-
tive/bearish) to +1.0 (very positive/bullish), with
0.0 designating neutral sentiment. Table 1 presents
two examples from the training set. Task organiz-
ers provided 1700 microblog messages for train-
ing and 800 messages for testing in sub-task 5.1,
while in sub-task 5.2, 1142 news sentences were
provided for training and 491 for testing. Sub-
missions were evaluated using the cosine similar-

1https://github.com/saleiro/
Financial-Sentiment-Analysis

ity (Cortis et al., 2017).

3 Financial Word Embeddings

Mikolov et al. (2013a) created word2vec, a com-
putational efficient method to learn distributed
representation of words, where each word is rep-
resented by a distribution of weights (embed-
dings) across a fixed set of dimensions. Further-
more, Mikolov et al. (2013b) showed that this rep-
resentation is able to encode syntactic and seman-
tic similarities in the embedding space.

The training objective of the skip-gram model,
defined by Mikolov et al. (2013b), is to learn the
target word representation (embeddings) that max-
imize the prediction of its surrounding words in a
context window. Given the wt word in a vocabu-
lary the objective is to maximize the average log
probability:

1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log P (wt+j |wt) (1)

where c is the size of the context window, T is
the total number of words in the vocabulary and
wt+j is a word in the context window of wt. After
training, a low dimensionality embedding matrix
E encapsulates information about each word in the
vocabulary and its use (surrounding contexts).

We used word2vec to learn word embeddings
in the context of financial texts using unlabeled
tweets and news headlines mentioning compa-
nies/stocks from S&P 500. Tweets were collected
using the Twitter streaming API with cashtags of
stocks titles serving as request parameters. Ya-
hoo Finance API was used for requesting finan-
cial news feeds by querying the canonical name of
companies/stocks. The datasets comprise a total
of 1.7M tweets and 626K news titles.

We learned separate word embeddings for
tweets and news headlines using the skip-gram
model. We tried several configurations of
word2vec hyperparameters. The setup resulting in
the best performance in both sub-tasks was skip-
gram with 50 dimensions, removing words occur-
ring less than 5 times, using a context window of
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5 words and 25 negative samples per positive ex-
ample.

Even though the text collections for training
embeddings were relatively small, the resulting
embedding space exhibited the ability to capture
semantic word similarities in the financial con-
text. We performed simple algebraic operations
to capture semantic relations between words, as
described in Mikolov et al. (2013c). For in-
stance, the skip-gram model trained on tweets
shows that vector (“bearish”) - vector(“loss”) +
vector(“gain”) results in vector (“bullish”) as most
similar word representation.

4 Approach

In this section we describe the implementation de-
tails of the proposed approach.

4.1 Pre-Processing

A set of pre-processing operations are applied to
every microblog message and news sentence in the
training/test sets of sub-tasks 5.1 and 5.2, as well
as in the external collections for training word em-
beddings:

• Character encoding and stopwords: every
message and headline was encoded in UTF-
8. Standard english stopword removal is also
applied.

• Company/stock and cash obfuscation:
both cashtags and canonical company
names strings were replaced by the string
company . Dollar or Euro signs followed

by numbers were replaced by the string
cash amount .

• Mapping numbers and signs: numbers
were mapped to strings using bins (0-10, 10-
20, 20-50, 50-100, >100). Minus and plus
signs were coverted to minus and plus, “B”
and “M” to billions and millions, respec-
tively. The % symbol was converted to per-
cent. Question and exclamation marks were
also converted to strings.

• Tokenization, punctuation, lowercasing:
tokenization was performed using Twok-
enizer (Gimpel et al., 2011), the remaining
punctuation was removed and all characters
were converted to lowercase.

4.2 Features
We combined three different group of features:
bag-of-words, lexical-based features and bag-of-
embeddings.

• Bag-of-words: we apply standard bag-of-
words as features. We tried unigrams, bi-
grams and tri-grams with unigrams proving
to obtain higher cosine similarity in both sub-
tasks.

• Sentiment lexicon features: we incorporate
knowledge from manually curated sentiment
lexicons for generic Sentiment Analysis as
well as lexicons tailored for the financial do-
main. The Laughran-Mcdonald financial sen-
timent dictionary (Bodnaruk et al., 2015) has
several types of word classes: positive, neg-
ative, constraining, litigious, uncertain and
modal. For each word class we create a bi-
nary feature for the match with a word in a
microblog/headline and a polarity score fea-
ture (positive - negative normalized by the
text span length). As a general-purpose sen-
timent lexicon we use MPQA (Wilson et al.,
2005) and created binary features for posi-
tive, negative and neutral words, as well as,
the polarity score feature.

• Bag-of-Embeddings: we create bag-of-
embeddings by taking the average of word
vectors for each word in a text span. We used
the corresponding embedding matrix trained
on external Twitter and Yahoo Finance col-
lections for sub-task 5.1 and sub-task 5.2, re-
spectively.

5 Experimental Setup

In order to avoid overfitting we created a valida-
tion set from the original training datasets pro-
vided by the organizers. We used a 80%-20% split
and sampled the validation set using the same dis-
tribution as the original training set. We sorted
the examples in the training set by the target vari-
able values and skipped every 5 examples. Results
are evaluated using Cosine similarity (Cortis et al.,
2017) and Mean Average Error (MAE). The for-
mer gives more importance to differences in the
polarity of the predicted sentiment while the latter
is concerned with how well the system predicts the
intensity of the sentiment.

We opted to model both sub-tasks as single
regression problems. Three different regressors
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were applied: Random Forests (RF), Support Vec-
tor Machines (SVM) and MultiLayer Perceptron
(MLP). Parameter tuning was carried using 10 fold
cross validation on the training sets.

6 Results and Analysis

In this section we present the experimental results
obtained in both sub-tasks. We provide compari-
son of different learning algorithms using all fea-
tures, as well as, a comparison of different sub-
sets of features, to understand the information con-
tained in each of them and also how they comple-
ment each other.

6.1 Task 5.1 - Microblogs

Table 2 presents the results obtained using all fea-
tures in both validation set and test sets. Results in
the test set are worse than in the validation set with
the exception to MLP. The official score obtained
in sub-task 5.1 was 0.6948 using Random Forests
(RF), which is the regressor that achieves higher
cosine similarity and lower MAE in both training
and validation set.

Regressor Set Cosine MAE
RF Val 0.7960 0.1483
RF Test 0.6948 0.1886
SVR Val 0.7147 0.1944
SVR Test 0.6227 0.2526
MLP Val 0.6720 0.2370
MLP Test 0.6789 0.2132

Table 2: Microblog results with all features on val-
idation and test sets.

We compared the results obtained with differ-
ent subsets of features using the best regressor,
RF, as depicted in Table 3. Interestingly, bag-of-
words (BoW) and bag-of-embeddings (BoE) com-
plement each other, obtaining better cosine simi-
larity than the system using all features. Finan-
cial word embeddings (BoE) capture relevant in-
formation regarding the target variables. As a sin-
gle group of features it achieves a cosine similarity
of 0.6118 and MAE of 0.2322. It is also able to
boost the overall performance of BoW with gains
of more than 0.06 in cosine similarity and reduc-
ing MAE more than 0.03.

The individual group of features with best per-
formance is Bag-of-words while the worst is a
system trained using Lex (only lexical-based fea-
tures). While Lex alone exhibits poor perfor-

mance, having some value but marginal, when
combined with another group of features, it im-
proves the results of the latter, as in the case of
BoE + Lex and BoW + Lex.

Features Cosine MAE
Lex 0.3156 0.3712
BoE 0.6118 0.2322
BoW 0.6386 0.2175
BoE + Lex 0.6454 0.2210
Bow + Lex 0.6618 0.2019
Bow + BoE 0.7023 0.1902
All 0.6948 0.1886

Table 3: Features performance breakdown on test
set using RF.

6.2 Task 5.2 - News Headlines
Results obtained in news headlines are very differ-
ent from the ones of the previous sub-task, prov-
ing that predicting sentiment polarity and intensity
in news headlines is a complete different problem
compared to microblogs. Table 4 shows that MLP
obtains the best results in the test set using both
metrics while SVR obtains the best performance in
the validation set. The best regressor of sub-task
5.1, RF is outperformed by both SVR and MLP.
The official result obtained at sub-task 5.2 was a
cosine similarity of 0.68 using MLP.

Regressor Set Cosine MAE
RF Val 0.5316 0.2539
RF Test 0.6562 0.2258
SVR Val 0.6397 0.2422
SVR Test 0.6621 0.2424
MLP Val 0.6176 0.2398
MLP Test 0.6800 0.2271

Table 4: News Headlines results with all features
on validation and test sets.

Table 5 shows the results of the different groups
of features in sub-task 5.2 for MLP regressor. The
most evident observation is that word embeddings
are not effective in this scenario. On the other
hand, lexical based features have significantly bet-
ter performance in news headlines than in mi-
croblogs. Despite this, the best results are obtained
using all features.

6.3 Analysis
Financial word embeddings were able to encap-
sulate valuable information in sub-task 5.1 - Mi-
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Features Cosine MAE
BoE 0.0383 0.3537
Lex 0.5538 0.2788
BoW 0.6420 0.2364
BoE + Lex 0.5495 0.2830
BoW + Lex 0.6733 0.2269
BoW + BoE 0.6417 0.2389
All 0.6800 0.2271

Table 5: Features performance breakdown on test
set using MLP.

croblogs but not so much in the case of sub-task
5.2 - News Headlines. We hypothesize that as we
had access to a much smaller dataset (∼ 600K)
for training financial word embeddings for news
headlines, this resulted in reduced ability to cap-
ture semantic similarities in the financial domain.
Other related works in Sentiment Analysis usually
take advantage of a much larger dataset for train-
ing word embeddings (Deriu et al., 2016).

On the other hand, lexical features showed poor
performance in microblog texts but seem to be
very useful using news headlines. The fact that
microblogs have poor grammatically constructed
texts, slang and informal language reveals that fi-
nancial lexicals created using well written and for-
mal financial reports, result better in news head-
lines rather than in microblog texts.

7 Conclusions

Work reported in this paper is concerned with the
problem of predicting sentiment polarity and in-
tensity of financial short texts. Previous work
showed that sentiment is often depicted in an im-
plicit way in this domain. We created financial-
specific continuous word representations in order
to obtain domain specific syntactic and semantic
relations between words. We combined traditional
bag-of-words and lexical-based features with bag-
of-embeddings to train a regressor of both sen-
timent polarity and intensity. Results show that
different combination of features attained differ-
ent performances on each sub-task. Future work
will consist on collecting larger external datasets
for training financial word embeddings of both
microblogs and news headlines. We also have
planned to perform the regression analysis using
Deep Neural Networks.
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Abstract

This paper describes the improvements
that we have applied on CAMR baseline
parser (Wang et al., 2016) at Task 8 of
SemEval-2016. Our objective is to in-
crease the performance of CAMR when
parsing sentences from scientific articles,
especially articles of biology domain more
accurately. To achieve this goal, we built
two wrapper layers for CAMR. The first
layer, which covers the input data, will
normalize, add necessary information to
the input sentences to make the input de-
pendency parser and the aligner better
handle reference citations, scientific fig-
ures, formulas, etc. The second layer,
which covers the output data, will mod-
ify and standardize output data based on
a list of scientific concept fixing patterns.
This will help CAMR better handle bio-
logical concepts which are not in the train-
ing dataset. Finally, after applying our ap-
proach, CAMR has scored 0.65 F-score1

on the test set of Biomedical training data2

and 0.61 F-score on the official blind test
dataset.

1 Introduction

Since Abstract Meaning Representation (AMR)
was published by Banarescu et al. (2013) for the
first time in 2013, it has been considered by many
researchers in Natural Language Processing do-
main. In this trend, the task of AMR has been
held continuously for two years in SemEval-2016
and SemEval-2017. There have been many parsers

1Currently, the datasource for constructing the list of con-
cept fixing patterns are the training, develop and test set of
Biomedical training data

2This data is all freely available to download at
http://amr.isi.edu/download.html

shown its outstanding performance for high F-
score points like RIGA (Barzdins and Gosko,
2016), CAMR, CU-NLP (Foland and Martin,
2016), etc.

Inspired by the performance of CAMR in
SemEval-2016 Task 8, we selected it as our base-
line parser for SemEval-2017 Task 9 - Subtask
1: Parsing Biomedical Data. The parsing task of
2017 has a particular domain but there are many
scientific terms, formulas, reference quotations,
numbers, etc. That makes the task of 2017 very
challenging.

According to Wang et al. (2015a,b), the accu-
racy of CAMR depends greatly on the accuracy of
input dependency parser. When we conduct train-
ing and testing on Biomedical training data used
for SemEval-2017, we have found that CAMR is
not good in handling the reference citations, sci-
entific figures, formulas, etc which are commonly
used in scientific papers. This is partly due to the
dependency parser not correctly handling this kind
of information. And also, the aligner can not ful-
fill its mission. We have built the first wrapper to
support solving the problem related to these infor-
mation in input data.

At the same time, we found CAMR can mem-
orize very well AMR structure of concepts which
have appeared in the training data. However, when
parsing testing sentences which have unknown
concepts (concepts which are not in training cor-
pus), the parser will not be able to parse and return
a single node to indicate the unknown concept (the
first error form described in Subsection 3.1). An-
other weakness of CAMR is the terminal condi-
tion. The parser will finish parsing the sentence
when the number of elements in the queue has run
out. In the output result, we found that many AMR
structures of concepts are not in good form (the
second error form described in Subsection 3.1).
Therefore, we proposed to build a second wrap-
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per to fix the parsing error on output data, which
will help CAMR deal with these issues better.

2 The first wrapper layer

Unlike the corpus used for Task 8 of SemEval-
2016, the Biomedical training data corpus used for
Task 9 of SemEval-2017 are sentences from sci-
entific articles related to the topic cancer pathway
discovery. Generally, the sentences from scientific
papers contain a lot of reference citations, scien-
tific figures, formulas, etc.

In the gold AMR structure, the reference ci-
tations are represented by node describe-01.
This node appeared 2,756 times in the training
set and the develop set of Biomedical training
data. Similarly, in the test set, describe-01
node appeared 263 times. The number of nodes
describe-01 accounted for a big amount in the
corpus. Better handling of these reference cita-
tions will increase the accuracy of the parser sig-
nificantly. However, with the following reference
citation formats, input dependency parser is al-
most impossible to handle and consider the refer-
ence citations as meaningless symbols:

1. “[1]”

2. “(1), (2), (3)”

3. “(Wang. et al, 2016)”

Obviously, with the reference citation formats
of 1, 2 above, dependency parser will handle these
citations as usual numbers. With the reference
citation format of 3, it is also not easy for de-
pendency parser because “(Wang. et al, 2016)”
does not have the structure of a normal sentence
or a clause. Since dependency parser did not han-
dle these quotation formats properly, the aligning
and the training process would not achieve good
results. For example with the reference citation
format of 3, the word “et” can not be aligned to
node other in the gold AMR. And in the train-
ing stage, CAMR won’t be able to know that the
word “et” is related to node other.

And there are also other difficulties such as:
the reference citation formats in the corpus have
more complex forms than the above examples like
“(Wang. et al, 2016a; Wang. et al, 2016b)”, there
are XML annotations in the input sentences,...

To support solving this problem, we write a tool
to remove all XML annotations in the input data,

Node Wrapper OFF Wrapper ON
describe-01 49 835

publication-91 2 497
person 871 993
other 406 501
and 4731 5180

Table 1: Number of successfully aligned node be-
fore and after the application of the first wrapper

then the tool updates these citation formats to the
following patterns:

1. “[1]”→ “(described in publication 1)”

2. “(1), (2), (3)”→ “(described in publication 1
and 2 and 3)”

3. “(Wang. et al, 2016)” → “(described in
publication of Wang and other members in
2016)”

For more complex forms of the reference cita-
tion formats, the tool also follows the above pat-
terns. For example, “(Wang. et al, 2016a; Wang.
et al, 2016b)” should be updated to “(described in
publication of Wang and other members in 2016;
described in publication of Wang and other mem-
bers in 2016)”.

These modifications not only help dependency
parser can operate more accurately but also help
the aligner (Flanigan et al., 2014) align more accu-
rately, especially with node describe-01 and
its sub-nodes (publication-91, person,
other, and) in the AMR structure.

In addition, we also have a few other modifi-
cations with the abbreviations of measuring unit
and the abbreviations of scientific term on the first
wrapper. The abbreviations of measuring unit can
be find out easily by grepping out all :unit edges
in the traning data. With the abbreviations of sci-
entific term, we have to find them manually. These
modifications include:

• Replace the abbreviations of measuring unit
with its full form (for example “kDa” →
“kilodalton”, “pg/ml” → “picogram per
milliliter”, etc.)

• Replace the abbreviations of scientific term
to its full form (for example “UM”→ “uveal
melanoma”)
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Selumetinib in combination with TMZ enhances
DNA damage.
(a) CAMR parse
(x6 / enhance-01

:ARG0 (x1 / selumetinib)
:condition (x3 / combine-01

:ARG2 (x5 / tmz))
:ARG1 (x8 / damage-01

:ARG1 (x7 / enzyme
:name (n / name
:op1 "DNA"))))

(b) CAMR parse + our addition
(x6 / enhance-01

:ARG0 (x1 / small-molecule
:name (n1 / name
:op1 "selumetinib"))

:condition (x3 / combine-01
:ARG2 (x5 / small-molecule
:name (n3 / name

:op1 "TMZ")))
:ARG1 (x8 / damage-01

:ARG1 (x7 / nucleic-acid
:name (n / name

:op1 "DNA")
:wiki "DNA")))

Figure 1: An example of CAMR parsing result and
our addition

Table 1 represents the number of aligned nodes
before and after the application of our first wrap-
per. Obviously the number of aligned nodes is in-
creased substantially. Especially with nodes often
appear in AMR structure describe the reference ci-
tations. The more successfully aligned nodes, the
easier for CAMR in the traning stage.

3 The second wrapper layer

3.1 Parsing error detecting method

We classify parsing errors of CAMR into two main
types. First, we propose methods to identify all the
errors of the two types of the returned output of
CAMR. Figure 1 represents the results of CAMR’s
original parsing result and the parsing result after
being updated by our system.

The first error type usually happens with the
unknown concept, which does not appear in the
training set. When processing an unknown con-
cept, CAMR will return an individual node such
as (x1 / selumetinib) or (x5 / tmz).
To be able to identify the errors of this type
in the returned results, we will collect a list
of all of node labels in gold AMR of training
set. From this list, we will traverse through
all nodes on AMR results, if any node label is

not on this list, it’s likely that node is a presen-
tation for an unknown concept. For example,
with the AMR in Figure 1b, then this list is:
{enhance-01, small-molecule, name,
"selumetinib", combine-01, "TMZ",
damage-01 , nucleic-acid, "DNA"}.
Node selumetinib and tmz (without quotes)
are not in the list above, so these may be unknown
concepts.

Second error form is related to the structure of
the AMR node such as wrong concept type, miss-
ing important sub-node or having wrong sub-node,
null node, null edge, etc. As in Figure 1a, the
"DNA" node is identified as an enzyme. But in
the training set, there is no enzyme node which
has the :name edge connected to a "DNA" node.
"DNA" is always a nucleic-acid in the train-
ing set. The method to identify this error type is
the same as above, but instead just collect a list
of node labels, we will collect a list of all concept
nodes in the training set. A node is called con-
cept node when it has a direct :name edge. We
call this list is the list of the AMR structure con-
cept. When traversing through all nodes in the re-
sult AMR, if there is a :name edge appeared in a
node of the AMR structure, we will compare that
node with these nodes in the list of the AMR struc-
ture concept. If the list doesn’t contain that node,
that mean this is a new node created by CAMR.
And there is a probability that the node contains
some errors. We just stop at identifying concept
node in AMR structure which has the probability
of containing errors. It still needs the help of a
human expert to give out a final judgment that the
concept node of AMR structure is correct or not.

3.2 Parsing error fixing method

From the two error lists above, we will build a new
list with each element has the form “Label-Error
AMR-Fixed AMR”. We call this the list of con-
cept fixing patterns. Two ingredients Label and
Error AMR are taken directly from the two error
lists above. Filling the Fixed AMR would require
the support of human experts. Particularly for
Biomedical training data, we refer the gold AMR
in the test set of training data to fill out the Fixed
AMR.

Table 2 represents the list of concept fixing pat-
terns for the example in Figure 1.

After having the parsing result of CAMR
as in Figure 1a. We will traverse all the
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Label selumetinib
Error AMR (x1 / selumetinib)

Fixed AMR
(x1 / small-molecule
:name (n1 / name
:op1 "selumetinib"))

Label tmz
Error AMR (x5 / tmz)

Fixed AMR
(x5 / small-molecule
:name (n3 / name
:op1 "TMZ"))

Label enzyme

Error AMR
(x7 / enzyme
:name (n / name
:op1 "DNA"))

Fixed AMR
(x7 / nucleic-acid
:name (n / name
:op1 "DNA")

:wiki "DNA")

Table 2: The list of concept fixing patterns for the
example in Figure 1

nodes in the result AMR. When traversing node
(x1 / selumetinib), we will find out these
elements in the list of concept fixing patterns
which have Label is selumetinib. We will
compare the structure of traversing node with
the structure in Error AMR part of these ele-
ments. If there are a structural matching, we
will replace the traversing node structure with
the structure in the Fixed AMR part of the
corresponding element. Similarly, the structure
(x5 / tmz) and (x7 / enzyme :name
(n / name :op1 "DNA")) will also be up-
dated to the Fixed AMR structure in the list of con-
cept fixing patterns. The final output will the the
same as the AMR structure in 1b.

4 Experiment

We used the Biomedical training data which have
been split into training, develop and test set for ex-
periments. About CAMR, we used the version
which was described in (Wang et al., 2016) as
a baseline parser with its default configurations.
But, we have not used named entity tags and se-
mantic role labels in the experiment stage. To
evaluate the output result, we used the Smatch tool
(Cai and Knight, 2013) at version 16.11.14.

Firstly, we implemented the first wrapper layer
as the proposed method in Section 2. Then, we
started training on two systems. The training data
is the collection of all sentences in training set and
develop set of Biomedical training data. On the

System Precision Recall F-score
Baseline parser 0.67 0.50 0.57
OurSystem(W1) 0.70 0.53 0.60
OurSystem(W12) 0.73 0.58 0.65

Table 3: Comparison with the baseline parser

first system, CAMR was trained with the origi-
nal training data, which had not been updated by
our first wrapper layer. On the other system, the
training data had been updated by our first wrap-
per layer. Both of two systems were trained in 10
iterations.

After that, two systems were tested with all sen-
tences from the test set of Biomedical training
data. In order to fix the parsing error of CAMR,
we need to build the list of concept fixing patterns.
We implemented a tool to detect the concept pars-
ing errors. This tool will traverse all the nodes in
the output result of CAMR when parsing test set of
training data to collect a list of AMR node which
has the probability of containing errors as the pro-
posed method in Subsection 3.1. After finished de-
tecting error, the tool will return the list of concept
fixing patterns. Each element of the list will have
form of “Label-Error AMR-Fixed AMR”. We then
refer the gold AMR in the training data to fill out
the “Fixed AMR” part. We have to do this manu-
ally to guarantee that the detected error node actu-
ally contains error.

After having the list of concept fixing patterns,
we will have another tool to update the parsing re-
sult based on the list. We only run this tool on
the second system. The output result of the first
system is keep original. Table 3 shows our experi-
ment results. The first row is the evaluated score of
the baseline parser. The second row is the score of
our system when only used the first wrapper layer.
The last row is the score of our system when have
both two wrappers activated. There is a special
note about wrapper 2: currently, we have to ex-
tract the data from the training, develop and test set
of the Biology training data to fill out the “Fixed
AMR” part.

With the official blind test set, our system used
the first wrapper layer to normalize and update
input sentences. Then, our system automatically
used the above pre-built list of concept fixing pat-
terns to fix the parsing error of CAMR before re-
turn the final output result. We achieved 0.61 F-
score on the official blind test set.
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5 Conclusion

The main contribution of this paper is the second
wrapper layer which can be used very effective
in finding concept parsing errors of AMR parsers.
Although the improvements have been developed
in CAMR, but both of these two wrappers can eas-
ily be applied to other AMR parsers.

However, currently, our approach requires man-
ual processing to create the concept fixing pat-
terns. In further work, we will focus on re-
searching about automatically create the fixing
patterns for a few particular domains. We intend to
use open knowledge databases of these domains,
the combination with supervised machine learning
methods and pre-built corpus to create the concept
fixing patterns automatically.
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Abstract

We present an end-to-end neural encoder-
decoder AMR parser that extends an
attention-based model by predicting the
alignment between graph nodes and sen-
tence tokens explicitly with a pointer
mechanism. Candidate lemmas are pre-
dicted as a pre-processing step so that the
lemmas of lexical concepts, as well as
constant strings, are factored out of the
graph linearization and recovered through
the predicted alignments. The approach
does not rely on syntactic parses or ex-
tensive external resources. Our parser ob-
tained 59% Smatch on the SemEval test
set.

1 Introduction

The task of parsing sentences to Abstract Meaning
Representation (AMR) (Banarescu et al., 2013)
has recently received increased attention. AMR
represents sentence meaning with directed acyclic
graphs (DAGs) with labelled nodes and edges. No
assumptions are made about the relation between
an AMR and the structure of the sentence it rep-
resents: the representation is not assumed to have
any relation to the sentence syntax, no alignments
are given and no distinction is made between con-
cepts that correspond directly to lexemes in the in-
put sentences and those that don’t.

This underspecification creates significant chal-
lenges for training an end-to-end AMR parser,
which are exacerbated by the relatively small sizes
of available training sets. Consequently most
AMR parsers are pipelines that make extensive use
of additional resources. Neural encoder-decoders
have previously been proposed for AMR pars-
ing, but reported accuracies are well below the
state-of-the-art (Barzdins and Gosko, 2016), even

with sophisticated pre-processing and categoriza-
tion (Peng et al., 2017). The end-to-end neural
approach contrasts with approaches based on a
pipeline of multiple LSTMs (Foland Jr and Mar-
tin, 2016) or neural network classifiers inside a
feature- and resource-rich parser (Damonte et al.,
2017), which have performed competitively.

Our approach addresses these challenges in
two ways: This first is to utilize (noisy) align-
ments, aligning each graph node to an input to-
ken. The alignments are predicted explicitly by
the neural decoder with a pointer network (Vinyals
et al., 2015), in addition to a standard attention
mechanism. Our second contribution is to in-
troduce more structure in the AMR linearization
by distinguishing between lexical and non-lexical
concepts, noting that lexical concepts (excluding
sense labels) can be predicted with high accuracy
from their lemmas. The decoder predicts only
delexicalized concepts, recovering the lexicaliza-
tion through the lemmas corresponding to the pre-
dicted alignments.

Experiments show that our extensions increase
parsing accuracy by a large margin over a standard
attention-based model.

2 Graph Linearization and
Lemmatization

We start by discussing how to linearize AMR
graphs to enable sequential prediction. AMR node
labels are referred to as concepts and edge labels
as relations. A special class of node modifiers,
called constants, are used to denote the string val-
ues of named entities and numbers. An example
AMR graph is visualized in Figure 1.

In AMR datasets, graphs are represented as
spanning trees with designated root nodes. Edges
whose direction in the spanning tree are reversed
are marked by adding “-of” to the argument label.
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Figure 1: AMR graph aligned to the sentence it
represents.

:focus( respond-01
:ARG0( obsteoblast )
:ARG1( treat-04

:ARG1*( obsteoblast )
:ARG2( protein

:name( name
:op1( "FGF" ) ) ) ) )

Figure 2: Standard linearized representation of the
AMR in Figure 1.

Edges not included in the spanning tree (reentran-
cies) are indicated by adding dummy nodes point-
ing back to the original nodes.

The first linearization we propose (which we re-
fer to as standard) is similar, except that nodes are
identified through their concepts rather than ex-
plicit node identifiers. Constants are also treated
as nodes. Reentrancy edges are marked with *
and the concepts of their dependent nodes are sim-
ply repeated. During post-processing reentrancies
are recovered heuristically by finding the closest
nodes in the linear representation with the same
concepts. An example of this representation is
given in Figure 2.

In the second representation (lexicalized) ev-
ery graph node is aligned to an input token. The
alignments could be encoded as strings in the
graph linerization, but in our model we will predict
them separately. Every constant is replaced with a
placeholder CONST token; the constant string is

:focus( <2> -01
:ARG0( <1> -u )
:ARG1( <5> -04
:ARG1*( <1> -u )
:ARG2( <4> protein

:name( <4> name
:op1( <4> CONST ) ) ) ) )

Figure 3: Delexicalized linearization, with align-
ments, of the AMR in Figure 1.

then recovered as a post-processing step through
the predicted token alignment.

We classify concepts in an AMR graph as either
lexical, i.e. corresponding directly to the meaning
of an aligned token, or non-lexical. This distinc-
tion, together with alignments, is annotated explic-
itly in Minimal Recursion Semantics predicates in
the English Resource Grammar (ERG) (Copestake
et al., 2005). However for AMR we classify con-
cepts heuristically, based on automatic alignments.
We assume that each word in a sentence aligns to
at most one lexical node in its AMR graph. Where
multiple nodes are aligned to the same token, usu-
ally forming a subgraph, the lowest element is
taken to be the lexical concept.

A subset of AMR concepts are predicates based
on PropBank framesets (Palmer et al., 2005), rep-
resented as sense-labeled lemmas. The remain-
ing lexical concepts are usually English words in
lemma form, while non-lexical concepts are usu-
ally special keywords. Lemmas can be predicted
with high accuracy from the words they align to.

Our third linearization (delexicalized) factorizes
the lemmas of lexical concepts out of the lineriza-
tion, so that they are represented by their align-
ments and sense labels, e.g. -01 for predicates
and -u for other concepts. Candidate lemmas are
predicted independently and lexicalized concepts
are recovered as a post-processing step. This rep-
resentation (see Figure 3) decreases the vocabu-
lary of the decoder, which simplifies the learning
problem and speeds up the parser.

2.1 Pre-processing

We tokenize the data with the Stanford CoreNLP
toolkit (Manning et al., 2014). This tokenization
corresponds more closely to AMR concepts and
constants than other tokenizers we experimented
with, especially due to its handling of hyphenation
in the biomedical domain. We perform POS and
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NE tagging with the same toolkit.
The training data is aligned with the rule-based

JAMR aligner (Flanigan et al., 2014). However,
our approach requires single-token alignments for
all nodes, which JAMR is not guaranteed to give.
We align each Wiki node to the token with the
highest prefix overlap. Other nodes without align-
ments are aligned to the left-most alignment of
their children (if they have any), otherwise to that
of their parents. JAMR aligns multi-word named
entities as single subgraph to token span align-
ments. We split these alignments to be 1-1 be-
tween tokens and constants. For other nodes with
multi-token alignments we use the start of the
given span.

For each token we predict candidate lexemes us-
ing a number of lexical resources. A summary of
the resources used for each lexical type is given in
Table 1. The first resource is dictionaries extracted
from the aligned training data of each type, map-
ping each token or span of tokens to its most likely
concept lemma or constant. A similar dictionary
is extracted from Propbank framesets (included
in LDC2016E25) for predicate lemmas. Next we
use WordNet (Miller, 1995), as available through
NLTK (Bird et al., 2009), to map words to verbal-
ized forms (for predicates) or nominalized forms
(for other concepts) via their synsets, where avail-
able. To predict constant strings corresponding
to unseen named entities we use the forms pre-
dicted by the Stanford NE tagger (Finkel et al.,
2005), which are broadly consistent with the con-
ventions used for AMR annotation. The same pro-
cedure converts numbers to numerals. We use SU-
Time (Chang and Manning, 2012) to extract nor-
malized forms of dates and time expressions.

Input sentences and output graphs in the train-
ing data are pre-processed independently. This
introduces some noise in the training data, but
makes it more comparable to the setup used dur-
ing testing. The (development set) oracle accuracy
is 98.7% Smatch for the standard representation,
96.16% for the aligned lexicalized representation
and 93.48% for the unlexicalized representation.

3 Pointer-augmented neural attention

Let e1:I be a tokenized English sentence, f1:J a se-
quential representation of its AMR graph and a1:J

an alignment sequence of integers in the range
1 to I . We propose an attention-based encoder-
decoder model (Bahdanau et al., 2015) to encode

e and predict f and a, the latter with a pointer net-
work (Vinyals et al., 2015). We use a standard
LSTM architecture (Jozefowicz et al., 2015).

For every token e we embed its word, POS tag
and named entity (NE) tag as vectors; these em-
beddings are concatenated and passed through a
linear layer such that the output g(e) has the same
dimension as the LSTM cell. This representation
of e is then encoded with a bidirectional RNN.
Each token ei is represented by a hidden state hi,
which is the concatenation of its forward and back-
ward LSTM state vectors.

Let sj be the RNN decoder hidden state at out-
put position j. We set s0 to be the final RNN state
of the backward encoder LSTM. The alignment aj

is predicted at each time-step with a pointer net-
work (Vinyals et al., 2015), although it will only
affect the output when fj is a lexical concept or
constant. The alignment logits are computed with
an MLP (for i = 1, . . . , I):

ui
j = wT tanh(W (1)hi +W (2)sj).

The alignment distribution is then given by

p(aj |a1:j−1, f1:j−1, e) = softmax(uj).

Attention is computed similarly, but parameter-
ized separately, and the attention distribution αj

is not observed. Instead qj =
∑i=I

i=1 α
i
jhi is a

weighted average of the encoder states.
The output distribution is computed as follows:

RNN state sj , aligned encoder representation haj

and attention vector qj are fed through a linear
layer to obtain oj , which is then projected to the
output logits vj = Roj + b, such that

p(fj |f1:j−1, e) = softmax(vj).

Let v(fj) be the decoder embedding of fj . To
compute the RNN state at the next time-step, let dj

be the output of a linear layer over d(fj), qj and
haj . The next RNN state is then computed as

sj+1 = RNN(dj , sj).

We perform greedy decoding. We ensure that
the output is well-formed by skipping over out-of-
place symbols. Repeated occurrences of sibling
subtrees are removed when equivalent up to the
argument number of relations.
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Candidate Type JAMR alignments PropBank WordNet NE Tagger Lemmatizer
Predicates 3 3 3 7 3

Other concepts 3 7 3 7 3

Constants 3 7 7 3 3

Wikification 3 7 7 3 7

Table 1: Resources used to predict candidate lemmas for different types of AMR outputs. The left-most
resource that has a prediction available is used.

Model Smatch F1
Attention, no tags 54.60
Attention, with tags 57.27
Pointer, lexicalized 57.99
Pointer, delexicalized 59.18

Table 2: Development set results for the Bio AMR
corpus.

4 Experiments

We train our models with the two AMR datasets
provided for the shared task: LDC2016E25, a
large corpus of newswire, weblog and discussion
forum text with a training set of 35,498 sentences,
and a smaller dataset in the biomedical domain
(Bio AMR Corpus) with 5,542 training sentences.
When training a parser for the biomedical domain
with minibatch SGD, we sample Bio AMR sen-
tences with a weight of 7 to each LDC sentence to
balance the two sources in sampled minibatches.

Our models are implemented in Tensor-
Flow (Abadi et al., 2015). We train models with
Adam (Kingma and Ba, 2015) with learning rate
0.01 and minibatch size 64. Gradients norms are
clipped to 5.0 (Pascanu et al., 2013). We use
single-layer LSTMs with hidden state size 256,
with dropout 0.3 on the input and output connec-
tions. The encoder takes word embeddings of size
512, initialized (in the first 100 dimensions) with
embeddings trained with a structured skip-gram
model (Ling et al., 2015), and POS and NE em-
beddings of size 32. Singleton tokens are replaced
with an unknown word symbol with probability
0.5 during training.

We compare our pointer-based architecture
against an attention-based encoder-decoder that
does not make use of alignments or external lex-
ical resources. We report results for two versions
of this baseline: In the first, the input is purely
word-based. The second embeds named entity
and POS embeddings in the encoder, and utilizes
pre-trained word embeddings. Development set

Metric Neural AMR (average)
Smatch 59 (53.67)
Unlabeled 63 (57.83)
No WSD 59 (53.67)
Named Entities 66 (55.83)
Wikification 18 (33.00)
Negation 27 (23.17)
Concepts 74 (71.17)
Reentrancies 43 (34.17)
SRL 57 (50.33)

Table 3: SemEval test set results on various met-
rics, reported as rounded to the nearest percentage.

Model Smatch F1
Bio AMR 59.27
LDC 61.89

Table 4: Test set results for the Bio AMR and
LDC2016E25 corpora.

results are given in Table 2. We see that POS
and NE embeddings give a substantial improve-
ment. The performance of the baseline with richer
embeddings is similar to that of the first pointer-
based model. The main difference between these
two models is that the latter uses pointers to pre-
dict constants, so the results show that the gain
due to this improved generalization is relatively
small. The delexicalized representation with sepa-
rate lemma prediction improves accuracy by 1.2%.

Official results on the shared task test set are
presented in Table 3. AMR graphs are evaluated
with Smatch (Cai and Knight, 2013), and further
analysis is done with the metrics proposed by Da-
monte et al. (2017). The performance of our model
is consistently better than the shared task average
on all metrics except for Wikification; the reason
for this is that we are not using a Wikifier to pre-
dict Wiki entries. The performance on predict-
ing reentrancies is particularly encouraging, as it
shows that our pointer-based model is able to learn
to point to concepts with multiple occurrences.
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To enable future comparison we also report re-
sults on the Bio AMR test set, as well as for train-
ing and testing on the newswire and discussion fo-
rum data (LDC2016E25) only (Table 4).

5 Conclusion

We proposed a novel approach to neural AMR
parsing. Results show that neural encoder-decoder
models can obtain strong performance on AMR
parsing by explicitly modelling structure implicit
in AMR graphs.
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Abstract

We present the contribution of Universitat
Pompeu Fabra’s NLP group to the Sem-
Eval Task 9.2 (AMR-to-English Genera-
tion). The proposed generation pipeline
comprises: (i) a series of rule-based graph-
transducers for the syntacticization of the
input graphs and the resolution of mor-
phological agreements, and (ii) an off-the-
shelf statistical linearization component.

1 Setup of the system

The generator we presented for Task 9.2 of Sem-
Eval is a pipeline of graph transducers called
Fabra Open Rule-based Generator (FORGe).1 It
is built upon work presented, e.g., in (Bohnet,
2006; Wanner et al., 2010). It can be also con-
sidered an extended rule-based version of (Balles-
teros et al., 2015). The current generator has been
mainly developed on the dependency Penn Tree-
bank (Johansson and Nugues, 2007) automatically
converted to predicate-argument structures, and
adapted to the AMR inputs using SemEval’s train-
ing and evaluation sets.

1.1 Overview of the pipeline
The core of the generator is rule-based: graph
transduction grammars convert, in several steps,
abstract AMRs into syntactic structures that con-
tain all the morphological features needed to re-
trieve the final forms of all the words. The syntac-
tic structures are then linearized with an off-the-
shelf tool, and finally the final forms of the words
are retrieved. Our generator follows the theoreti-
cal model of the Meaning-Text Theory (Mel’čuk,
1988); the names of the intermediate layers used
in Table 1 come from the MTT terminology.

1A slightly updated version of the submitted system
can be found at https://www.upf.edu/web/taln/
resources

Step Layermtt #rul.
0 Conversion of AMRs format ConS N/A

into CoNLL’09 format
1 Mapping of AMRs onto SemS 190

predicate-argument graphs
2 Assignment of parts SemSpos 96

of speech
3 Derivation of deep syntactic DSyntS 267

structure
4 Introduction of function SSyntS 294

words
5 Resolution of agreements DMorphS 85
6 Linearization SMorphS N/A
7 Retrieval of surface forms Text 1
8 Post-processing Textfinal 4

Table 1: Overview of the AMR-to-text pipeline.

1.2 Input format conversion
Since our generator cannot read the provided
format, we converted the input AMRs to the
CoNLL’09 format (Hajič et al., 2009). We as-
sume that each sentence in the original file has
two components: a three-line comment with some
metadata (id, date, original sentence, etc.) and
the AMR tree. In order to map the AMR tree
to CoNLL, we assume that: (i) each node of the
tree will be defined as either (a) slash-separated
variable-value pair, (b) only the variable name, or
(c) only the value, and (ii) each branch will be de-
fined by a relation name preceded by a colon.

2 Generation from AMRs

There are 932 activated graph-transduction rules
in the pipeline; Steps 0 and 1 are AMR-specific,
while in the rest of the grammars, only one rule is
AMR-specific rule (at Step 3).

2.1 Mapping of AMRs onto
predicate-argument graphs

The mapping produces graphs that contain lin-
guistic information only, which includes mean-
ing bearing units and the following types of roles:
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Arguments and coordinations (ARG0, ARG1, . . . ,
ARGn), relations coming from AMR non-core
and prepositional roles (NonCore), and underspe-
cified relations (Elaboration). Information that
does not need to be generated in the final sen-
tence is excluded: ontological information such
as types of entities (e.g., “person”, “date-entity”)
and relations (e.g., “has-rel-role”, “has-org-role”,
“month”); meta-information such as the origin of
a label (e.g., “Wiki”); etc. For this purpose, we re-
move the corresponding nodes and relations and
connect the remaining nodes. Furthermore, the
AMR core roles are maintained, while all other
roles (non-core, prepositional, coordinations) are
mapped to one single role or to a subgraph that
contains one node and two edges, as, e.g., in the
following example:

N1 N2 → N1 Npurpose N2

purpose
ARG1 ARG2

Since AMRs are provided in a tree format, there
are some reversed argumental relations (ARG0-of,
ARG1-of, etc.). For the sake of a consistent treat-
ment of all argumental relations, these relations
are inverted back in our setting and the “-of” ex-
tension is removed.2

2.2 Assignment of parts of speech

Before building the syntactic structures, we assign
parts of speech to each node of the structure. This
tagging is very rudimentary and slow: rules check
in a lexicon if a node label matches an entry and
retrieve the part of speech from that entry. Since
more than one part of speech is often possible for
one string, rules consult the context in the graph,
if necessary, in order to take a decision.

2.3 Derivation of the deep syntactic structure

This transduction performs a top-down recursive
syntacticization of the semantic graph. It looks for
the syntactic root of the sentence, and from there
for its syntactic dependent(s), for the dependent(s)
of the dependent(s), and so on.

The rules are organized in a cluster of three
grammars. The purpose of the first two grammars
is to identify the root of a syntactic tree in case
the original input structure does not contain one.3

2We are conscious that this transformation makes the task
more challenging. For instance, it sometimes creates cycles
in the graphs. Specific rules address this issue.

3Given that AMRs are provided in tree format, and the
root of this tree is the main node (the root) of the sentence,
this step can seem redundant. But since during Step 1 some

Obviously, verbs are the best candidates for being
the root; we pay special attention to the number
and complexity of dependents that a verb has (a
“heavier” verb is more likely to be a root), and to
the fact that a verb is not on the ARG2 side of a
node that comes from a non-core relation, since
this configuration makes syntacticization less nat-
ural in many cases. Consider the following AMR
graph:

I go have-condition you go
ARG0

ARG1
ARG2

ARG0

In this example, if the first “go” is chosen as the
root, the syntactic tree can unfold as “I go if you
go”. But if the second “go”, which is on the ARG2
side of the “have-condition” non-core node, is se-
lected as the root, the generator is currently unable
to build a sentence, since it should be able to invert
the “if” and has no such information.4

For this task, the main challenge is to produce
a well-formed tree that covers as much of the in-
put graph as possible, while avoiding the possible
dependency conflicts. One major issue to solve
is that one element can (legitimately) be the argu-
ment of several predicates, whereas (i) a syntac-
tic structure is a tree-like structure in which every
node can have only one governor, (ii) some pred-
icates need their argument(s) in syntax, and (iii)
some predicates cannot be realized with their ar-
gument(s). In other words, each argument has to
be assigned to the correct governor in syntax, and
duplicated when needed. The rules keep track of
whether a node has already been used and what it
has been used for.5

In the following example, “peek” is chosen as
the root, “dog” is its dependent, and the other pred-
icates of which “dog” was an argument become its
syntactic dependents. Furthermore, “dog” is du-
plicated in order to create a relative clause (Left:
predicate-argument; Right: Deep-Syntax):

he peek dog black bark he peek dog black bark dog

ARG0 ARG1 ARG1
ARG0

I II ATTR

ATTR
I

nodes are removed (see 2.1), it is possible that the original
root is missing, and the system needs to find a substitute.
More generally, we want our system to be able to generate
without any information about syntactic structure.

4Even for a human it is challenging to generate a natural
sentence; maybe something like “The fact that you go would
be the condition for me to go” would be acceptable.

5For more details on the deep-syntactic structures and
their relation with surface-syntactic structures, see (Balles-
teros et al., 2016).
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2.4 Introduction of function words
The next step towards the realization of the sen-
tence is the introduction of all idiosyncratic words
and of a fine-grained (surface-)syntactic structure
that gives enough information for linearizing and
resolving agreements between the different words.
For this task, we use a valency (subcategoriza-
tion) lexicon built automatically from PropBank
(Kingsbury and Palmer, 2002) and NomBank
(Meyers et al., 2004); see (Mille and Wanner,
2015). For instance, the entry corresponding to
“peek” would contain the following information:

peek VB 01{pos=VB gp={II={prep=at, rel=IOBJ}}}
It indicates that, according to PropBank, the

second argument of “peek” needs the preposition
“at”. Hence, this preposition is introduced in the
surface-syntactic structure, as shown in the follow-
ing example:

he peek at dog the black bark that

SBJ IOBJ PMOD NMOD
NMOD

NMOD

SBJ

AMRs are underspecified in terms of tense, as-
pect, number, and definiteness. For the task, a past
progressive is equally correct as a simple present.
Our generator is able to introduce all types of aux-
iliaries and/or modals, but we set the default verbal
form to simple present. By default, nominal num-
ber is set to singular and definiteness to indefinite.
However, the corresponding rule can take different
decisions: in some cases, the presence of a def-
inite determiner is usually more adequate–for in-
stance, if the noun is modified by a relative clause
(cf. the above example). During this transduction,
anaphora are resolved, and personal pronouns are
introduced in the tree (this includes possessive,
relative and personal pronouns). Some syntac-
tic post-processing rules fix ill-formed structures
when possible.

2.5 Resolution of morpho-syntactic
agreements

Every word must be assigned all necessary mor-
phological information; some information comes
from the deeper strata of the pipeline (as, e.g., ver-
bal tense or finiteness), but some features come
from some other elements of the tree. In English,
for instance, verbs get their person and number
from their subject. In order to resolve these agree-
ments, the rules for this transduction check the
governor/dependent pairs, together with the syn-
tactic relation that links them together. During this
step, parts of speech are set to match the training

data used for the linearizer, and question and ex-
clamation marks are introduced.

2.6 Linearization
The surface-syntactic structures are linearized
with an off-the-shelf tool used in the first SRST
(Belz et al., 2011), a statistical tree linearizer
that orders bottom-up each head and its children
(Bohnet et al., 2011).

2.7 Retrieval of surface forms
With the morpho-syntactic information at
hand for each word, we just need to find the
corresponding surface form. We match the
triple <lemma><POS><morpho-syntactic
features> with an entry of a morphological
dictionary and simply replace the triple by
the surface form. In order to build such a
dictionary, we analyzed a large amount of
data6 and retrieved all possible combinations of
lemma, part of speech and morphological fea-
tures; e.g., for verbs: peek<VB><GER>=peeking;
peek<VB><FIN><PRES><3><SG>=peeks. If sev-
eral surface forms are found for a combination of
features, we keep the most frequent one. The final
sentence corresponding to the running example
would be He peeks at the black dog that barks.

2.8 Post-processing
A few post-processing rules make the output more
readable: the first letter of a sentence is converted
to upper case, punctuation signs are added, under-
scores are replaced by spaces, and spaces before
contracted elements (“’s” and “n’t”) are removed.

3 Results and discussion
Metric FORGe Average
Win pct 43.64 36.668
win+tie pct 57.43 54.19
trueskill 44.9 40.664
BLEU 4.74 11.362

Table 2: Results of the task

It takes in average about 2 seconds to generate
one sentence, 1.7 seconds of which is due to PoS
assignment. Table 2 shows the results that our sys-
tem obtained for the task, compared to the average
results of the other systems; the first three met-
rics are derived from the ranking obtained during
the human evaluation; BLEU is the result of an
n-gram based automatic evaluation. According to

6For this, we used the Open ANC corpus http://www.
anc.org/data/oanc/annotations/
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the organizers of the task, trueskill (highlighted in
bold) is considered the “main” metric for this task.

Our system obtained results slightly above av-
erage for the human-based evaluation, while the
BLEU score is quite low, compared to that of the
other systems. We believe that this is due to the
fact that we prioritized the quality of the output
over coverage: the submitted generator produces
an output for 98.8% of the sentences, but the lat-
ter only contain 74.3% of the total of nodes con-
tained in the predicate-argument graphs (see Sec-
tion 2.1). Indeed, at two points of the pipeline, we
choose not to generate or to remove content from
the trees. First, during Step 3, when the generator
is not sure what to do with one predicate-argument
relation, it does not generate it. For instance, when
the root of a sentence is on the ARG2 side of a
node which originates from a non-core relation,
the whole subgraph of this node is omitted (see
Section 2.3). Second, during Step 4, if a subtree
that is likely to be faulty is identified (as, e.g., a
conjunction without a complement), it is removed.

Consider for example the following (partial)
gold output: Securing Reiss’ release has been a diplo-

matic priority for France, with President Nicolas Sarkozy

raising the case with other leaders. Our fallback whole-
coverage generator would output diplomacy France

prioritize secure like release Clotilde Reiss president Nico-

las Sarkozy raise case with onbehalfof person intervene...,
while our actual output is France prioritizes to secure

the release of Clotilde Reiss. Eventually, choosing the
production of readable sentences over their com-
pleteness allowed us to get better human ratings.
But this, combined to the fact that we always gen-
erate simple present tense and singular words, nat-
urally has a negative impact with an n-gram-based
metric (that includes a brevity penalty) such as
BLEU.7

Finally let us point out that most rules in this
system are language-independent. Experiments
adapting it to Spanish, Polish and German show
that with rich lexicons, the effort related to gram-
mars for obtaining well-formed texts is minimal.8
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Abstract

By addressing both text-to-AMR parsing
and AMR-to-text generation, SemEval-
2017 Task 9 established AMR as a pow-
erful semantic interlingua. We strengthen
the interlingual aspect of AMR by apply-
ing the multilingual Grammatical Frame-
work (GF) for AMR-to-text generation.
Our current rule-based GF approach com-
pletely covered only 12.3% of the test
AMRs, therefore we combined it with
state-of-the-art JAMR Generator to see if
the combination increases or decreases the
overall performance. The combined sys-
tem achieved the automatic BLEU score
of 18.82 and the human Trueskill score
of 107.2, to be compared to the plain
JAMR Generator results. As for AMR
parsing, we added NER extensions to
our SemEval-2016 general-domain AMR
parser to handle the biomedical genre, rich
in organic compound names, achieving
Smatch F1=54.0%.

1 Introduction

AMR (Banarescu et al., 2013) as a sentence-level
semantic representation is evolving towards inter-
lingua at SemEval-2017 Task 9 on Abstract Mean-
ing Representation Parsing and Generation (May
and Priyadarshi, 2017). The challenge was to im-
prove over state-of-the-art systems for both text-
to-AMR parsing (Barzdins and Gosko, 2016) and
AMR-to-text generation (Flanigan et al., 2016).

AMR parsing subtask this year focused on spe-
cific genre of Biomedical scientific articles regard-
ing cancer pathway discovery. Such texts are chal-
lenging to existing AMR parsers because they are
rich in organic compound names with types “en-
zyme”, “aminoacid”, etc. not recognized by com-

mon NER tools that are often restricted to types
“person”, “organization”, “location”, etc.

The paper starts with NER extensions used for
the Biomedical AMR parsing subtask, followed
by a novel approach of using Grammatical Frame-
work for AMR generation, and concludes with a
brief analysis of our SemEval results.

2 Text-to-AMR parsing

Only two adaptations to the AMR parser from
SemEval-2016 (Barzdins and Gosko, 2016) were
implemented: it was retrained on the union of
LDC2015E86, LDC2016E25, LDC2016E33 and
Bio AMR Corpus, and a gazetteer was added to
extend the NER coverage to organic compound
names found in the Bio AMR Corpus (e.g. “B-
Raf enzyme”, “dabrafenib small-molecule”, etc.).
The gazetteer was generalized w.r.t. numbers used
in the names.

Although we achieved an above average Smatch
score (54.0% versus 53.6%) in the preliminary
official scoring, the ablation metrics show that
we scored below average for named entities
(46.0% versus 55.8%) and wikification (0% versus
33.0%). Since we used gazetteers extracted from
the training data for both named entities and wik-
ification, this suggests that external data sources
should have been used instead.

3 AMR-to-text generation

Our approach to text generation from AMR graphs
stems from a recent feasibility study (Gruzitis and
Barzdins, 2016) on the grammar-based generation
of storyline highlights – a list of events extracted
from a set of related documents. The events would
be represented by pruned AMR graphs acquired
by an abstractive text summarizer and verbalized
afterwards.

Such storyline highlight extraction is a part of
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the H2020 research project SUMMA, Scalable
Understanding of Multilingual MediA.1 The sto-
ryline highlights are expected to be relatively sim-
ple and concise in terms of grammatical structure
and, thus, in terms of the underlying meaning rep-
resentation. In our use case, adequacy and seman-
tic accuracy of the generated sentences, and the
control of the generation process are more impor-
tant than fluency. Therefore we are following a
grammar-based approach for AMR-to-text gener-
ation. In the SemEval task, however, we are push-
ing the limits and scalability of such approach, as
the task requires much more robust wide-coverage
general-purpose generation.

The proposed approach builds on Grammatical
Framework, GF (Ranta, 2011). GF is a grammar
formalism and technology for implementing com-
putational multilingual grammars. GF grammars
are bi-directional; however, they are particularly
well suited for language generation. Most im-
portantly, GF provides a wide-coverage resource
grammar library with a language-independent
API – a shared abstract syntax. The idea is to
transform the AMR graphs to the GF abstract
syntax trees (AST), leaving the surface realiza-
tion (linearization) of ASTs to the existing En-
glish resource grammar.2 Since the GF resource
grammar library supports many more languages,
this approach automatically extends to multilin-
gual AMR-to-text generation, provided that there
is a wide-coverage translation lexicon which in-
cludes named entities.

Because the coverage of our hand-crafted
AMR-to-AST transformation rules is currently
far from complete, we use the JAMR generator
(Flanigan et al., 2016) as a default option for
AMRs not fully covered by the rules. In other
words, we want to measure if sentences generated
by the GF approach (from AMRs fully covered by
the transformation rules) outperform the respec-
tive JAMR-generated sentences. If so, it would be
worth developing this approach further.

3.1 Grammatical Framework
More precisely, GF is a categorial grammar for-
malism and a functional programming language,
specialized for multilingual grammar develop-
ment. It has a command interpreter and a batch
compiler, as well as Haskell and C run-time sys-

1http://summa-project.eu
2In terms of GF, linearization refers to resolving the word

order, word forms (agreement), function words, etc.

tems for parsing and linearization. The C run-time
system has Java and Python bindings, and it allows
for probabilistic parsing as well. Compiled GF
grammars can be embedded in applications writ-
ten in other programming languages.3

The key feature of GF grammars is the divi-
sion between the abstract syntax and the concrete
syntax. The abstract syntax defines the language-
independent semantic structure and terms, while
the concrete syntax defines the surface realiza-
tion of the abstract syntax for a particular lan-
guage. The same abstract syntax can be equipped
with many concrete syntaxes (and lexicons) – re-
versible mappings from ASTs to feature structures
and strings – making the grammar multilingual
(Ranta, 2004).

What makes the development of GF application
grammars rapid and flexible is the general-purpose
GF resource grammar library, RGL (Ranta, 2009).
The library currently covers more than 30 lan-
guages that implement the same abstract syntax,
a shared syntactic API. The API provides over-
loaded constructors like

mkVP : V2→ NP→ VP
mkVP : VP→ Adv→ VP

for building a verb phrase from a transitive verb
and an object noun phrase, or for attaching an ad-
verbial phrase to a verb phrase, etc. – all without
the need of specifying low-level details like inflec-
tional paradigms, syntactic agreement and word
order. These details are handled by the language-
specific resource grammars.

Note that the overloaded API constructors gen-
eralize over the actual functions of the abstract
syntax. The respective RGL functions of the above
given mkVP constructors are

ComplV2 : V2→ NP→ VP
AdvVP : VP→ Adv→ VP

These constructors and functions are applied to
build ASTs. For instance, the sentence

“The boys want an adventure.”

is represented by the following AST w.r.t. RGL:

(PredVP
(DetCN

(DetQuant DefArt NumPl)
3http://www.grammaticalframework.org
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(UseN boy N))
(ComplV2

want V2
(DetCN

(DetQuant IndefArt NumSg)
(UseN adventure N))))

The respective API constructor application tree
is more general and simpler:

(mkCl
(mkNP the Quant pluralNum boy N)
(mkVP

want V2
(mkNP a Quant adventure N)))

where want V2, boy N and adventure N are
nullary lexical functions, while the Quant and
a Quant are predefined constructors for the func-
tion words, and pluralNum is a parameter for se-
lecting the plural form of the noun. In GF, there is
no formal distinction between syntactic and lexi-
cal functions.

We map AMRs to ASTs by a sequence of
pattern-matching transformation rules, using RGL
API constructors as a convenient intermediate
layer. The language-specific linearization of the
acquired ASTs is already defined by the English
(or other language) resource grammar and lexicon.

3.2 AMR-to-AST transformation

The overall transformation process is as follows:

1. The input AMR is rewritten from the PEN-
MAN notation to the the LISP-like bracket-
ing tree syntax by a simple parsing expres-
sion grammar.

2. In case of a multi-sentence AMR, the graph is
split into two or more graphs to be processed
separately.

3. For each AMR graph represented as a LISP-
like tree, a sequence of tree pattern-matching
and transformation rules is applied, acquiring
a fully or partially converted AST constructor
application tree w.r.t. the API of RGL.

4. In case of a partially converted AST, the
pending subtrees are just pruned.4

5. The resulting ASTs are passed to the GF in-
terpreter for linearization.

4For the SemEval submission, we took the respective
JAMR-generated sentence instead, skipping the fifth step.

Inspired by Butler (2016), we use the Stan-
ford JavaNLP utilities Tregex and Tsurgeon (Levy
and Andrew, 2006) for the pilot implementation
of AMR-to-AST conversion.5 The difference of
our approach is that we convert AMR graphs to
abstract instead of concrete syntax trees, and the
choice of GF allows for further multilingual text
generation, preserving grammatical and semantic
accuracy.

In the time frame of the SemEval task, we de-
fined around 200 transformation rules6 covering
many basic and advanced constructions used in
AMR.7 To illustrate the ruleset, let us consider the
AMR graph given in Figure 1, and its expected
AST in Figure 2, acquired by the ordered rules
outlined in Figure 3. For each rule, P denotes a
simplified Tregex pattern (a subtree to match), and
R denotes the resulting subtree – after Tsurgeon
operations like adjoin, move, relabel, delete have
been applied (omitted in Figure 3). Note that we
first slightly enrich the original AMR by adding
frame-specific semantic roles to ARG2..ARGn.
In our example, :ARG4 is rewritten to :ARG4-
GOL, based on PropBank. Semantic roles are
used to determine the preposition in a preposi-
tion phrase (see the ninth rule in Figure 3). Thus,
we get GOL Prep for the NP under :ARG4 of
go-02, which, in the current prototype, is always
linearized as the preposition “to”. Although this
preposition fits to our example, in general, other
preposition can be used in the realization of GOL.
More elaborated post-processing is needed to re-
construct the prepositions that are lost in the AMR
representation of the input sentence. Statistics
from the PropBank corpus (Palmer et al., 2005)
would be helpful to decide whether there is a dom-
inant frame-dependent preposition for the argu-
ment/role, or a dominant NP-dependent preposi-
tion, independently of the frame.

In addition to the regular AMR constructions,
we have defined a number of rules for the treat-
ment of the special frames: have-org-role-91 and
have-rel-role-91. The special rules are applied be-
fore the regular ones. We have also introduced
some post-editing rules over the resulting ASTs to

5https://github.com/
GrammaticalFramework/gf-contrib/tree/
master/AMR/AMR-to-text

6More precisely, we have defined 198 Tregex patterns
over AMR/AST trees. For each pattern, 2.5 Tsurgeon trans-
formation operations are defined on average (493 in total).

7Roughly estimating, the development of the current rule-
set took us less than two person months.
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(w / want-01
:ARG0 (b / boy)
:ARG1 (g / go-02

:ARG0 b
:ARG4 (c / city

:name (n / name
:op1 "New"
:op2 "York"
:op3 "City")

:wiki "New_York_City")))

Figure 1: An AMR representing the sentence “The
boys want to go to New York City”.

(mkText (mkUtt (mkS
(mkCl
(mkNP a_Quant (mkCN boy_N))
(mkVP
want_VV
(mkVP
(mkVP go_V)
(mkAdv
GOL_Prep
(mkNP (mkPN "New York City")))))

))) fullStopPunct)

Figure 2: An AST acquired from the AMR given
in Figure 1. When linearized, the AST yields “A
boy wants to go to New York City” in English, or
“En pojke vill gå till New York City” in Swedish.

make the final linearization more fluent. For in-
stance, simple attributive relative clauses are con-
verted to adjective modifiers; e.g. “luck that is
good” gets converted to “good luck”. Similarly, it
would be often possible to convert general nouns
modified by simple verbal relative clauses into
more specific nouns omitting the use of relative
clauses: “person that reports” – to “reporter”, “or-
ganization that governs” – to “government”, etc.

Regarding the RGL lexicon, it contains more
than 60,000 lexical entries, providing a good cov-
erage for general purpose applications. To handle
out-of-vocabulary words and multi-word expres-
sions which most frequently are named entities
(e.g. “New York City”), we use low-level RGL
constructors to specify fixed strings.

3.3 JAMR Generator

A pre-trained JAMR generation model (Flanigan
et al., 2016) along with provided Gigaword corpus
4-grams were used.8 The JAMR authors reported

8https://github.com/jflanigan/jamr/
tree/Generator

1. mkVP : VV→ VP→ VP

P (frameA (:ARG1 (var frameB)))
R (want-01A (mkVP go-02B))

2. mkCl : VP→ Cl

P (var frameA)
R (mkCl (mkVP want-01A))

3. mkCl : NP→ VP→ Cl

P (mkCl (mkVP (frameA :ARG0)))
R (mkCl :ARG0 (mkVP want-01A))

4. mkNP : Quant→ CN→ NP

P (:ARG0 (var conceptA))
R (mkNP a Quant (mkCN (b boyA)))

5. mkCN : N→ CN

P (mkCN (var conceptA))
R (mkCN boy NA)

6. Recursively merge :op1 .. :opn under :op1

P (name (:op1 literalA) (:opi literalB))
R (name (:op1 “NewA YorkA CityB”))

7. mkPN : Str→ PN
mkNP : PN→ NP

P (var (name (:op1 literalA)))
R (mkNP (mkPN “New York City”A))

8. Excise a node chain: var - NE type - :name

P (var (type (:name mkNP)))
R (mkNP)

9. mkVP : VP→ Adv→ VP
mkAdv : Prep→ NP→ Adv

P (mkVP (frameA (ARGn-roleB mkNP)))
R (mkVP (mkVP go-02A)

(mkAdv GOL PrepB mkNP))

10. Ignore (delete) :wiki nodes.

11. Relabel frames, depending on their syn-
tactic valence in the resulting AST. Thus,
want-01 becomes want VV (a verb-phrase-
complement verb), in contrast to want V2
(see Section 3.1), and go-02 becomes just
go V (an intransitive verb).

Figure 3: A sample set of AMR-to-AST transfor-
mation rules for converting the AMR in Figure 1
into the AST in Figure 2. P – pattern, R – result.
The terms in italic (P) refer to regular expressions.
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their original results on Gigaword corpus 5-grams
(Gigaword licence required) which is known to
improve the BLEU score by approx. 1 point.

3.4 First results

By applying the transformation ruleset (see Sec-
tion 3.2), we were able to fully convert and lin-
earize 12.3% of the 1293 evaluation AMRs. Ad-
ditionally, we acquired partially transformed trees
and, consequently, partially generated sentences
for another 36% of the evaluation AMRs, but we
did not include those sentences in the final sub-
mission, since large subtrees often got pruned. In-
stead, we replaced them by sentences acquired by
JAMR Generator (see Section 3.3).

With the combined JAMR and GF-based sys-
tem, we achieved Trueskill 107.2 and BLEU 18.82
in the preliminary official scoring. The key open
question is if the 12.3% GF-generated sentences
scored better or worse in comparison to the JAMR
output by human-evaluated Trueskill.

By BLEU-scoring the GF-generated sentences
apart from the JAMR-generated sentences, the
BLEU scores are 11.35 and 19.18 respectively.
This suggests that BLEU favors the corpus-driven
JAMR approach which tries to reproduce the orig-
inal input sentence, while the grammar-driven GF
approach sticks to AMR more literally, producing
a paraphrase of the input sentence. Therefore we
are primarily interested in Trueskill and less con-
cerned about BLEU.

4 Conclusion

The SemEval subtask on AMR-to-text generation
has given us confidence that it is worth to develop
further the GF-based approach. We are particu-
larly pleased to see that AMR equipped with GF
is emerging as a powerful interlingua for seman-
tic cross-lingual applications. Although it is dif-
ficult to reach a large coverage in a short term,
a grammar-based approach complemented with
statistics from AMR and PropBank-annotated cor-
pora is competitive with other approaches in a
longer term, at least for use cases where adequacy
is more important than fluency.
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Abstract

We evaluate a semantic parser based on
a character-based sequence-to-sequence
model in the context of the SemEval-
2017 shared task on semantic parsing
for AMRs. With data augmentation,
super characters, and POS-tagging we
gain major improvements in performance
compared to a baseline character-level
model. Although we improve on previ-
ous character-based neural semantic pars-
ing models, the overall accuracy is still
lower than a state-of-the-art AMR parser.
An ensemble combining our neural se-
mantic parser with an existing, traditional
parser, yields a small gain in performance.

1 Introduction

Traditional open-domain semantic parsers often
use statistical syntactic parsers to derive syntac-
tic structure on which to build a meaning repre-
sentation. Recently there have been interesting
attempts to view semantic parsing as a transla-
tion task, mapping a source language (here: En-
glish) to a target language (a logical form of some
kind). Dong and Lapata (2016) used sequence-to-
sequence and sequence-to-tree neural translation
models to produce logical forms from sentences,
while Barzdins and Gosko (2016) and Peng et al.
(2017) used a similar method to produce AMRs.
From a purely engineering point of view, these are
interesting attempts as complex models of the se-
mantic parsing process can be avoided. Yet little
is known about the performance and fine-tuning of
such parsers, and whether they can reach perfor-
mance of traditional semantic parsers, or whether
they could contribute to performance in an ensem-
ble setting.

In the context of SemEval-2017 Task 9 we aim

to shed more light on these questions. In particular
we participated in Subtask 1, Parsing Biomedical
Data, and work with parallel English-AMR train-
ing data comprising extracts of scientific articles
about cancer pathway discovery.

More specifically, our objectives are (1) try
to reproduce the results of Barzdins and Gosko
(2016), who used character-level models for neu-
ral semantic parsing; (2) improve on their re-
sults by employing several novel techniques; and
(3) combine the resulting neural semantic parser
with an existing off-the-shelf AMR parser to reach
state-of-the-art results.

2 Neural Semantic Parsing

2.1 Datasets

Our training set consists of the second LDC AMR
release (LDC2016E25) containing 39,620 AMRs,
as well as the training set of the bio AMR corpus
that contains 5,452 AMRs. As development and
test set we use the designated development and
test partition of the bio AMR corpus, both con-
taining 500 AMRs. HTML-tags are removed from
the sentences.

2.2 Basic Translation Model

We use a seq2seq neural translation model to
translate English sentences into AMRs. This is a
bi-LSTM model with added attention mechanism,
as described in Bahdanau et al. (2014). Similar to
Barzdins and Gosko (2016), but contrasting with
Peng et al. (2017), we train the model only on
character-level input. Model specifics are shown
in Table 1.

In a preprocessing step, we remove all vari-
ables from the AMR and duplicate co-referring
nodes. An example of this is shown in Figure
1. The variables and co-referring nodes are re-
stored after testing, using the restoring script from
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Parameter Value

Layers 1
Nodes 400
Buckets (510,510)
Epochs 25–35
Vocabulary 150–200
Learning rate 0.5
Decay factor 0.99
Gradient norm 5

Table 1: Model specifics for the seq2seq model.

Barzdins and Gosko (2016).1 Wikipedia links are
also removed from the training set, but get restored
in a separate Wikification post-processing step.

(require-01
:ARG0 (induce-01

:ARG1 (cell)
:ARG2 (migrate-01

:ARG0 cell))
:ARG1 (bind-01

:ARG1 (protein
:name (name :op1 "Crk"))

:ARG2 (protein
:name (name :op1 "CAS"))))

Figure 1: “Crk binding to CAS is required for the
induction of cell migration” - seq2seq tree repre-
sentation.

2.3 Improvements
In this section we describe the methods used to
improve the neural semantic parser.

Augmentation AMRs, as introduced by Ba-
narescu et al. (2013), are rooted, directed, labeled
graphs, in which the different nodes and triples are
unordered by definition. However, in our tree rep-
resentation of AMRs (see Figure 1), there is an
order of branches. This means that we are able to
permute this order into a more intuitive represen-
tation of the sentence, by matching the word order
using the AMR-sentence alignments. An example
of this method is shown in Figure 2.

This approach can also be used to augment
the training data, since we are now able generate
“new” AMR-sentence pairs that can be added to
our training set. However, due to the exponential
growth, there are often more than 1,000 different
AMR permutations for long sentences. We ran
multiple experiments to find the best way to use
this oversupply of data. Ultimately, we found that

1https://github.com/didzis/tensorflowAMR

(require-01
:ARG1 (bind-01

:ARG1 (protein
:name (name :op1 "Crk"))

:ARG2 (protein
:name (name :op1 "CAS"))))

:ARG0 (induce-01
:ARG1 (cell)
:ARG2 (migrate-01

:ARG0 cell))

Figure 2: “Crk binding to CAS is required for the
induction of cell migration” - seq2seq representa-
tion that best matches the word order.

it is most beneficial to “double” the training data
by adding the best matching AMR (based on word
order) to the existing data set.

Super characters We do not necessarily have to
restrict ourselves to using only individual charac-
ters as input. For example, the AMR relations (e.g.
:ARG0, :domain, :mod) can be seen as single
entities instead of a collection of characters. This
decreases the input length of the AMRs in feature
space, but increases the total vocabulary. We refer
to these entities as super characters. This way, we
essentially create a model that is a combination of
character and word level input.

POS-tagging Character-level models might still
be able to benefit from syntactic information, even
when this is added directly to the input structure.
Especially POS-tags can easily be added as fea-
tures to the input data, while also providing valu-
able information. For example, proper nouns in
a sentence often occur with the :name relation
in the corresponding AMR, while adjectives cor-
relate with the :mod relation. We append the
corresponding POS-tag to each word in the sen-
tence (using the C&C POS-tagger by Clark et al.
(2003)), creating a new super character for each
unique tag.

Post-processing In a post-processing step, first
the variables and co-referring nodes are restored.
We try to fix invalidly produced AMRs by apply-
ing a few simple heuristics, such as inserting spe-
cial characters (e.g. parentheses, quotes) or re-
moving unfinished edges. If the AMR is still in-
valid, we output a smart default AMR.2

We also remove all double nodes, i.e., relation-
concept pairs that occur more than once in a
branch of the AMR. This form of duplicate output
is a common problem with deep learning models,

2This was not necessary for the evaluation data.
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since the model does not keep track of what it has
already output. We refer to this method as prun-
ing.

Wikification Our Wikification method is based
on Bjerva et al. (2016), using Spotlight (Daiber
et al., 2013). They initially removed wiki links
from the input and then tried to restore them in the
output by simply adding a wiki link to the AMR
if it matches with the name in a :name relation.
Even though this approach worked well for the
LDC data, it did not work for the biomedical data.

This is mainly due to the fact that :name nodes
are not consistently annotated with a wiki link
in the gold biomedical data. 138 unique names
that had a corresponding wiki link at least once
in the gold data did not have this wiki link 100%
of the time. For example DNA occurred 86 times
as a :name in the gold data and was only anno-
tated with a wiki link in 69 cases, while ERK oc-
curred 228 times with only 3 annotated wiki links.
For this reason we opt for a safe Wikification ap-
proach: we only add wiki links to names that were
annotated with the same wiki link more than 50%
of the time in the gold data. Following our previ-
ous example, this means that DNA does still get a
wiki link, but ERK does not.

2.4 CAMR ensemble

As we know that our neural semantic parser is un-
likely to outperform a state-of-the-art AMR parser,
but is likely to complement it, our strategy is to use
an ensemble-based approach. The ensemble com-
prises the off-the-shelf parser CAMR (Wang et al.,
2015) and our neural semantic parser. The imple-
mentation of this ensemble is similar to Barzdins
and Gosko (2016), choosing the AMR that ob-
tains the highest pairwise Smatch (Cai and Knight,
2013) score when compared to the other AMRs
generated for a sentence. This method is de-
signed to ultimately choose the AMR with the
most prevalent relations and concepts.

We train CAMR models based on the biomedi-
cal data only, the LDC data only and the combina-
tion of both data sets. Since CAMR is nondeter-
ministic, we can also train multiple models on the
same data set. Ultimately, the best ensemble on
the test data consisted of three bio-only models,
two bio + LDC models and one LDC-only model.
This ensemble was used to parse the evaluation
set.

3 Results and Discussion

3.1 Results on Test Set
Table 2 shows the results of all improvement meth-
ods tested in isolation on the test set of the biomed-
ical data. Augmenting the data only helps very
slightly, while the super characters are responsi-
ble for the largest increase in performance. This
shows that we do not necessarily have to use only
character or word level input in our models, but
that a combination of the two might be optimal.
The best result was obtained by combining the dif-
ferent methods. This model was then used to parse
the evaluation data. Table 3 shows the results of
retraining CAMR on different data sets, as well as
an ensemble of those models. Adding our seq2seq
model to the ensemble only yielded a very small
gain in performance.

Feature F-score Increase

Baseline 0.422
Pruning 0.425 0.7%
Wikification 0.423 0.2%
Augmentation 0.424 0.5%
Super characters 0.481 14.0%
POS-tagging 0.436 3.3%

All combined 0.504 19.4%

Table 2: Results of the different seq2seq models
on the test set of the biomedical data.

F-score

CAMR retrained on LDC 0.399
CAMR retrained on bio 0.585
CAMR retrained on LDC + bio 0.582

Ensemble CAMR 0.588
Ensemble CAMR + seq2seq 0.589

Table 3: Results of retraining CAMR and results
of best ensemble models, tested on the biomedical
test data.

3.2 Official Results
In Table 4 we see the detailed results of the best
seq2seq model and best ensemble on the evalua-
tion data, using the scripts from Damonte et al.
(2017).3 While CAMR has similar scores on the

3Unofficial score for seq2seq negation; due to a mistake,
all :polarity nodes were removed in the official submis-
sion. This had no influence on the final F-score.
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test data, the score of the seq2seq model decreases
by 0.04. It is interesting to note that seq2seq scores
equally well without word sense disambiguation,
while there is no separate module that handles this.

Setting seq2seq Ensemble

Smatch 0.460 0.576
Unlabeled 0.504 0.623
No WSD 0.463 0.579
Named Entities 0.512 0.576
Wikification 0.458 0.396
Negation 0.141 0.244
Concepts 0.630 0.759
Reentrancies 0.290 0.352
SRL 0.427 0.543

Table 4: Official results on the evaluation set for
both the ensemble and the seq-to-seq neural se-
mantic parser.

Figure 3: Comparison of CAMR and our seq-to-
seq model for different sentence lengths.

3.3 Comparison with CAMR
Although CAMR outperformed our neural seman-
tic parser by a large margin, the seq-to-seq model
did produce a better AMR for 108 out of the 500
evaluation AMRs, based on Smatch score. If the
CAMR + seq2seq ensemble was somehow able to
always choose the best AMR, it obtains an F-score
of 0.601, an increase of 2.2% instead of the cur-
rent 0.2%. This suggests that the current method
of combining neural semantic parsers with exist-
ing parsers is far from optimal, but that the neural
methods do provide complementary information.
A different way to incorporate this information

would be to pick the most suitable parser based
on the input sentence. A classifier that exploits the
characteristics of the sentence could be trained to
assign a parser to each individual (to be parsed)
sentence.

Figure 3 shows the performance of the neu-
ral semantic parser and the CAMR ensemble per
maximum sentence length. We see that seq-to-seq
can keep up with CAMR for very short sentences,
but is clearly outperformed on longer sentences.
As the sentences get longer, the difference in per-
formance gets bigger, but not much.

4 Conclusion and Future Work

We were able to reproduce the results of the
character-level models for neural semantic pars-
ing as proposed by Barzdins and Gosko (2016).
Moreover, we showed improvement on their ba-
sic setting by using data-augmentation, part-of-
speech as additional input, and using super charac-
ters. The latter setting showed that a combination
of character and word level input might be opti-
mal for neural semantic parsers. Despite these en-
hancements, the resulting AMR parser is still out-
performed by more traditional, off-the-shelf AMR
parsers. Adding our neural semantic parser to an
ensemble including CAMR (Wang et al., 2015), a
dependency-based parser, yielded no noteworthy
improvements on the overall performance.

Do these results indicate that neural semantic
parsers will never be competitive with more tra-
ditional statistical parsers? We don’t think so. We
have the feeling that we have just scratched the
surface of possibilities that neural semantic pars-
ing can offer us, and how they possibly can com-
plement parsers using different strategies. In fu-
ture work we will explore these.
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Abstract

This paper presents a system that partic-
ipated in SemEval 2017 Task 10 (subtask
A and subtask B): Extracting Keyphrases
and Relations from Scientific Publica-
tions (Augenstein et al., 2017). Our pro-
posed approach utilizes external knowl-
edge to enrich feature representation of
candidate keyphrase, including Wikipedia,
IEEE taxonomy and pre-trained word em-
beddings etc. Ensemble of unsupervised
models, random forest and linear models
are used for candidate keyphrase ranking
and keyphrase type classification. Our sys-
tem achieves the 3rd place in subtask A
and 4th place in subtask B.

1 Introduction

Keyphrases summarize the most important aspects
of a document. They can be helpful in many areas
such as information retrieval, topic modeling and
text classification. However, manually labeling
keyphrase would be far too time-consuming, and
unrealistic especially when dealing with web-scale
collection of documents. Therefore, automatic
keyphrase extraction has drawn growing interests
among NLP research communities for years.

For state-of-the-art system on keyphrase extrac-
tion, Hasan and Ng(2014) presents a comprehen-
sive survey. Their experiments demonstrate that
unsupervised approaches including graph-based
ranking and topic modeling techniques perform
best on News and Blogs dataset. In SemEval
2010 Task 5 (Kim et al., 2010) (Kim et al.,
2013), which also aims to tackle the challenge of
keyphrase extraction in scientific area, a majority
of the participants adopt supervised approaches,
and especially the top 2 systems are both super-
vised. Thus, in our work, we argue that super-

vised approaches can enable combination of rich
features, with parameters learned efficiently and
automatically, while their unsupervised counter-
parts often involve simply designed features and
manually fine-tuned hyperparameters.

Based on the consideration above, for Se-
mEval 2017 Task 10, our system is designed
as a supervised one which also explore unsu-
pervised techniques as auxiliaries. It involves
three steps: candidate generation, keyphrase rank-
ing and keyphrase type classification. For can-
didate generation, we use chunking-based ap-
proach to discover phrases that match a prede-
fined part-of-speech pattern. Heuristic rules are
manually designed by experience and applied to
filter out those phrases which are unlikely to be
keyphrases. For keyphrase ranking in subtask A,
we use a straightforward regression-based point-
wise ranking method. Here, two unsupervised al-
gorithms TextRank (Mihalcea and Tarau, 2004)
and SGRank (Danesh et al., 2015) are incorpo-
rated into random forest by providing their out-
put as complementary features. In our experi-
ments, we find that stacking linear model upon
random forest can provide extra performance gain.
For keyphrase type classification in subtask B, we
model it as a three-way classification problem,
with the same feature set and classifiers used in
subtask A.

Feature engineering is a critical part for super-
vised model. The task of keyphrase extraction
heavily relies on statistical features(such as TF-
IDF) and semantic features. However, due to the
limited size of labeled dataset, it is hard to get reli-
able estimation of phrases’ IDF value or semantic
representation. In this paper, we solve this prob-
lem by exploiting external knowledge resources
such as Wikipedia and pre-trained word embed-
dings. Experiments show the effectiveness of our
proposed feature set.
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2 Methodology

Our system works in a pipeline fashion. It involves
candidate generation, keyphrase ranking for sub-
task A and keyphrase type classification for sub-
task B. As the third step use the same feature set
and classifiers as second step, we omit its detailed
description.

2.1 Keyphrase Candidate Generation
There are generally two approaches for candidate
generation: n-grams and part-of-speech pattern
matching. Even though n-grams strategy usually
achieves higher recall, it also brings in more false
positives, which could cause serious problem for
classifiers. Our strategy is a combination of part-
of-speech pattern matching and heuristic rules.

First, let’s define the heuristic rules with the
format of functions, which take a phrase p as an
argument and output a boolean value. Assume
NP = (NN ∗ |JJ∗) ∗ (NN∗).
f1(p) = whether p matches pattern NP (1)

f2(p) = whether p consists of capital letters (2)

f3(p) = whether p consists of <5 words (3)

f4(p) = whether p contains ‘[’ or ‘]’ or ‘,’ (4)

f5(p) = whether p consists of only digits (5)

A phrase p becomes a keyphrase candidate if
(f1(p) ∨ f2(p)) ∧ f3(p) ∧ ¬f4(p) ∧ ¬f5(p) is
true. Candidate generation is carried out at sen-
tence level, we don’t consider the possibility that
a keyphrase may span across multiple sentences.

2.2 External Knowledge
To deal with the aforementioned problem, we ex-
ploit several external knowledge resources to get
more reliable estimation of statistical and seman-
tic features.

• English Wikipedia.1 It consists of more than
5 million articles covering almost every area
you can think of. We use this corpus D to
calculate IDF of word t. Words with top 10k
IDF score are kept.

IDF (t,D) = log
|D|

|{d ∈ D : t ∈ d}| (6)

• IEEE taxonomy. Official IEEE taxon-
omy2 includes a list of manually summarized

1https://dumps.wikimedia.org/enwiki/
2https://www.ieee.org/documents/taxonomy v101.pdf

keyphrases related to technical areas. Arti-
cles in this shared task come from three do-
mains: computer science, material science
and physics. All three domains are cov-
ered by IEEE. We add a boolean feature
which indicates whether the given candidate
keyphrase appears in this list.

• Pre-trained Glove embeddings.3 (Penning-
ton et al., 2014) Word embeddings trained on
billions of tokens provide a simple way to in-
corporate semantic knowledge. They prove
to be helpful in many NLP tasks especially
when labeled data is limited. In our system,
we use IDF-weighted word embeddings for
phrase representation. Given a phrase con-
sisting of n words w1, w2...wn, its represen-
tation is calculated as follows.∑n

i=1 IDF (wi) · Ewi∑n
i=1 IDF (wi)

(7)

Ewi is the glove embedding of word wi.

2.3 Feature Engineering
Based upon the experience of many previous work
on keyphrase extraction and the unique character-
istics of scientific publications, our system incor-
porates four types of features: linguistic features,
context features, external knowledge based fea-
tures and unsupervised model based features, as
shown in Table 4.

feature type feature definition

linguistic features

stemmed unigram
avg/max/min of TF/IDF/TF·IDF
whether p consists of capital letters
part-of-speech for every word in p
number of tokens/characters in p

context features

previous/next token of p
POS of previous/next token of p
distance between p and citation
relative position of p in given text

external knowledge
whether p is in IEEE taxonomy list
Wikipedia based avg/max/min IDF
glove embedding of p

unsupervised feature
whether p is in top 20 keyphrases
according to TextRank algorithm
whether p is in top 20 keyphrases
according to SGRank algorithm

Table 1: Features for a candidate keyphrase p.

2.4 Model Ensemble for Keyphrase Ranking
Model ensemble has been shown to be an effec-
tive way to boost generalization performance both

3http://nlp.stanford.edu/projects/glove/
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in practice and theoretically (Zhou, 2012). Ran-
dom forest itself is an ensemble model, with vari-
ant of decision trees combined via Bagging. In this
shared task, we explore two layers of stacking.

At the first layer, we stack trees upon output
from unsupervised algorithms. There are numer-
ous algorithms for unsupervised keyphrase ex-
traction based on clustering, graph-based ranking
etc, different algorithms reflect different aspects of
phrase. Stacking provides a convenient and pow-
erful way to combine those information. In this
paper, we use two algorithms: TextRank (Mihal-
cea and Tarau, 2004) and SGRank (Danesh et al.,
2015).

At the second layer, we stack linear model upon
random forest. Instead of treating decision tree as
a classifier, it can be seen as learning to transform
input features. Each leaf node corresponds to a
feature transformation path from root node, and
therefore can serve as a boolean feature. Linear
model can be applied to learn the weights of those
features. Logistic regression is usually used, how-
ever, we find linear SVM is more robust to overfit-
ting in this shared task.

For keyphrase ranking in subtask A, probabilis-
tic score is required, candidates with score no less
than α are chosen as keyphrases. α is tuned on
validation dataset to balance precision and recall.
For keyphrase type classification in subtask B, it is
a three-way classification problem.

In deep learning community, “stacking” usually
means joint training of multiple layers. In this pa-
per, “stacking” means that lower layers provide
their output as features for upper layer, different
layers are trained separately.

3 Experiments

For details about this shared task and dataset,
please refer to SemEval 2017 Task 10 description
paper (Augenstein et al., 2017).

3.1 Experimental Setup

Preprocessing We use nltk (Bird, 2006) to seg-
ment each paragraph into a list of sentences, tok-
enize every sentence and then get part-of-speech
tag for every token. Snowball Stemmer is used for
stemming. Stop words, punctuations and digits
are removed for feature engineering, but not for
keyphrase candidate generation. We use simple
heuristics to parse the IEEE taxonomy pdf file and
get 6978 phrases in total.

Configurations Library scikit-learn is used for
implementation of our supervised models. Ran-
dom forest is set to have 200 trees and other pa-
rameters are set to default. Parameters of linear
SVM are all set to default. We use 50-dimensional
glove embeddings for calculating phrase repre-
sentation. For subtask A, we choose threshold
α = 0.15 to balance recall and precision.

3.2 Results and Analysis

precision recall f1-score
subtask A 0.522 0.498 0.510

subtask B

Material 0.464 0.456 0.460
Process 0.441 0.364 0.399
Task 0.286 0.041 0.072
Average 0.450 0.374 0.409

Table 2: Official results on test set.

Our system’s final results are shown in Table 2,
f1-score for subtask A is 0.510 (3rd place), and
micro-averaged f1-score for subtask B is 0.409
(4th place). The f1-score of the 1st place solution
in a similar task SemEval 2010 Task 5 is 27.5%
(Kim et al., 2010). In comparison with the prior
work, our system seems to be surprisingly well.
We attribute such performance gap to unique char-
acteristics of this shared task. Instead of keyphrase
extraction from entire document, participants are
only asked to extract keyphrase from single para-
graph, and the density of keyphrases is higher.

Another interesting phenomenon is the poor
numbers for Task keyphrases. Most of Mate-
rial and Process keyphrases are noun phrases or
have capital letters, they are relatively easy to
discriminate by part-of-speech pattern. However,
Task keyphrases cover a wide range of part-of-
speech patterns, and some of them have verb or
conjunction. It remains a challenge for our sys-
tem to achieve satisfying performance for Task
keyphrases.

Material Process Task Micro-average
recall 0.715 0.608 0.334 0.606

Table 3: Recall for keyphrases.

An important metric for our pipeline system is
recall for keyphrases in candidate generation step.
Table 3 shows that our heuristic rules cover 60.6%
of keyphrases in training data, although it’s possi-
ble to improve recall by introducing more part-of-
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subtask A subtask B
precision recall f1-score precision recall f1-score

unsupervised features 0.378 0.341 0.359 0.186 0.168 0.177
+ linguistic features 0.481 0.417 0.447 0.352 0.305 0.327
+ context features 0.499 0.497 0.498 0.371 0.369 0.370
+ external knowledge 0.522 0.498 0.510 0.450 0.374 0.409

Table 4: Performance with different combinations of features.

speech patterns, precision will go lower. There has
to be a tradeoff between recall and precision.

precision recall f1-score
tf-idf 0.163 0.216 0.186
rf 0.510 0.507 0.508
rf+svm 0.524 0.520 0.522
best 0.510 0.610 0.560

Table 5: Comparison of different models on test
data. (a) tf-idf output phrases with top 15 tf·idf score; (b)
rf stands for random forest; (c) rf+svm stacks a linear SVM
upon random forest; (d) best is the 1st place solution for this
shared task.

Table 5 shows the effectiveness of our approach.
Even though rf and rf+svm share the same input
features and random forest already has a built-in
ensemble mechanism, rf+svm model still manages
to improve all three metrics via stacking, with f1-
score increasing by 1.4%, from 50.8% to 52.2%.

We also examine how different feature combi-
nations would affect overall performance. Results
are shown in Table 4. Unsupervised features are
pretty impressive to discriminate keyphrase and
non-keyphrase (subtask A), but they fail to reli-
ably identify keyphrase type (subtask B). Incor-
poration of external knowledge is clearly a key to
further boost system performance. All six metrics
improve as more features are added. Once again
it shows our model’s ability to combine many fea-
tures without worrying too much about overfitting.
It is possible to add more relevant features.

4 Conclusion

This paper gives a brief description of our system
at SemEval 2017 Task 10 for keyphrase extraction
of scientific papers. By incorporating multiple ex-
ternal knowledge resources, careful feature engi-
neering and model ensemble, our system achieves
competitive performance.
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Abstract

We present NTNU’s systems for Task A
(prediction of keyphrases) and Task B
(labelling as Material, Process or Task)
at SemEval 2017 Task 10: Extracting
Keyphrases and Relations from Scienti-
fic Publications (Augenstein et al., 2017).
Our approach relies on supervised ma-
chine learning using Conditional Random
Fields. Our system yields a micro F-score
of 0.34 for Tasks A and B combined on
the test data. For Task C (relation extrac-
tion), we relied on an independently de-
veloped system described in (Barik and
Marsi, 2017). For the full Scenario 1 (in-
cluding relations), our approach reaches a
micro F-score of 0.33 (5th place). Here
we describe our systems, report results and
discuss errors.

1 Approach

We choose Conditional Random Fields (Lafferty
et al., 2001) because they have produced state-of-
art results on comparable sequence labelling tasks
such as named entity recognition in biomedicine.
Two systems were developed, using different fea-
ture sets and alternative CRF implementations.

Preprocessing Input text is linguistically anal-
ysed using the Spacy NLP pipeline (Honnibal and
Johnson, 2015), including sentence splitting, to-
kenisation, lemmatisation and dependency pars-
ing. Since CRFs cannot handle Brat’s stand-off
annotation format directly, keyphrase annotations
are first converted to the Inside-Outside-Begin
(IOB) tagging scheme by aligning their character
offsets with the character offsets of tokens: if the
start character offset of a token coincides with the
start offset of an annotated keyphrase, the token

receives a B (begin) tag; if the offset span of a to-
ken falls within the offset bounds of a keyphrase,
the token gets an I (inside) tag, otherwise the token
is assigned an O (outside) tag. Each sentence cor-
responds to a sequence of IOB tags, serving as the
labelled sequence for the CRF. Separate IOB tags
are derived for each of the three keyphrase classes
(Material, Process, Task). Annotations and tokens
do not always properly align; the resulting errors
are discussed in Section 3.

System 1 relies on the CRFsuite implementa-
tion (Okazaki, 2007) as wrapped by the sklearn-
crfsuite module for SciKit Learn. A dedicated
classifier is trained for each of the three keyphrase
classes. CRFs are used with default parameter
setting. The following features were selected per
class by cross-validation on the development data:

• Word features: word shape (e.g. ’Xxxx’), is-
alpha, is-lower-case, is-ascii, is-capitalized,
is-upper-case, is-punctuation, like-number,
prefix-chars (2,3,4), suffix-chars (2,3,4), is-
stopword, all in a window of size 3 for Mate-
rial and Process;
• Lemma and POS, in a window of size 5 for

Material and Process, in window of size 3 for
Process;
• Wordnet (for Material only): synset names of

all hypernyms (transitive closure), in a win-
dow of size 5

Supervised learning is generally hampered by
skewed class distributions, where minority classes
tend to be predicted poorly. In our case, the O
tag is by far the most frequent tag. To reduce its
weight, all sentences without a Material keyphrase
are removed from training material of the CRF for
predicting the Material class, and likewise for the
other two classes.

Output is postprocessed with the intention of
improving consistent labelling throughout a single

938



text. For example, if a majority of the occurrences
of the phrase ‘carbon’ in a text is labelled as Ma-
terial, then any unlabelled occurrences are by ex-
tension also labelled as Material.

System 2 consists of two steps: (1) detec-
tion of keyphrase boundaries; (2) labelling of
keyphrases. Both steps are implemented using
the C++ based CRF++ package1. The bound-
ary detection model uses the the following fea-
tures: local context: -2 to +22, POS, lemma,
prefix-suffix-chars (1,2,3,4), is-word-length-with-
upper-case < 5, word-frequency, shape, is-
stopword, is-all-upper-case, is-beginning-upper-
case, is-inner-upper-case, is-single-upper-case, is-
words-in-training-data, is-all-digit and is-alpha-
digit.

For labelling of keyphrases, separate classifiers
are trained for each class, where the classifiers for
Process and Task (but not Material) use the pre-
dicted keyphrase boundaries as a feature. The fol-
lowing features were used for Material:

• Word features: local-context (uni-gram and
bi-gram, -2 to +3), is-all-digit (-1 to +2),
is-single-upper-case (-2 to +2), is-all-upper-
case (-2 to +1), is-inner-upper-case (-2 to
+4), is-stopword (-1 to +3), shape (-2 to +1),
prefix-chars (1), suffix-chars (1,2,3), is-word-
length-with-upper-case < 5 (-2 to +3), is-
word-in-training-data (-3 to +3)
• Babelfy Mention (-2 to +2): Checks if current

word belongs to any Babelfy (Moro et al.,
2014) named entities
• Lemma (-1 to +3) and POS (-1 to +2)
• Wordnet: Synonym and Hypernym (first 2

synset names and hypernyms of first and third
synset names. If no hypernyms are found, we
represent it as ND (not defined)).

The following features were used for Process:

• Word features: local-context (uni-gram and
bi-gram: -4 to +2), is-digi-alpha (-1 to +4),
is-all-digit (-3 to +3), is-inner-upper-case (-
1 to +1), is-beginning-upper-case (-2 to +4),
is-all-upper-case (-2 to +2), is-stopword (-2
to +1), shape (-2 to +3), word-frequency (-
4 to +4), is-word-in-training-data (-3 to +1),
prefix-chars (1,3), suffix-chars (1,3)

1https://taku910.github.io/crfpp/
2Here ’-’ and ’+’ indicate the number of preceding and

following words in the context window respectively.

• keyphrase boundary according to boundary
detection model (-2 to +4)
• POS (uni-gram and bi-gram: -4 to +1)
• Wordnet: Synonym and Hypernym (second

synset names and hypernyms of first and third
synset names)

The following features were used for Task:

• Word features: local-context (uni-gram and
bi-gram, -4 to +1), is-digi-alpha (-3 to +3), is-
all-digit (-3 to +4), shape (-1 to +4), is-word-
in-training-data (-1 to +4), prefix-chars (1,4),
suffix-chars (1,3,4)
• keyphrase boundary according to boundary

detection model (-2 to +3)
• Babelfy Mention (-3 to +1)
• Lemma and POS (-4 to +3)
• Wordnet: Synonym and Hypernym (first

synset names and hypernyms of fourth synset
name)

System 3 System 3 is an optimal combination of
the two preceding systems according to CV on the
development data. Based on the precision value,
System 2 was given higher priority when both sys-
tems identified the words as keyphrases. That is,
we add any Task or Material keyphrases predicted
by System 1 to those predicted by System 2, unless
they happen to overlap with any System 2 predic-
tions (Process remained unaltered).

IOB-to-Brat conversion The final step con-
sists of merging the IOB tags predicted by the
three separate models in order to produce labelled
keyphrases in Brat format.

Experimental setup Cross-validation on the
training data was used to select features and tune
hyper-parameters. The best performing systems
were tested on dev data to check for undesired
overfitting. Finally the best systems were trained
on the combination of train and dev data to make
predictions on test data.

Relation extraction For Task C (relation ex-
traction), we relied on an independently devel-
oped system described in (Barik and Marsi, 2017),
which performs exhaustive pairwise classifica-
tions of keyphrase pairs of the same type within
a sentence.

2 Results

Results for our three systems are shown in Ta-
ble 1. Micro averages are weighted across the
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three labels for keyphrases and the two relation
types, but as the keyphrases are substantially more
frequent, the weight of the relations is relatively
small. System 1 performs worst and system 2
performs best, although the differences are small.
System 1 mainly wins on precision. The combi-
nation of both in system 3 does not offer any ad-
vantages, except for higher recall. All system ob-
tain best scores for Material and worst scores for
Task. This can be partly explained by the support
for each class: Material and Process instances are
much more frequent than Task in the training data.
Another part of the explanation may be that Pro-
cess and Task are harder to distinguish from each
other.

Results on test data are substantially lower than
on the dev data, with 6 to 7 percent lower av-
erage F-scores. This suggests that the models
were overfitted on the combination of train and
dev data. This is somewhat surprising, because
no such differences showed up between cross-
validated scores on the training data and scores on
the dev data.

Performance on relation extraction is rather
poor when compared with the scores obtained with
manually annotated keyphrases as input. This is
to be expected, as errors in keyphrase extraction
propagate to errors in relation extraction. For
more analysis of the relation extraction system,
see (Barik and Marsi, 2017).

3 Discussion

IOB tags The offsets of annotated phrases did
not always properly align with the beginning or
end of a token. This was partly due to tokeni-
sation errors. In particular, Spacy tended to con-
sider periods as part of an abbreviation instead of
the end of a sentence. For example, it took the
period after ‘Co(II)OEP.’ as a part of an abbre-
viation rather than a sentence ending, which does
not align with the annotated phrase ‘Co(II)OEP’.
Likewise, words compounded with a dash or slash
(e.g. ‘solid-liquid’) were sometimes individually
annotated as keyphrases, but not split by Spacy,
or the other way around. There were also errors
were annotators did not include all characters in
the text span (e.g., ‘ossil mass’ instead of ‘fossil
mass’, or unintentionally included extra characters
(e.g. ‘EBL and HSQ development, t’).

In order to estimate the impact of IOB conver-
sion errors on the scores, we converted annotated

keyphrases in Brat format to IOB format and then
back to Brat format. We then used the eval.py
script to compute the scores of the resulting ‘pre-
dictions’. The number of misalignments and their
impact on precision, recall and F-score are shown
in Table 2. We conclude that the impact of con-
version to IOB tags on F-score is relatively small:
between 1 to 3 percent at maximum, assuming all
predictions are correct.

Failed attempts We tried tuning the CRF hyper-
parameters using grid search (for run 1), optimis-
ing the micro-average F-score over the B and I
tags. However, this criterion did not correspond
well with the official scores reported by eval.py.
In fact, CRFs with optimised hyper-parameters
yielded official scores that were lower than for
CRFs with default parameter setting. Optimis-
ing directly on the official scores is more expen-
sive and complicated, because of the conversion
of IOB tags to Brat annotation. However, doing so
may improve performance.

Qualitative error analysis The analysis of er-
rors has been conducted over a random sample of
10% of the documents from the test data under
the best system (2). This analysis shows that al-
most half of the errors are words or phrases in-
correctly tagged as keyphrases. The other half
are due to either incorrect boundaries (19%),
such as ERP system instead of hybrid ERP sys-
tem in S0166361516300926; label (18%), e.g.
FIB instruments as Material instead of Process in
S0168583X14003929; or both incorrect bound-
aries and label (15%), e.g. finding a group of opti-
mized coefficients in S0021999113002945 is auto-
matically annotated as Process whereas optimized
coefficients is Material in the test data.

Other types of errors are those in which the
same phrase has been annotated with two dif-
ferent labels and only one of these is correct.
For example, SNR (S096386951400070X) or DP
(S0010938X15301268) are both Material and Pro-
cess, but only the former exists in the gold stan-
dard data. This is especially frequent among
acronyms.

It is worth mentioning that part of these errors
are also due to errors already present on the anno-
tated test data. For instance, RH ceramics in value
of the fracture toughness of RH ceramics is clearly
some kind of material, but it is unlabelled in the
gold standard data.
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Table 1: Results on dev and test data

System Label Dev Test

Prec Rec F Prec Rec F

System 1

Material 0.48 0.47 0.47 0.36 0.42 0.39
Process 0.38 0.34 0.36 0.35 0.28 0.21
Task 0.17 0.12 0.14 0.08 0.09 0.09
Synonym-of 0.40 0.22 0.29 0.67 0.18 0.28
Hyponym-of 0.29 0.08 0.13 0.05 0.03 0.04

Micro Average 0.41 0.34 0.37 0.32 0.31 0.31

System 2

Material 0.54 0.40 0.46 0.41 0.40 0.41
Process 0.44 0.33 0.38 0.39 0.29 0.33
Task 0.18 0.16 0.17 0.10 0.12 0.11
Synonym-of 0.41 0.27 0.32 0.65 0.21 0.32
Hyponym-of 0.39 0.11 0.17 0.11 0.05 0.07

Micro Average 0.45 0.32 0.37 0.36 0.31 0.33

System 3

Material 0.45 0.53 0.49 0.34 0.49 0.40
Process 0.45 0.31 0.37 0.38 0.27 0.32
Task 0.17 0.21 0.19 0.07 0.13 0.09
Synonym-of 0.38 0.29 0.33 0.64 0.22 0.33
Hyponym-of 0.26 0.11 0.16 0.05 0.05 0.05

Micro Average 0.40 0.38 0.39 0.31 0.34 0.32

Table 2: IOB alignment errors and their impact

#spans #misalign Prec Rec F-score

train 6721 138 (2.1%) -0.01 -0.03 -0.02
dev 1154 16 (1.4%) 0.00 -0.02 -0.01
test 2051 47 (2.3%) -0.01 -0.04 -0.03

Besides, this analysis shows that around more
than three quarters of these errors are due to
keyphrases incorrectly labelled as Material (43%)
or Process (42%), whereas only 15% are Task.
Interestingly, a similar proportion of keyphrases
is observed in the training data: there is a con-
siderably lower number of keyphrases labelled as
Task (1132), than Process (2992) and Material
(2608). For example, nuclear fission reactors in
S0263822312000657 was labelled as Material but
it is a Task in the gold standard data; capture fea-
tures in the solution (S0021999113006955) was
predicted as Task but it should be a Process; or op-
timized coefficients in S0021999113002945 was
predicted as a Task but it is a Material.

Regarding coverage, 62 entities are not cov-
ered by System 2 at all. This amounts to 35% of
the gold standard data. The distribution of errors
is very similar to the one reported for precision,
with 45% of the entities not covered being Ma-
terial, 40% Process and 15% Task. For instance,
in S0021999113006955 there are two instances of
true surface that were ignored by the classifier. In-
terestingly, another mention of the same keyphrase

in the same document was correctly annotated as
Material. However, postprocessing of predictions
to enforce consistent labelling in System 1 did not
show any nett improvements.
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Abstract

This paper describes our approach to
the SemEval 2017 Task 10: “Extracting
Keyphrases and Relations from Scientific
Publications”, specifically to Subtask (B):
“Classification of identified keyphrases”.
We explored three different deep learn-
ing approaches: a character-level convo-
lutional neural network (CNN), a stacked
learner with an MLP meta-classifier, and
an attention based Bi-LSTM. From these
approaches, we created an ensemble of
differently hyper-parameterized systems,
achieving a micro-F1-score of 0.63 on the
test data. Our approach ranks 2nd (score
of 1st placed system: 0.64) out of four ac-
cording to this official score. However, we
erroneously trained 2 out of 3 neural nets
(the stacker and the CNN) on only roughly
15% of the full data, namely, the origi-
nal development set. When trained on the
full data (training+development), our en-
semble has a micro-F1-score of 0.69. Our
code is available from https://github.
com/UKPLab/semeval2017-scienceie.

1 Introduction

Although scientific experiments are often accom-
panied by vast amounts of structured data, full-text
scientific publications still remain one of the main
means for communicating academic knowledge.
Given the dynamic nature of modern research and
its ever-accelerating pace, it is crucial to automat-
ically analyze new works in order to have a com-
plete picture of advances in a given field.

Recently, some progress has been made in this
direction for the fixed-domain use case1. How-
ever, creating a universal open-domain system still

1 E.g. BioNLP: http://2016.bionlp-st.org/

remains a challenge due to significant domain dif-
ferences between articles originating from differ-
ent fields of research. The SemEval 2017 Task 10:
ScienceIE (Augenstein et al., 2017) promotes
the multi-domain use case, providing source ar-
ticles from three domains: Computer Science,
Material Sciences and Physics. The task con-
sists of three subtasks, namely (A) identification
of keyphrases, (B) classifying them into broad
domain-independent classes and (C) inferring re-
lations between the identified keyphrases.

For example, for the input sentence ‘The ther-
modynamics of copper-zinc alloys (brass) was
subject of numerous investigations’ the following
output would be expected:

(A) 1. The thermodynamics of copper-zinc alloys
2. copper-zinc alloys
3. brass

(B) 1. TASK
2. MATERIAL
3. MATERIAL

(C) synonym(2,3)

Our submission focuses on (B) keyphrase clas-
sification given item boundaries. We avoid task-
specific feature engineering, which would poten-
tially render the system domain-dependent. In-
stead, we build an ensemble of several deep learn-
ing classifiers detailed in §3, whose inputs are
word embeddings learned from general domains.

2 Task and Data

In the annotation scheme proposed by the task or-
ganizers, keyphrases denoting a scientific model,
algorithm or process should be classified as
PROCESS (P), which also comprises methods
(e.g. ‘backpropagation’), physical equipment (e.g.
‘plasmatic nanosensors’, ‘electron microscope’)
and tools (e.g. ‘MATLAB’). TASK (T) contains
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concrete research tasks (e.g. ‘powder processing’,
‘dependency parsing’) and research areas (e.g.
‘machine learning’), while MATERIAL (M) in-
cludes physical materials (e.g. ‘iron’, ‘nanotube’),
and corpora or datasets (e.g. ‘the CoNLL-2003
NER corpus’).

The corpus for the shared task consisted of
500 journal articles retrieved from ScienceDirect2,
evenly distributed among Computer Science, Ma-
terial Sciences and Physics domains. It was split
into three segments of 350 (training), 50 (develop-
ment), and 100 (test) documents. The corpus used
in subtask (B) contains paragraphs of those arti-
cles, annotated with spans of keyphrases. Table 1
shows the distribution of the classes M, T, and P in
the data. We note that class T is underrepresented
and makes up less than 16% of all instances.

Material Process Task

Train+Dev 40% 44% 16%
Test 44% 47% 9%

Table 1: Class distribution in the datasets.

Inter-annotator agreement for the dataset was
published to be between 0.45 and 0.85 (Cohen’s κ)
(Augenstein et al., 2017). Reviewing similar anno-
tation efforts (QasemiZadeh and Schumann, 2016)
already shows that despite the seemingly simple
annotation task, usually annotators do not reach
high agreement neither on span of annotations nor
the class assigned to each span3.

3 Implemented Approaches

In this section, we describe the individual systems
that form the basis of our experiments (see §4).

Our basic setup for all of our systems was as
follows. For each keyphrase we extracted its left
context, right context and the keyphrase itself
(center). We represent each of the three contexts
as the concatenation of their word tokens: to have
fixed-size representations, we limit the left context
to the ` previous tokens, the right context to the r
following tokens and the center to the c initial to-
kens of the keyphrase. We consider `, r and c as
hyper-parameters of our modeling. If necessary,
we pad up each respective context with ‘empty’
word tokens. We then map each token to a d-
dimensional word embedding. The choices for

2 http://www.sciencedirect.com/
3F1-scores ranging from 0.528 to 0.755 for span bound-

aries and from 0.471 to 0.635 for semantic categories.

word embeddings are described below. To sum-
marize, we frame our classification problem as a
mapping fθ (θ represents model parameters) from
concatenated word embeddings to one of the three
classes MATERIAL, PROCESS, and TASK:

fθ : R`·d × Rc·d × Rr·d → {M,P,T}.
Next, we describe the embeddings that we used
and subsequently the machine learning models fθ.

Word Embeddings
We experimented with three kinds of word em-
beddings. We use the popular Glove embeddings
(Pennington et al., 2014) (6B) of dimensions 50,
100, and 300, which largely capture semantic in-
formation. Further we employ the more syntac-
tically oriented 300-dimensional embeddings of
Levy and Goldberg (2014), as well as the 300-
dimensional embeddings of Komninos and Man-
andhar (2016), which are trained to predict both
dependency- and standard window-based context.

Deep Learning models
Our first model is a character-level convolutional
neural network (char-CNN) illustrated in Fig-
ure 1. This model (A) considers each of the three
contexts (left, center, right) independently, repre-
senting them by a 100-dimensional vector as fol-
lows. Each character is represented by a 1-hot
vector, which is then mapped to a 32-dimensional

1-hot

H

1-hot

M

1-hot

M

1-hot

SsS

32-d 32-d 32-d 32-d

100-d

Figure 1: CNN. Each character is represented by a 1-hot vec-
tor, which is then mapped to a learned 32-d embedding vec-
tor. On these, m (m = 2 in the example) filters operate,
which are combined to an m-dimensional vector via max-
over-time-pooling. The output layer, with tanh activation, is
100-d and is fully connected with the m-dim layer that feeds
into it. We represent the left context, right context, and center
via the same illustrated CNN, and then concatenate the 100-d
representations to a 300-d representation of the input.
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embedding (not pre-trained, and updated during
learning). Then m filters, each of size s, are
applied on the embedding layer. Max-over-time
pooling results in anm-dimensional layer which is
fully connected with the 100-dimensional output
layer, with tanh activation function. The 100-d
representations of each context are then (B) con-
catenated, resulting in a 300-dimensional repre-
sentation of the input. A final softmax layer pre-
dicts one of our three target classes. The hyper-
parameters of this model—additional to `, r, c
mentioned above—are: number of filters m, fil-
ter size s, and a few others, such as the number of
characters to consider in each context window.

Our second model, which operates on the token-
level, is a “stacked learner”. We take five base
classifiers from scikit-learn (RandomForestClassi-
fier with two different parameterizations; Extra-
TreesClassifier with two different parameteriza-
tions; and XGBClassifier), and train them repeat-
edly on 90% of the training data, extracting their

... ...xt−1

ht−1

ht−1

concat

forward

backward

xt

ht

ht

concat

xt+1

ht+1

ht+1

concat

...

...

softmax

concat

max-over-time pooling

convolutional layers
filter widths = 2, 3, 5, 7

convolutional layers
filter widths = 2, 3, 5, 7

Figure 2: Bi-LSTM with attention. Pre-trained word embed-
dings xt are fed to an ensemble of CNN layers with 4 differ-
ent filter widths. For each timestep the outputs are concate-
nated and we employ max-over-time pooling. The resulting
attention vector is supplied to the nodes in the forward and
backward LSTM layers. The output of both LSTM layers is
concatenated to a 128-dim vector, which is fed to the final
softmax layer.

predictions on the remaining 10%. This process is
iterated 10 times, in a cross-validation manner, so
that we have a complete sample of predictions of
the base classifiers on the training data. We then
use a multi-layer perceptron (MLP) as a meta-
classifier that is trained to combine the predictions
of the base classifiers into a final output prediction.
The MLP is trained for 100 epochs and the model
with best performance on a 10% development set
is chosen as the model to apply to unseen test data.

Our third model (Figure 2), also operating
on the token level, is an attention based Bi-
directional Long Short-Term Memory network
(AB-LSTM)4. After loading pre-trained word em-
beddings, we apply 4 convolutional layers with fil-
ter sizes 2, 3, 5 and 7, followed by max-over-time-
pooling. We concatenate the respective vectors to
create an attention vector. The forward and back-
ward LSTM layers (64-dimensional) are supplied
with the pre-trained embeddings and the computed
attention vector. Their output is concatenated and,
after applying dropout of 0.5, is used by the final
softmax layer to predict the label probabilities.

4 Submitted Systems

We set the c hyper-parameter to 4, and draw
left and right context length hyper-parameters `, r
(` = r) from a discrete uniform distribution over
the multi-set {1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5}.

Performance measure was micro-F1 as com-
puted by the task’s evaluation script.5 Table 2
shows average, maximum, and minimum perfor-
mances of the systems we experimented with. We
indicate the ‘incorrect’ systems (those trained on
only the dev set) with a star. We tested 56 dif-
ferent CNNs—hyper-parameters randomly drawn
from specific ranges; e.g., we draw the number
of filters m from a normal distribution N (µ =
250, σ = 50)—90 different stackers, and 20 dif-
ferent AB-LSTMs. Our three submitted systems
were simple majority votes of (1) the 90 stackers,
(2) the 90 stackers and 56 CNNs, (3) the 90 stack-
ers, 56 CNNs and 20 AB-LSTMs. Overall, ma-
jority voting is considerably better than the mean
performances of each system.

4 Code was adapted from https://github.com/
codekansas/keras-language-modeling

5 We report results without the “rel” flag, i.e., correspond-
ing to the column “Overall” in Augenstein et al. (2017), Ta-
ble 4. Setting “rel” leads to consistently higher results. E.g.,
with this flag, we have 72% micro-F1 for our best ensemble
(corresponding to column “B” in Augenstein et al. (2017),
Table 4), rather than 69% as reported in our Table 2.
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Mean Max Min

CNN 58.32∗/64.08 61∗/65 54∗/60
Stacker 61.57∗/67.11 64∗/68 59∗/65
AB-LSTM 59.12 64 56

Majority 63∗/69 63∗/69 62∗/68

Table 2: Micro-F1 results in % for our systems.

For the stacker, the Komninos embeddings
worked consistently best, with an average F1-
score of 63.83%. Levy embeddings were second
(62.50), followed by Glove embeddings of size
50 (61%), size 300 (60.80) and size 100 (59.50).
We assume this is due to the Komninos embed-
dings being ‘richest’ in nature, capturing both se-
mantic and syntactic information. However, with
more training data (corrected results), mean per-
formances as a function of embedding type are
closer: 67.77 (Komninos), 67.61 (Levy), 67.38
(Glove-300), 66.88 (Glove-50), 65.77 (Glove-
100). The AB-LSTM could not capitalize as much
on the syntactic information, and performed best
with the Glove embeddings, size 100 (60.35%),
and worst with the Levy embeddings (57.80).

The char-level CNN and the stacker performed
individually considerably better than the AB-
LSTM. However, including the AB-LSTM in the
ensemble slightly increased the majority F1-score
on both the M and T class, as Table 3 shows.

Ensemble M P T

(1) Stackers 76 71 46
(2) Stackers+CNNs 76 72 46
(3) Stackers+CNNs+AB-LSTMs 77 72 47

Table 3: F1 results in % across different classes.

Error analysis: Table 4 details that TASK is
often confused with PROCESS, and—though less
often—vice versa, leading to drastically lower F1-
score than for the other two classes. This mis-
match is because PROCESS and TASK can de-
scribe similar concepts, resulting in rather sub-
tle differences. E.g., looking at various ‘analy-
sis’ instances, we find that some are labeled as
PROCESS and others as TASK in the gold data.
This holds even for a few seemingly very simi-
lar keyphrases (‘XRD analysis’, ‘FACS analysis’).
The ensemble has trouble labeling this correctly,
tagging 6 of 17 ‘analysis’ instances wrongly. Be-
yond further suspicious labelings in the data (e.g.,

‘nuclear fissions reactors’ as Task), other cases
could have been resolved by knowledge of syntax
(‘anionic polymerization of styrene’ is a process,
not a material) and/or POS tags, and by knowledge
of common abbreviations such as ‘PSD’.

We note that our submitted systems have
the best F1-score for the minority class TASK
(45%∗/47% vs. ≤28% for all other participants).
Thus, our submission would have scored 1st using
macro-F1 (60.66∗/65.33 vs. ≤56.66), even in the
erroneous setting of much less training data.

Prediction
Material Process Task

G
ol

d Material 710 194 0
Process 218 708 28
Task 22 105 67

Table 4: Stackers+CNNs+AB-LSTMs confusion matrix.

5 Conclusion

We present an ensemble-based keyphrase classi-
fication system which has achieved close-to-the-
best results in the ScienceIE Subtask (B) while us-
ing only a fraction of the available training data.
With the full training data, our approach ranks 1st.
To avoid using expert features has been one of our
priorities, but we believe that incorporating addi-
tional task-neutral information beyond words and
word order would benefit the system performance.

We also experimented with document embed-
dings, created from additionally crawled Sci-
enceDirect6 articles. Even though the stacker de-
scribed in §3 acting as a document classifier ob-
tained a reasonably high accuracy of ∼87%, its
predictions had little effect on the overall results.

Manual examination of system errors shows
that using part-of-speech tags, syntactic relations
and simple named entity recognition would very
likely boost the performance of our systems.
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Abstract

This paper describes the system presented
by the LABDA group at SemEval 2017
Task 10 ScienceIE, specifically for the
subtasks of identification and classifica-
tion of keyphrases from scientific articles.
For the task of identification, we use the
BANNER tool, a named entity recogni-
tion system, which is based on condi-
tional random fields (CRF) and has ob-
tained successful results in the biomedi-
cal domain. To classify keyphrases, we
study the UMLS semantic network and
propose a possible linking between the
keyphrase types and the UMLS semantic
groups. Based on this semantic linking,
we create a dictionary for each keyphrase
type. Then, a feature indicating if a to-
ken is found in one of these dictionaries
is incorporated to feature set used by the
BANNER tool. The final results on the test
dataset show that our system still needs
to be improved, but the conditional ran-
dom fields and, consequently, the BAN-
NER system can be used as a first approxi-
mation to identify and classify keyphrases.

1 Introduction

In the era of big data, as it could not be otherwise,
an enormous amount of scientific articles is avail-
able. Although during the last few years search en-
gines have provided significant improvements in
information access, researches still have to spend
much time exploring the huge number of articles
published in their research fields. This laborious
task could be reduced if search engines were able
to answer common questions such as: which stud-
ies have dealt with a specific TASK?, which stud-
ies have explored a PROCESS? or which studies

have employed such MATERIAL?. The automatic
detection and classification of keyphrases (which
describe tasks, processes and materials) as well as
the extraction of their relations between them from
scientific articles can support to find the answers
to the previous questions. This task is very impor-
tant, but has hardly been explored at the present
time (Augenstein and Sgaard, 2017).

The ScienceIE task at SemEval
2017 (Augenstein et al., 2017) aims the auto-
matic extraction of keyphrases and their relations
from scientific publications. The task consists of
three subtasks: (1) the subtask A is focused on the
identification of the keyphrases in a given article;
(2) the subtask B is focused on the classification
of keyphrases by one of the following types:
MATERIAL, TASK, and PROCESS; and (3)
the subtask C deals with the classification of the
relationships between keyphrases by one of the
following types: HYPONYM-OF, SYNONYM-
OF, and NONE. For the evaluation of the task, the
organizers have defined three different scenarios,
which the participating teams can choose to
submit their outputs. For example, in scenario
1, the test dataset consists of plain texts without
any annotation and participants can submit their
outputs for all subtasks; for the scenario 2, the
texts in the test dataset also include the annotation
of keyphrases with their offsets in texts, but
without providing their types. In this case, the
teams can only submit their outputs to the subtask
B and C. Finally, in scenario 3, which is only
valid for the subtask C, test documents contain the
keyphrases annotated with their offsets and their
types.

In this paper, we describe the participation
of the group LABDA in the subtasks A and
B. Our approach for identifying and classify-
ing keyphrases from scientific articles combines
the use of the BANNER tool (Leaman et al.,
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2008) and the UMLS semantic network (McCray,
1989)1. The paper is organized as follows. Sec-
tion 2 describes our approach. Experiments, re-
sults, and discussion are described in Section 3.
Finally, the paper is concluded and future work is
proposed in Section 4.

2 Combining the BANNER tool and
UMLS to identify and classify
keyphrases

This section describes the system proposed by
the LABDA group for participation for subtask
A and B. BANNER is a named entity recog-
nition (NER) system, which is based on condi-
tional random fields (CRF). CRF is a class of sta-
tistical modelling method for sequence labelling
and makes use of a rich set of lexical and syn-
tactic features. Based on successful results pro-
vided by this approach for NER in the biomedical
domain (Krallinger et al., 2015; Wei et al., 2015;
Segura-Bedmar et al., 2015), in this paper, we ex-
plore the recognition of keyphrases as a sequence
labeling problem by using the BANNER tool.
This tool is designed to maximize domain inde-
pendence and allows to recognize named entities
from different domains.

BANNER has a 3-stage pipeline, whose input
is a sentence. The first process splits the sentence
into tokens. Then, each token is represented by
a set of features: lemma, prefixes and suffixes of
up to 2, 3 and 4 characters, bigrams and trigrams,
as well as a series of regular expressions to nor-
malize numeric values. Moreover, the word-class
feature also normalizes the possible forms of a to-
ken based on their letters by converting upper-case
letters to ’A’, lower-case ones to ’a’ and numbers
to ’0’.

We also incorporate a new feature that indi-
cates if the token is found in a given dictionary.
In particular, for each type of keyphrase (TASK,
MATERIAL, PROCESS), we define a dictionary
based on the semantic groups of UMLS. To cre-
ate these dictionaries, we studied in depth the
UMLS semantic network and proposed the links
between the keyphrase types and the UMLS se-
mantic groups shown in Table 1. Then, we tra-
verse the UMLS methatesaurus and their terms are
stored in their corresponding dictionary based on
the classification shown in Table 1. The UMLS se-
mantic groups as well as their semantic types can

1https://semanticnetwork.nlm.nih.gov/

be found at https://semanticnetwork.nlm.nih.gov/.
Thus, if a token is found in one of the three dictio-
naries, the feature is set to the name of the dictio-
nary.

To label tokens, we try with different IOB tag-
ging schemas (O=outside, B=beginning of an en-
tity, I=inside of an entity, E=end of an entity, W=a
single entity). Finally, a CRF model is trained us-
ing the features for each token from the training
data. We consider the three types of keyphrases
as the three possible types of entities to be recog-
nized by BANNER. Thus, our approach performs
both subtasks, identification and classification, as
one only process. We train a single model for the
three types.

3 Evaluation

As said before, we have only participated in the
subtasks A (identification) and B (classification).
That is, our experiments are performed on scenar-
ios 1 and 2. Our approach for identification is eval-
uated on the scenario 1, where the test documents
do not contain any annotation. Our approach for
classification is evaluated on the scenario 2, where
texts include the offsets of the keyphrases, but not
their types. Actually, as said above, we use the
same system to identify and classify keyphrases.

For evaluating the classification task on the sce-
nario 2, we take the list of keyphrase mentions
(without their types) provided as input of this
scenario and compare it with the output of the
BANNER tool, which was trained to classify the
three types of keyphrases: MATERIAL, TASK
and PROCESS. If the mention was classified as
a keyphrase by BANNER, we return the type pro-
vided by BANNER. If the mention was classified
with the tag O by BANNER (that is, outside to-
ken), our system was not be able to classify it.
However, if it is actually a keyphrase (because it is
in the input of the scenario 2), we decide to clas-
sify it with the most frequent type (PROCESS).
The keyphrases classified by BANNER, but not
found in the input of the scenario 2, are ignored.

Table 2 shows the results on the development
set for each keyphrase type: MATERIAL, TASK
and PROCESS. We tried with different variations
of the IOB schema and with different combina-
tions of the dictionaries defined from the UMLS
semantic network.

The best results are achieved for the type MA-
TERIAL with an F1 of 35.33%, followed by PRO-
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Type UMLS groups
MATERIAL ANAT:Anatomy, CHEM:Chemicals and Drugs, GENE:Genes and Molecular sequences,

LIVB:Living beings, OBJC:Objects, CONC:Concepts and Ideas
PROCESS ACTI:Activities and Behaviors, DISO(T050:Experimental Model of Disease),

OCCU:Occupations, PROC:Procedures, CONC:Concepts and Ideas (T185:Classification,
T089:Regulation or Law, T170:Intellectual product, T171:Language, T080:Qualitative Concept,
T081:Quantitative Concept, T079:Temporal Concept)

TASK DISO:disorders(all concepts except those classified with the semantic type T050),
PHEN:phenomena, PHYS:physology

Table 1: Linking between keyphrase types and UMLS semantic groups.

Type IOB schema dictionaries Precision(%) Recall(%) F-Measure(%)

MATERIAL
IO NO 59.45 23.48 33.67
IO Material 59.74 25.08 35.33

IOB Material 61.29 23.66 34.14
IOBEW Material 62.73 23.66 34.36

TASK
IO NO 18.51 7.29 10.47
IO Task 16.12 7.29 10.05

IOB Task 17.02 5.83 8.69
IOBEW Task 19.51 5.83 8.98

PROCESS
IO NO 39.93 25.82 31.36
IO Process 40.00 25.60 31.22

IOB Process 41.76 24.06 30.53
IOBEW Process 40.87 22.73 29.21

Table 2: Results on the development set for each type of keyphrase (scenario 1).

CESS with a 31.36% of F1. The system achieves
the worst results for TASK (F1=10.47%). We
study the list of keyphrases in the training dataset
in order to know how many words form each
keyphrase type. We observe that 41% of MATE-
RIALS are formed by a single word, 32% of them
are formed by two words, and the rest of MA-
TERIALS (27%) are phrases with more than two
words. Therefore, we can claim that a high percent
of MATERIALS could be named entities. For the
type of PROCESS, more than half are formed by
one or two words (that is, they can be named en-
tities), while the rest (48%) are phrases with more
than two words. However, many of TASKS (74%)
have three or more words. Thus, while CRF mod-
els have succeeded in the task of NER from the
biomedical texts, the sequence labelling approach
may not be the most appropriate for identifying
keyphrases when they are formed by three or more
words. Another possible cause of low results for
TASK could be that the semantic linking between
TASK and the UMLS semantic groups, which we
defined for this work, is not suitable for the task.

Regarding the different settings, the IO schema
seems to achieve the best results for the three
keyphrase types. Only the use of the dictionary
for MATERIALS achieves a significant improve-
ment, while the rest of dictionaries do not seem to
improve the performance. We proposed the three

submitted runs based on the results on the devel-
opment set.

The final results of the task show that our sys-
tem achieved an F1 of 0.33 for the subtask A and
0.23 for the subtask B, when the system is evalu-
ated on the scenario 1 (without annotations). As
expected, our results are better for the subtask B
when it is classified on the scenario 2 (the off-
sets of the keyphrases are provided for the partici-
pants), achieving an F1 of 0.51.

4 Conclusion

In this paper, we study if a sequence labelling ap-
proach is appropriate for the tasks of identification
and classification of keyphrases from scientific
publications. In particular, we use the BANNER
tool, based on a CRF model and a rich set of lexi-
cal features. To classify the keyphrases, we study
the UMLS semantic network and propose a link-
ing between the keyphrases types and the UMLS
semantic groups. Then, we extend the BANNER
tool by incorporating a new feature that indicates
if the token is found in one of the three dictionar-
ies built from UMLS. Results are modest yet sug-
gest promise for MATERIAL and PROCESS. As
a future work, we plan to explore other dictionar-
ies for the areas of computer science, physics and
material science. Moreover, we plan to study an
approach based on deep learning methods. Be-

949



cause keyphrases are usually longer phrases than
named entities, we would like to create a phrase
embedding model capable of measuring the sim-
ilarity between keyphrases. This approach could
be a solution to deal with nested keyphrases.
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Abstract 

This study describes the design of the 
NTNU system for the ScienceIE task at 
the SemEval 2017 workshop. We use 
self-defined feature templates and multi-
ple conditional random fields with ex-
tracted features to identify keyphrases 
along with categorized labels and their 
relations from scientific publications. A 
total of 16 teams participated in evalua-
tion scenario 1 (subtasks A, B, and C), 
with only 7 teams competing in all sub-
tasks. Our best micro-averaging F1 
across the three subtasks is 0.23, ranking 
in the middle among all 16 submissions. 

1 Introduction 

Keyphrases are usually regarded as phrases that 
capture the main topics mentioned in a given text. 
Automatically extracting keyphrases and deter-
mining their relations from scientific articles has 
various applications, such as recommending arti-
cles to readers, matching reviewers to submis-
sions, facilitating the exploration of huge docu-
ment collections, and so on. An adapted nominal 
group chunker and a supervised ranking method 
based on support vector machines have previous-
ly been used to extract keyphrase candidates 
(Eichler and Neumann, 2010). The conditional 
random field based keyphrase extraction method 
has been presented (Bhaskar et al., 2012). A na-
ïve approach has been proposed to investigate 
characteristics of keyphrases with section infor-
mation from well-structured scientific articles 
(Park et al., 2010). Features broadly used for the 

supervised approaches in scientific articles have 
been assessed in the compilation of a compre-
hensive feature list (Kim and Kan, 2009). Maxi-
mal sequences and page ranking have been com-
bined to discover latent keyphrases within scien-
tific articles (Ortiz et al., 2010). Noun phrases 
containing multiple modifiers have been extract-
ed from earth science publications and general-
ized by matching tree patterns to the syntax trees 
of the sources texts (Marsi and Öztürk, 2015). 
Keyphrase boundary classification has been re-
garded as a multi-task learning problem using 
deep recurrent neural network (Augenstein and 
Søgaard, 2017).  

The ScienceIE task seeks solutions to auto-
matically identify keyphrases within scientific 
publications, label them, and determine their re-
lationships. Specifically, the ScienceIE task con-
tains three subtasks: (A) Identification of 
keyphrases: to identify all the keyphrases within 
a given scientific publication; (B) Classification 
of identified keyphrases: to label each keyphrase 
as Process, Task, or Material; (C) Extraction of 
relationships between two identified keyphrases: 
to label keyphrases as Hyponym-of or Synonym-
of. 
The ScienceIE task presents three evaluation 

scenarios. In Scenario 1, only plain text is given 
for subtasks A, B, and C; in Scenario 2, plain text 
with manually annotated keyphrase boundaries 
are given for subtasks B and C; and in Scenario 3, 
plain text with manually annotated keyphrases and 
their types are given for subtask C. System output 
is matched against a gold standard to measure sys-
tem performance. The micro-averaging precision, 
recall, and F1 across the subtask(s) are used in the 
task. Each participating team can submit at most 
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three results and the best result for each evaluation 
scenario is taken as the performance of the partic-
ipating team. 

This article describes the NTNU (National 
Taiwan Normal University) system for the Scien-
ceIE task at the SemEval 2017 workshop. Our 
solution uses multiple conditional random fields at 
the sentence level. Each sentence is parsed to ob-
tain features, including words, lemmas, part-of-
speech tags, and syntactic phrases. CRFs are then 
trained to learn sequential patterns using the da-
tasets provided by task organizers. We participated 
in the evaluation scenario 1 with three subtasks. 
Our best micro-averaging F1 of 0.23 ranked in the 
middle of all 16 submissions.  

The rest of this paper is organized as follows. 
Section 2 describes the details of the NTNU sys-
tem for the ScienceIE task. Section 3 presents the 
evaluation results and performance comparisons. 
Section 4 discusses some findings. Conclusions 
are finally drawn in Section 5. 

2 The NTNU System 

Our proposed approach uses the  Conditional 
Random Field (CRF) technique (Lafferty et al., 
2001), a type of discriminative probabilistic 
graph model, by learning linguistically motivated 
features to extract the keyphrases from scientific 
articles and identify their relations. The linear 
chain CRF is empirically effective for predicting 
the sequence of labels given a sequence input. A 
word in a sentence is regarded as a state in our 
CRF. Given an observation and its adjacent 
states in terms of the distinguished features, the 
probability of reaching a state is determined 
based on the Stochastic Gradient Descent. In the 
testing phase, the proposed CRF reports the se-
quence of categories with the largest probability 
as the identified result. 

The following four features are used for train-
ing the CRF model with the Stanford CoreNLP 
toolkit (Manning et al., 2014). 
• Word: the original words in the sentence of 

a scientific article are directly used without 
any revision.  

• Lemma: this is to reduce inflectional forms 
and derivationally related forms to deter-
mine the lemma of a word in terms of its in-
tended meaning  

• Part-of-Speech: noun, verb, adjective, ad-
verb, pronoun, etc.  

• Syntactic Phrase: a phrasal category which 
is a type of syntactic unit in the grammar 
structure. Noun phrases are usually regard-
ed as keyphrases in scientific texts. Hence, 
we only adopt noun phrases and their upper 
phrasal category as features.  

Table 1 shows an example sentence with its 
corresponding features. Each row denotes a to-
ken in the sequence. In addition to words, the 
remaining three features (i.e., lemmas, part-of-
speech tags, and syntactically phrasal tags) are 
provided by the Stanford CoreNLP toolkit. 

Table 2 shows the same example sentence 
with encoding for training multiple CRF models. 
We use the simplest IO encoding, which tags 
each token as either being in a particular type of 
keyphrase X or in no keyphrase (denoted as “O”). 

Token Task Pro. Mat. Syn. Hyp. 
This O O O O O 
paper O O O O O 

addresses O O O O O 
the O O O O O 
tasks O     
of O O O O O 

named Task O O Syn. O 
entity Task O O Syn. O 
recogni-
tion Task O O Syn. O 

( O O O O O 
NER Task O O Syn. O 
) O O O O O 
. O O O O O 

Table 2:  An example sentence with encoding. 

Word Lemma POS 
Tag 

Syntactic 
Phrase 

This this DT S-NP 
paper paper NN S-NP 

addresses address VBZ x 
the the DT NP-NP 
tasks task NNS NP-NP 
of of IN x 

named name VBN NP-NP 
entity entity NN NP-NP 

recognition recognition NN NP-NP 
( -lrb- -LRB- x 

NER ner NN PRN-NP 
) -rrb- -RRB- x 
. . . x 

Table 1:  An example sentence with features. 
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We regard the relations Synonym-of and Hypo-
nym-of as individual types in this sequential la-
beling problem. The one-vs.-rest strategy, which 
involves training a single classifier per class, is 
adopted using class samples as positive instances 
and all the other samples as negatives. In total, 
we have five corresponding CRF models for 
each type (i.e., Task, Process, Material, Syno-
nym-of, and Hyponym-of).  

During the testing phase, all trained CRF 
models are parallel to label one of types. The 
tags predicting by both Synonym-of and Hypo-
nym-of CRF models are reliable dependently on 
the other three models, because pairs of 
keyphrase should be identified first for relations. 
Hence, we check the pairs of keyphrases to keep 
those are identified by Task, Process and Materi-
al CRF models. Finally, we integrate all identi-
fied results as our system outputs without han-
dling any conflicts.  

3 Evaluation 

3.1 Data 

The datasets for the ScienceIE task were provided 
by task organizers (Augenstein et al., 2017). The 
collected corpus consisted of journal articles from 
ScienceDirect open access publications evenly 
distributed among Computer Science, Material 
Science and Physics. The training, development, 
and test datasets were comprised of sampled para-
graphs, of which 350 were used for training data, 
50 for development, and 100 for testing. These 
datasets were made available to participants with-
out copyright restrictions.  

No external resources were used to supplement 
the datasets. To pre/post-process the datasets, we 
transformed alphabet-based start/end counts into 
word-based positions.  

3.2 Implementation 

The CRF++ toolkit was used for system imple-
mentation. CRF++ is an open source implementa-
tion of conditional random fields for segmenting 
or labeling sequential data, and is available at 
https://taku910.github.io/crfpp/ 

Supplementary Material in the Appendix shows 
feature templates used in our implemented sys-
tem. Each line denotes one template, in which the 
first characters “U” and “B” respectively represent 
unigram and bigram features. In each template, a 
special macro %[row, col] is used to specify a to-
ken in the input data, in which row specifies the 

relative position from the current focus token and 
col specifies the absolute position of the column.   

The encoding scheme we used was one-hot. We 
had 5 columns, where the first four ones respec-
tively denoted features, i.e., Word, Lemma, Part-
of-Speech and Syntactic Phrases, and the last was 
a given type, e.g., Process or not, for training a 
specific CRF model to label a given type. In the 
testing phase, the same template file was used and 
the last column was an estimated type predicting 
by the trained CRF model. 

3.3 Metrics 

The traditional metrics precision, recall, and F1-
score were computed to measure system perfor-
mance for each subtask. The micro-averaging 
strategy was then used to obtain overall score 
across subtask(s).   

3.4 Results 

Table 3 shows our results for each defined type. 
“Task” for subtask B and “Hyponym-of” for sub-
task C clearly performed worse than other three 
types.  

Table 4 shows our results for each subtask. 
Comparing subtask C with subtasks A and B 
shows the former is relative more difficult.   

3.5 Comparisons 

Of the total 16 submissions, 9 teams did not par-
ticipate in subtask C. We participated in all sub-
tasks, achieving a micro-average F1 of 0.23, thus 
ranked 9th of the 16 submissions.  

Type Precision Recall F1 
Task 0.17 0.05 0.08 
Process 0.44 0.17 0.25 
Material 0.47 0.19 0.27 

Synonym-of 0.73 0.07 0.13 
Hyponym-of 1.00 0.01 0.02 

Table 3:  Our results for each type. 

Type Precision Recall F1 
Subtask A only 0.53 0.21 0.30 

Subtask A+B only 0.43 0.17 0.24 
Subtask C only 0.75 0.04 0.08 
Subtask A+B+C 0.44 0.16 0.23 

Table 4:  Our results for each subtask. 
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4 Discussion 

For this task, we only use multiple CRF models 
with four defined features. In addition to the 
Stanford CoreNLP toolkit for extracting features, 
we do not use any other methods such as the 
NER tool. Our error analysis reflects that the 
NER may be useful to improve the performance 
of Task keyphrase identification. It is also diffi-
cult to extract the Hyponym-of relation due to 
the limitation of long distance using existing fea-
tures templates.  

During the development phrase, we attempted 
to identify the relations between extracted phras-
es using manually crafted rules. Our multiple 
CRF models with the help of rules improved the 
performance on the development set, but per-
formed worse on the testing set. Hence, we do 
not adopt rules in the system module. Our obser-
vations suggest that human-crafted rules do not 
perform well due to the challenge of coverage. 

5 Conclusions 

This study describes the NTNU system in the 
ScienceIE task, including system design, imple-
mentation and evaluation. This is our first explo-
ration of this research topic. Future work will 
explore other features to further improve perfor-
mance. 
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A Supplementary Material 

The feature templates used for training CRF 
models are shown as follows. 

 #Unigram 
U01:%x[-2,0] 
U02:%x[-1,0] 
U03:%x[0,0] 
U04:%x[1,0] 
U05:%x[2,0] 
U06:%x[-2,0]/%x[-1,0] 
U07:%x[-1,0]/%x[0,0] 
U08:%x[0,0]/%x[1,0] 
U09:%x[1,0]/%x[2,0] 
U11:%x[-2,1] 
U12:%x[-1,1] 
U13:%x[0,1] 
U14:%x[1,1] 
U15:%x[2,1] 
U16:%x[-2,1]/%x[-1,1] 
U17:%x[-1,1]/%x[0,1] 
U18:%x[0,1]/%x[1,1] 
U19:%x[1,1]/%x[2,1] 
U21:%x[-2,2] 
U22:%x[-1,2] 
U23:%x[0,2] 
U24:%x[1,2] 
U25:%x[2,2] 
U26:%x[-2,2]/%x[-1,2] 
U27:%x[-1,2]/%x[0,2] 
U28:%x[0,2]/%x[1,2] 
U29:%x[1,2]/%x[2,2] 
U31:%x[-2,3] 
U32:%x[-1,3] 
U33:%x[0,3] 
U34:%x[1,3] 
U35:%x[2,3] 
U36:%x[-2,3]/%x[-1,3] 
U37:%x[-1,3]/%x[0,3] 
U38:%x[0,3]/%x[1,3] 
U39:%x[1,3]/%x[2,3] 
#Bigram 
B 
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Abstract

In this paper, we present MayoNLP’s
results from the participation in the Sci-
enceIE share task at SemEval 2017. We
focused on the keyphrase classification
task (Subtask B). We explored semantic
similarities and patterns of keyphrases in
scientific publications using pre-trained
word embedding models. Word Embed-
ding Distance Pattern, which uses the head
noun word embedding to generate distance
patterns based on labeled keyphrases,
is proposed as an incremental feature
set to enhance the conventional Named
Entity Recognition feature sets. Support
vector machine is used as the supervised
classifier for keyphrase classification. Our
system achieved an overall F1 score of
0.67 for keyphrase classification and 0.64
for keyphrase classification and relation
detection.

1 Introduction

In this paper, we present details of our partic-
ipation in the SemEval 2017 Task 10, Scien-
ceIE (Augenstein et al., 2017). Named Entity
Recognition (NER) is one of the major challenges
in Natural Language Processing (NLP) and text
mining. The interesting entity types in NER
tasks vary from communities and corpora. In
general, NLP community mainly focused on the
identification of proper nouns or noun phrases,
e.g., locations, names and organizations in news
corpora (Nadeau and Sekine, 2007). In contrast,
biomedical community is more interested in find-
ing biomedical or clinical terminologies (Leaman
and Gonzalez, 2008; Tsuruoka and Tsujii, 2005)
in biomedical texts and scientific literatures. There
are several machine learning based methods used

in biomedical NER, which include Support Vector
Machine (SVM) (Lee et al., 2004), Hidden
Markov Model (HMM) (Zhou and Su, 2004) and
Conditional Random Field (CRF) (Tsai et al.,
2006).

Semantic word embedding (Mikolov et al.,
2013) is designed to capture different degrees
of similarity between words using a vectorized
representation, which preserves semantic and
syntactic relationships. Word embeddings and
word embedding based features have drawn
increasing attention for classification tasks (Ma
et al., 2015) and similarity prediction tasks (Afzal
et al., 2016).

We leveraged pre-trained word embeddings to
obtain head noun pattern features, and combined
several other NER feature sets to improve the
keyphrase classification performance. Although
our team participated in Scenario 2 (keyphrase
classification and relation detection), our efforts
were focused on keyphrase classification task
(Subtask B). For the relation detection problem
(Subtask C), we implemented a straightforward
rule-based system to detect synonyms and hy-
ponyms given annotated keyphrases.

The rest of the paper is organized as follows.
Section 2 briefly introduces the corpus used in this
task. Section 3 discusses the methods proposed
in our NER system. Section 4 addresses the
experimental results in the development set, our
submitted runs and official evaluation results.
Finally, Section 5 concludes the paper with
possible extensions for future work.

2 Materials

The corpus provided by the ScienceIE organizers
consisted of 500 introductory paragraphs from
ScienceDirect journal articles in Computer Sci-
ence, Material Sciences and Physics. The corpus
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was divided into training, development and test
sets, which contained 350, 50 and 100 documents,
respectively. It is the first publicly available corpus
with annotations focused on the research topics
and goals of general domain scientific literature.
The annotated keyphrases were relatively longer
than other annotated corpora, which makes the
boundary detection and classification task very
challenging. More details of the corpus can be
found in (Augenstein et al., 2017).

3 Methods

3.1 Preprocessing

To facilitate feature extraction for supervised
classification, all plain text sentences and an-
notations were pre-processed by NLTK1 for
tokenizing, Part-of-Speech (POS) tagging and
sentence detection.

3.2 Head Noun Extraction

Intuitively, the head noun of a keyphrase provides
important information of its semantic category
(Li, 2010). For example, in the phrase
“homonuclear chains of tangent Mie spherical
CG segments” from the ScienceIE 2017 corpus,
the noun “chains” determines the phrase is from
the category “Material”. In another example,
the category of the phrase “applications of
methodology of research” is determined by the
head noun “application”, which is an instance
of “Task”. Extracting the head noun can help
eliminate ambiguous contexts while preserving
the semantic information for the classification
step. Therefore, we used the extracted head
noun features, rather than the features from whole
phrase, to determine the semantic category.

A shallow parsing approach is applied to extract
the head nouns from given phrases. We removed
the part at and after the preposition token “of”,
“with”, “for” and “on”, and kept only the features
from the head noun for the feature extraction step.
In the above examples, we extracted the head noun
“chains” and “applications”.

3.3 Feature Set

Given a sentence and a head noun token wi, we
adopted several commonly used feature sets as
the input of supervised classifiers for the baseline
system.

1http://www.nltk.org/

Lexical features The lower case of tokens in
±2 window.

Orthographic features The set of case, char-
acter and symbolic features of given token.
Orthographic features are all binary features: if the
token contains only upper case letters, if only the
first letter is in upper case, if the token contains
only alphabetic characters, if the token contains
numbers, and if the token starts with alphabetic
characters and ends with numbers.

Part-Of-Speech features The Part-Of-Speech
(POS) tags for the tokens in ±2 window.

Lemma features Lemmatized word of wi and
its verb form from WordNet. For example, for
the token “derivations”, the lemmatized word is
“derivation” and the verb form is “derive”.

3.4 Word Embedding Distance Pattern

The extraction of head nouns in keyphrases
enables utilizing word embedding information as
features in the keyphrase classification task.

To improve the performance using baseline
NER features described above, we proposed Word
Embedding Distance Pattern (WEDP). It is based
on the assumption that the differences among
the head nouns in each semantic category should
follow similar patterns in semantic word vector
space. We would like to validate and obtain the
patterns in this keyphrase classification task.

We selected 10 most frequent head nouns from
each category in the training corpus. After
excluding the duplications, we obtained the
following list of keywords M={model, particle,
data, system, film, problem, algorithm, function,
effect, equation, reaction, method, surface, alloy,
layer, structure}. We also added the category
names (task, material, process) into M .

Given a token w, the word embedding distance
to each of the k-th word-embedding above is
calculated by

dk(w) = dist(w2v(w), w2v(Mk)), (1)

where k = 1, . . . , |K|, the distance function dist
is the cosine distance, and w2v is the dictionary
lookup method, which returns the embedding of
the input token from a pre-trained word to vector
(word2vec) model. If the token w cannot be found
in the word embedding dictionary, we set dk(w) =
1 for all k.

In this study, we used the word embedding
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“ ()”, “, where .”, “, i.e. )”,
“ (i.e., in terms of )”, “, or equivalently, .”,
“, which is the ,”, “, the so-called ”,
“, which are called [,.]”, “, which is called [,.]”,
“ (the )”

Table 1: Matching contexts for synonym detec-
tion, separated by comma (“,”)

model GloVe 2. We tested the overall classification
performance against different dimensions, ranging
from 50 to 300, but found the differences are
negligible. For better algorithm efficiency, we
selected the 50-dimension model as the final
solution.

3.5 Classification

In this study, we modeled the keyphrase classifica-
tion task as a supervised multi-class classification
problem. All features described in Section 3.3
were encoded into a sparse vector, and then
combined with the WEDP as the input of
supervised classifiers.

3.6 Relation Extraction

For the relation extraction subtask, we imple-
mented a simple rule-based system. For each
sentence, we considered all possible pairs of
the entities as relation candidates. For each
candidate, the context texts between two entities
were extracted, including one character after the
entity appeared later of the pair. The matching
patterns we used are shown in Table 1. If any
of those patterns matched with the context, we
identified the pair as a detected relation. Relations
sharing at least one entity were grouped together
as one relation, according to the requirement of
output format.

We used hearstPattern3 which implements
Hearst patterns (Hearst, 1992) for hyponym
detection.

4 Results

We tested several supervised classification meth-
ods, The results on development set are shown
in Table 2. The L2-loss linear kernel SVM was
selected as the classifier and used the scikit-learn4

implementation. The result also validated that

2http://nlp.stanford.edu/projects/glove/
3https://github.com/mmichelsonIF/hearst patterns python
4http://scikit-learn.org/

SVM can outperform other classification methods
in high dimensional data (Chang and Lin, 2011).
The hyperparameter C was tested in the range
from 0.01 to 10. The F1 scores5 range from 0.70
to 0.78 and yields the highest F1-score on the
development set when C is set to 0.5.

Classifier Material Process Task Avg
ExtraTrees 0.77 0.69 0.45 0.68

SGD 0.76 0.67 0.35 0.65
5-NN 0.66 0.59 0.24 0.56

RBF-SVM 0.76 0.71 0.29 0.65
Linear SVM 0.88 0.75 0.45 0.78

Table 2: F1 scores for different classification
methods on development set for Subtask B.
(5-NN: 5 Nearest Neighbor; SGD: Stochastic
Gradient Descent; RBF: Radial Basis Function)

Ablation experiments were conducted on the
development set to find the importance of indi-
vidual feature sets. The ablation results in F1
scores are shown in Table 3. From Table 3, we see
that both the baseline feature sets and the WEDP
contributed to the overall performance, since the
combination of these two sets outperform the other
feature settings.

Feature sets F1 score
Lexical features, ±1 window 0.68

+ ±2 window 0.69
+ Orthographic features 0.71

+ POS features 0.72
+ Lemma feastures 0.72

baseline features only 0.72
WEDP features only 0.67

All 0.78

Table 3: Ablation F1 scores of keyphrase
classification on the development set

The official evaluation uses the standard preci-
sion (P), recall (R) and F1 score as the metrics. We
submitted two runs for official evaluation. Run 1
uses the feature set described in Section 3.3 with
synonym detection result. Run 2 is derived by
extending Run 1 by predicted hyponyms. Both
runs achieved F1 score of 0.64 for Subtasks B
and C. This was due to the insignificance from
the positive cases of “Hyponym-of” relations on
Run 2. The results of Run 2 are shown in

5Unless specified, the F1 scores mentioned in this section
are micro-average F1 scores in keyphrase classification.
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Category P R F1 score Support
Material 0.74 0.78 0.76 904
Process 0.69 0.64 0.66 954

Task 0.28 0.29 0.28 193
Synonym-of 0.42 0.27 0.33 112
Hyponym-of 0.16 0.03 0.05 95

Entity 0.67 0.67 0.67 2051
Relation 0.37 0.16 0.23 207
Overall 0.66 0.62 0.64 2258

Table 4: Official evaluation results of the best
submitted run on the test set using annotated
keyphrase boundaries (Scenario 2).

Table 4. From the results, “Task” is the most
difficult category for our proposed method, but its
relatively low proportion reduces its impact on the
overall F1 score. Compared to the development
set Table 2, the F1 scores of all three categories
drop by at least 0.09, which indicates the selected
classifier suffers from overfitting.

5 Conclusion

In this paper, we presented details of MayoNLP’s
participation in the ScienceIE share task at
SemEval 2017. We used a supervised classifier
for the keyphrase classification task using word
embedding distance patterns, which improves the
performance of conventional feature sets. Our
system achieved an overall F1 score of 0.67
for keyphrase classification subtask and 0.64 for
keyphrase classification and relation detection
subtasks. It outperformed other participating
systems in Scenario 2.

A future extension of this work is to test the pat-
terns on different pre-trained word embeddings.
We will also develop methods for more accurate
key noun extraction such as dependency parsing,
to improve the overall classification performance.
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Abstract

This paper describes our participation in
SemEval-2017 Task 10, named ScienceIE
(Machine Reading for Scientist). We com-
peted in Subtask 1 and 2 which consist re-
spectively in identifying all the key phrases
in scientific publications and label them with
one of the three categories: Task, Process,
and Material. These scientific publications
are selected from Computer Science, Mate-
rial Sciences, and Physics domains. We fol-
lowed a supervised approach for both subtasks
by using a sequential classifier (CRF - Con-
ditional Random Fields). For generating our
solution we used a web-based application im-
plemented in the EU-funded research project,
named CODE. Our system achieved an F1
score of 0.39 for the Subtask 1 and 0.28 for
the Subtask 2.

1 Introduction

Information Retrieval (IR) systems for scientific
publications face different challenges compared to
the standard approaches. This, mainly is due to the
unavailability of the whole text from reviewed pa-
pers and the vague specification of the searching in-
formation. The identification and the extraction of
the key phrases from such articles can partially over-
come the limits described above by allowing search
engines to access and use them as text features. Fur-
thermore, the classification of the key phrases as
a Task, a Process, or a Material, can help the re-
searchers to correctly specify the type of information
they are seeking.

Figure 1: Example of a keyphrase with its associated label

The Subtasks 1 and 2 of Task 10 (Augenstein
et al., 2017) in SemEval-2017 named ScienceIE
(Machine Reading for Scientist), tackle the afore-
mentioned problems. This task consists in identi-
fying (Subtask 1) and labeling (Subtask 2) all the
key phrases in scientific publications from Computer
Science, Material Science, and Physics.

For training and evaluating this task, it was pro-
vided a set of scientific papers together with the an-
notated key phrases and their associated labels. The
annotations were represented with their start and end
offsets in the text. The labels associated with each
annotation can be from one of the three options:
Task, Process, and Material. The example in Figure
1 illustrates the given dataset.

We followed a supervised approach for both sub-
tasks. More specifically, we trained a sequential
classifier CRF - Conditional Random Fields (Laf-
ferty et al., 2001) and fed it with grammatical and
text features. The model built from this classifier
represents our solution for identifying and labeling
the key phrases.

The rest of the paper is organized as follows. In
the next section we describe our system’s details. In
section 3 we show the results of our systems and
compare it with the other participants in the chal-
lenge. We end with section 4 summing up the con-
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clusions and foreseeing our future work.

2 System Description

In the ScienceIE (Machine Reading for Scientist) we
have followed a supervised approach. For classi-
fying a certain number of elements as key phrases
and label them, we use a CRF (Conditional Ran-
dom Field) classifier. Our system is part of an open-
source tool1 that has been developed within a EU
funded research project, named CODE2. This sys-
tem is a web-based application, which allows to
quickly annotate textual corpora imported directly
from Mendeley3, an E-Mail server or a Zip-file con-
taining Brat annotations.

Once the corpus has been imported, it is automat-
ically pre-processed and indexed using a semantic
search engine. In order to make use of an auto-
matic annotation of a corpus, a model needs to be
trained. This is conducted using solely the web in-
terface of the tools, see Figure 2 for a screenshot
of the configuration panel where the model can be
trained. The submitted runs have been generated
using exclusively the CODE Annotator tool, only
a slight modification of the Brat annotation files as
supplied by the organisers were necessary.

2.1 Pre-Processing

Given the individual tokens and sentences we apply
a light pre-processing on the text. At first we apply
a part-of-speech tagger, namely OpenNLP4, to de-
rive the word form of each word within the sentence.
As our pre-processing pipeline is designed to work
with multiple languages, with each having its own
dedicated tagset, we defined our own uniform POS
tagset. This tagset consists of just 14 different word
forms, e.g. proper nouns and common nouns (in-
cluding the tags that indicate plural) are all unified
into a single noun tag. We store the original POS
tags together with the unified tags within an internal
representation of the text.

1http://code-annotator.know-center.
tugraz.at/

2http://code-research.eu/
3http://mendeley.com/
4https://opennlp.apache.org/

2.2 Feature Generators

We used a series of feature generators that operate on
the pre-processed sentences to create features, which
are then fed to the classifiers.

Tokens The token feature generator directly en-
codes the individual words as features, following a
bags of words approach. This generator offers the
configuration parameter to optionally normalise the
tokens, i.e. to bring them into a lower-case repre-
sentation. For the submitted runs, we used the raw
tokens without further normalisation.

Token Character The first and last characters of a
word are often indicative of its semantic and gram-
matical function. Therefore we crafted a feature
generated that generates character n-grams from the
prefix and suffix of the tokens. This generator pro-
vides options on the length of the generated n-gram
features. We finally ended up using 1, 2 and 3-
gram features, which are additionally normalised by
bringing them into a lower case representation.

Token Shape In many different domains entities
are often abbreviations or specific words using com-
binations of special characters and numbers. To cap-
ture this, we designed a feature generator that maps
a word into a representation that should reflect the
words shape. All characters of a word are mapped
to a sequence of characters that represent: upper
case, lower case, special characters, and numbers.
For each word we create two representations: i) ad-
jacent mappings are conflated into a single charac-
ter, ii) adjacent mappings are merged into a single
character, but additionally the number of merged
characters is appended. For example, the entity
“NFAT/AP-1” will yield two features: “A/A-x”
and “A4/1A2-1x1”.

Token POS Tag This feature generator simply
adds the POS tagging to the set of features. We
used our unified tag set instead of the Penn Treebank
tagset, which is used by the POS tagger.

Context Window This feature generator takes the
features from the surrounding words and adds them
to the feature set of the word in focus. We one can
specify the size of the sliding window - with the left
and right window size individually. Based on pre-
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Figure 2: Screenshot of the CODE annotator tool, where users can tweak the model, trigger the learning process, evaluate the

model on test corpora or apply a model on a corpus.

Figure 3: An example of the application of a sequence of words

labelled with a BILOU encoding.

liminary test we opted to use a very short window of
just 1 word to the left and right of each word.

2.3 Classification

To label words as part of key phrases, we followed a
sequence classification approach. Here a single sen-
tence is seen as a sequence of items, which are all
assigned to a label.

Key Phrases As key phrases may consists of mul-
tiple words and multiple key phrases may directly
succeed each other, one needs a labelling scheme
that cater for this cases. The most common encod-
ing schemes are “BIO” and “BILOU”. Based on pre-
liminary tests we opted for the latter, which should

be more expressive, but may yield worse results in
some scenarios.

The “BILOU” encoding scheme refers to classify
each of the token as either: B) beginning of a (multi-
token) key phrase, I) used for all tokens inside a
(multi-token) key phrase, L) for the last token of a
(multi-token) key phrase, O) used for tokens out-
side of a key phrase (i.e. all tokens not being part
of a key phrase), and finally U) used for key phrases
consisting of just a single token. See Figure 3 for an
example how the labels are constructed.

To fit the current classifier with the Subtask 2, we
encode each word contained in a key phrase as a
concatenation of the key phrase’s label with the cor-
responding “BILOU” encoding. Consider the key
phrase “keyword extraction” in the example
3 and let’s assume that its label is “Task”. We
would encode the word “keyword” as “Task-B”
and the word “extraction” as “Task-L”. The
encoding returned from the CRF algorithm would
determine then the label of the key phrase.

Key Phrase Classification Algorithm We used
the Conditional Random Field (CRF) algorithm as
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supplied by the Mallet5 library. Mallet does allow
to specify the order of the random field. Due to the
small size of the training data set we were able to
use a fully-connected model. Furthermore we were
able to train the model until convergence, without
the need to stop at a predefined threshold.

3 Results

Here we describe the results of the challenge and
compare all the other participating teams. Table 1
shows the results for the two subtasks we have par-
ticipated in.

System F1 score for
Subtask 1

F1 score for
Subtask 2

TIAL UW 0.56 0.44
s2 end2end 0.55 0.44
PKU ICL 0.51 0.38
TTI COIN 0.50 0.39
NTNTU-1 0.47 0.34
WING-NUS 0.46 0.33
SciX 0.42 0.21
IHS-RD-BELARUS 0.41 0.19
Know-Center 0.39 0.28
LIPN 0.38 0.21
SZTE-NLP 0.35 0.28
LABDA 0.33 0.23
NTNU 0.30 0.24
NITK IT PG 0.30 0.15
HCC-NLP 0.24 0.16
Surukam 0.24 0.1
GMBUAP 0.08 0.04

Table 1: Official results for the Subtask 1 and 2 of the Task

10 in Semeval-2017, named ScienceIE (Machine Reading for

Scientist)

As illustrated, we have achieved a F1 score of
0.39 for the Subtask 1 and 0.28 for Subtask 2. The
best performing team managed to achieve an F1
score of 0.56 and 0.44 respectively for each subtask.
We ranked in the 9-th place for the Subtask 1 and
7-th for the Subtask 2.

4 Conclusions and Future Work

In this paper we presented our system for the
SemEval-2017 Task 10, named ScienceIE (Machine
Reading for Scientist). We competed in Subtask 1
and 2, which consist, respectively, in identifying all

5http://mallet.cs.umass.edu/ (Version 2.0.7)

the key phrases in scientific publications and label
them. We achieved an F1 score of 0.39 for the Sub-
task 1 and 0.28 for the Subtask 2.

Our plan for the future work is to extend the set
of used features and analyse their impact. Further-
more we intend to consider different classifications
algorithm and tune their parameters.
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Abstract

This paper presents our relation extraction
system for subtask C of SemEval-2017
Task 10: ScienceIE. Assuming that the
keyphrases are already annotated in the in-
put data, our work explores a wide range
of linguistic features, applies various fea-
ture selection techniques, optimizes the
hyper parameters and class weights and
experiments with different problem for-
mulations (single classification model vs
individual classifiers for each keyphrase
type, single-step classifier vs pipeline clas-
sifier for hyponym relations). Perfor-
mance of five popular classification algo-
rithms are evaluated for each problem for-
mulation along with feature selection. The
best setting achieved an F1 score of 71.0%
for synonym and 30.0% for hyponym re-
lation on the test data.

1 Problem Description

Task C of ScienceIE at SemEval-2017 (Au-
genstein et al., 2017) concerns identifying sen-
tence level ‘SYNONYM-OF’ (or ‘same-as’) and
‘HYPONYM-OF’ (‘is-a’) relations among three
types of keyphrases: PROCESS (PR), TASK
(TA) and MATERIAL (MA) in scientific docu-
ments. The ‘SYNONYM-OF’ relation is symmet-
ric, whereas the ‘HYPONYM-OF’ relation is di-
rected. Hyponym relation prediction is thus as-
sociated with two ordered subtasks: (1) predict-
ing relations between pairs of keyphrases; (2) pre-
dicting the direction of the relation. It is assumed
that there are no relations between keyphrase of
different types. Automatic identification of syn-
onym/hyponym relations is useful for many NLP
applications, e.g. knowledge base completion and
ontology construction.

2 Challenges

The relation prediction task of ScienceIE is chal-
lenging and quite different from other semantic re-
lation prediction task like SemEval-2010 Task 8
(Hendrickx et al., 2009). In SemEval-2010 Task
8, there are two marked nominals in a sentence
and the task is to predict if any of nine seman-
tic relations hold between the nominal pair. Al-
though there are more relations than ScienceIE (9
vs 2), ScienceIE poses different challenges. In-
stead of single-word nominals, the keyphrases of
ScienceIE are arbitrarily large text spans referring
to larger syntactico-semantic units. The top part of
Table 1 shows the percentage of keyphrases longer
than 10 tokens in the training (10.89%), develop-
ment (8.76%) and test (6.71%) data. The problem
with such large text spans is to identify features
which best represent the keyphrase and contribute
most to the relation prediction task.

Another challenge of ScienceIE is the occur-
rence of multiple keyphrases in one sentence, pro-
ducing a large number of possible relations among
keyphrase pairs, i.e., n(n−1)/2 for n keyphrases.
As most of these are negative instances, the posi-
tive and negative classes are imbalanced.

A third challenge is the potentially long dis-
tance between keyphrase pairs. The middle part of
Table 1 shows that there are 49.2%, 57.68% and
43.77% keyphrase pairs in training, development
and test sets respectively which are separated by
more than 19 tokens. In addtion, a number of other
keyphrases can occur in between a pair of related
keyphrases, as shown in Table 1.

Finally,the number of synonym and hyponym
relations in the training and development datasets
is limited. The bottom part of Table 2 shows the
frequencies of relations in training and develop-
ment datasets (ignoring inter-sentence keyphrase
relations).
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Table 1: Keyphrase related statistics on data sets
keyphrase length (`) train dev test

` = 1 (single word) 8.49 13.13 12.87
2 ≤ ` ≤ 5 58.11 58.08 63.44
6 ≤ ` ≤ 10 22.51 20.03 16.98
` ≥ 11 10.89 8.76 6.71

inter-keyphrase distance (λ) train dev test

λ = 0 (adjacent) 0.05 0.02 0.06
1 ≤ λ ≤ 10 20.60 16.17 22.24
11 ≤ λ ≤ 20 29.52 26.13 32.94
λ ≥ 20 49.82 57.68 43.77

# intervening keyphrases (n) train dev test

n = 0 (adjacent) 51.40 43.14 55.53
n = 1 23.84 23.95 25.13
n = 2 11.64 12.84 11.30
n = 3 5.64 7.32 4.57
n ≥ 4 7.48 12.72 3.46

3 Approach

Inspired by the best systems at SemEval-2010
Task 8 (Rink and Harabagiu, 2010), we devel-
oped our relation extraction system in a supervised
learning framework with the dependency structure
of the input sentence as the major resource. The
main intuition is that Bunescu and Mooney (2005)
showed that the shortest path between two entities
in a dependency graph contains most of the infor-
mation for identifying the relation between them.
In causal relation extraction (Barik et al., 2017),
we have experienced that such intuition is effec-
tive. We tried two alternative approaches.

Approach-1: Individual vs Single Classifier
As relations only occur between keyphrases of
the same type, our first experiment evaluates the
performance of separate synonym and hyponym
classifiers for each keyphrase type, resulting in
six classification problems. The description of
System-1 provides more details on the classifiers.

The main challenge of developing individual
classifiers for each task is the limited number of
instances in the dataset. For example, there are
only 11 relation instances between TASK (TA)
keyphrases in the training data and only a single
one in the dev data. Hence individual classifiers
might not generalize well enough. Therefore, an
alternative approach is to train one synonym clas-
sifier and one hyponym classifier for all keyphrase
pairs, ignoring their types. This gives a higher
number of positive training instances – 249 for
synonym and 414 for hyponym – as shown in Ta-
ble 2. This is the approach taken with System-2.

Table 2: Relation related statistics on data sets
Relation Type Dataset PR TA MA Total

SYNONYM train 150 11 88 249
SYNONYM dev 23 1 21 45
HYPONYM train 188 48 178 414
HYPONYM dev 41 8 71 120

In both of these problem formulations, synonym
is a binary classification problem, whereas the hy-
ponym relation is considered as ternary classifica-
tion (i.e., forward relation, backward relation and
no relation).

Approach-2: Hyponym Relation-Direction
Prediction Since the hyponym relation is di-
rected, another option is to predict its direction
separately. Whereas in Approach-1 hyponym rela-
tions and their direction were predicted simultane-
ously as a three class problem, in Approach-2 we
have developed two systems – for relation predic-
tion and direction prediction – and connect them
in a pipeline. System-3 thus refers to a pipelined
classification of hyponym relations.

4 Experiments

Preprocessing Input text is linguistically ana-
lyzed with the Stanford CoreNLP library (Man-
ning et al., 2014), which includes sentence bound-
ary detection, tokenization, lemmatization, part-
of-speech (POS) tagging and dependency parsing.

Feature Extraction Features are extracted for
every possible keyphrase pair within a sentence.
The feature extraction process dependents heavily
on contextual information and dependency struc-
tures, specifically, the shortest dependency path
between two keyphrase heads and the dependency
subtree connecting two keyphrases as described in
(Liu et al., 2015). The major feature categories
are:

• context features: bag-of-word – unigram &
bigram, lemma, POS, word-POS combina-
tion
• before & after context features: bag-of-word

– unigram & bigram, lemma, POS, word-
POS combination in certain window sizes
• dependency features: dependency head & de-

pendents of each keyphrase of the considered
pair, head of the in-between context, depen-
dency path between two entity heads, order-
ing of keyphrases in dependency path, dis-
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Table 3: Candidate Classification Algorithms
Sl. Classification Algorithm Parameters

1 Support Vector Machines (SVM) C, w, loss
2 Multinomial Naive Bayes (MNB) Alpha
3 Decision Tree (DT) split, w, max feat
4 Random Forest (RF) n est., w, criterion
5 k-Nearest Neighbours (kNN) N, weight

Sl. Feature Selection Method Parameters

1 χ2-based feature selection (X2) k
2 Tree-based feature selection (TR) ExtraTreesClf
3 Recursive Feature Elim. (REF) SVM

tance between two keyphrase heads in a de-
pendency path
• other features: open bracket in the con-

text, capitalization in keyphrase, length
of keyphrase, number of lemma common
to both keyphrase, number of intervening
keyphrases
• intervening keyphrase features: the inter-

vening keyphrase features like head of the
keyphrase, its relation with context head, etc.
• WordNet features : synonym/hyponym rela-

tion between heads of two keyphrases, lexi-
cal cues for synonym/hyponym relation, e.g.,
‘such as’, ‘is a’, ‘including’ etc.

Classifiers Used Instead of choosing any par-
ticular classification algorithm, we have evaluated
five different classifiers with hyper-parameters and
class weights tuned for different systems, as listed
in the top half of Table 3.

Feature Selection Methods As shown Table 1,
the keyhrase length (`) and the in-between context
length (λ) can be arbitrarily large. As a result, the
feature extraction process generates a large num-
ber of features, many of which are unlikely to pro-
vide any useful information. Therefore we investi-
gated three different feature selection techniques,
as shown in the bottom half of Table 3. Among
these feature selection techniques, χ2-based fea-
ture selection (X2) gave the best result.

Parameter Optimization through CV The
training instances were extracted from 350 train-
ing files, indexed by training file name, followed
by preprocessing and feature extraction as de-
scribed above. The class weights, parameters for
five classifiers and k (the top-k feature for χ2-
based feature selection) were optimized for the
three different experimental setups (System 1-3)
descibed below using five fold cross validation

with grid search, where training instances from
the same training file are always in the same fold.
Our implementation relied on classifiers, feature
selection methods and CV grid search from Scikit-
learn1.

System-1 We ran CV experiments to optimize
settings for the separate relation prediction tasks:
synonym process (SP), synonym task (ST), syn-
onym material (SM), hyponym process (HP), hy-
ponym task (HT) and hyponym material (HM).
For each task, we optimized the hyper-parameters
of five classifiers as shown in Table 3. The per-
formance of the best classifier was then evaluated
on the development dataset. For the hyponym re-
lation, we optimized on the micro-average score
over the forward and backward relation.

System-2 System-2 consists of a combination of
one synonym classifier and one hyponym classi-
fier.

System-3 Hyponym relations and their direc-
tions were predicted by separate classifiers con-
nected in a pipeline. Parameters were therefore
optimized for relation and direction prediction
separately. The synonym predictions of System-3
result from the combination of the synonym clas-
sifier of 1-4 and 2 where any keyphrase pair pre-
dicted by either classifier 1-4 or classifier 2 is con-
sidered as synonym.

5 Results

Table 4 shows the result of System 1-3 on devel-
opment data, while Table 5 shows performance on
test data. According to Table 4, the combined per-
formance of individual classifiers (of System-1)
for synonym (SM-SP-ST) and hyponym (HM-HP-
HT) is 77% and 29%, which is slightly lower then
the corresponding performance of system-2. This
is consistent with performance on the test data.On
the other-hand, the pipeline of System-3 shows a
lower score than System-1 and System-2 for the
hyponym relation.

5.1 Error Analysis
We have analyzed the mistakes produced by Sys-
tem 1-3 and found the following frequent error cat-
egories:

• synonyms - The synonyms with pattern
KEYPHRASE1 (KEYPHRASE2 in abbrevi-

1http://scikit-learn.org/stable/
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Table 4: Result of individual classifiers where
hyponym relations are considered as three class
problem with micro average of positive classes

Sys Relation Clf Pr Re F1

1-1 SM SVM 0.93 0.62 0.74
1-2 SP DT 0.78 0.78 0.78
1-3 ST DT 1.00 1.00 1.00
1-4 SM-SP-ST SVM-DT-DT 0.84 0.71 0.77

1-5 HM RF 0.39 0.21 0.27
1-6 HP SVM 0.51 0.27 0.35
1-7 HT SVM 0.04 0.10 0.06
1-8 HM-HP-HT RF-SVM-SVM 0.40 0.23 0.29

2 Syno SVM 0.80 0.77 0.78
2 Hypo DT 0.37 0.28 0.32

3 Syno 1-4+2 SVM 0.84 0.79 0.81
3 Rel SVM 0.64 0.35 0.45
3 Dir SVM 0.73 0.72 0.72
3 Rel→ Dir SVM-SVM 0.36 0.21 0.26

Table 5: Result of synonym and hyponym relation
of System 1-3 on test data

System Hyponym Synonym
Pr Re F1 Pr Re F1

1 0.34 0.24 0.28 0.71 0.62 0.66
2 0.35 0.26 0.30 0.82 0.57 0.67
3 0.31 0.18 0.23 0.78 0.65 0.71

ation) like ‘density of states (DOS)’ are iden-
tified correctly. However, the opposite pat-
tern like ‘SRTM (Shuttle Radar Tropograph-
ical Mission)’ are not well recognized.

• hyponyms with conjunctions - when a list of
hyponyms is connected by conjunctions, of-
ten some hyponyms are missed.

• hyponym to synonym - In some cases hy-
ponym patterns are quite similar to frequent
synonym patterns and therefore misclassi-
fied. For example, in the sentence fragment,
‘xR is the x-position of the receiving ele-
ment (R)’, the keyphrase ‘R’ is connected
with ‘receiving element’ by a synonym rela-
tion, whereas the correct relation is hyponym.

• synonym to hyponym - In some cases a
synonym relation is observed instead of a
hyponym relation. For example, in ‘con-
stituent statistics (SB, SDSD, and LCS)’, the
keyphrases ‘SDSD’ and ‘LCS’ are correctly
linked to the ‘constituent statistics’ by a hy-
ponym relation, but ‘SB’ is incorrectly linked
as a synonym.

6 Conclusion

We have described our system for predicting syn-
onym and hyponym relations between keyphrases
within a feature-based supervised learning frame-
work. We have developed three systems for the
synonym and hyponym prediction tasks. Experi-
ments showed that with a relatively small dataset,
training a single classifier for synonym and hy-
ponym works slightly better than training separate
classifiers for each keyphrase type. We also found
that a pipeline of classifiers for relation and direc-
tion prediction of hyponym relations is not effec-
tive compared with predicting relation and direc-
tion simultaneously. As future work, we can inves-
tigate the performance of neural network-based re-
lation classification approaches (specifically Con-
volution and Recurrent Neural Networks).
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Abstract

In this paper, we describe our participa-
tion at the subtask of extraction of relation-
ships between two identified keyphrases.
This task can be very helpful in improv-
ing search engines for scientific articles.
Our approach is based on the use of a con-
volutional neural network (CNN) trained
on the training dataset. This deep learn-
ing model has already achieved successful
results for the extraction relationships be-
tween named entities. Thus, our hypothe-
sis is that this model can be also applied
to extract relations between keyphrases.
The official results of the task show that
our architecture obtained an F1-score of
0.38% for Keyphrases Relation Classifica-
tion. This performance is lower than the
expected due to the generic preprocessing
phase and the basic configuration of the
CNN model, more complex architectures
are proposed as future work to increase the
classification rate.

1 Introduction

Nowadays, a deluge of scientific articles is pub-
lished every year, which demonstrates that we are
living in an emerging knowledge era. An impor-
tant drawback of this situation is that the study of a
given field or problem requires reviewing an huge
number of scientific publications, becoming such
a very arduous task. Most search engines apply
linguistic normalization (such as lemmatization or
stemming) and some of them also exploit the se-
mantic analysis of texts in order to detect concepts
to improve their recall. The goal of the ScienceIE
Task at SemEval 2017 (Augenstein et al., 2017)
is the extraction of keyphrases (such as MATE-
RIALS, PROCESSES and TASKS) and relation-

ships between them from scientific articles. This
competition provides a common evaluation frame-
work to researches allowing a fair way to evalu-
ate and compare their approaches. Our participa-
tion focuses on the subtask of extracting relation-
ships between keyphrases. In particular, these re-
lationships are HYPONYM-OF (for example, ’fe-
mur’ is HYPONYM-OF ’bone’), SYNONYM-OF
(for example, ’ophthalmologist’ is SYNONYM-
OF ’oculist’), and NONE. The detection of these
relationships between keyphrases can improve the
performance of current researches.

In this paper, we describe the participation of
the group LaBDA for participating in the subtask
C (extraction of relationships between keyphrases)
evaluated on the scenario 3, where the test dataset
includes texts as well as the annotations of their
keyphrases (boundaries and types). Our approach
is based on the CNN proposed in (Kim, 2014),
which was the first work to exploit a CNN for the
task of sentence classification. This model was
able to infer the class of each sentence, and re-
turned good results without the need for external
information. To this end, the model computes an
output vector, which describes the whole sentence,
and applies convolving filters to the input through
several windows of different sizes. Finally, this
vector is used in a classification layer to assign a
class label. Recently, CNN has succeeded provid-
ing the state-of-art results in some tasks of relation
extraction such as the relationships between nom-
inals (Zeng et al., 2014) or the extraction of drug-
drug interactions (Zhao et al., 2016). Our aim is
to explore if CNN is also a suitable method for ex-
tracting relationships between keyphrases.

2 Dataset

The valuable contribution of the ScienceIE chal-
lenge was to provide an annotated corpus for train-
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Figure 1: CNN model for the ScienceIE keyphrases Relation Classification task of SemEval 2017.

ing and evaluating supervised algorithms to ex-
tract Keyphrases from Scientific Publications. The
whole corpus contains 500 journal articles about
Computer Science, Material Sciences and Physics
from ScienceDirect1. The corpus is split into train-
ing, development and testing sets with 350, 50 and
100 documents, respectively. A detailed descrip-
tion of the method used to collect and process doc-
uments can be found in (Augenstein et al., 2017).

2.1 Pre-processing phase

Each pair of keyphrases represents a possible rela-
tion instance. Each of these instances is classified
by the CNN model in three classes HYPONYM-
OF, SYNONYM-OF and NONE. The corpus is
given in the paragraph level, that is why we use
the NLTK2 sentence splitter to separate the rela-
tions in the sentence level because we only have
to annotate relations within a sentence.

Once we have each instance, following a similar
approach as that described in (Kim, 2014), the sen-
tences were tokenized and cleaned (converting all
words to lower-case and separating special char-
acters with white spaces by regular expressions).
Then, the two keyphrases of each instance were
replaced by the labels ”entity1” and ”entity2”, and
by ”entity0” for the remaining keyphrases in the
sentence. This method is known as entity blind-
ing, and verifies the generalization of the model.

In the case of the HYPONYM-OF class the di-
rectionality must be considered. For instance, if
an entity A is HYPONYM-OF B we annotated the
relation of B with A as NONE. For the remain-

1http://www.sciencedirect.com/
2http://www.nltk.org

der classes, we annotated both directions with the
same class label.

The keyphrases corpus contains a number of
overlapped keyphrases. As this kind of mentions
produces bad entity blinding, we decided to re-
move them. The classification of keyphrases in-
volving overlapped entities is a challenging task
which will be tackled in future work. One pos-
sible solution will consider different instances for
each overlapped entities.

3 CNN model

In this section, we present a CNN model for
the special case of sentences which describe
keyphrases relationships. Figure 1 shows the
whole process from its input, which is a sentence
with marked entities, until the output, which is
the classification of the instance into one of the
keyphrases relation types.

3.1 Word table layer
After the pre-processing phase, we created an in-
put matrix suitable for the CNN architecture. The
input matrix should represent all training instances
for the CNN model; therefore, they should have
the same length. We determined the maximum
length of the sentence in all the instances (denoted
by n), and then extended those sentences with
lengths shorter than n by padding with an auxil-
iary token ”0”.

Moreover, each word has to be represented by
a vector. To do this, we considered to randomly
initialize a vector for each different word which
allows us to replace each word by its word em-
bedding vector: We ∈ R|V |×me where V is the
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vocabulary size and me is the word embedding
dimension. Finally, we obtained a vector x =
[x1;x2; ...;xn] for each instance where each word
of the sentence is represented by its corresponding
word vector from the word embedding matrix. We
denote p1 and p2 as the positions in the sentence
of the two entities to be classified.

The following step involves calculating the rel-
ative position of each word to the two interacting
keyphrases as i−p1 and i−p2, where i is the word
position in the sentence (padded word included),
in the same way as (Zeng et al., 2014). In order to
avoid negative values, we transformed the range
(−n+1, n−1) to the range (1, 2n−1). Then, we
mapped these distances into a real value vector us-
ing two position embedding Wd1 ∈ R(2n−1)×md

and Wd2 ∈ R(2n−1)×md . Finally, we created an
input matrix X ∈ Rn×(me+2md) which is repre-
sented by the concatenation of the word embed-
dings and the two position embeddings for each
word in the instance.

3.2 Convolutional layer
Once we obtained the input matrix, we applied a
filter matrix f = [f1; f2; ...; fw] ∈ Rw×(me+2md)

to a context window of size w in the convolu-
tional layer to create higher level features. For
each filter, we obtained a score sequence s =
[s1; s2; ...; sn−w+1] ∈ R(n−w+1)×1 for the whole
sentence as

si = g(
w∑

j=1

fjx
T
i+j−1 + b)

where b is a bias term and g is a non-linear func-
tion (such as tangent or sigmoid). Note that in
Figure 1, we represent the total number of filters,
denoted by m, with the same size w in a matrix
S ∈ R(n−w+1)×m. However, the same process can
be applied to filters with different sizes by creating
additional matrices that would be concatenated in
the following layer.

3.3 Pooling layer
Here, the goal is to extract the most relevant fea-
tures of each filter using an aggregating func-
tion. We used the max function, which produces
a single value in each filter as zf = max{s} =
max{s1; s2; ...; sn−w+1}. Thus, we created a vec-
tor z = [z1, z2, ..., zm], whose dimension is the
total number of filters m representing the relation
instance. If there are filters with different sizes,

their output values should be concatenated in this
layer.

3.4 Softmax layer
Prior to performing the classification, we per-
formed a dropout to prevent overfitting. We ob-
tained a reduced vector zd, randomly setting the
elements of z to zero with a probability p follow-
ing a Bernoulli distribution. After that, we fed this
vector into a fully connected softmax layer with
weights Ws ∈ Rm×k to compute the output pre-
diction values for the classification as o = zdWs+
d where d is a bias term; we have k = 3 classes
in the dataset (HYPONYM-OF, SYNONYM-OF
and NONE). At test time, the vector z of a new
instance is directly classified by the softmax layer
without a dropout.

3.5 Learning
For the training phase, we need to learn the CNN
parameter set θ = (We, Wd1, Wd2, Ws, d, Fm,
b), where Fm are all of the m filters f. For this
purpose, we used the conditional probability of a
relation r obtained by the softmax operation as

p(r|x, θ) =
exp(or)∑k
l=1 exp(ol)

to minimize the cross entropy function for all in-
stances (xi,yi) in the training set T as follows

J(θ) =
T∑

i=1

log p(yi|xi, θ)

In addition, we minimize the objective function
by using stochastic gradient descent over shuffled
mini-batches and the Adam update rule (Kingma
and Ba, 2014) to learn the parameters.

4 Results and Discussion

Firstly, we use a basic CNN predefined parame-
ters to create a baseline system without a position
embeddings. Secondly, the effects of the position
embeddings were observed assigning a dimension
Md = 10. In addition, we define the parameters
the same as in (Kim, 2014): word embeddings di-
mension Me = 300, filters m = 200 with a win-
dow size w = (3, 4, 5). For the training phase we
use: a dropout rate p = 50%, mini-batch size of
size 50 and the Rectified Linear Unit (ReLU) as
the non-linear function g. The parameter n = 95
which is determined by the maximum length sen-
tence in the dataset. Only the number of epochs
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was fine-tuned in the validation set using the stop-
ping criteria.

The results of the basic CNN configuration
without position embeddings are showed in Table
1. We observe that the Recall performance in both
classes are very low, the reason is that the param-
eters were not explored in detail and the model
does not fit to this problem. In addition, the en-
tities overlapped removal discard many examples
that can improve the results.

Precision Recall F1-score
HYPONYM-OF 0.27 0.07 0.12
SYNONYM-OF 0.65 0.32 0.43
Total 0.53 0.21 0.30

Table 1: Results over the dataset using a basic
CNN.

The official results obtained by the CNN with
position embeddings are showed in Table 2. We
observe that the Precision increases considerably
in the case of HYPONYM-OF and the Recall of
SYNONYM-OF. This proves that sentences are
best represented using position embeddings (+8%
in F1-score against to CNN without position em-
beddings).

For both cases, the class SYNONYM-OF is
classified better than the class HYPONYM-OF be-
cause the examples in the former class are very
clear, e.g. in the sentence ”trajectory surface hop-
ing (TSH)” the keyphrase ”trajectory surface hop-
ing” is a SYNONYM-OF ”TSH”, and, also, we
obtained the double of instances due to the class is
the same in both directions. That is the main rea-
son why the class HYPONYM-OF obtained low
Recall in both models. For this reason, we will add
some preprocessing to correct these classification
errors with a rule-based system.

Precision Recall F1-score
HYPONYM-OF 0.54 0.07 0.13
SYNONYM-OF 0.61 0.46 0.52
Total 0.60 0.28 0.38

Table 2: Results over the dataset using a CNN with
position embedding size of 10.

5 Conclusions and Future work

We present the CNN model used by LaBDA Team
for the ScienceIE keyphrases Relation Classifica-
tion task of SemEval 2017. We find that the perfor-
mance of the CNN model in this task is promising
but the results are lower in comparison with other

participant results. However, we only try a basic
configuration with a generic preprocessing phase
and without external features. The results suggest
that the usage of the position embedding improves
the performance in both classes.

As future work we will explore and fine-tune
all the parameters of this architecture such as the
size of the position embeddings, the number and
the size of the filters. In addition, we will tackle
the overlapped entities problem using each entity
as different instances. Thus, more examples will
be used for each class to increase the classification
rate. Furthermore, we will train a CNN with dif-
ferent pre-trained word embedding models instead
of using a random word embedding initialization
and comparing results with and without position
embeddings.
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Abstract

We describe an end-to-end pipeline pro-
cessing approach for SemEval 2017’s Task
10 to extract keyphrases and their relations
from scientific publications. We jointly
identify and classify keyphrases by mod-
eling the subtasks as sequential labeling.
Our system utilizes standard, surface-level
features along with the adjacent word fea-
tures, and performs conditional decoding
on whole text to extract keyphrases.

We focus only on the identification and
typing of keyphrases (Subtasks A and B,
together referred as extraction), but pro-
vide an end-to-end system inclusive of
keyphrase relation identification (Subtask
C) for completeness. Our top performing
configuration achieves an F1 of 0.27 for
the end-to-end keyphrase extraction and
relation identification scenario on the fi-
nal test data, and compares on par to other
top ranked systems for keyphrase extrac-
tion. Our system outperforms other tech-
niques that do not employ global decod-
ing and hence do not account for depen-
dencies between keyphrases. We believe
this is crucial for keyphrase classification
in the given context of scientific document
mining.

1 Introduction

Keyphrases are often used for representing the
salient concepts of a document. In scientific docu-
ments, keyphrase extraction is an important pre-
requisite task that feeds downstream tasks such
as summarization, clustering and indexing, among
others. As such, automatic keyphrase extraction
has garnered attention and become a focal point
for many researchers (Kim et al., 2010). Usually,

the most common scenario of keyphrase extraction
is to identify the keyphrases over the whole scien-
tific document. Existing techniques in aforesaid
setups use elaborate, hand-crafted features fed for
selected candidate keyphrases to machine learn-
ing models such as support vector machines and
multilayer perceptrons, to learn keyphrases (Kim
et al., 2013). The scope of features vary from sim-
ple, surface-level features like character n-grams,
token type, and part-of-speech tags – to features
drawn from global statistics and lexical semantics,
such as TF-IDF, keywordness, relation to docu-
ment’s logical structure (Nguyen and Kan, 2007).

However, the given task setup is inherently dif-
ferent as it requires to identify all the keyphrases
of certain types (or classes – Material, Process and
Task) over an excerpt of a scientific document. As
inferred from our primary analysis of the training
data, some of the crucial challenges of keyphrase
extraction in this particular task setup are:

• Keyphrases occur more densely in the
excerpts compared against the standard
keyphrase extraction task where systems typ-
ically identify 5–25 keyphrases over an entire
document;

• Keyphrases overlap significantly. For exam-
ple “equally sized blocks” and “blocks” both
need to be extracted as keyphrases of type
Materials;

• Determining the keyphrase type depends on
the context. For example “oxidation test” and
“assessment of the corrosion condition” can
potentially be either of Task or Process, de-
pending on the context.

Considering these differences, we believe that
sequence labeling based modeling is more suited
than the standard, top K keyphrase extraction.
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Such a model also easily extends to a joint
approach for both extraction and classification,
which we investigated.

2 Method

To accomplish Subtasks A and B, we deploy
the Conditional Random Field (CRF) (Lafferty
et al., 2001), a model capable of capturing con-
ditional dependencies from sequential informa-
tion. A CRF is a decoder which labels unseen
sequences using the parameters learned from an-
notated examples to maximize conditional proba-
bility p(y|x). We describe the inventory of fea-
tures we provisioned (parenthesized notation used
in Table 1).

• Token (F0): The token itself.

• Lower (F1): The token, lowercased.

• N-gram Prefix and Suffix (F2–F9): The ini-
tial to first four characters (prefix) and ulti-
mate to last four characters (suffix) of the to-
ken.

• Part-of-Speech (F10): The part of the speech
tag, as obtained from tagging of the complete
sequence using the nltk.punkt tagger.

• Capitalization (F11): The orthographic case
of the original token; taking one of four
values: ALLCAPS, MixedCaps, Startcap or
lowercase.

• Alpha/numeric? (F12–F13): Where the to-
ken is solely an integer, word, mixed or con-
tains special characters.

• ASCII? (F14): Whether the token consist
of non-ASCII special characters (the larger
UTF-8/ISO Latin set, commonly used as
symbols in scientific writing).

• Quoted? (F15): Whether the token exists be-
tween quotes.

• Hyphenated? (F16): Whether the token con-
tains a hyphen.

• Math operators? (F17): Whether the token
contains equality or inequality operators.

• Occurs in Title? (F18): Whether the token is
present in the title of the article and is not a
stop word in nltk.stopword for English.

• Output for Previous Token (O): The predic-
tion for the previous token, a contextual label
feature.

To achieve Subtask C, we placed minimal ef-
fort, choosing to build the end-to-end pipeline for
sake of completeness. For Subtask C, we em-
ployed the sklearn.ensemble’s random forest clas-
sifier, with syntactic similarity features. The fea-
tures are computed over the keyphrase pairs anno-
tated with a relation as an instance for that relation
and randomly generated pairs between keywords
as an instance of no-relation. These features are
the substring overlap between the two keyphrases,
probabilistic and binary scores for one keyphrase
being short/expanded form of other. We note that
this approach is suboptimal as it does not incorpo-
rate any semantic information required for under-
standing relatedness.

3 Experiments

We use the CRF++ implementation1of CRFs.
CRF++ takes as input a feature template file, de-
scribing contextual positions (like previous token,
next two tokens) to incorporate component fea-
tures from (F0 – F18, O). The template also can
direct CRF++ to compute more complex feature–
bigrams. Our final model’s expanded feature list
includes many of the surrounding tokens features
2.

Dataset. We participate in SemEval-2017 Task
10 on science information extraction (Augenstein
et al., 2017) using the dataset consisting of 350
training samples (Train), 50 development sam-
ples (Dev) and 100 testing samples (Test). Each
data sample is an excerpt of a scientific document.
Unlike previous work creating similar benchmark
dataset (Handschuh and QasemiZadeh, 2014), the
dataset excerpt is taken out of a random section of
the document.

Tasks. The excerpt requires its keyphrases
to be identified (Subtask A), typed among one of
three types: Materials, Process and Task (Sub-
task B), then finally followed by Synonym-of and
Hyponym-of identification among the extracted
keyphrases (Subtask C). Our work focuses specifi-
cally only on Subtasks A and B; our effort on Sub-
task C is minimal.

1https://taku910.github.io/crfpp/
2Code available at https://github.com/

animeshprasad/science_ie
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Subtask A Subtask B
Features Precision Recall F1 Precision Recall F1

1. All 0.55 0.38 0.45 0.51 0.32 0.40
2. All - (F0–F1) 0.49 0.34 0.40 0.44 0.26 0.34
3. All - (F2–F9) 0.53 0.33 0.40 0.46 0.25 0.33
4. All - F10 0.55 0.36 0.43 0.50 0.30 0.37
5. All - (F11–F17) 0.55 0.37 0.44 0.51 0.31 0.38
6. All - F18 0.56 0.39 0.46 0.51 0.32 0.39
7. All - O 0.30 0.39 0.34 0.26 0.32 0.29

Table 1: Model performance over different feature ablation, as evaluated on Dev. Best performance is
bolded.

Evaluation. The designed evaluations test
complete end-to-end pipeline of keyphrase identi-
fication, classification and relationship identifica-
tion (Scenario 1); classification and relationship
identification, given extracted keyphrases (Sce-
nario 2); and relationship identification, given the
extracted and classified keyphrases (Scenario 3).
As the most intuitive and challenging scope, we
only examine Scenario 1 in depth here. In Sce-
nario 1 all the tasks are performed over the (noisy)
system output of previous tasks whenever applica-
ble.

3.1 Feature Ablation

To assess the importance of the component fea-
tures, we perform ablation testing over the Dev
(Table 1). We see that the setup of using all
features is largely validated, with only a slight
0.01 F1 loss on Subtask A alone. The decay in
performance due to ablation is stable: showing
that sequential dependencies on the previous out-
put (O), the token identity, prefixes and suffixes
matter the most. These results are expected and
validate earlier sequence labeling work for pars-
ing bibliographic reference strings (Councill et al.,
2008). As we are dealing with document excerpts
taken from random sections, and possibly due to
the sparsity of the feature, title occurrence (F18,
Row 6) played the least role in performance and
could have been omitted. However, it helps in
Subtask B, making the overall Subtask B perform
slightly better (F18, Row 1). For simplicity, we
use all features (Row 1) for our subsequent CRF
models.

3.2 Joint Modeling versus Individual Experts

A limitation of CRFs is that they discount overlap-
ping, hierarchical sequence labels, assigning the

Setup Precision Recall F1

Joint 0.55 0.38 0.45
Unified 0.49 0.40 0.44

Table 2: Subtask A performance for Joint versus
Unified models, as assessed on Dev. Best perfor-
mance is bolded.

single most likely label sequence. As an example
from Train, a Material occurring as substring of
a Task could not be labeled correctly, as in “[se-
quences of optimal walks of a growing length in
weighted [digraph]material]task”. In contrast, sep-
arate CRF models for individual classes could la-
bel such structures; however, these separate mod-
els then have no contextual evidence of the exis-
tence of other labels in the sequence.

We test whether the aforementioned model (as
in Table 1, referred to here as Joint) compares fa-
vorably to having individual expert models. We
also test whether a single model only trained for
identification (Subtask A) outperforms the Joint
model which performs a relatively complex job.
These additional models are:

• Unified: We collapse all three keyphrase
types into a single type. This system acts
as an expert for identifying keyphrases (Sub-
task A only).

• Individual: We use each of the three types
of keyphrases to train an expert type-specific
keyphrase extractors. This model can po-
tentially predict overlapping (and sometimes
conflicting) class instances.

We evaluate on the Dev with models trained on
the Train (Tables 2 and 3). Interestingly, we can
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Setup Class Precision Recall F1

Joint

Material 0.61 0.36 0.45
Process 0.45 0.34 0.39
Task 0.29 0.12 0.17
Micro Avg. 0.51 0.32 0.40

Individual

Material 0.50 0.28 0.36
Process 0.29 0.23 0.26
Task 0.22 0.07 0.11
Micro Avg. 0.37 0.22 0.28

Table 3: Subtask B performance for Joint versus
Individual models, as assessed on Dev. Best per-
formance is bolded.

Class Precision Recall F1

Material 0.40 0.40 0.40 (−0.05)
Process 0.37 0.26 0.30 (−0.09)
Task 0.13 0.07 0.09 (−0.08)
Synonym-of 0.06 0.18 0.09
Hyponym-of 0.00 0.01 0.00
Micro Avg. 0.26 0.29 0.27

Table 4: Scores for evaluation on Test. Paren-
thetical numbers give differences from Dev per-
formance.

see that the Joint model does better in both sce-
narios. In comparing the Joint versus the Unified
model, we see that there is a useful signal in know-
ing the type of keyphrase. The Unified model ben-
efits from having better annotation density, which
could account for the higher recall. However, in
the Unified model, the output feature (O) loses the
information of the keyphrase type (if any) of the
previous context. We conjecture that this loss of
fidelity in the labels causes the drop in overall per-
formance, particularly in precision. This is corrob-
orated by our feature ablation experiments, where
omitting the output feature causes the largest sin-
gle drop in performance (Table 1, Row 7).

4 Official Run Results

We discuss the final reported system performance
as officially recorded in the SemEval-2017 system
runs for Task 10 blind Test. Table 4 reports the
official results of our submitted run on the Test,
trained over both Train and Dev.

We see a recognizable degradation of Task per-
formance of over 50%, partially due to the skew
in the distribution change between Test and Dev
(Table 5). We note from the official run results,
systems across the board experienced similar per-
formance loss on Task.

Table 6 shows the breakdown of the Scenario 1
result for Subtasks A, B, and C. For Subtasks A

Dataset Material Process Task
Dev 562(49%) 455(39%) 137(12%)
Test 904(44%) 954(46%) 193(9%)

Table 5: Type Count and Percentages.

Subtask Precision Recall F1

A 0.51 0.42 0.46
B 0.37 0.31 0.33
C 0.03 0.10 0.04

Table 6: Official scores on Subtask evaluations.

and B in terms of precision, our model performed
close to the best performing system, with a differ-
ence of 0.04. Our recall was significantly lower,
by around 0.1. We believe this is caused by the
systematic modeling error that our model incurs as
it cannot deal with overlapping (nested) annotated
types. The results are further worsened by the
strict score calculation that discards partially ex-
tracted keyphrases as incorrect. This implies that
every time a nested instance appears, the model
loses at least one keyphrase for recall. This eval-
uation, also, to a great level contributes to the ob-
served lower performance on Task (Table 3) on an
average as compared to other classes. As apparent
from the dataset, Task have more tokens and oc-
casionally encompass smaller Material token se-
quences making it more susceptible to not match
completely and hence incur low precision.

5 Conclusion

We detail our approach in using the conditional
random field to address the science information
extraction task in SemEval-2017. We demonstrate
that the CRF model, when applied jointly to the
task of performing both identification and classi-
fication, outperforms sequential models for each
task separately.

References
Isabelle Augenstein, Mrinal Kanti Das, Sebastian

Riedel, Lakshmi Nair Vikraman, and Andrew Mc-
Callum. 2017. SemEval 2017 Task 10: ScienceIE -
Extracting Keyphrases and Relations from Scientific
Publications. In Proceedings of the International
Workshop on Semantic Evaluation. Association for
Computational Linguistics, Vancouver, Canada.

Isaac G. Councill, C. Lee Giles, and Min-Yen Kan.
2008. ParsCit: An open-source CRF reference

976



string parsing package. In Language Resources and
Evaluation Conference.

Siegfried Handschuh and Behrang QasemiZadeh.
2014. The ACL RD-TEC: a dataset for benchmark-
ing terminology extraction and classification in com-
putational linguistics. In COLING 2014: 4th Inter-
national Workshop on Computational Terminology.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. Semeval-2010 task 5: Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop
on Semantic Evaluation. Association for Computa-
tional Linguistics, pages 21–26.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2013. Automatic keyphrase ex-
traction from scientific articles. Language resources
and evaluation 47(3):723–742.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the eighteenth in-
ternational conference on machine learning, ICML.
volume 1, pages 282–289.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
Proceedings of the 10th international conference on
Asian digital libraries: looking back 10 years and
forging new frontiers. Springer-Verlag, pages 317–
326.

977



Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 978–984,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

MIT at SemEval-2017 Task 10:
Relation Extraction with Convolutional Neural Networks

Ji Young Lee∗
MIT

jjylee@mit.edu

Franck Dernoncourt∗
MIT

francky@mit.edu

Peter Szolovits
MIT

psz@mit.edu

Abstract
Over 50 million scholarly articles have
been published: they constitute a unique
repository of knowledge. In particular,
one may infer from them relations be-
tween scientific concepts. Artificial neu-
ral networks have recently been explored
for relation extraction. In this work, we
continue this line of work and present a
system based on a convolutional neural
network to extract relations. Our model
ranked first in the SemEval-2017 task 10
(ScienceIE) for relation extraction in sci-
entific articles (subtask C).

1 Introduction and related work
The number of articles published every year keeps
increasing (Druss and Marcus, 2005; Larsen and
Von Ins, 2010), with well over 50 million schol-
arly articles published so far (Jinha, 2010). While
this repository of human knowledge contains in-
valuable information, it has become increasingly
difficult to take advantage of all available infor-
mation due to its sheer amount.

One challenge is that the knowledge present
in scholarly articles is mostly unstructured. One
approach to organize this knowledge is to clas-
sify each sentence (Kim et al., 2011; Amini
et al., 2012; Hassanzadeh et al., 2014; Dernon-
court et al., 2016). Another approach is to extract
entities and relations between them, which is the
focus of the ScienceIE shared task at SemEval-
2017 (Augenstein et al., 2017).

Relation extraction can be seen as a process
comprising two steps that can be done jointly (Li
and Ji, 2014) or separately: first, entities of in-
terest need to be identified, and second, the rela-
tion among the entities has to be determined. In

∗ These authors contributed equally to this work.

this work, we concentrate on the second step (of-
ten referred to as relation extraction or classifica-
tion) and on binary relations, i.e. relations be-
tween two entities. Extracted relations can be used
for a variety of tasks such as question-answering
systems (Ravichandran and Hovy, 2002), ontol-
ogy extension (Schutz and Buitelaar, 2005), and
clinical trials (Frunza and Inkpen, 2011).

In this paper, we describe the system that we
submitted for the ScienceIE shared task. Our sys-
tem is based on convolutional neural networks and
ranked first for relation extraction (subtask C).

Existing systems for relation extraction can be
classified into five categories (Zettlemoyer, 2013):
systems based on hand-built patterns (Yangar-
ber and Grishman, 1998), bootstrapping meth-
ods (Brin, 1998), unsupervised methods (Gonza-
lez and Turmo, 2009), distant supervision (Snow
et al., 2004), and supervised methods. We focus
on supervised methods, as the ScienceIE shared
task provides a labeled training set.

Supervised methods for relation extrac-
tion commonly employ support vector ma-
chines (Uzuner et al., 2010, 2011; Minard et al.,
2011; GuoDong et al., 2005), naı̈ve Bayes (Za-
yaraz and Kumara, 2015), maximum entropy (Sun
and Grishman, 2012), or conditional random
fields (Sutton and McCallum, 2006). These
methods require the practitioner to handcraft
features, such as surface, lexical, syntactic fea-
tures (Grouin et al., 2010) or features derived
from existing ontologies (Rink et al., 2011). The
use of kernels based on dependency trees has
also been explored (Bunescu and Mooney, 2005;
Culotta and Sorensen, 2004; Zhou et al., 2007).

More recently, a few studies have investigated
the use of artificial neural networks for relation ex-
traction (Socher et al., 2012; Nguyen and Grish-
man, 2015; Hashimoto et al., 2013). Our approach
follows this line of work.
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Figure 1: CNN architecture for relation extraction. The left table shows an example of input to the model.

Examples Rule format Relations detected
transmission electron microscopy (TEM) A (B) If B is an abbreviation of A, then A and B are

synonyms.
high purity standard metals (Sn, Pb, Zn, Al, Ag, Ni) A (B, C, ... , Z) If any of B, C, ... , Z is a hyponym of A, then all

of them are hyponyms of A.
(TEMs), scanning electron microscopes (A) B A and B have no relation.
DOTMA/DOPE A/B A and B have no relation.

Table 1: Rules used for postprocessing. We considered B to be an abbreviation of A if the first letters of
each token in A form B. The examples are from the training and development sets

2 Model

Our model for relation extraction comprises three
parts: preprocessing, convolutional neural net-
work (CNN), and postprocessing.

2.1 Preprocessing

The preprocessing step takes as input each raw text
(i.e., a paragraph of a scientific article in Scien-
ceIE) as well as the location of all entities present
in the text, and output several examples. Each ex-
ample is represented as a list of tokens, each with
four features: the relative positions of the two en-
tity mentions, and their entity types and part-of-
speech (POS) tags. Figure 1 shows an example
from the ScienceIE corpus in the table on the left.

Sentence and token boundaries as well as POS
tags are detected using the Stanford CoreNLP
toolkit (Manning et al., 2014), and every pair of
entity mentions of the same type within each sen-
tence boundary are considered to be of a poten-
tial relation. We also remove any references (e.g.
[1, 2]), which are irrelevant to the task, and en-
sure that the sentences are not too long by elimi-
nating the tokens before the beginning of the first
entity mention and after the end of the second en-
tity mention.

2.2 CNN architecture

The CNN takes each preprocessed sentence as in-
put, and predicts the relation between the two en-
tities. The CNN architecture, illustrated in Fig-
ure 1, consists of four main layers, similar to the
one used in text classification (Collobert et al.,
2011; Kim, 2014; Lee and Dernoncourt, 2016;
Gehrmann et al., 2017).
1. the embedding layer converts each feature

(word, relative positions 1 and 2, type of en-
tity, and POS tag) into an embedding vector via
a lookup table and concatenates them.

2. the convolutional layer with ReLU activation
transforms the embeddings into feature maps
by sliding filters over the tokens.

3. the max pooling layer selects the highest fea-
ture value in each feature map by applying the
max operator.

4. the fully connected layer with softmax activa-
tion outputs the probability of each relation.

2.3 Rule-based postprocessing

The postprocessing step uses the rules in Table 1
to correct the relations detected by the CNN, or to
detect additional relations. These rules were de-
veloped from the examples in the training set, to
be consistent with common sense.
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annotation A (arg1) is a Hyponym of (rel) B (arg2)
order in text ... A ... B ... ... B ... A ...

strategy rel arg1 arg2 rel arg1 arg2
correct order Hypo A B Hypo A B
correct order Hypo A B Hypo A B
w/ neg. smpl. None B A None B A
fixed order Hypo A B Hyper B A

any order Hypo A B Hyper A B
Hyper B A Hypo B A

annotation A (arg1) is a Synonym of (rel) B (arg2)
order in text ... A ... B ... ... B ... A ...

strategy rel arg1 arg2 rel arg1 arg2
correct order Syn A B Syn A B
correct order Syn A B Syn A B
w/ neg. smpl. Syn B A Syn B A
fixed order Syn A B Syn B A

any order Syn A B Syn A B
Syn B A Syn B A

Table 2: Argument ordering strategies. “w/ neg. smpl.”: with negative sampling (Xu et al., 2015),
“rel”: relation, “arg”: argument. “Syn”, “Hypo”, “Hyper”, and “None” refers to the “Synonym-of”,
“Hyponym-of”, “Hypernym-of”, and “None’ relations. Note that the “Hypernym-of” relation is the
reverse of the “Hyponym-of” relation, introduced in addition to the relations annotated for the dataset.

2.4 Implementation

During training, the objective is to maximize the
log probability of the correct relation type. The
model is trained using stochastic gradient descent
with minibatch of size 16, updating all parameters,
i.e., token embeddings, feature embeddings, CNN
filter weights, and fully connected layer weights,
at each gradient descent step. For regularization,
dropout is applied before the fully connected layer,
and early stop with a patience of 10 epochs is used
based on the development set.

The token embeddings are initialized using
publicly available2 pre-trained token embeddings,
namely GloVe (Pennington et al., 2014) trained on
Wikipedia and Gigaword 5 (Parker et al., 2011).
The feature embeddings and the other parameters
of the neural network are initialized randomly.

To deal with class imbalance, we upsampled the
synonym and hyponym classes by duplicating the
examples in the positive classes so that the upsam-
pling ratio, i.e., the ratio of the number of positive
examples in each class to that of the negative ex-
amples, is at least 0.5. Without the upsampling,
the trained model would have poor performances.

3 Experiments

3.1 Dataset

We evaluate our model on the ScienceIE
dataset (Augenstein et al., 2017), which consists of
500 journal articles evenly distributed among the
domains of computer science, material sciences
and physics. Three types of entities are anno-
tated: process, task, and material. The relation be-
tween each pair of entities of the same type within
a sentence are annotated as either “Synonym-of”,

2
http://nlp.stanford.edu/projects/glove/

“Hyponym-of”, or “None”. Table 3 shows the
number of examples for each relation class.

Relation Train Dev Test
Hyponym-of 420 123 95
Synonym-of 253 45 112
None 5355 1240 1503
Total 6028 1408 1710

Table 3: Number of examples for each relation
class in ScienceIE. “Dev”: Development.

3.2 Hyperparameters
Table 4 details the experiment ranges and choices
of hyperparameters. The results were quite robust
to the choice of hyperparameters within the speci-
fied ranges.

Hyperparameter Choice Experiment range
Token embedding dim. 100 50 – 300
Feature embedding dim. 10 5 – 50
CNN filter height 5 3 – 15
Number of CNN filters 200 50 – 500
Dropout probability 0.5 0 – 1
Upsampling ratio 3 0.5 – 5

Table 4: Experiment ranges and choices of hyper-
parameters.3

3.3 Argument ordering strategies
One of the main challenges in relation extraction is
the ordering of arguments in relations, as many re-
lations are order-sensitive. For example, consider
the sentence “A dog is an animal.” If we set “dog”
to be the first argument and “animal” the second,

3For these experiments, we used the official training set as
the training/development set with a 75%/25% split, and the
official development set as the test set.
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Labels Training Evaluation Hyponym-of Synonym-of Micro-averaged
used strategy strategy P R F1 P R F1 P R F1

All

correct order any order 0.193 0.101 0.132 0.782 0.640 0.703 0.409 0.245 0.306
corr. w/ n. s. any order 0.431 0.127 0.196 0.826 0.756 0.788 0.638 0.295 0.404

any order any order 0.482 0.197 0.279 0.784 0.756 0.769 0.621 0.346 0.444
any order fixed order 0.486 0.195 0.278 0.773 0.753 0.763 0.621 0.345 0.443

fixed order any order 0.372 0.218 0.274 0.743 0.756 0.749 0.516 0.362 0.425
fixed order fixed order 0.425 0.213 0.283 0.803 0.753 0.777 0.578 0.358 0.441

Hyponym

correct order any order 0.108 0.069 0.084 - - - - - -
corr. w/ n. s. any order 0.215 0.115 0.148 - - - - - -

any order any order 0.384 0.246 0.299 - - - - - -
any order fixed order 0.410 0.235 0.298 - - - - - -

fixed order any order 0.385 0.249 0.301 - - - - - -
fixed order fixed order 0.409 0.237 0.297 - - - - - -

Synonym any order any order - - - 0.855 0.771 0.811 - - -
any order fixed order - - - 0.852 0.776 0.812 - - -

Hyp+Syn any + any any + fixed 0.385 0.228 0.285 0.857 0.771 0.812 0.553 0.373 0.445

Table 5: Results for various ordering strategies on the development set of the ScienceIE dataset, averaged
over 10 runs each.3 “corr. w/ n. s.”: correct order with negative sampling. Hyp+Syn is obtained by
merging the output of the best hyponym classifier and that of the best synonym classifier.

then the corresponding relation is “Hyponym-of”;
however, if we reverse the argument order, then the
“Hyponym-of” relation does not hold any more.

Therefore, it is crucial to ensure that 1) the CNN
is provided with the information about the argu-
ment order, and 2) it is able to utilize the given
information efficiently. In our work, the former
point is addressed by providing the CNN with the
two relative position features compared to the first
and the second argument of the relation respec-
tively. In order to certify the latter point, we ex-
perimented with four strategies for argument or-
dering, outlined in Table 2.

4 Results and Discussion

Table 5 shows the results from experimenting with
various argument ordering strategies. The correct
order strategy performed the worst, but the nega-
tive sampling improved over it slightly, while the
fixed order and any order strategies performed the
best. The latter two strategies performed almost
equally well in terms of micro-averaged F1-score.
This implies that for relation extraction it may
be advantageous to use both the original relation
classes as well as their “reverse” relation classes
for training, instead of using only the original rela-
tion classes with the “correct” argument ordering
(with or without the negative sampling). More-
over, ordering the argument as the order of ap-
pearance in the text and training once per relation

(i.e., fixed order) is as efficient as training each re-
lation as two examples in two possible argument
ordering, one with the original relation class and
the other with the reverse relation class (i.e., any
order), despite the small size of the dataset.

The difference in performance between the cor-
rect order versus the fixed or any order strategies
is more prominent for the “Hyponym-of” relation
than for the “Synonym-of” relation. This is ex-
pected, since the argument ordering strategy is
different only for the order-sensitive “Hyponym-
of” relation. It is somewhat surprising though,
that the correct order strategy performs worse
than the other strategies even for order-insensitive
“Synonym-of” relation. This may be due to the
fact that the model does not see any training exam-
ples with the reversed argument ordering for the
“Synonym-of” relation. In comparison, the nega-
tive sampling strategy, which learns from both the
original and reversed argument ordering for the
“Synonym-of” relation, the performance is com-
parable to the two best performing strategies.

We have also experimented with different evalu-
ation strategies for the models trained with the any
order and fixed order strategies. When the model
is trained with the any order strategy, the choice
of the evaluation strategy does not impact the per-
formance. In contrast, when the model is trained
with the fixed order strategy, it performs better if
the same strategy is used for evaluation. This may
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be the reason why the model trained with the cor-
rect order strategy does not perform as well, since
it has to be evaluated with a different strategy from
training, namely the any order strategy, as we do
not know the correct ordering of arguments for ex-
amples in the test set.

We have also tried training binary classifiers for
the “Hyponym-of” and the “Synonym-of” rela-
tions separately and then merging the outputs of
the best classifiers for each relations. While the bi-
nary classifiers individually performed better than
the multi-way classifier for each corresponding re-
lation class, the overall performance based on the
micro-averaged F1-score did not improve over the
multi-way classifier after merging the outputs of
the hyponym and the synonym classifiers.

Based on the results from the argument or-
dering strategy experiments, we submitted the
model trained using the fixed order strategy, which
ranked number one in the challenge. The result is
shown in Table 6.

Relation Precision Recall F1-score
Synonym-of 0.820 0.813 0.816
Hyponym-of 0.455 0.421 0.437
Micro-averaged 0.658 0.633 0.645

Table 6: Result on the test set of the ScienceIE
dataset, using the official train/dev/test split.

To quantify the importance of various features
of our model, we trained the model by gradually
adding more features one by one, from word em-
beddings, relative positions, and entity types to
POS tags in order. The results on the importance
of the features as well as postprocessing are shown
in Figure 2. Adding the relative position features
improved the performance the most, while adding
the entity type improved it the least. Note that
even without the postprocessing, the F1-score is
0.63, which still outperforms the second-best sys-
tem with the F1-score of 0.54.

Figure 3 quantifies the impact of the two prepro-
cessing steps, deleting brackets and cutting sen-
tences, introduced to compensate for the small
dataset size. Cutting the sentence before the first
entity and after the second entity resulted in a dra-
matic impact on the performance, while deleting
brackets (i.e., removing the reference marks) im-
prove the performance modestly. This implies that
the text between the two entities contains most of
the information about the relation between them.

0.50 0.55 0.60 0.65
F1-score

w+rp+et+pos+pp

w+rp+et+pos

w+rp+et

w+rp

w

Figure 2: Importance of features of CNN and post-
processing rules. w: word embeddings, rp: rela-
tive positions to the first and the second arguments,
et: entity types, pos: POS tags.

0.50 0.55 0.60 0.65
F1-score

- sentence cutting

- bracket deletion

w+rp+et+pos

Figure 3: Impact of bracket deletion and sen-
tence cutting. “w+rp+et+pos” represents the CNN
model trained using all features with both bracket
deletion and sentence cutting during preprocess-
ing. “-bracket deletion” is the same model trained
only without bracket deletion, and “-sentence cut-
ting” only without sentence cutting.

5 Conclusion

In this article we have presented an ANN-based
approach to relation extraction, which ranked first
in the SemEval-2017 task 10 (ScienceIE) for re-
lation extraction in scientific articles (subtask C).
We have experimented with various strategies
to incorporate argument ordering for ordering-
sensitive relations, showing that an efficient strat-
egy is to fix the arguments ordering as appears on
the text by introducing reverse relations. We have
also demonstrated that cutting the sentence before
the first entity and after the second entity is effec-
tive for small datasets.
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Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-
ciation 18(5):552–556.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015. Semantic relation classifi-
cation via convolutional neural networks with sim-
ple negative sampling. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Lisbon, Portugal, pages 536–540.
https://aclweb.org/anthology/D/D15/D15-1062.

Roman Yangarber and Ralph Grishman. 1998. Nyu:
Description of the proteus/pet system as used for
muc-7. In In Proceedings of the Seventh Message
Understanding Conference (MUC-7). Citeseer.

Godandapani Zayaraz and Suresh Kumara. 2015. Con-
cept relation extraction using naı̈ve bayes classi-
fier for ontology-based question answering systems.
Journal of King Saud University-Computer and In-
formation Sciences 27(1):13–24.

Luke Zettlemoyer. 2013. Relation extraction.
CSE517: Natural Language Processing .

Guodong Zhou, Min Zhang, Dong-Hong Ji, and
Qiaoming Zhu. 2007. Tree kernel-based relation ex-
traction with context-sensitive structured parse tree
information. In EMNLP-CoNLL. Citeseer, volume
2007, pages 728–736.

984



Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 985–989,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

TTI-COIN at SemEval-2017 Task 10: Investigating Embeddings for
End-to-End Relation Extraction from Scientific Papers

Tomoki Tsujimura, Makoto Miwa, and Yutaka Sasaki
COmputational INtelligence Laboratory

Toyota Technological Institute
2-12-1 Hisakata, Tempaku-ku, Nagoya, Aichi, 468-8511, Japan

{sd16420, makoto-miwa, yutaka.sasaki}@toyota-ti.ac.jp

Abstract

This paper describes our TTI-COIN sys-
tem that participated in SemEval-2017
Task 10. We investigated appropriate em-
beddings to adapt a neural end-to-end en-
tity and relation extraction system LSTM-
ER to this task. We participated in the
full task setting of the entity segmentation,
entity classification and relation classifica-
tion (scenario 1) and the setting of relation
classification only (scenario 3). The sys-
tem was directly applied to the scenario 1
without modifying the codes thanks to its
generality and flexibility. Our evaluation
results show that the choice of appropriate
pre-trained embeddings affected the per-
formance significantly. With the best em-
beddings, our system was ranked third in
the scenario 1 with the micro F1 score of
0.38. We also confirm that our system can
produce the micro F1 score of 0.48 for the
scenario 3 on the test data, and this score is
close to the score of the 3rd ranked system
in the task.

1 Introduction

Semantic relationships between entities are use-
ful for building knowledge bases and semantic
search engines. Their automatic extraction has
been widely studied in the natural language pro-
cessing (NLP) field (Li and Ji, 2014; Miwa and
Sasaki, 2014; Miwa and Bansal, 2016). SemEval-
2017 Task 10 (Augenstein et al., 2017) deals with
relation extraction from scientific papers.

While entity detection and relation extraction
have often been treated as separate tasks, several
studies show that joint treatment of these tasks can
improve extraction performance on both tasks (Li
and Ji, 2014; Miwa and Sasaki, 2014). We em-

ployed the state-of-the-art neural network-based
end-to-end entity and relation extraction system
LSTM-ER1 (Miwa and Bansal, 2016). The model
of the system is built on pre-trained word em-
beddings, and it has a tree-structured bidirectional
long short-term memory-based recurrent neural
network (LSTM-RNN) layer stacked on a sequen-
tial bidirectional LSTM-RNN layer. It predicts en-
tities and relations in an end-to-end manner with
shared parameters, and the parameters in word
embeddings and both LSTM-RNNs are updated
simultaneously during training.

We first checked the applicability of the sys-
tem in our evaluation. The system was originally
developed for ACE (automatic content extraction)
corpora, but it does not depend on specific tasks
and has high configurability (Miwa and Anani-
adou, 2015) since it prepares a separate configu-
ration file, where task specific settings like hyper-
parameters can be specified. The system was suc-
cessfully applied to the end-to-end relation extrac-
tion setting (scenario 1 in the task) without mod-
ifying the original codes in our experiments, al-
though small modifications to the inputs were re-
quired. This shows the generality of the system.

Using this system, we also investigated how
the pre-trained word embeddings affect the over-
all performance. Miwa and Bansal (2016) mostly
focused on the model architectures and paid little
attention to the differences in pre-trained embed-
dings. Our results show that selecting the appro-
priate initial embeddings is crucial since chang-
ing the pre-trained embeddings greatly affected
the overall performance.

2 System description

In this section, we describe our base neural net-
work system and pre-trained word embeddings

1https://github.com/tticoin/LSTM-ER
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Figure 1: Model overview in extracting a Hypernym-of relation between Process entities “surface modifi-
cations” and “doping”. Word and POS embeddings are input to the sequential bidirectional LSTM-RNN.

used for the initialization.

2.1 Base system

We employ the LSTM-ER system that implements
a neural network-based model (Miwa and Bansal,
2016). The system has a high configurability, and
it can be applied to new tasks with minimum man-
ual efforts. Figure 1 illustrates the overview of
the model. The model represents relations using
tree-structured LSTM-RNNs and entities using a
sequential LSTM-RNN, and stack these LSTM-
RNNs to realize their end-to-end extraction.

This model first inputs the concatenation of
word embeddings and part-of-speech (POS) em-
beddings to a sequential bidirectional LSTM-
RNN. The output of the sequential bidirectional
LSTM-RNN is obtained by concatenating the out-
put of the forward sequential LSTM-RNN and the
output of the backward sequential LSTM-RNN.

These outputs together with the embedding of
the previous label are passed to the fully con-
nected layer fc1 with an activation tanh func-
tion, and then the model calculate the probabili-
ties of the entity labels through a softmax layer.
The model uses the BILOU (Begin, Inside, Last,
Outside, Unit) scheme (Ratinov and Roth, 2009)
for representing entities and assigns the labels to
each word. Each entity label is decided in a greedy
manner, starting from the beginning of a sentence
to the end of the sentence. During this greedy de-
cision, the model avoids illegal label assignments.

For example, if a t-th word is determined as I-
Material, only either I-Material or L-Material can
be selected for the next (i + 1)-th word and other
illegal labels like B-Task are not chosen.

After detecting entities, for each target entity
pair, the model picks up words that are contained
in the shortest path between the last words of the
pair. The model passes the outputs of the sequen-
tial bidirectional LSTM-RNN together with the
entity-label and dependency embeddings relating
to these words to a bidirectional tree-structured
LSTM-RNN. In the bidirectional tree-structured
LSTM-RNN, each cell of the bottom-up tree-
structured LSTM-RNN receives multiple children
states and calculates the parent state from them,
while each cell of the top-down one takes a parent
state and calculates the states of the children.

The output of the bi-directional tree-structured
LSTM-RNN is obtained by concatenating the out-
put of the root word from the bottom-up tree-
structured LSTM-RNN and the outputs of last
words of the entities from the top-down tree-
structured LSTM-RNN. This output of the bi-
directional tree-structured LSTM-RNN is passed
to the fully connected layer fc2 with the activa-
tion tanh function, together with the outputs of
the last words in each target entity in the sequential
bi-directional LSTM-RNN. The model then calcu-
lates the probability of each relation label through
a softmax layer as in entity detection.
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2.2 Investigating pre-trained word
embedding

Word embeddings are frequently used for the in-
puts to neural network based models. It is well-
known that the performance of neural models can
be improved by initializing embeddings with pre-
trained embeddings. Word2vec (Mikolov et al.,
2013) is a widely-used toolkit to obtain such pre-
trained embeddings from raw texts. Word2vec im-
plements two models: continuous bag-of-words
(CBOW) and skip-gram. CBOW learns embed-
dings by predicting the distribution of target word
from the surrounding words, while skip-gram
learns embeddings by predicting the distribution
of each surrounding word from the input word.
Ling et al. (2015) introduced the structured skip-
gram model2 based on word2vec in order to con-
sider the ordering of co-occurrence words by in-
corporating an attention mechanism.

To investigate the effects of the pre-trained word
embeddings, we employed two unlabeled data
sets: Wikipedia articles3 and PubMed abstracts4.
After the preliminary experiments, we compared
100 dimensional word embeddings obtained by
the skip-gram model on the Wikipedia articles and
those by the structured skip-gram model on the
PubMed abstracts. We used these embeddings for
initialization, and we fine-tuned these embeddings
during training.

3 Evaluation

3.1 Task

SemEval-2017 Task 10 (Augenstein et al., 2017)
deals with a relation extraction problem that fo-
cuses on detecting entities of Process, Task and
Material from research papers and extracting the
Synonym-of and Hypernym-of relationships be-
tween the entities. In this task, 500 example para-
graphs are extracted from the ScienceDirect open
access publications, and they are manually anno-
tated with the entities and their static relationships.
350 examples of them are used for training, 50 for
development, and 100 for test. Each paragraph
consists of multiple sentences. Each sentence may
contain multiple entities and relationships, and an
entity may overlap other entities. Hypernym-of re-
lations are directed, while Synonym-of relations

2https://github.com/wlin12/wang2vec
3https://dumps.wikimedia.org/enwiki/

20150901/
42014 MEDLINE/PubMed baseline distribution

Parameter dimension
word embeddings 100
POS embeddings 10
bidirectional seq-LSTM 50×2
FC1 100
bidirectional tree-LSTM 100×2
FC2 100

Table 1: Dimensions of layers.

are undirected. The tasks consists of three sub-
tasks: A, B and C. In subtask A, the participants
need to detect segmentations of all entities with-
out considering the entity types. In subtask B, the
types of entities need to be labeled. Subtask C fo-
cuses on extracting relations between the entities.
Three scenarios are provided With the subtasks:
the system needs to solve subtasks A, B, and C in
scenario 1, B and C in scenario 2, and C in sce-
nario 3. We focus on scenarios 1 and 3.

3.2 Evaluation settings

Pre-trained word embeddings: We obtained pre-
trained word embeddings by the skip-gram model
and the structured skip-gram model with the same
setting. We set the window size to 2, the number
of negative samples to 10, the down-sampling rate
to 1e-4. We also ignored the words that appear
less than 26 times. Other parameters are kept as
the default of the original word2vec toolkit5.
POS tagging and dependency parsing: To deal
with the data with the LSTM-ER system, we ob-
tained POS tags and dependency trees for all train-
ing, development and test data sets by using the
Stanford parser (Chen and Manning, 2014). Since
the texts contained Unicode, we processed the data
as Unicode texts.
Relation modification: We treated each relation
as a directed relation. The Synonym-of relations
are undirected, but we treated them as they always
have left-to-right directions.
Out-of-vocabulary words: For the robustness,
we treated out-of-vocabulary words as follows.
We first counted the frequencies of words in the
training dataset. We then picked up words that
only appear once in the training dataset and re-
placed 1% of them with a symbol word “UNK”
randomly. Embeddings for the words that do not
appear in the vocabulary of pre-trained embed-

5https://code.google.com/archive/p/
word2vec/
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Model
Development Test
A A,B C A A,B C

End2end (Wikipedia) 0.55 0.46 0.37 0.49 0.36 0.20
End2end (PubMed) 0.58 0.50 0.39 0.50 0.39 0.21
Relation (Wikipedia) - - 0.50 - - 0.43
Relation (PubMed) - - 0.52 - - 0.48 (0.1)

Table 2: Micro F1 scores on the development and the test dataset for three task settings: subtask A,
subtask A,B, and subtask C. The number in the parentheses for Rel (PubMed) shows our official score.

Model
Development Test
A A,B C A A,B C

structured skip-gram (PubMed) 0.58 0.50 0.39 0.50 0.39 0.21
skip-gram (PubMed) 0.57 0.48 0.36 0.51 0.39 0.22
skip-gram (Wikipedia) 0.55 0.46 0.37 0.49 0.36 0.20

Table 3: Results on the end-to-end model with several pre-trained word vectors.

dings and are not replaced with “UNK” are ini-
tialized with random values. The embedding of
the “UNK” word is also initialized with random
values. We also replaced all the out-of-vocabulary
words in the development and test datasets with
the “UNK” word.
Nested entities: Entities that were inside of other
entity were ignored. The ignored entities were not
used as training examples since the base model
gives only one entity label to each word. Our sys-
tem thus did not predict internal entities on the de-
velopment and test datasets.
Hyper-parameter tuning: We tuned the dimen-
sions of the embeddings and layers, the rates of the
dropout, the coefficient of L2 generalization, and
the learning late in a greedy manner. We used both
the training and development data sets to train the
final models for testing. These parameters were
tuned by modifying the configuration file of the
LSTM-ER system. Table 1 summarizes the di-
mensions of word/POS embeddings and layers we
used for all models.

3.3 Results

Table 2 shows the F1 scores on the development
and test datasets for each subtask. We show our
(unofficial) evaluation results of our system for the
relation classification task (scenario 3)6. In all the
evaluations, the results with word embeddings ob-
tained by the structured skip-gram model on the
PubMed abstracts were better than those by the
skip-gram model on the wikipedia abstracts.

6We got this low result due to our mistakes in converting
the results into the task format.

Table 3 shows the results between the mod-
els using several pre-trained word embeddings.7

When comparing the training models of pre-
trained embeddings on the PubMed abstracts, our
system with embeddings by the structured skip-
gram model shows better performance than the
system with those by the skip-gram model on the
develop dataset does, but this is opposite for the
test dataset. As for the difference on the train-
ing corpora for pre-training using the skip-gram
model, the system with embeddings on PubMed
shows consistently higher performance on the en-
tities than the system with those on the Wikipedia
articles, but there was no consistent performance
change for the relations.

There were 11,026 kinds of lowercased words
in the 500 examples in the data set in practice. The
numbers of out-of-vocabulary words that were not
initialized with the pre-trained embeddings were
2,984 for the Wikipedia dataset and 1,697 for the
PubMed dataset. The PubMed abstracts are scien-
tific articles in a different domain like the shared
task data sets, and this may be one of the reasons
why the pre-trained embeddings on PubMed cov-
ers more words than those on Wikipedia. In addi-
tion, the similarity in the writing between PubMed
and ScienceDirect articles may lead the model to
fit to the task on entities.

7We got results on the model with word embeddings by
applying the skip-gram model to the PubMed abstracts after
the competition.
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4 Conclusion

We participated SemEval-2017 Task 10 with the
end-to-end entity and relation extraction system
proposed by Miwa and Bansal (2016). We suc-
cessfully applied the system to the task without
modifying the codes. We improved all F1 scores
by replacing pre-trained word embeddings ob-
tained from the structured skip-gram model on the
PubMed abstracts from those obtained from the
skip-gram model on the Wikipedia articles. We
achieved micro F1 score of 0.50 for the subtask
A, 0.39 for the subtask A and B and 0.21 for the
subtask C, and our system was ranked 3rd in the
end-to-end setting.
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Abstract

In this paper we introduce our system
participating at the 2017 SemEval shared
task on keyphrase extraction from scien-
tific documents. We aimed at the creation
of a keyphrase extraction approach which
relies on as little external resources as pos-
sible. Without applying any hand-crafted
external resources, and only utilizing a
transformed version of word embeddings
trained at Wikipedia, our proposed system
manages to perform among the best partic-
ipating systems in terms of precision.

1 Introduction

The sheer amount of scientific publications makes
intelligent processing of papers increasingly im-
portant. Automated keyphrase extraction tech-
niques can mitigate the severe difficulties arising
when navigating in massive document collections.
Hence, extracting keyphrases from scientific lit-
erature has generated substantial academic inter-
est over the past years (Witten et al., 1999; Hulth,
2003; Kim et al., 2010; Berend, 2016a).

Continuous word representations such as
word2vec (Mikolov et al., 2013) has gained
increasing popularity recently. These representa-
tions assign some semantically meaningful low
dimensional vector wi to the vocabulary entries of
large text corpora.

We demonstrated previously (Berend, 2016b)
that useful features can be derived for various se-
quence labeling tasks by performing a sparse de-
composition of the word embedding matrix. In
this paper, we investigate the generalization prop-
erties of our proposed approach for the task of
keyphrase extraction.

2 Sequence labeling framework

Our sequence labeling framework builds on top of
our previous work which aimed at multiple dif-
ferent sequence labeling tasks, i.e. part-of-speech
tagging and named entity recognition.

2.1 Feature representation

Each token in a sequence is described by a set of
feature values and those of its direct neighbors in
our model. We relied on multiple sources for de-
riving features, i.e.

• sparse coding of dense word embeddings,

• Brown clustering of words,

• word identity features and

• orthographic characteristics.

2.1.1 Sparse coding derived features
The main source of features was sparse coding
performed on continuous word embeddings. We
demonstrated in (Berend, 2016b) that sequence la-
beling tasks can largely benefit from the sparse
decomposition of dense word embedding matri-
ces. That is, given a word embedding matrix
W ∈ Rd×|V | – with its columns containing the
d dimensional dense word embeddings – we seek
for its decomposition into a product ofD ∈ Rd×K

and α ∈ RK×|V | – containing sparse linear com-
bination coefficients for each of the word embed-
dings – such that ‖W −Dα‖2F +λ‖α‖1 gets min-
imized.

Features for some wordwi are then determined
based on its corresponding vectorαi by taking the
signs and indices of its non-zero coefficients, i.e.

f(wi) = {sign(αi[j])j | αi[j] 6= 0},

where αi[j] denotes the jth coefficient in αi.

990



As we observed a consistent benefit of using
polyglot (Al-Rfou et al., 2013) embeddings previ-
ously, we now also rely on those embeddings for
keyphrase extraction.

2.1.2 Brown clustering
Brown clustering (Brown et al., 1992) defines a
hierarchical clustering over words and cluster su-
persets can be easily turned into features. We used
the commonly employed approach of deriving fea-
tures from the length-p (p ∈ {4, 6, 10, 20}) pre-
fixes of Brown cluster identifiers as it was done
previously by Ratinov and Roth (2009); Turian
et al. (2010) as well.

We used the implementation of Liang (2005)
for determining 1024 Brown clusters1 based on
the same Wikipedia dump which was used upon
the training of the freely available polyglot
word embeddings2 that we relied on for perform-
ing sparse decomposition.

2.1.3 Orthographic features
Orthographic clues can vastly help identifying
keyphrases in scientific publications. For this rea-
son the below listed indicator features get deter-
mined for some word w:

• isNumber(w)

• isT itleCase(w)

• isNonAlnum(w)

• containsNonAlnum(w)

• prefix(w, i) for 1 ≤ i ≤ 4

• suffix(w, i) for 1 ≤ i ≤ 4

2.2 Training the model
Features described in Section 2.1 were utilized in
linear chain CRFs (Lafferty et al., 2001) relying
on the CRFsuite (Okazaki, 2007) implementation.
CRFSuite was applied with its default regulariza-
tion parameters, i.e. 1.0 and 0.001 for `1 and `2
regularization, respectively.

The shared task also required the identifica-
tion of keyphrase types beyond merely finding the
keyphrases within the text. We handled the fact
that keyphrase scopes of different keyphrase types
could overlap by training a separate CRF model

1https://github.com/percyliang/
brown-cluster

2https://sites.google.com/site/rmyeid/
projects/polyglot

Sentence Word form Token
Train 35.10% 77.77% 94.59%
Dev 36.19% 86.77% 94.84%
Test 31.84% 83.48% 94.49%

(a) Overall word representation coverages.

Material Process Task
Train 85.03% 91.65% 93.55%
Dev 82.60% 92.05% 96.21%
Test 80.35% 88.84% 93.14%

(b) Per-category token-level coverage breakdown.

Table 1: Coverages of the word embeddings.

for each keyphrase type and merging the predic-
tions of the different models in a post-processing
step. The models we trained employ the 5-class
BIOES-augmented tagging scheme for the labels.

3 Experiments

In this section we report our evaluations on the
SemEval-2017 Task 10 dataset which consists of
350 training, 50 development and 100 test text pas-
sages, respectively. Each text passage originates
from either Computer Science, Material Sciences
or Physics publications and the task was to identify
and classify keyphrases into the types of Material,
Process and Task.

The shared task included both a keyphrase type
insensitive (Subtask A) and sensitive (Subtask B)
evaluation. Further details about the dataset and
the description of the keyphrase types can be ac-
cessed in (Augenstein et al., 2017).

The only preprocessing we performed on the
shared task data was sentence splitting and tok-
enization of input sentences. These steps were ex-
ecuted relying on spacy3. In order the sparse
word embedding and Brown clustering-based fea-
tures to work effectively, it is important that the
a substantial amount of tokens from the shared
task data have word representation determined for,
i.e. the coverage of the word representations is sat-
isfactory.

Table 1 includes the coverage of the word rep-
resentations for the training, development and test
sets. Table 1a contains the proportion of sentences
with all words having a word representation de-
termined for, alongside with the same values for

3https://spacy.io
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(b) Including word identity features

Figure 1: Micro-averaged F-scores for Subtask B as a function of varying λ and K parameters for sparse
coding without Brown clustering-based and orthographic features being used.

Precision Recall F-score
Subtask A 0.51 0.27 0.35
Subtask B avg. 0.40 0.21 0.28

Material 0.46 0.27 0.34
Process 0.39 0.19 0.26

Task 0.09 0.05 0.06
(a) Excluding word identity features.

Precision Recall F-score
Subtask A 0.51 0.30 0.38
Subtask B avg. 0.39 0.23 0.29

Material 0.43 0.29 0.35
Process 0.38 0.20 0.27

Task 0.14 0.05 0.07
(b) Including word identity features.

Table 2: Results of the official submission on the
test data with K = 128, λ = 0.9.

word forms and tokens. Table 1b provides a more
detailed breakdown of the coverages of word rep-
resentations for the different keyphrase types also.

As subsequent results illustrate, higher word
coverage for a certain type of keyphrase does not
necessarily imply better performance on that type
as e.g. Task-type keyphrases have the highest to-
ken coverage, nevertheless, scores are the lowest
on that particular type (cf. Table 4).

3.1 Results on development data

Figure 1 illustrates the effect of varying the K and
λ hyperparameters of sparse coding when not re-
lying on orthographic or Brown clustering derived
features. Figure 1b illustrates the effect of adding
word identity features to the sparse coding derived
ones, which suggests that the choice of K = 1024

Precision Recall F-score
Subtask A 0.49 0.25 0.33
Subtask B avg. 0.37 0.19 0.25

Material 0.42 0.26 0.32
Process 0.36 0.15 0.21

Task 0.13 0.05 0.07

Table 3: Results on the test set with all features
used except for the sparse coding-derived ones.

seems to a reasonable choice for sparse coding
since for that value ofK, adding word identity fea-
tures over the sparse coding derived ones yields
marginal (or no) improvements. Inspecting Fig-
ure 1a also reveals that setting the regualrization
parameter λ too high hurts performance.

Subsequently, we investigate how does adding
orthographic and Brown clustering-derived fea-
tures affect results for two extremely different
hyperparameter combinations of sparse coding,
i.e. K = 128, λ = 0.9 and K = 1024, λ = 0.1.
These results are presented in Table 4a-4d. Ta-
ble 4 reveals that when orthographic and/or Brown
clustering-based features are used in conjunction
with the sparse coding derived ones, results be-
come more stable, i.e. they are much less affected
by the choices of theK and λ. Simultaneously, the
importance of word identity features diminishes
once orthographic and/or Brown clustering-related
ones get involved in the model. This effect is more
pronounced when adding orthographic features.

Interestingly, when both orthographic and
Brown clustering related features are employed,
results become better for small values of K, how-
ever, this was not the case without the application
of these additional feature classes.
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Sparse coding only +Brown +Orthograpy +Brown+Orthography
P R F P R F P R F P R F

Subtask A 0.69 0.18 0.28 0.64 0.25 0.36 0.63 0.32 0.42 0.61 0.34 0.44
Subtask B avg. 0.59 0.15 0.24 0.56 0.22 0.31 0.53 0.27 0.36 0.54 0.30 0.39

Material 0.63 0.22 0.33 0.64 0.28 0.39 0.62 0.34 0.44 0.63 0.36 0.46
Process 0.53 0.11 0.19 0.50 0.20 0.28 0.44 0.24 0.31 0.48 0.28 0.35

Task 0.20 0.01 0.01 0.25 0.05 0.08 0.45 0.10 0.17 0.32 0.13 0.19

(a) Results with K = 128, λ = 0.9, excluding word identity as features.

Sparse coding only +Brown +Orthograpy +Brown+Orthography
P R F P R F P R F P R F

Subtask A 0.64 0.25 0.36 0.65 0.27 0.38 0.58 0.33 0.43 0.62 0.34 0.44
Subtask B avg. 0.57 0.22 0.32 0.59 0.25 0.35 0.50 0.29 0.37 0.55 0.30 0.39

Material 0.65 0.26 0.38 0.70 0.31 0.43 0.60 0.35 0.44 0.63 0.36 0.45
Process 0.51 0.21 0.30 0.50 0.22 0.31 0.44 0.25 0.32 0.49 0.29 0.36

Task 0.27 0.05 0.09 0.29 0.04 0.08 0.30 0.14 0.19 0.39 0.11 0.17

(b) Results with K = 128, λ = 0.9, including word identity as features.

Sparse coding only +Brown +Orthograpy +Brown+Orthography
P R F P R F P R F P R F

Subtask A 0.56 0.29 0.38 0.57 0.30 0.40 0.57 0.33 0.42 0.55 0.33 0.41
Subtask B avg. 0.49 0.26 0.34 0.49 0.26 0.34 0.49 0.29 0.36 0.48 0.29 0.36

Material 0.59 0.31 0.40 0.61 0.31 0.41 0.60 0.35 0.44 0.59 0.35 0.44
Process 0.45 0.23 0.30 0.43 0.24 0.30 0.41 0.27 0.33 0.43 0.27 0.33

Task 0.25 0.15 0.19 0.21 0.11 0.14 0.25 0.10 0.14 0.20 0.12 0.15

(c) Results with K = 1024, λ = 0.1, excluding word identity as features.

Sparse coding only +Brown +Orthograpy +Brown+Orthography
P R F P R F P R F P R F

Subtask A 0.56 0.30 0.39 0.59 0.29 0.39 0.58 0.33 0.42 0.58 0.34 0.42
Subtask B avg. 0.49 0.26 0.34 0.52 0.25 0.34 0.50 0.28 0.36 0.50 0.29 0.37

Material 0.65 0.26 0.38 0.70 0.31 0.43 0.60 0.35 0.44 0.63 0.36 0.45
Process 0.44 0.26 0.33 0.50 0.24 0.32 0.42 0.27 0.33 0.44 0.28 0.34

Task 0.21 0.06 0.09 0.18 0.08 0.11 0.24 0.07 0.11 0.20 0.09 0.12

(d) Results with K = 1024, λ = 0.1, including word identity as features.

Table 4: Ablation experiments on the development set. P=Precision, R=Recall, F=F-scores.

3.2 Results on test data

Based on our experiments on the development
data, out official shared task submission employed
K = 128, λ = 0.9 alongside with orthographic
and Brown clustering-derived features. One of our
official submissions relied on word form features,
whereas the other dismissed such ones. The final
results of our submissions are included in Table 2.

As our main goal was to verify the applicabil-
ity of sparse coding derived features in keyphrase
extraction as well, we checked the performance
of the model which uses all features except for
the sparse coding derived ones. The result of that
model is presented in Table 3. By comparing these
scores with those in Table 2, we can see that even
when using a low value for K and a large reg-
ularization parameter λ we manage to get better
F-scores when sparse coding related features are
employed.

4 Conclusion

In this paper, we proposed an approach for extract-
ing keyphrases from scientific publications. A key
source of features in our approach were those de-
rived from the sparse coding of continuous word
embeddings.

In our approach we did not use any task-specific
features (such as lists or gazetters), which implies
that i) by relying on some extra task specific fea-
tures, results could be easily improved on this task
and ii) the proposed approach is likely to be suc-
cessfully applicable to further sequence labeling
tasks without severe modifications.
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Abstract

This paper describes the system used by
the team LIPN in SemEval 2017 Task
10: Extracting Keyphrases and Rela-
tions from Scientific Publications. The
team participated in Scenario 1, that in-
cludes three subtasks, Identification of
keyphrases (Subtask A), Classification of
identified keyphrases (Subtask B) and Ex-
traction of relationships between two iden-
tified keyphrases (Subtask C). The pre-
sented system was mainly focused on the
use of part-of-speech tag sequences to fil-
ter candidate keyphrases for Subtask A.
Subtasks A and B were addressed as a
sequence labeling problem using Condi-
tional Random Fields (CRFs) and even
though Subtask C was out of the scope
of this approach, one rule was included to
identify synonyms.

1 Introduction

Identifying candidate keyphrases in texts is com-
monly a first step in systems for keyphrase extrac-
tion (Hasan and Ng, 2014; Haddoud et al., 2015),
this can be done by filtering words or phrases from
documents using heuristics to determine which
can be candidate keyphrases.

The system uses sequences of part-of-speech
tags (PoS sequences) as patterns to filter candi-
date keyphrases. These candidates are used to
train two Conditional Random Field (CRF) mod-
els, one for keyphrase identification and other for
keyphrase classification. CRF was trained with or-
thographic features, additionally to features from
WordNet and titles from academic papers. The
PoS sequences were extracted from the annotated
keyphrases in the corpus provided for the task
(Augenstein et al., 2017).

The PoS sequences used in this system are de-
scribed in Section 2, there is an explanation of how
they were used and how they were extracted from
the training data. In Section 3 is detailed how CRF
was trained with the candidate keyphrases and in
Section 4 the features are described. In Section 5
there is an explanation of how CRF was applied to
identify and classify keyphrases. Section 6 shows
the post-processing steps and Section 7 introduces
some experiments.

2 PoS sequences

In this paper, we use the term PoS sequences to
refer to sequences of part-of-speech tags. PoS
sequences are used in automatic keyphrase ex-
traction as features (Kim and Kan, 2009; Hasan
and Ng, 2014) or to filter candidate keyphrases
(Kim and Kan, 2009; Haddoud et al., 2015; Hasan
and Ng, 2014), for example, with small sets of
patterns matching all noun phrases and preposi-
tional phrases, avoiding patterns that increase er-
ror, like sequences containing adverbs (Kim and
Kan, 2009).

In this system, PoS sequences are used only to
filter candidate keyphrases. From the annotated
keyphrases in the training data, were extracted
1445 different PoS sequences 1, Table 1 shows an
example of PoS sequences, sorted by number of
occurrences.

Each extracted PoS sequence was used as a pat-
tern to filter candidate keyphrases in the training,
development and test corpus, instead of general-
ize a smaller set of patterns as is proposed in other
approaches.

1The full list of extracted POS sequences is available in
https://github.com/snovd/corpus-data/
blob/master/SemEval2017Task10/
POSsequences.txt
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Occurrences POS sequence

1333 NN

559 NN NN

414 JJ NN

301 NN NNS

293 NNS

289 JJ NNS
...

...

61 VBG

54 NN NN NNS

52 JJ JJ NN

51 JJ

41 VBG NN
...

...

Table 1: Example of POS sequences extracted
from the training data, ordered by number of oc-
currences.

2.1 Filtering candidate keyphrases
Each PoS sequence is compared with the part-
of-speech2 of a text, all the sequences of tokens
matching the pattern are selected as candidate
keyphrases.

provides/VBZ an/DT approach/NN
to/TO circumvent/VB the/DT sign/NN
problem/NN in/IN numerical/JJ simula-
tions/NNS

Figure 1: Extract from the development data3.

For example, the extract of text in Figure 1 has
the following annotations, ”sign problem” is a
keyphrase of type TASK and ”numerical simula-
tions” is part of a larger keyphrase of type PRO-
CESS. From the same text, two sets of candidate
keyphrases are shown in Table 2, the first set is
obtained by matching all the PoS sequences and
the second by matching the PoS sequences with at
least 14 occurrences.

If we were using ngrams to propose candidate
keyphrases, in same example, we get 45 differ-
ent candidates, with ngrams from 1-grams to 5-
grams, so there is a significant reduction of ex-
tracted phrases. Also, note that there is a re-
duction of candidate keyphrases between the two
sets in Table 2 without excluding the annotated

2Getting the PoS with TreebankWordTokenizer and Per-
ceptronTagger in NLTK

3File S0003491613001516.txt

Occurrences of Extracted phrases

PoS sequence

problem in numerical simulations

the sign problem

circumvent the sign problem

sign

sign problem in numerical simulations

provides an approach

numerical simulations
the sign

≥ 1 approach

circumvent the sign

approach to circumvent

an approach

problem in numerical

problem

an

simulations

problem in

numerical

the

sign problem
problem in numerical simulations

sign

sign problem
approach

≥ 14 numerical simulations
problem

simulations

numerical

Table 2: Two sets of candidate keyphrases. Gener-
ated with the PoS sequences filtered by the number
of occurrences.

keyphrases, also the token ”provides” is missing.
We took advantage of this observation to improve
the precision, see Section 7.

2.2 Keyphrases and Non-keyphrases

We extracted all the possible candidate keyphrases
from the training corpus, using all the PoS se-
quences described before. An extracted candidate
is labeled as KEYPHRASE if it is annotated as
keyphrase in the training corpus, on the contrary it
is labeled as NON-KEYPHRASE, like in a binary
classification problem (Frank et al., 1999).

3 Training CRF

Using Conditional Random Fields (CRFs) to ad-
dress Automatic Keyword Extraction as a se-
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quence labeling problem has already been pro-
posed (Bhaskar et al., 2012; Zhang, 2008; Augen-
stein et al., 2017).

We trained CRF 4 only with the candidate
keyphrases, each one as a separated input, using
BIO encoding5 and the labels KEYPHRASE and
NON-KEYPHRASE for Subtask A, like in the ex-
amples in Figures 2 and 3. Similarly, a second
CRF model was trained for Subtask B, with labels
TASK, PROCESS and MATERIAL.

the/O sign/B problem/I in/O

Figure 2: Example of KEYPHRASE/TASK ’sign
problem’ in BIO encoding.

’the/O sign/B problem/I in/I numerical/I
simulations/I of/O’

Figure 3: Example of NON-KEYPHRASE ’sign
problem in numerical simulations’ in BIO encod-
ing.

Note that in the sets in Table 2 there
are repetitions of tokens in several candidate
keyphrases. For example, ”sign problem” is
an annotated keyphrase, so it is labeled as
KEYPHRASE/TASK, in contrast with ”circum-
vent the sign problem” and ”sign problem in nu-
merical simulations” which are labeled as NON-
KEYPHRASE, ignoring completely that these
phrases contain a keyphrase. Also, text that
doesn’t match a PoS sequence is not used to train
the model.

4 Features

For identification of keyphrases (Subtask A) and
classification of identified keyphrases (Subtask B),
we trained two different CRF models with the
same candidate keyphrases, labeled differently de-
pending on the subtask. Subtask B uses the same
features that Subtask A, in addition to features
from WordNet.

All the features were generated for each token
in a given candidate, including the tokens that sur-

4We used python-crfsuite with the default parameters
for Named Entity Recognition, ’c1’: 1.0, ’c2’: 1e-
3, ’max iterations’: 50, ’feature.possible transitions’:
True, https://github.com/scrapinghub/
python-crfsuite

5Indicating the (B)eginning of the phrase, (I)nside of the
phrase or (O)ther.

round the start and end of the phrase, as shown
in the examples of Figures 2 and 3. Text that is
not present in the candidate keyphrases is ignored
with the exception of these two context tokens as
features.

4.1 Features - Subtask A
To train CRF for Subtask A, we used the features
suggested in the documentation of python-crfsuite
for the task of named entity recognition, we didn’t
make a deep exploration of them. Those features
are the token in lowercase, its part-of-speech, the
first two letters of the part-of-speech, the suffixes
of one and two characters, and three binary fea-
tures, which value depends on the letter case of
the token, these are uppercase, lowercase or title
case, also are included two tokens of context (pre-
vious, next) in lowercase. Finally, an indicator is
added if the token is at the beginning or the end of
the whole text.

4.1.1 Titles from academic papers
Information from titles has been useful in
keyphrase extraction (Hasan and Ng, 2014;
Grineva et al., 2009), so we generated a database
with bigrams, trigrams and the part-of-speech of
the trigrams, extracted from titles from academic
papers6. Only titles in English were included7.

We added four binary features for each token
in a candidate keyphrase, the value depends on
whether ngrams formed with its context exist or
not in the database. For example, the token ’sign’
in Figure 1 forms the ngrams, ’the sign’, ’sign
problem’, ’the sign problem’ and ’DT NN NN’.

4.2 Features - Subtask B
We used binary features with information from
WordNet 3.0, these are included only when the
lemmatized token 8 has noun synsets. The first fea-
ture is True only if the synsets of the lemmatized
token have holonyms, a second feature depends on
whether it has derivationally related forms.

We also included a fixed set of synsets as binary
features9, which are the more probable synsets

6Microsoft Academic Graph, version 2016/02/05
https://academicgraphwe.blob.core.
windows.net/graph-2016-02-05/index.html

7Were separated with guess language https://pypi.
python.org/pypi/guess_language-spirit

8Lemmatization with WordNetLemmatizer
9List of synsets used as binary features.

https://github.com/snovd/corpus-data/
blob/master/SemEval2017Task10/
SynsetsRelatedToTrainingData.txt
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from the annotations in the training corpus. To ob-
tain the set, we merged the twenty10 more proba-
ble synsets by label (PROCESS, MATERIAL and
TASK). These features are True for a token if they
are present in the hypernyms of the noun synsets.

5 Identifying and labeling keyphrases

First, CRF was trained as described in Section 3,
then we extracted the candidate keyphrases from
the development/test data with the PoS sequences
having at least 14 occurrences in the training data
with the method explained in Section 2. Then we
excluded the candidates of one token if they exist
in an exclusion list (described in Subsection 5.1).

Then CRF was applied to each candidate
keyphrase with the features for Subtask A, if
all the tokens in the candidate were labeled as
KEYPHRASE, then the entire candidate was la-
beled as KEYPHRASE.

CRF was applied again to all the resulting
keyphrases from the last steps, but this time with
the model trained with the Subtask B features.
Similarly, if the tokens in the keyphrase were la-
beled with the same type, then the keyphrase is la-
beled entirely with the corresponding type, PRO-
CESS, MATERIAL or TASK. If the keyphrase
was not labeled equally, it was marked as PRO-
CESS by default.

5.1 Exclusion list
This list was generated from the training corpus to
exclude very common tokens. It was generated by
filtering the inverse document frequency (idf ) of
each token with a threshold. First, we calculated
the idf for all the tokens in the papers from the
training corpus. The threshold is the mean of the
idfs minus four times the standard deviation. One
token is added to the exclusion list only if its idf
is lesser or equal than the threshold.

6 Post-processing

For the case of overlapping, as it is shown in Ta-
ble 5, when a full keyphrase is contained inside
other keyphrase, the largest keyphrase is chosen.

Finally, we included a simple rule to relate syn-
onyms. By observation of the training data, we
noticed that two keyphrases are marked as syn-
onyms, if one is followed by another inside of
parenthesis, been the second an acronym of the
first.

10This number was chosen arbitrarily

7 Experiments

In Figures 4 (Precision), 5 (Recall) and 6 (F1)
are shown the results of different experiments for
Subtask A. In these experiments we tested the
effect of removing the least occurring PoS se-
quences in the training corpus to filter the candi-
date keyphrases in the development corpus. ”Can-
didate keyphrases + CRF + Titles” represents the
experiments of the system with all the features
as described previously. ”Candidate keyphrases
+ CRF” represents the experiments of the sys-
tem without using the database of titles as features
(Subsection 4.1.1). ”CRF” and ”CRF + Titles”
are the results of applying CRF with the same fea-
tures and without filtering candidate keyphrases.
”Candidate keyphrases” is our baseline, these are
the results of using candidate keyphrases directly
as keyphrases.

As can be observed in Figure 6, the best F1

score is reached when the candidate keyphrases
from the development corpus were filtered with all
the PoS sequences with an occurrence of at least
14 times in the training corpus, like in the exam-
ple of Table 2 and as described in Section 5. In
that case, the proposed system has a better result
in F1 score than ”CRF + Titles”.

Figure 4: Precision: Experiments for Subtask A
with the development corpus.

8 Results

Our final results are shown in Table 3, we ranked
11th in Scenario 1, 10th in Subtask A and 11th in
Subtask B. We obtained our best performance in
Subtask A, which is the main target of this work.

9 Conclusion

We tested the use of PoS sequences extracted from
the training data to filter candidate keyphrases, in-
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Figure 5: Recall: Experiments for Subtask A with
the development corpus.

Figure 6: F1 score: Experiments for Subtask A
with the development corpus.

stead of filtering with a fixed set of patterns to
match noun phrases or prepositional phrases as
proposed in other approaches. Our experiments
show that filtering candidate keyphrases to train
CRF with this method helps to improve the results
for Automatic Keyphrase Extraction by increasing
the Recall, with the disadvantage of lost of Preci-
sion.
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Abstract

The paper describes a system for end-user
development using natural language. Our
approach uses a ranking model to identify
the actions to be executed followed by ref-
erence and parameter matching models to
select parameter values that should be set
for the given commands. We discuss the
results of evaluation and possible improve-
ments for future work.

1 Introduction

The goal of the end-user development (EUD) is to
provide users of software systems with the tools
to create, extend or modify software (Lieberman
et al., 2006). End-User Development using Natu-
ral Language is one of the tasks of SemEval-2017
International Workshop on Semantic Evaluation.

The idea of using tools for software devel-
opment more accessible than programming lan-
guages has been discussed almost since the begin-
ning of computers. The concept of programming
with natural language commands and its conse-
quences have been considered already in the 70s
(Dijkstra, 1979). However, only in recent years
these ideas could be put into practice with the
rapid development of advanced natural language
processing methods.

A comprehensive overview of recent trends and
achievements in EUD has been presented by Pa-
ternò (2013). Although most common solution
for EUD problem are various variations on graph-
ical user interfaces, solutions using NLP are also
present. One of the examples is the Koala (later:
CoScripter) system (web browser extension), that
uses “sloppy programming”, i.e. pseudo-natural
language instructions, to automate business pro-
cesses on the web (Little et al., 2007). Other sys-
tems that use simple natural language commands

to achieve programming-like goals, described in
recent years, include SPOK, an EUD environment
for smart homes (Coutaz et al., 2014), and Natu-
ralMash, an EUD tool for creating web mashups
(Aghaee and Pautasso, 2014).

This paper describes our system for the end-user
development using natural language and reports
its performance according to the SemEval 2017
Task 11 evaluation criteria (Sales et al., 2017).

2 Data preparation

We pre-process all the input data: both the action
knowledge base and natural language commands.
The pre-processing is done in several stages. It in-
cludes basic text processing as well as adding lexi-
cal features. We use these features to better match
the commands to actions. The pre-processor op-
erates on JSON files, in each step adding new
fields to the JSON structure so the original data
are not lost in the process and can be used in fur-
ther steps. The input fields we annotate are: desc,
name, value, nl_command_statment, provider,
sample, tags and api-name.

The first pre-processing stage is sentence
splitting. The sentence splitter is applied to
nl_command_statment and desc fields only.

The second step is tokenization. The input data
are amended not only with tokens, but also with
token types. The following token types are recog-
nized: text, number, phone number, monetary ex-
pression, punctuation, URL, e-mail address, hash-
tag, file name, other. Types of tokens are recog-
nized using regular expressions. The set of token
types has been specified manually in such way that
they are useful in the context of both the original
training dataset and other possible datasets. The
token types are used in further processing stages:
anaphora resolution, action detection and parame-
ters matching.

1000



In the next step, we append features from Syn-
taxNet (Andor et al., 2016), Stanford CoreNLP
(Manning et al., 2014) and NLTK (Bird et al.,
2009) to the natural language commands. In par-
ticular, we introduce: part-of-speech tags from
SyntaxNet to implement discourse annotation
rules (cf. Section 3.1); word lemmata from NLTK
for the purpose of preprocessing text for the ac-
tion ranker (cf. Section 3.2); named entities and
constituency parser annotations from CoreNLP
(Finkel et al., 2005) for anaphora resolution.

The next pre-processing stage appends features
extracted from the user knowledge base. Any ref-
erence to the user knowledge base entry that oc-
curs in a command is annotated with the entry
identifier and the name of the referred entry field.

The last pre-processing stage is to add anaphora
information. Anaphora tags are appended to pos-
sible anaphoric terms like it, him etc. or nouns pre-
ceded with definite articles (e.g. the file). The an-
tecedent expressions of the anaphora are identified
on the basis of their part-of-speech tags, NER tags,
token types or phrase categories. For this purpose
we use token type annotations and selected fea-
tures from CoreNLP: tokens, POS tags, NER tags
and parse results.

3 System Overview

The main components of the system are presented
in Figure 1. A natural language command that
has been preprocessed according to the proce-
dure described in Section 2 is passed to the dis-
course tagger which identifies phrases and rela-
tionships among them. Phrases are passed sepa-
rately through action ranker which identifies can-
didate actions. Next, reference matcher identi-
fies dependencies that link data values that are re-
turned by the candidate actions with the parame-
ters of their successor actions. Then, the parameter
matcher aligns tokens that occur in the phrase to
the parameters of the candidate actions that where
not linked by the reference matcher. Finally, the
phrases annotated with actions and parameter val-
ues are passed to the statement mapper which uses
the discourse structure to output action instances
that conform to the task specification.1

1For an example of a complete data flow that passes a
natural language command through all the system modules,
we refer the reader to (Kubis et al., 2017).

Param
Matcher

Action
Ranker

Reference
Matcher

Discourse Tagger

NL command

Reference
Model

Param
Model

Ranking
Model

Statement Mapper

Action
Instance

Action
Instance

...

Phrase Phrase...

Annotated
Phrase

... Annotated
Phrase

Figure 1: System Components

3.1 Discourse Tagger

The discourse tagger consists of a set of hard-
coded rules that are responsible for splitting the
command into separate phrases that can be passed
to the action ranker independently. The rules are
implemented as Python functions that check if a
given token can be a split point and assign tags that
identify the relationships that hold among phrases
being separated. For example, the discourse tagger
has a rule that checks if both sides of the and token
contain tokens that are verbs (i.e. are annotated
with the VERB part-of-speech tag) and if the con-
dition is satisfied, the tagger splits the command
into two phrases and annotates the second phrase
with the AN tag. Beside the rules for separating se-
quences of actions, the tagger also contains rules
that identify conditional statements and assign IF,
DO and EL tags that indicate the condition, conse-
quence and alternative parts. Since while loops oc-
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curred in the training set sparsely, we did not intro-
duce tags to annotate them restricting our attention
to sequences of actions and conditional statements
only.

3.2 Action Ranker

For the purpose of ranking the actions we consid-
ered TF-IDF (Spärck Jones, 1972) and Doc2Vec
(Le and Mikolov, 2014) document similarity mod-
els.2 We represent the actions by documents that
consist of the text collected from the selected fields
of the action definitions specified in the actionkb

file and natural language commands provided in
the mapping file. The gathered text is lemmatized
and stop words are eliminated. Furthermore, the
natural language commands are delexicalized by
replacing occurrences of named entities and quo-
tations with placeholder tags. In order to deter-
mine candidate actions for the given command, we
apply the same text preprocessing rules as above
and select actions that correspond to the docu-
ments that are most similar to the preprocessed
command.3

We performed 5-fold cross-validation on the
training set to select features for our final model.
We investigated the models that gather text
from: action names (N), action descriptions (D),
provider fields (P); names and descriptions of ac-
tion parameters (Par); names and descriptions of
action data fields (Dat); natural language com-
mands from the mapping file (Com). The av-
erage Micro F1 scores and their standard devia-
tions across validation folds are reported in Ta-
ble 1. It may be noticed that results achieved by
introduction of action descriptions and provider

fields to the models surpass the results of the mod-
els that consists of the action names only. Con-
versely, the extension of the NDP (name, descrip-
tion and provider) model with the names and de-
scriptions of action parameters (NDPPar) worsens
the results. The same holds if we extend the NDP
model with action data values (NDPDat). Finally,
the feature that improves the results most consists
of the aggressively normalized natural language
commands from the mapping file (Com). This ex-
emplifies that even a small sample of the annotated
input data can improve the results significantly.
Another interesting observation is that Dov2Vec

2For training TF-IDF and Doc2Vec models we used Gen-
sim (Řehůřek and Sojka, 2010).

3We limit our attention to up to 10 documents that are
within 0.05 distance to the most similar candidate.

models perform considerably worse than TF-IDF
models in the task regardless of the feature choice.
Thus, for our final submission we selected the TF-
IDF model that encompasses action names, their
descriptions, provider fields from actionkb and
natural language commands from mapping (NDP-
Com).

3.3 Reference Matcher
The reference matcher is responsible for estab-
lishing links between the data returned by an ac-
tion and the parameters of the succeeding actions.
The mapping file distributed with the training data
is used to populate the set of constraints for the
acceptable links. For any two actions that are
linked by an occurrence of the <return*> tag,
the training procedure collects the identifiers of
the linked actions and the names of the data and
params fields being connected.

The matching procedure traverses consecutive
phrases of the natural language command. If a
phrase contains an anaphor, then the reference
matcher checks whether the action instances of the
antecedent and current phrases belong to the set
of constraints learned during training. If the pair
of actions belongs to the constraints set, the links
between corresponding data and params fields
are established.

3.4 Parameter Matcher
For the purpose of setting parameter values for
actions we began with a sequence model based
on the learning to search approach (Chang et al.,
2015). Unfortunately, due to relatively small train-
ing set, the model became highly over-trained and
did not prove to be useful for our final submission.
Instead, we decided to use a parameter matcher
that aligns data types between tokens that occur
in the phrase and action parameters. The matcher
consists of two components: parameter type and
phrase type inducers.

The parameter type inducer restricts data types
that can be accepted by action parameters. Data
types are constrained on the basis of feature anno-
tations gathered during the data preparation stage
(cf. Section 2). The constraints are learned from
the mappings file with the following algorithm:
For every phrase in the mapping file, for every ac-
tion instance of the phrase, for every parameter of
the action instance, let C be the set of constraints
of the parameter, let S be the set of phrase tokens
that match the parameter value:
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Model Metric N ND NDP NDPPar NDPDat NDPCom

TF-IDF
micro-F1 0.0759 0.1079 0.1146 0.0960 0.1099 0.2609
std. dev. 0.0274 0.0249 0.0302 0.0415 0.0288 0.0935

Doc2Vec
micro-F1 0.0049 0.0543 0.0737 0.0683 0.0866 0.2007
std. dev. 0.0043 0.0186 0.0076 0.0215 0.0098 0.0531

Table 1: Average Micro F1-Score of TF-IDF and Doc2Vec action ranking models.

1. Add types of tokens in S to C.

2. Add named entity tags of tokens in S to C.

3. If S is encompassed by quotation signs, add
the quotation type to C.

The phrase type inducer constraints data types
of the phrase by applying the following procedure
to every token T :
Let C be the set of constraints of T :

1. Add type of T to C.

2. Add named entity tags of T to C.

3. If T is encompassed by a quotation, add the
quotation type to C.

4. If T is a reference to the entry E in the user
knowledge base, add data types of all non-
empty fields of E to C.

We assume that an action parameter has to be
matched, if the intersection of the sets of con-
straints returned by both inducers is non-empty.
Initialization of the parameter value is a 2-step
procedure. If the token type belongs to the set
of constraints returned by the parameter type in-
ducer, then the raw text of the token is appended
to the parameter value. Otherwise, if the token is a
reference to the entry in the user knowledge base,
the parameter value is populated with the value of
an entry field that satisfies the constraints returned
by the parameter type inducer.

3.5 Statement Mapper
As in the case of the discourse tagger, the state-
ment mapper consists of a set of deterministic,
hard-coded rules implemented in Python that are
responsible for converting the phrases annotated
with actions assigned by the action ranker, links
established by the reference matcher and parame-
ter values set by the parameter matcher to the out-
put format described in the task definition. The
relationships among phrases identified by the dis-
course tagger and encoded as AN, IF, DO and EL

tags are used by the statement mapper to create
JSON objects that represent sequential and condi-
tional execution of action instances in accordance
with the task specification.

4 Results

The results of evaluation performed according to
the official task criteria are gathered in Table 2.
The detailed error analysis requires access to the
annotated version of the test set which was not
available at the time of writing. Nevertheless,
some initial observations can be drawn. The TF-
IDF model built from action names, their descrip-
tions, provider names and exemplar phrases seems
to be a reasonable baseline for determining the
ranking of actions that results in solving of 13 out
of 31 scenarios if the parameter values are not con-
sidered. On the other hand, the parameter match-
ing strategy requires considerable improvement.
We suspect that our per-token strategy leads to the
parameter values that are only partially matched,
hence do not contribute to the result. Another is-
sue that has to be approached in the future is the
problem of propagating data type constraints from
parameters of actions that occur in the set of train-
ing commands to the parameters of actions for
which the training instances are not available.

Criterion Metric Value
Individual actions
solved ignoring
parameter values

precision 0.5490
recall 0.7066

Individual actions
solved considering
parameter values

precision 0.0533
recall 0.0533

Scenarios solved ignor-
ing parameter values

accuracy 41.93%

Scenarios solved consid-
ering parameter values

accuracy 0%

Table 2: Evaluation results.
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Abstract

This paper describes the system devel-
oped for the task of temporal informa-
tion extraction from clinical narratives in
the context of the 2017 Clinical TempE-
val challenge. Clinical TempEval 2017 ad-
dressed the problem of temporal reason-
ing in the clinical domain by providing an-
notated clinical notes, pathology and ra-
diology reports in line with Clinical Tem-
pEval challenges 2015/16, across two dif-
ferent evaluation phases focusing on cross
domain adaptation. Our team focused on
subtasks involving extractions of tempo-
ral spans and relations for which the de-
veloped systems showed average F-score
of 0.45 and 0.47 across the two phases of
evaluations.

1 Introduction

Temporal information extraction has been a
widely explored topic of research interest in the
field of information extraction during recent years.
It is essential for improving the performance of ap-
plications such as question answering, search, text
classification and systems that establish timelines
from clinical narratives. In this line over the years,
research community challenges on clinical tem-
poral information extraction have been organized;
i.e., the 2012 Informatics for Integrating Biology
and the Bedside (i2b2) challenge (Sun et al., 2013)
the 2013/2014 CLEF/ShARe challenge (Mowery
et al., 2014), and the 2015/16 Clinical TempEval
challenge (Bethard et al., 2015, 2016). These chal-
lenges provide annotated corpora on temporal en-
tities and relations, which facilitate comparisons
of multiple systems and push the state of art in the
development of clinical temporal information ex-
traction methodologies.

The 2017 Clinical TempEval challenge is the
most recent community challenge that addresses
temporal information extraction from clinical
notes. The challenge was in inline with 2015/16
challenge in terms of subtasks. However this
year’s challenge focussed on cross domain adap-
tation across two phases of evaluation. In phase
one (unsupervised domain adaptation), the sys-
tems were evaluated on their results for all six
sub-tasks on brain cancer notes given colon can-
cer notes (data of 2015/16 challenge) as inputs. In
phase two (supervised domain adaptation), evalu-
ation was carried out in line with phase one but a
small number of annotations of brain cancer notes
were also given as inputs.

In this paper, we describe an end-to-end sys-
tem that addresses subtasks involving extractions
of temporal spans and relations. We designed
the system by adapting various insights and tech-
niques from previous work on temporal informa-
tion extraction in the clinical domain (Sarath et al.,
2016; Abdulsalam et al., 2016; Johri et al., 2014)
and ensemble modelling (Dzeroski and Zenko,
2004).

The rest of the paper is organised as follows: In
section 2, we discuss datasets, methods and fea-
ture sets used for each of the subtasks. In section
3, we present the results for various subtasks and
conclude our work in section 4 with some of our
findings and possible implications on future work.

2 Dataset and Methods

The THYME corpus (Styler et al., 2014) used in
this task consists of clinical, pathology and radi-
ology notes for colon/brain cancer patients from
Mayo clinic (Bethard et al., 2017).

We designed an end-to-end pipeline consisting
of four modules which process the input text in
three stages: In stage one, the first and second
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modules extract time/event expressions and their
spans. In stage two, the third module predicts doc-
ument time relations between the event and doc-
ument creation time expressions. Finally, all the
outputs of stage one and two are used to extract
container relations in stage three. For phase one
(unsupervised domain adaptation) we used train,
dev and test colon cancer datasets to train and
evaluated on the brain cancer test dataset. While
in phase two we retrained models with a mix-
ture of colon cancer and additional brain cancer
notes, each of which are explained in upcoming
sections. For our temporal information extrac-
tion system we used following open source li-
braries. 1) Stanford-CoreNLP (Manning et al.,
2014) 2) scikit-learn (Pedregosa et al., 2011) 3)
NLTK (Loper and Bird, 2002) 4) XGBoost (Chen
and Guestrin, 2016) 5) Apache CTAKES (Savova
et al., 2010) 6) ClearTK (Bethard et al., 2014) 7)
H2O1

2.1 Time span identification

In the first stage our system identifies the time ex-
pressions and their spans.

Our manual observation of the colon cancer
and brain cancer notes revealed that different
time expressions show specific set of character-
istics (Sarath et al., 2016) unique to each of the
TIMEX3 class. Such characteristics may limit the
systems performance, if one tries to identify event
mentions or time expressions of all types at once
and then identify their types. Therefore, our sys-
tem identifies the spans of times as well as their
types simultaneously.

Based on above observations and previous
works on entity recognition tasks in the clinical
domain (Lin et al., 2016), five Conditional Ran-
dom Field(CRF) classifiers (Lafferty et al., 2001)
were employed to identify each class of TIMEX3
expression except “duration” class for which we
built a simple rule based system using Stanford
TokensRegex Framework (Chang and Manning,
2014). For training CRF we tagged each token
with either O (outside of a time mention), B-type
(beginning of a time mention of type), or I-type
(inside of a time mention of type), where type can
be any of the TIMEX3 types defined by the Clini-
cal TempEval challenge.

Features: n-grams (uni-, bi-) of nearby words
(window size of +/- 2), character n-grams (bi- and

1(http://www.h2o.ai/)

tri-) of each word, prefix and suffix of each word
(up to three characters), and orthographic forms of
each word (obtained by normalizing numbers, up-
percase letters, and lowercase letters to #, A, and a,
respectively, and by regular expression matching)
and word shape features.

Unsupervised adaptation Run 1: CRF trained
system only on colon cancer notes.

Supervised adaptation Run 1 & 2: Addition-
ally we used additional 30 brain cancer notes.

2.2 Event span identification

Following the extraction of time expression, our
system then identifies event expressions and their
spans. Similar to time expression event expres-
sion also exhibited characterstic behaviour (Sarath
et al., 2016; Abdulsalam et al., 2016).

A single CRF classifier was trained for extrac-
tion of event terms from clinical notes for which
we used features that are described in section 2.1.
Additionally we used following set of features.

Additional features: Word shape features
of higher order, features showing disjunctions
of words anywhere in the left or right, Con-
join of word shape and n-gram features. All
the above features are described in Stanford-
CoreNLP (2014)

Both supervised and unsupervised adaptations
differ as described previously in section 2.1.

2.3 Document time relation identification

Given spans of event mentions, our system fur-
ther identifies relations between events and the
document creation time using an NER (Named
entity recognition) classifier trained for BE-
FORE, OVERLAP, BEFORE-OVERLAP or AF-
TER types.

Unsupervised adaptation run 1: Uses
ClearTK NER chunking classifier (CRF) and fea-
tures specified in section 2.1 extracted from the
window of ±5 words.

Supervised adaptation run 1: Similar to un-
supervised adaptation run 1 except usage of addi-
tional 30 brain cancer notes.

Supervised adaptation run 2: Similar to su-
pervised adaptation run 1 except ClearTK NER
was replaced by a two-layer perceptron NER using
H2O toolkit and skip-gram based word2vec word
embeddings.
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2.4 TLINK:Contains identification

We divide the task of narrative container relation
identification into four sub-problems based on two
criteria: (1) whether the target narrative container
relation is between two events or between an event
and a time and (2) whether the two event/time
mentions are within one sentence or within two
adjacent sentences. For each sub-problem, we
trained an different set of classifiers that identifies
whether an ordered pair of two events/times (or a
candidate pair) forms a TLINK of Contains type,
using the scikit-learn package. Before training the
classifiers, we apply the following steps in order to
take into account the data distribution characteris-
tics.

Firstly, since any two events/times can be a can-
didate pair to train a classifier, the number of can-
didate pairs becomes huge with small portion of
positive instances among them. This may not
be ideal for training a classifier. In order to re-
duce the number of prospective negative instances,
we filtered out some of the candidate pairs that
are highly unlikely to form a TLINK:Contains
relation based on the THYME corpus annota-
tion guidelines (Lee et al., 2016) and heuristic
rules (Abdulsalam et al., 2016). Secondly we ap-
ply cost sensitive learning in order to balance the
effect of the larger negative samples present in the
final set used for training. For each class we as-
signed weight proportional to class frequency.

Unlike event and time expressions, where we
used single classifier such as CRF or a single multi
layer perceptron network, for container relations,
based on our previous experiences in relation ex-
traction we used stacking of multiple classifiers to
further reduce the effect of negative class over-
fitting. As such we used ensemble of Gradient
boosted trees, XGBoost, Extra Trees (Geurts et al.,
2006), Random forest (Breiman, 2001) classifier
for extraction of narrative containers with follow-
ing features. During model development all the
hyperparamters were tuned using grid search with
colon cancer notes (training) and 50% of brain
cancer notes (validation).

Common features: Event/time tokens and its
POS features, Special punctuation characters be-
tween event/time mentions, other event/time men-
tions within the same sentence, number of other
event/time mentions between the two event/time
mentions, verb tenses, section headers, sentence
length.

Special features: A flag to indicate the pres-
ence of a pair in colon cancer data and a flag to
indicate if the pairs were identified by pretrained
CTAKES model.

Unsupervised adaptation Run 1: Stacked en-
semble of gradient boosted decision trees, random
forest, extra trees classifier with special features.

Supervised adaptation Run 1 & 2: Stacked
ensemble of bagged XGBoost classifier, random
forest and extra trees classifier re-trained on addi-
tional 30 brain cancer notes with event/time tokens
and special features removed.

3 Experiments and Results

In this section, we present our system performance
of various runs across two different phases for
each of the participated subtasks. Tables 1-2 show
the results of temporal span extraction and tables
3-4 shows results of temporal relation extraction.
Our systems showed average F-score of 0.45 for
unsupervised runs and 0.47 for supervised runs
across different sub-tasks.

Submission runs P R F
Unsupervised run 1 0.63 0.33 0.43
Supervised run 1 & 2 0.53 0.48 0.51

Table 1: Results of time expression

Submission runs P R F
Unsupervised run 1 0.67 0.69 0.68
Supervised run 1 &2 0.67 0.75 0.71

Table 2: Results of event expression

Submission runs P R F
Unsupervised run 1 0.44 0.45 0.45
Supervised run 1 0.49 0.55 0.52
Supervised run 2 0.42 0.47 0.44

Table 3: Results of doctime relation expression

3.1 Discussion
In this paper we described the system developed
for temporal information extraction from clini-
cal notes, using which we achieved average re-
sult of 0.45 for unsupervised and 0.47 for super-
vised phases of evaluation. We adapted state of the
art techniques for entity recognition and relation
extraction. We also experimented and evaluated
stacked ensemble models involving XGBoost, Ex-
tra trees, Random Forest, Gradient Boosted trees
for narrative container relation extraction.
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Submission runs P R F
Unsupervised run 1 0.23 0.22 0.23
Supervised run 1 & 2 0.11 0.27 0.15

Table 4: Results of narrative container relations

For time and event expression extraction our re-
sult (table 1 and table 2) were consistent across
two phases and was on average 6% behind the best
performing system. Potential reasons for the dif-
ference in F-score are i) Difference of our results
with respect to gold standard annotation due to
inclusion/exclusion of prepositions in certain ex-
pressions. For example, while a DURATION type
time is annotated for the phrase “for the last 40
years” in the gold set, our system predicted a DU-
RATION for the phrase “the last 40 years” omit-
ting the preposition “for” from the gold standard
annotation; ii) Limitations of features selected; iii)
False negatives in event expression concerned with
mispredictions in pathology and radiology reports;
iv) Structural difference between colon and brain
cancer notes, which is in agreement with improve-
ment of results in phase two with the introduction
of 30 brain cancer notes; In our future work we
plan to investigate rule based methods to reduce
preposition errors and filtering false negative. Fur-
ther we plan to address problem of lesser training
data of target domain through data augmentation
techniques using deep learning methods.

For the document time relation extraction sub-
task, the CRF-based classification approach again
allowed for significant improvements, particularly
in phase two. Table 3 shows the evaluation scores
obtained on the test set for DocTimeRel relation
using CRF model. The final scores achieved in
phase two (0.52) are comparable to the scores
achieved (0.44) in phase one. This allows us to
make consistent conclusions about classifier per-
formance with and without supervision. Further
when compared we could see that the top perform-
ing system had 5% higher F-score for DR task. A
possible explanation for this and our future areas
of concentration for improvement would be usage
of different features related to the section where
the event occurs, temporal expressions surround-
ing the event, and tense and aspect features of the
predicates in the event context.

Narrative container relation extraction was the
most difficult among all the subtasks as it suf-
fers from major problem of data imbalance. For

this work we employed pair/class weight selec-
tion strategies previously described in section 2.4
based on extensive experiments on colon cancer
test set. Even though we tuned our system to
achieve the results of the top performing system
of clinical TempEval 2016 our system achieved
very low result as shown in table 4. Our results
are average of 13% behind the best performing
system across two phases in CR task. Following
are the major reason for this behaviour i) During
testing the number of event-event pairs generated
were very high, which made us to remove event-
event pairs and submit only time-event pairs; ii)
Removal of special features; iii) During phase two,
bagging XGBoost resulted in overfitting of the
model; iv) Also candidate pairs spanning across
multiple sentences were missed by our classifier.
During our experiments we observed most of the
false positives followed pattern where both the ex-
pressions in pairs fall under same concept type in
UMLS. Further we found that some pairs failed
to satisfy parent child relationship in UMLS con-
cept tree. Thus we plan to investigate rule based
methods using UMLS that can identify and re-
move these kind of false positives. In addition to
reducing false positives, this would also counteract
against model overfitting when combined with a
machine learning method. Also we believe further
exploration of future engineering is needed to cap-
ture the pairs that span across multiple sentences.

4 Conclusion

Temporal information extraction from clinical
notes remains a challenging task. Our analysis of
different machine learning approaches have been
informative, and resulted in competitive results
for the 2017 Clinical TempEval subtasks. From
our experiments we observe that CRF’s generalize
fairly well for extraction of time and event expres-
sions. At the same time we can see there is a large
room for improvement (methods and standardiza-
tions) in area of narrative container relations ex-
traction. In future we plan to further improve our
system to show higher performance based on the
above observations.
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Abstract 

This study proposes a system to automati-
cally analyze clinical temporal events in a 
fine-grained level in SemEval-2017. Sup-
port vector machine (SVM) and condition-
al random field (CRF) were implemented 
in our system for different subtasks, in-
cluding detecting clinical relevant events 
and time expression, determining their at-
tributes, and identifying their relations 
with each other within the document. Do-
main adaptation was the main challenge 
this year. Unified Medical Language Sys-
tem was consulted to generalize events 
specific to each domain. The results 
showed our system’s capability of domain 
adaptation. 

1 Introduction 

This study proposes a system to participate in the 
Clinical TempEval 2017 shared task, which fo-
cuses on the detection and classification of tem-
poral events in clinical data. To better utilize the 
information in clinical data, temporal event ex-
traction is fundamental in previous researches 
(Bethard et al., 2016). Unlike previous studies, 
the training and the test data are in different do-
mains this year. The task is further separated into 
two phases: unsupervised domain adaption and 
supervised domain adaption. We took part in the 
supervised domain adaption where data of 591 
records of colon cancer patients and 30 records of 
brain cancer patients from Mayo clinic were giv-
en. Based on the THYME corpus (Styler IV et al., 
2014), we propose a framework that automatical-
ly analyzes clinical temporal events in a fine-
grained level. Our framework identifies temporal 

events in unstructured text and further labels 
every event with its attributes.  

The task consists of three major subtasks. The 
first one is to detect clinical relevant events and 
time expressions in a given medical record. From 
the unstructured text, both the spans of time ex-
pressions and the spans of event mentions are 
identified.  

The second subtask is analyzing the attributes 
of time expressions and event mentions. A time 
expression will be classified into one of six types: 
DATE, TIME, DURATION, QUANTIFIER, 
PREPOSTEXP, and SET. An event mention con-
tains four properties such as type of an event, po-
larity, degree and modality. Our model labels the-
se four properties to every event mention.   

The final subtask is to determine two kinds of 
relations within the text. DocTimeRel is the rela-
tion between the document creation time and an 
event mention. Four types of DocTimeRel includ-
ing BEFORE, AFTER, OVERLAP, and BE-
FORE-OVERLAP are annotated in THYME. In 
addition to DocTimeRel, our model also recog-
nizes the narrative container of an event mention 
called TLINK in this task. There are five types of 
TLINK, including BEFORE, CONTAIN, OVER-
LAP, BEGINS-ON, and ENDS-ON.  

The outcomes of our system are not only the 
clinical temporal events, but also their detailed 
properties and their temporal relations with other 
events. The results of our framework can be fur-
ther used to discover relationships between ill-
nesses, symptoms, medications, and procedures.  

2 Methods 

Our system contains five modules: the first one 
identifies the span and the type of each event 
mention; the second one determines the other re-
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maining attributes of an event mention; the third 
one identifies the span and the type of each time 
expression; the fourth one determines the TLINK 
between each pair of event mention and time ex-
pression in the same sentence; the fifth one deter-
mines the TLINK between each pair of event 
mentions in the same sentence.  

2.1 Preprocessing 

We ran Stanford CoreNLP toolkit (Manning et al., 
2014) on all the clinical data. This toolkit generat-
ed POS and NER for each word, and depend-
encies for each sentence in the clinical data. A dic-
tionary was built based on Unified Medical Lan-
guage System  (UMLS) (Bodenreider, 2004) with 
five categories of different genre of medical relat-
ed words, including DIAGNOSIS, EXAMINE, 
MEDICINE, POSITION and SURGERY. All of 
these were utilized in the following steps. 

2.2 Event Mention Identification 

In this module, we tried to identify the span de-
noting an event and its type. There are three types 
of event mentions, including ASPECTUAL, EV-
IDENTIAL, and N/A. ASPECTUAL event men-
tions often turn out to be verbs indicating some-
thing would happen later in the timeline, like “re-
occur”, “continue”, etc. EVIDENTIAL events are 
usually verbs like “show”, “reveal”, and “con-
firm”, which show how doctors come to identify 
and learn about other events. N/A events are most-
ly composed of medical related words like “nau-
sea”, “surgery”, and “operate”.  

We built a four-way linear SVM classifier us-
ing scikit-learn (Pedregosa et al., 2011) to classify 
a word into ASPECTUAL, EVIDENTIAL, N/A, 
or non-event. In other words, span identification 
and type classification are done simultaneously. 
Features for our SVM classifier are listed as fol-
lows: 
Lexical Feature: n-gram of nearby words, and 
character n-gram within the target word 
POS Feature: POS n-gram of nearby words 
Named Entity Type: type of named entities iden-
tified by NER 
Orthographic Feature: orthographic n-gram of 
nearby words obtained by substituting all upper-
case letters, lowercase letters, and digits with ‘A’, 
‘a’, and ‘0’. 
Structural Features: 1) position of the target 
word divided by the sentence length, and 2) the 

length of the path from the target word to the root 
in the dependency-parsing tree.  
UMLS Category: the category of the target word 
based on UMLS. 

 Since training set and test set come from two 
different domains, i.e., colon cancers versus brain 
cancers, there may be some medical terms in test 
set but not appearing in training set. In this study, 
UMLS dictionary was consulted to cluster the 
medical terms into the five categories in order to 
deal with domain adaptation problem and reduce 
sparseness. For example, terms specific to colon 
cancer “right hemicolectomy” and “rectum” 
would be transformed into “SURGERY” and 
“POSITION”, respectively, while building n-gram 
features. 

2.3 Event Attribute Identification 

Besides modality, polarity, and degree, we include 
DocTimeRel from the relation subtask here be-
cause it is also an attribute along with an event 
mention. We trained a multi-class linear SVM 
classifier for each of the four attributes. The fea-
tures described in Section 2.2 were used. In addi-
tions, we introduced time related features for 
DocTimeRel, including tense of verbs within the 
same sentence, n-gram and POS n-gram of time 
related terms within the same sentence, and the 
relative position of the time related terms within 
the same sentence.  

2.4 Time Expression Identification 

Time expression identification is different from 
event mention identification because time expres-
sion is less affected by the change of domain. 
However, its spans are more diverse than those in 
event mention. For instance, a SET time expres-
sion is usually composed of multiple words like 
“three times a week”. By contrast, a PRE-
POSTEXP is mostly just one word only, like 
“preoperative”. To deal with the issue of diverse 
spans, we used CRF1 to develop this module be-
cause of its ability in sequence labeling. Similarly 
to Section 2.2, we also determined the span and 
the type simultaneously. 

Besides those features (UMLS Category ex-
cluded) used in Section 2.2, we added some other 
features, including the existence of pre-post relat-
ed characters (“pre”, “post”, “peri”, and “intra”), 
the existence of a number, and whether there is a 

                                                        
1 http://sklearn-crfsuite.readthedocs.io/en/latest/index.html 
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duration condition in the same sentence (“for”, 
“since”, “through”, “until”, and “in”).  

2.5 TLINKs between Event Mentions and 
Time Expressions 

TLINK is determined between event mentions, 
and between event mentions and time expressions. 
TLINKs are mostly linked within the same sen-
tence, thus we focused on identifying TLINKs 
within sentences.  

Two multi-class SVM classifiers were built for 
five subtypes in TLINK: the first one was trained 
to identify TLINKs given a pair of time expres-
sion and event mention, which we called “TE 
classifier”, and the second one was trained to 
identify TLINKS given a pair of event mentions, 
which we called “EE classifier”.  

Features we used are shown as follows: 
Features for both classifiers: types, attributes, 
tokens and POS of the pair of mentions, punctua-
tions between the pair of mentions, tense of the 
nearest verbs, and dependency path between the 
pair of mentions.   
Features only for EE classifier: if exists a time 
expression which is linked to both event mention 
by the TE classifier, types of the two TLINKs 
were considered as features 

3 Results 

We used the clinical data provided in the super-
vised domain adaption, which contained 591 rec-
ords of colon cancer patients and 30 records of 
brain cancer patients, to train our system. Table 1 
shows the results of event mentions, time expres-
sion and relations, where F1 stands for F1 score, P 
stands for precision, and R stands for recall.   

 
Brain cancer F1 P R 
ES 0.73 0.62 0.87 
ES: All attributes 0.41 0.35 0.50 
ES: Modality 0.63 0.54 0.75 
ES: Degree 0.72 0.62 0.86 
ES: Polarity 0.70 0.60 0.84 
ES: Type 0.70 0.60 0.85 
DocTimeRel 0.49 0.42 0.59 
TS 0.58 0.58 0.58 
TS: Type 0.54 0.54 0.54 
TLINK 0.26 0.20 0.37 

Table 1: Results of event spans (ES), time spans 
(TS), TLINK, and their attributes tested on brain 

cancer patients.  

To compare our system’s performance while 
switching domain, we also provide Table 2 of the 
results for all three subtasks where training and 
testing data are all colon cancer patients. 

 
Colon cancer F1 P R 
ES 0.86 0.84 0.89 
ES: All attributes 0.57 0.55 0.58 
ES: Modality 0.78 0.76 0.81 
ES: Degree 0.86 0.84 0.88 
ES: Polarity 0.83 0.81 0.86 
ES: Type 0.83 0.81 0.86 
DocTimeRel 0.65 0.63 0.67 
TS 0.75 0.83 0.68 
TS: Type 0.73 0.80 0.66 
TLINK 0.39 0.38 0.39 

Table 2: Results of all subtasks tested on colon 
cancer patients.  

4 Discussion 

The F1 scores of event mentions in brain cancer 
patients are lower than in colon cancer patients. It 
is mostly contributed by the decrease in precision. 
Without the ground truths, we can only assume 
that our system still learned some domain-specific 
features to tell event apart from non-event under 
the replacement of words with classes according 
to UMLS. The scores of TLINK have the same 
problem as event mentions. 

Interestingly, the performance of time expres-
sion, which we thought to be free from the chal-
lenge of domain adaptation, decreases drastically 
in all three scores. It is certain that some domain 
specific features played big roles in our system. 
However, without the ground truths, it is difficult 
to identify the problem. 

 CRF and SVM were both experimented for 
time expressions and shown in Table 3. With the 
same features, CRF performed better than SVM in 
F1 score and precision. The results show that CRF 
has a better performance in sequence labeling. 
Advanced deep learning model including convo-
lution neural network (CNN) and recurrent neural 
network (RNN) will be explored in the future due 
to their advantages in sequence labeling. 

 
Time F1 P R 
SVM 0.69 0.67 0.70 
CRF 0.73 0.80 0.66 

Table 3: results of time expression identification 
with two different settings 
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Compared to the best results of other runs in 

this shared task, which is shown in Table 4, Doc-
TimeRel is the most poorly predicted attribute by 
our system. DocTimeRel is the relationship be-
tween an event and its document creation time. 
However, the features we chose for this subtask 
were all confined to one sentence. Adding features 
capturing the time representations within neigh-
boring sentences, within the section, or even with-
in whole document should increase the perfor-
mance.  

TLINK is another attributes that our system 
performed notably worse than the first place. This 
is possibly due to the chain effect where TLINK 
was determined based on event mentions and time 
expressions that were already with worse perfor-
mance. Once ruling out this possibility, we can 
then focus on how to improve our TLINK mod-
ule. 

5 Conclusion  

In this paper, we proposed a system to participate 
in the Clinical TempEval 2017 shared task. Our 
system not only identified the clinical temporal 
events, but also their detailed properties and their 
temporal relations with other events.  It can also 
take on the challenge of domain adaptation where 
only a few data from targeted domain was given 
while the other data were from different domain. 
Our system adopted SVM and CRF for different 
subtasks. The results were in the third place in su-
pervised domain adaptation. 

In future works, we will focus on the increasing 
the performance in DocTimeRel and explore deep 
learning algorithms.   
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Best vs. Us F1 P R 
ES 0.76 (0.73) 0.69 (0.62) 0.85 (0.87) 
ES: All attributes 0.52 (0.41) 0.47 (0.35) 0.58 (0.50) 
ES: Modality 0.69 (0.63) 0.63 (0.54) 0.78 (0.75) 
ES: Degree 0.75 (0.72) 0.68 (0.62) 0.84 (0.86) 
ES: Polarity 0.75 (0.70) 0.68 (0.60) 0.83 (0.84) 
ES: Type 0.75 (0.70) 0.68 (0.60) 0.83 (0.85) 
DocTimeRel 0.59 (0.49) 0.53 (0.42) 0.66 (0.59) 
TS 0.58 (0.58) 0.51 (0.58) 0.67 (0.58) 
TS: Type 0.55 (0.54) 0.49 (0.54) 0.64 (0.54) 
TLINK 0.32 (0.26) 0.25 (0.20) 0.43 (0.37) 

Table 4: Comparison with the best results in F1 of the other runs in this shared task, where our re-
sults are listed inside the brackets. 
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Abstract 

Temporality is crucial in understanding the 

course of clinical events from a patient’s 

electronic health records and temporal 

processing is becoming more and more 

important for improving access to content. 

SemEval 2017 Task 12 (Clinical 

TempEval) addressed this challenge using 

the THYME corpus, a corpus of clinical 

narratives annotated with a schema based 

on TimeML2 guidelines. We developed 

and evaluated approaches for: extraction 

of temporal expressions (TIMEX3) and 

EVENTs; EVENT attributes; document-

time relations. Our approach is a hybrid 

model which is based on rule based meth-

ods, semi-supervised learning, and seman-

tic features with addition of manually 

crafted rules. 

1 Introduction 

Extraction and interpretation of temporal infor-

mation from clinical text is essential for clinical 

practitioners and researchers. Extracting temporal 

information from unstructured clinical narratives 

is an important step towards the accurate con-

struction of a patient timeline over the course of 

clinical care. SemEval-2017 Task 12 (Clinical 

TempEval) is a direct successor to 2016 Clinical 

TempEval. Clinical TempEval is designed to ad-

dress the challenge of understanding clinical 

timeline in medical narratives and it is based on 

the THYME corpus which includes temporal an-

notations. 

Researchers have explored ways to extract 

temporal information from clinical text. Lee et al. 

(2016) developed an approach based on linear and 

structural (HMM) support vector machines using 

lexical, morphological, syntactic, discourse, and 

word representation features. P R, Sarath et al. 

(2016) used a hybrid approach(rule-based and 

machine learning) for temporal information ex-

traction from clinical notes. Velupillai et al. (2015) 

developed a pipeline based on ClearTK and SVM 

with lexical features to extract TIMEX3 and 

EVENT mentions. Most of the participants of 

these challenges used CRF and SVM for event 

and time expression extraction with features in-

cluding the information gathered from different 

resources like UMLS (Unified Medical Language 

System), output of TARSQI toolkit, Brown Clus-

tering, Wikipedia and Metamap (Aronson and 

Lang, 2010). Those machine-learning methods are 

complex and they cost much time to run. However, 

they can be not only flexible but also convenient 

when compared to the handcrafting label. Others 

also used some rule based methods, which are fast 

but not flexible enough. It seems that the combi-

nation of those two methods may gain the better 

result. Since in I2b2 2012 temporal challenge, all 

top performing teams used a combination of su-

pervised classification and rule based methods for 

extracting temporal information and relations 

(Sun et al., 2013). Besides THYME corpus, there 

have been other efforts in clinical temporal anno-

tation including works by Roberts et al. (2008), 

Savova et al. (2009), Galescu and Blaylock (2012) 

and so on. Recently, interest in temporal pro-

cessing has moved forward in two directions: 

cross-document timeline extraction (Minard et al., 

2015) and domain adaptation (Sun et al., 2013; 

Bethard et al., 2015). Based on the analysis above, 

our hybrid model utilize machine learning tech-

niques and crafted rules which contains SVM 

(Support Vector Machine) classifier and RNN 

(Recurrent Neural Networks) classifier to extract 

Temporal Information from Clinical documents 

and make classifications. 
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2 Data and Method 

2.1 Data 

We use THYME corpus for training and evaluat-

ing the methods, which consists of clinical and 

pathology notes of patients with colon cancer and 

brain cancer from Mayo Clinic. The THYME 

corpus is split into training, development, and test 

sets based on patient number, with 50% in train-

ing and 25% each in development and test sets. 

Table 2 shows the distributions of the different 

time and event classes in the THYME corpus. 

The training data about colon cancer contains 

3,833 time expressions and 38,890 events, the 

development data contains 2,078 time expres-

sions and 20,974 events. The training data about 

brain cancer contains 350 time expressions and 

2,557 events.  

 

Table 1: different time and event attributes in the 

THYME3 corpus 

The data of colon cancer are more than others 

and the training data of brain cancer is too little 

but the test data is all about brain cancer, so the 

task will focus on domain adaptation. We can also 

see the unbalanced data distribution, for example, 

the data of N/A is 38,698, but the data of MOST 

is only 96, and maybe unbalanced data will have 

an impact on the results. We used the develop-

ment set for optimizing learning parameters, then 

combined it with the training set to build the sys-

tem used for reporting results in Section 4. 

2.2 Task Description 

Clinical TempEval 2017 was focused on design-

ing approaches for information extraction in the 

clinical domain.There were 6 different tasks 

which are listed in Table 2. 

Clinical TempEval is designed to address the 

challenge of understanding clinical timeline in 

medical narratives and it is based on the THYME 

corpus which includes temporal annotations. 

Task Description 

TS TIMEX3 spans 

ES EVENT spans 

TA 

Class 

Attributes of TIMEX3 

<DATE, TIME, DURATION, 

QUANTIFIER, PREPOSTEXP, 

SET> 

EA 

Modality 

Degree 

Polarity 

Type 

Attributes of EVENTs 

<ACTUAL, HYPOTHETICAL, 

HEDGED,GENERIC> 

<MOST, LITTLE,N/A> 

<POS, NEG> 

<ASPECTUAL, EVIDENTIAL, 

N/A> 

DR Relation between EVENT and 

document time <BEFORE, 

OVERLAP, BE-

FORE/OVERLAP, AFTER> 

CR Narrative container relations 

Table 2: Tasks of clinical TempEval 2017 

For extracting temporal information from clini-

cal text, we utilize semi-supervised learning algo-

rithms (SVM and RNN) with diverse sets of fea-

tures for each task. We also utilize manually-

crafted rules to improve the performance of the 

classifiers, when appropriate. We show the effec-

tiveness of the designed features and the rules for 

different tasks. 

3 Methodology 

Our approach to the tasks is a hybrid model that is 

based on rule based methods and supervised 

learning using lexical, syntactic and semantic fea-

tures extracted from the clinical text. We also de-

signed custom rules for some tasks when appro-

priate. Details are outlined below: 

3.1 TIMEX3 Span Detection and Time Ex-

pression Attribute Identification 

Our tasks are about time expression span detec-

tion (TS) and time expression attribute identifica-

tion (TA), which means that we should first ex-

 

 
attribute 

Colonc

ancer-

Train 

Brain-

cancer-

Train 

Colonc

ancer-

Dev 

 

E 

V 

E 

N 

T 

Documents 293 30 147 

ASPECTUAL 546 51 246 

EVIDENTIAL 2,206 85 1,314 

N/A  36,185 2,421 19,414 

MOST 96 2 45 

LITTLE 143 18 65 

N/A 38,698 2,537 20,864 

POSITIVE 34,832 2,386 18,795 

NEGATIVE 4,105 171 2,179 

ACTUAL 35,781 2,172 22,647 

HEDGED 889 81 443 

HYPOTHET-

ICAL 
1,656 88 829 

GENERIC 611 216 611 

T 

I 

M 

E 

X 

Date 2,588 204 1,422 

Duration 434 29 200 

PrePostExp 313 37 172 

Set 218 13 116 

Quantifier 162 9 109 

Time 118 58 59 
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tract the time expression and then identify which 

class it belongs to. As for time span, we use the 

rule based methods to detect the boundary of the 

time expression. We use Stanford NLP package to 

do the pre- processing and we normalize the digi-

tal expressions after it, we change every character 

to “0” as long as it is digit. (e. g. we normalize the 

"12:13" to "00:00".) 

For the rule based methods, firstly we find all 

the prepositions, according to our experience and 

experimental statistics, we  extract five tokens 

behind their own prepositions. Since we thought 

that many time expressions always show up be-

hind a preposition, we then judge whether those 

five words are related to time expressions. We de-

fine a time dictionary to list the words which we 

think can be a part of the time expressions, like 

"month", "week, "day", "hour", "May", "Mon-

day", "morning", "once" and so on. Next, we con-

trast the five tokens with time dictionary, and find 

whether it can represent a date or a precise time. 

Finally, we extract all the continuous tokens that 

we thought may relate to the time expressions ( if 

there is a definite article before those tokens, ex-

tract it as well). There exist some expressions do 

not after a preposition and only contain one word 

and most of them have the same prefix like "pre", 

"post", "peri". So we use this prefix rule to find 

the remain expressions. 

We also use the rule based methods to identi-

fy the classes of the time expression. And here 

are some examples of the rules for each class: 

Class Rules 

Date 1999-11-08, yesterday, last Saturday, 

in 3 years, 3 months ago... 

Duration for 3 days, July to August, since last 

summer.... 

PrePostExp post, preoperative, prior to the sur-

gery.... 

Set Twice per day, 3 times a day... 

Quantifier Twice, once... 

Time 13:56, in the morning.... 

Table 3: examples of rules for each time expression 

class 

3.2 Event Extraction Task 

In this task, we need to extract medical events 

from the clinical text and identify attributes of 

the events which are showed in table 1.  

 
Figure 1 Event Extraction Architecture 

Figure 1 illustrates the architecture of our 

EVENTs extraction system. First, we create word 

embeddings using the Wikipedia database. Then 

we extract event spans with a SVM classifier and 

a remove strategy. Finally we detect type, degree, 

modality, and polarity using four separate SVM 

classifiers and crafted rules. 

3.2.1    Event Spans (ES) Extraction 

To extract EVENT spans, first we train a separate 

Support Vector Machine to complete prediction. 

Then we make a colon corpus about colon cancer 

which comes from training data and Wikipedia. 

Finally, we remove the events which exist in the 

colon corpus from the prediction result.   

The major feature we used for training the 

SVM classifier is word embeddings. We trained 

all word embeddings in this document  with 

word2vec (Mikolov et al., 2013) using the 

Skipgram model on a text window size of 2 to-

kens, to obtain words vector representations of 

dimension 50. We also try to use the words vector 

representations of dimension 300, but the result is 

unexpected. 

3.2.2    Identifying EVENTs Attributes (EA)  

Table 1 shows the EVENTs attributes. Assigning 

these attributes to one of its values is an 

classification task. We train four separate Support 

Vector Machines for each attribute to classify their 

respective classes. We also use word embeddings 

as the major features for training separate SVM 

classifier for each attribute. 

Furthermore, according to our observations of 

the corpus, different types of event mentions may 

show different rules. For instance, events with 

EVIDENTIAL type are usually represented with 

verbs such as “showed”, “reported”, “found”, in 

contrast, the events with N/A type that are usually 

represented medical terms such as “nausea”, 

“chemotherapy” or “colonoscopy”. So we create 

such rules to help classifications. 
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3.3 Document-time Relation (DR) 

Document-time relations (DR) are specific attrib-

utes of EVENTs indicating their temporal relation 

with the document creation time. There are 3 dif-

ferent types of DRs, namely, BEFORE, AFTER, 

and OVERLAP. For identifying the DR attribute 

types, we use RNN. RNN makes up for the inac-

curacy of the convolution kernel and the pool size 

in the process of text processing, therefore, the 

generated RNN classifier has higher accuracy for 

text classification. We train classifier for each DR 

type using an set of features to what was used for 

EVENTs attributes detection. Verb tense and the 

modals in the sentence are also indicative of the 

sentence tense and can help in identifying the 

document-time relation. Figure 1 describes the 

additional features that we use for DR extraction. 

In addition to the base features, we consider fea-

tures specific to the EVENTs annotation. We fur-

thermore expanded the features by considering 

contextual features from the sentence and nearby 

time and date mentions. We try to optimized the 

RNN classifier--thread level speculation. Replace 

the calculated results of the other core to be 

weighted with speculative value, in that way, the 

parallel computing can be carried out smoothly. 

We used this method to classify the colon cancer 

data with golden annotations, the results are 

shown in the following table. 

DR P R F1 

RNN 0.69 0.71 0.70 

RNN+ 0.90 0.91 0.90 

Table 4: Document-time Relation of cancer data 

From this table, we can see the value of preci-

sion, the value of recall and the value of F1 are 

relatively high, so the Optimized RNN classifier 

is effective. But we do not know whether it is 

suitable for the brain cancer data. 

4 Experiments and Results 

The 2017 Clinical TempEval task consisted of 

two evaluation phases. Phase1 is unsupervised 

domain adaptation and phase 2 is supervised do-

main adaptation. In phase 2, we participated in all 

tasks, except for CR. 

We report the results on the test set for all sub-

tasks, Results have been computed in terms of 

Precision (P), Recall (R) and F1. For comparison 

we will also report the maximum scores of the 

participating systems. 

 

 

Subtask P R F1 

TIMEX3_SPAN 0.33 0.52 0.41 

TIMEX3_Class 0.29 0.45 0.35 

Table 5: results for TS and TA subtasks 

However, the result is less than satisfactory. Ta-

ble 5 shows the final result. We compared our re-

sults with the best results on the Semeval website. 

( https://competitions.codalab.org/) We think there 

are three reasons: First, our methods always ex-

tract two different expressions as one if they are 

very close to each other. Secondly, our dictionary 

is too small to cover enough words. Thirdly, we 

extract most of words in the raw text that have the 

prefix "pre", "post", "peri", but some of them are 

not time expressions. As for TA, we think that we 

only focus on the time expression itself but ignore 

much semantic information. 

Subtask P R F1 

ES 0.55 0.69 0.61 

Type 0.53 0.66 0.59 

Degree 0.54 0.67 0.56 

Polarity 0.49 0.61 0.54 

Modality 0.46 0.57 0.51 

Table 6: results for EVENTs subtasks 

The results for EVENTs subtasks also show 

lower performance in comparison with the result 

of best system. Error analysis are as bellowed: 

Firstly, we don’t use a good and effective do-

main adaption method, and we do not have an ef-

fective way to solve the unbalanced data. Second-

ly, we don’t integrate more domain specific fea-

tures.  Thirdly, in the process of Events Attributes 

identification, we ignore the importance of con-

text analysis and Sentiment analysis. For example, 

"bleeding" can be the positive class of the Polarity 

attribute, and it also can be the negative class. 

This is up to the context analysis. In addition, we 

create word embeddings using the Wikipedia da-

tabase. The temporal information from clinical is 

professional. So we need to use more database 

about clinic to improve the performance of the 

word embeddings. In the future, we plan to further 

improve our system to show higher performance 

based on the observations above. 

Subtask P R F1 

DR 0.29 0.36 0.32 

Table 7: results for DR subtasks 

We use the results of EVENT extraction to 

forecast the document-time relation of brain can-

cer. So the results of EVENT_span and 

TIMEX3_span are very important, and we do not 

add the domain adaptation, so the result of DR of 

brain cancer are relatively low, the detailed results 

are shown in table7. We have identified some er-
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rors: first, wrong output of the pre-processing 

modules, especially the parsing process. Second, 

limitations of the features selected. Third, lack of 

domain specific knowledge. 

5 Discussion and Conclusions 

SemEval 2017 task 12 (Clinical TempEval) was 

focused on temporal information extraction from 

clinical narratives. Our methods employed rule 

based methods and machine learning 

classification scheme for all the tasks except for 

CR based on various sets of syntactic, lexical, and 

semantic features. We illustrated that incorporat-

ing manually crafted extraction rules improves 

results, but the rules should be improved. 

For TIMEX3 subtasks, our approach was 

clearly not the best solution as our rules are sim-

ple and not perfect so that the system cannot ob-

tain the high score. For EVENTs subtasks, our 

system is not ideal for unbalanced data classifica-

tion, and we will enhance its effectiveness. For 

DR subtask, we showed that the optimized classi-

fier can improve the accuracy but we do not 

know whether it is suitable for the brain cancer 

data. Besides, we do not consider the domain ad-

aptation and our features were minimal. There are 

many options to improve the system, ranging 

from fine tuning the pre-processing phase in or-

der to avoid offset misalignments, to the genera-

tion of better features for the ES and DR subtasks. 

In future work, we aim to implement all the im-

provements mentioned above. 
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Abstract

This paper presents our approach to partic-
ipate in the SemEval 2017 Task 12: Clin-
ical TempEval challenge, specifically in
the event and time expressions span and
attribute identification subtasks (ES, EA,
TS, TA). Our approach consisted in train-
ing Conditional Random Fields (CRF)
classifiers using the provided annotations,
and in creating manually curated rules to
classify the attributes of each event and
time expression. We used a set of com-
mon features for the event and time CRF
classifiers, and a set of features specific
to each type of entity, based on domain
knowledge. Training only on the source
domain data, our best F-scores were 0.683
and 0.485 for event and time span iden-
tification subtasks. When adding target
domain annotations to the training data,
the best F-scores obtained were 0.729 and
0.554, for the same subtasks. We ob-
tained the second highest F-score of the
challenge on the event polarity subtask
(0.708). The source code of our system,
Clinical Timeline Annotation (CiTA), is
available at https://github.com/
lasigeBioTM/CiTA.

1 Introduction

This paper presents our system CiTA (Clinical
Timeline Annotation) to participate in the Se-
mEval 2017 Task 12: Clinical TempEval chal-
lenge. Our team participated in the subtasks cor-
responding to the identification of the following

∗alamurias@lasige.di.fc.ul.pt

properties: time expression spans, event expres-
sion spans, time expression attributes, event ex-
pression attributes. Time expressions had only one
attribute, type, which could be DATE, TIME, DU-
RATION, QUANTIFIER, PREPOSTEXP or SET.
Event attribute identification consisted of four at-
tributes: type (N/A, ASPECTUAL or EVIDEN-
TIAL), polarity (POS or NEG), degree (N/A, most
or little) and modality (ACTUAL, HEDGED, HY-
POTHETICAL or GENERIC).

For this challenge, we developed a sys-
tem, named Clinical Timeline Annotation CiTA1,
which uses IBEnt (Lamurias et al., 2015) to iden-
tify the text spans of time and event entities based
on machine learning and semantic techniques.
CiTA also incorporates hand-crafted rules to as-
sign the attributes to each entity. We trained one
classifier for each entity type using Conditional
Random Fields (CRF) and developed a set of rules
for each attribute, based on the training data avail-
able at each phase. This paper describes the fea-
tures and resources used for each subtask, presents
our results and discusses the main issues found.
CiTA is publicly available in a GitHub reposi-
tory 2.

2 Methods

A corpus of clinical, pathology and radiology
notes from the Mayo Clinic was available to the
participants. This corpus contained notes for the
source domain (colon cancer) and for the target
domain (brain cancer). Each document was man-
ually annotated with time and event expressions,
as well as their attributes. The annotators and ad-
judicators followed a set of guidelines which were
also available to the participants. During Phase
1 only annotated colon cancer reports were avail-

1http://labs.fc.ul.pt/cita/
2https://github.com/lasigeBioTM/CiTA

1019



able, and in Phase 2 thirty annotated brain cancer
documents were also released.

The colon cancer dataset was partitioned in 3
sets: train, development and test. We trained the
system with the train and development set, and op-
timized with the test set. In Phase 2, we enhanced
the classifiers by adding the brain cancer annotated
documents. We ignored sections of the colon can-
cer documents that were not annotated due to the
guidelines.

2.1 Event / Time Entity Span Identification

For both ES and TS subtasks we trained CRF
classifiers on the training data annotations. We
trained a CRF classifier for events and another
for time expressions, using CRFSuite (Okazaki,
2007). These classifiers identified only the spans
of the entities so that we can evaluate and improve
the results of this subtask before classifying the
entity attributes. This is justified in the context
of the competition since the attribute classifica-
tion subtasks are dependent on the span identifica-
tion subtasks, and a poor performance on the span
identification subtasks would affect the other sub-
tasks.

We used a set of common features for time and
event expressions, based on previous experiments,
that explored linguistic, orthographic, morpholog-
ical and contextual properties of the tokens (Table
1). For most features, we considered a contextual
window of size one, i.e., the value of the same fea-
ture for the previous and next token. Lemma and
Part-of-Speech tags were obtained using Stanford
CoreNLP (Manning et al., 2014).

Furthermore, we selected specific features for
time and event expressions. For time expressions,
we used the NER tags given by SUTime (Chang
and Manning, 2012), part of Stanford CoreNLP.
SUTime is able to detect general time and date ex-
pressions, which is the case of some of the time ex-
pressions in the gold standard. For the event clas-
sifier, we matched each word in the gold standard
to a Unified Medical Language System (UMLS)
concept and used it as a feature if the confidence
level was higher than 0.8. The matching was per-
formed using LDPMAP (Ren et al., 2014). Many
words were matched to UMLS since it is large vo-
cabulary. However, by applying a high threshold,
we ensure that only high quality matches are con-
sidered.

During Phase 2, we analyzed some errors made

Feature Context window Entity
Prefix sizes 2-4 -1/1 All
Suffix sizes 2-4 -1/1 All

Contains number 0 All
Case -1/1 All

Lemma -1/1 All
POS tag -1/1 All

Word class -1/1 All
SUTIME tag -1/1 Time

POS tag -2/2 Event
UMLS -1/1 Event

Table 1: Features used for TS and ES subtasks.

by the colon cancer classifiers on the brain cancer
training set. To overcome these errors, we auto-
matically created a list of common false positives
and false negatives for time and event expressions.
We applied the false positives list to the output of
the CRF classifiers as a filter, and performed a dic-
tionary search with the false negatives list to iden-
tify missed entities. We used these lists only on
Run 2 of our Phase 2 submission.

2.2 Event / Time Entity Attribute
Classification

Each event and time entity identified by CiTA was
then classified according to the attributes defined
by the task. To this end, we established a set of
rules for each attribute using regular expressions.
These rules were developed according to the anno-
tation guidelines and training data. The rules de-
veloped for modality and polarity attributes were
based on the context windows of each event. Fur-
thermore, we chose the default values of each at-
tribute based on the frequency of each value on the
brain cancer annotations.

We found that several expressions used in the
context window of the event affected its modal-
ity and polarity. For polarity, avoid, absent and
not indicated a negative polarity. If the context of
the event did not include any of the expressions of
our list, we classified it as positive (95.9% of the
cases). For modality, we selected ACTUAL as the
default value (84.9% of the cases), since it is the
most frequent value.

To choose the size of the context windows, var-
ious sizes were tested, both to the left and right of
the event. We noticed that if we extended the win-
dow too much, some expressions that did not af-
fect the event would be matched. However, shorter
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context windows would not include the relevant
expressions. We fixed the window size of 5 for
both polarity and modality. If the conjunctions
but or with were found in the context window, we
cut the window at that point. These conjunctions
change the subject of the sentence from the respec-
tive event, and all words afterwards were ignored.
Furthermore, we ignored any expressions that af-
fected the polarity of an event if there was another
event between the expression and that event. For
example, if the expression not appears in the left
context window of event A, but event B also ap-
peared in the same window, between not and event
A, then event A was classified as positive.

For the other attributes (event type and time
type) we chose a different approach. Although
we tried to formulate rules based on the context
windows of each event and time entity we realized
that it was more efficient to make a direct match
between the attribute and the event or time entity.
To classify type of events, as it was said on the
set of the guidelines available to the participants,
we realized that specific groups of verbs indicated
a certain modality, for example, evidence (EVI-
DENTIAL) or starting (ASPECTUAL), making
it easy to recognize which verbs belong to this
class. We developed rules based on each modality
class, except for the default value (N/A) (94.7%
of the cases). The rules used to classify the type
of time expressions were slightly different. We
had to identify which of the six attributes was the
default or the one that included the widest ampli-
tude of expressions. We started by making rules
for each attribute by identifying the patterns in the
gold standard, quickly realizing that the default at-
tribute was DATE (59.3% of the cases). So we
focused our attention on the definition of the other
five attributes (PREPOSEXP, SET, TIME, DURA-
TION and QUANTIFIER) by matching the differ-
ent type of time expressions and possible varia-
tions to each appropriated attribute.

3 Results

We submitted one run during Phase 1 and two runs
during Phase 2. While during Phase 1 we only
had access to source domain annotations, some
target domain annotations were released for Phase
2. Hence, we were able to improve the perfor-
mance of CiTA in relation to the target domain
during Phase 2. Table 2 shows the official results
for Phase 1 and Phase 2 Run 1 and 2. For each

run, we present the precision, recall and F1-score
obtained in each subtask.

Compared to the results of Phase 2, Phase 1 re-
sults were lower, particularly for Time span iden-
tification (∆ = 0.069). The false positive filter
applied on Phase 2 Run 2 improved the precision
of the time span subtask, although at the expense
of a lower recall. On the event span subtask it re-
sults in a lower precision, with almost no effect on
recall. In both phases, the results for time expres-
sions were lower than for events.

The results of the time and event attributes are
shown in combination with the span identification.
This means that an entity is considered positive if
both the span and attribute are found in the gold
standard. Hence, we can evaluate the effect of the
rules on the test set by comparing the scores of
each attribute to the span identification score. Fur-
thermore, we evaluated the accuracy of the rules
on the colon cancer and brain cancer train sets (Ta-
ble 3). We assumed that the attribute value was
correct if it matched the gold standard. Table 3
shows the results obtained using the rules devel-
oped for the second phase, which were tuned for
the brain cancer data sets.

4 Discussion

The main challenge of this task was to adapt a
system developed for a specific source domain to
a different target domain. Systems trained on a
specific domain, either using hand-crafted rules or
machine learning, are biased for that domain. In
real world scenarios, information extraction sys-
tems need to be able to perform well in multiple
domains. Although at first it seemed like the only
difference between the source and target domains
was the type of cancer, we observed that the re-
ports and annotations were also different in terms
of form of the documents and terms used. These
differences contributed to lower scores obtained
on the target domain test set, when compared to
the source domain test set used in the previous edi-
tion of this task (Bethard et al., 2016). Even using
the brain cancer train set available during Phase 2,
our best F1 score on the event span subtask was
0.16 lower than on the colon cancer test set.

Comparing to the other teams that submitted re-
sults to this task, our submission performed better
on the event expressions subtasks. On Phase 1,
we are the third best team on all event subtasks in
terms of F1 score. On Phase 2, we are in second
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Phase 1 Phase 2 Run 1 Phase 2 Run 2 Phase 2 Top F1
P R F1 P R F1 P R F1 P R F1

Event span 0.618 0.765 0.683 0.649 0.831 0.729 0.637 0.830 0.721 0.69 0.85 0.76
Event modality 0.548 0.679 0.607 0.571 0.731 0.641 0.561 0.730 0.634 0.63 0.78 0.69
Event degree 0.610 0.756 0.675 0.642 0.821 0.720 0.630 0.820 0.713 0.68 0.84 0.75
Event polarity 0.600 0.744 0.664 0.630 0.807 0.708 0.619 0.806 0.700 0.68 0.83 0.75

Event type 0.598 0.741 0.662 0.629 0.805 0.706 0.617 0.804 0.698 0.68 0.83 0.75
Time span 0.441 0.538 0.485 0.517 0.598 0.554 0.520 0.588 0.552 0.57 0.62 0.59
Time type 0.393 0.479 0.432 0.483 0.559 0.518 0.485 0.548 0.515 0.54 0.59 0.56

Table 2: Results of our submission and for each task the results from the top F1 score submission of
Phase 2. Notice that Time type represents Time span + Class column of the results table published by the
organizers.

Gold standard Colon Brain
Event modality 0.914 0.891
Event degree 0.995 0.993
Event polarity 0.969 0.968

Event type 0.972 0.962
Time type 0.890 0.971

Table 3: Accuracy obtained using the rules devel-
oped for each attribute, on the colon cancer and
brain cancer train sets.

place on the Event polarity subtask, maintaining
the third place on all the other event subtasks, ex-
cept modality. In time span and type we are in
third place in terms of recall.

4.1 Error Analysis

Some of the more persistent errors while classi-
fying the type of time entities were that some of
the time expressions presented in the gold stan-
dard had double attribution. For example, time
sometimes appeared classified as TIME and in
others as DURATION, and daily was classified
as DATE, SET and QUANTIFIER. Although ini-
tially we tried to introduce context windows of
each time expression to help us solving this sys-
tematic error, we realized that there was no explicit
difference in the context of most of these words,
so introducing context windows only harmed our
efforts to achieve better results.

Some event attributes were incorrectly classi-
fied due to the developed context window rules.
For example, in not limited to loss of appetite, ap-
petite was incorrectly classified with negative po-
larity since it had not in its left context window,
and no event in-between. In some cases, the rule
we implemented to ignore negation expressions
between events resulted in incorrect positive po-
larities. In the expression no second lesion seen
in the brain, no did not affect seen because an-

other event, lesion appeared in its context win-
dow. However seen was supposed to be classified
as negative.

One limitation of a rule-based approach is that
it is necessary to take into account every expres-
sion that might affect an attribute. Since we had
a limited amount of target domain training data,
we missed some cases where more complex rules
could have been applied. We had a rule that as-
signed the modality of an event as HYPOTHET-
ICAL if the expression may appeared in the con-
text window. This resulted in some errors, for ex-
ample,with and there may be increased cerebral
blood volume, the modality of volume should be
HEDGED instead of HYPOTHETICAL.

5 Conclusions and Future Work

We obtained the second best F1 score on the event
polarity subtask and third best on the event span
and other event attributes subtasks. We made pub-
licly available the source code of CiTA including
the rules created to produce our results. The rules
to classify event and time attributes were efficient,
on the other hand the list of common false posi-
tive and negative created for Run 2 did not make a
significant difference.

CiTA is dependent on training data, which sug-
gests that domain-independent approaches should
be explored. One approach is to apply seman-
tic similarity measures to automatically identify
similar expressions in terms of meaning, even if
using different terms (Couto and Pinto, 2013).
Another approach is to explore distant supervi-
sion (Lamurias et al., 2017) to train a predictive
model using a knowledge base, for example by ex-
ploring Linked Data (Barros et al., 2016), instead
of annotated text.
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Abstract

Clinical TempEval 2017 (SemEval 2017
Task 12) addresses the task of cross-
domain temporal extraction from clinical
text. We present a system for this task
that uses supervised learning for the ex-
traction of temporal expression and event
spans with corresponding attributes and
narrative container relations. Approaches
include conditional random fields and de-
cision tree ensembles, using lexical, syn-
tactic, semantic, distributional, and rule-
based features. Our system received best
or second best scores in TIMEX3 span,
EVENT span, and CONTAINS relation ex-
traction.

1 Introduction
Clinical TempEval 2017 (Bethard et al., 2017) is
designed to address the challenge of extracting
clinical timelines from medical narratives. It is
a successor to Clinical TempEval 2016 (Bethard
et al., 2016), Clinical TempEval 2015 (Bethard
et al., 2015), and the i2b2 temporal challenge (Sun
et al., 2013).

Clinical TempEval evaluates systems using the
THYME corpus (Styler IV et al., 2014), which
is annotated with temporal expressions (TIMEX3),
events (EVENT), and temporal relations (TLINK)
per an extension of the TimeML specifications
(Pustejovsky et al., 2003).

The focus of Clinical TempEval 2017 is domain
adaptation. The source domain consists of clinical
text about patients undergoing colon cancer treat-
ments, while the target domain consists of clini-
cal text about those with brain cancer. There are
two phases in the task. In phase 1, the shared task
provides no annotations for the target domain (un-
supervised). In phase 2, the shared task provides

a small annotated training set from the target do-
main (supervised). Both phases evaluate system
performance on thirteen tasks via precision, recall,
and F1-score.

In Clinical TempEval 2016, the top-performing
system employed structural support vector ma-
chines (SVM) for entity span extraction and lin-
ear support vector machines for attribute and re-
lation extraction (Lee et al., 2016). For the pre-
vious iteration, Velupillai et al. (2015) developed
a pipeline based on ClearTK and SVM with lex-
ical and rule-based features to extract TIMEX3
and EVENT mentions. In the i2b2 2012 temporal
challenge, all top performing teams used a combi-
nation of supervised classification and rule-based
methods for extracting temporal information and
relations (Sun et al., 2013). Other efforts in clini-
cal temporal annotation include works by Roberts
et al. (2008), Savova et al. (2009), and Galescu and
Blaylock (2012).

Previous work has also investigated extract-
ing temporal relations. Examples of these ef-
forts in the general domain include: classification
by SVM (Chambers et al., 2007), Integer Linear
Programming (ILP) for temporal ordering (Cham-
bers and Jurafsky, 2008), Markov Logic Networks
(Yoshikawa et al., 2009), and SVM with Tree Ker-
nels (Miller et al., 2013).

In this paper, we present a framework for tem-
poral information extraction in clinical narratives.
Specifically we utilize Conditional Random Fields
(CRFs) and decision tree ensembles for extracting
temporal entities and relations from clinical text.
The features we use are covered in detail in Sec-
tion 2. This work can be seen as an extension and
refinement of the system used for Clinical TempE-
val 2016 by Cohan et al. (2016).
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2 Methodology
Our approach uses supervised learning algorithms
with lexical, syntactic, semantic, distributional,
and rule-based features for span, attribute, and re-
lation extraction.

2.1 Span Extraction

Extraction of TIMEX3 and EVENT spans uses
linear-chain CRFs.

We use BIO labels for the classification of spans
of text from the tokenized source text: ”B” indi-
cates that the token begins a span, ”I” indicates
that the token is inside the span, and ”O” indicates
that the token is outside all spans. This approach
allows for spans to represent one or more adjacent
tokens. Non-contiguous spans, although not sup-
ported, have a low occurrence.

Basic lexical features computed for each to-
ken are as follows: lowercase form of the to-
ken; uppercase and lowercase flags; prefix and
suffix; lemmatized form; shape; punctuation flag;
and stop word flag. Syntactic features are coarse-
and fine-grained part-of-speech tags. We used
spaCy1 for tokenization and basic features. In
addition, we used the Unified Medical Language
System (UMLS) ontology (Bodenreider, 2004) via
MetaMap2 to capture semantic concepts and use
them as features. We limited the types to those
indicative of clinical events (diagnostic procedure,
disease or syndrome, and therapeutic procedure).

We also include regular expression-based fea-
tures to capture more complicated and specialized
token properties (summarized in Table 1). While
the more generalized features we used (e.g. shape
and suffix) capture some of the same information,
this approach prioritizes likely generalizations and
avoid over-fitting to specific cases. For instance, it
allows the algorithm to generalize “Summer 2010”
as “[Season] [Year]” instead of a more literal se-
quence.

We use distributional features for generaliza-
tion. We construct Brown clusters (Brown et al.,
1992) on the text with fifty clusters. The binary
representation of each token’s cluster is a fea-
ture. We also use word embeddings trained using
Word2Vec (Mikolov et al., 2013) on the MIMIC-
III dataset (Johnson et al., 2016) with a dimension
of 100. The word embeddings also encode to-
ken usage context, and thus should generalize the

1spacy.io
2https://metamap.nlm.nih.gov/; 2016 version

Feature Examples
Date 12/3/2010, 1965-01-21
Month January, Aug
Day 1st, 31
Day-of-week Monday, Wed
Season summer, spring
Year 2013, 1990s
Time 8:42, a.m.
Time Unit minute, sec
Number 4, seventeen
Temporal preposition in, after
Temporal adverb daily, lately
Temporal prefix pre, post

Table 1: Rule-based features and examples.

model.
For each token’s feature set, we also include the

features from the ±1 adjacent tokens.

2.2 Attribute Extraction

We treat the extraction of the attributes of EVENT

and TIMEX3 as a classification problem. Our sys-
tem trains a CRF model for each attribute, with the
labels of each model corresponding to the attribute
values and the same features used in span extrac-
tion. An expanded window of ±3 tokens is used
for this task. Our system treats DOCTIMEREL (the
EVENT’s temporal relation to the document time)
as attribute extraction.

2.3 Narrative Containers

Our approach trains gradient boosted trees (Fried-
man, 2001) on candidate relation pairs and uses
this model to predict relations. Our system uses
XGBoost (Chen and Guestrin, 2016) for this task.

Clinical TempEval 2017 only considers tem-
poral links (TLINK) with a type of CONTAINS;
other types of TLINKs are not evaluated due to
lower inter-annotator agreements. Our system
uses TLINK type labels when the relation exists,
and a null label when the candidate relation does
not represent an actual relation. We note that our
approach extracts all relation types. Our system
uses both entity features (describing each relation
endpoint) and relation features (describing the re-
lationship between the source and target).

Entity features include the entity type, entity at-
tribute values, and the case-folded text value. Ad-
ditionally, we use each token and related features
(e.g. suffix) contained within the entity as fea-
tures. We apply semantic Role Labeling (SRL) to
the sentence containing the entity, which identifies
semantic predicates in the sentence per PropBank
guidelines (Palmer et al., 2005). If the entity text
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TIMEX3 Spans EVENT Spans

P R F1 P R F1

Phase 1 (Unsupervised)
Our System 0.61 0.53 †0.57 0.64 ‡0.80 ‡0.71
Median 0.63 0.46 0.48 0.64 0.69 0.68

Phase 2 (Supervised)
Our System ‡0.57 ‡0.62 †0.59 ‡0.68 0.82 ‡0.74
Median 0.53 0.52 0.54 0.67 0.76 0.71

MEMORIZE 0.64 0.22 0.33 0.61 0.51 0.56

Table 2: Evaluation results for span extraction.
†Top score. ‡Second highest score.

is found in a semantic predicate, we use the argu-
ment label as a feature for the model. We used the
SENNA3 implementation for SRL tagging.

Relation features capture information about the
relationship between two entities. Basic relation
features included are the character distance be-
tween the entities and the pair of entity types. Syn-
tactic features applied capture the path along the
constituent and dependency trees between the en-
tities. Our system uses the spaCy toolkit for de-
pendency parsing. We derive n-gram segments of
the path, the full path, and the distance of the path,
and use them as features.

We limit candidate relations to permutations of
entities belonging to the same sentence. This
approach precludes relations that cross sentence
boundaries, but limits the extent of negative train-
ing samples.

2.4 Domain Adaptation

Our system splits the phase 2 text (“train10”) into
a dev set and a test set. A grid search is performed
for span, property, and relation extraction over the
applicable hyperparameters. Text from the source
domain is used for training, and the dev set from
the target domain is used for evaluation. The test
set is used after the grid search to verify that the
procedure did not overfit hyperparameters.

3 Experimental Setup
In phase 1, we train our system on all available
annotations from the source domain. In phase 2,
we train our system on all available data from the
source domain and the “train10” dataset from the
target domain.

Baselines The baselines are two rule-based sys-
tems (Bethard et al., 2015) that the shared task

3http://ml.nec-labs.com/senna/

provides along with the corpus. The MEMORIZE

baseline, which is the baseline for all tasks except
for narrative containers, memorizes the EVENT

and TIMEX3 mentions and attributes based on the
training data. Then it uses the memorized model to
extract temporal information from new data. For
narrative containers, the CLOSEST baseline pre-
dicts a TLINK relation with type CONTAINS be-
tween every TIMEX3 annotation and its closest
EVENT.

Furthermore, we compare our results against the
other submissions to Clinical TempEval 2017. We
report the median value for each metric, as well
as indicators when our system achieves either the
top result (†), or second-highest result (‡). Only
the systems that submitted values for a particular
task are considered; systems reported as p = 0.00,
r = 1.00, and F1 = 0.00 are ignored.

Evaluation metrics Clinical TempEval 2017
evaluates thirteen tasks. Each task reports the pre-
cision recall, and F1-score of the submitted results
as compared to a human annotated and adjudicated
ground truth. The following tasks are not reported
in this paper for brevity: “All spans & all proper-
ties”, “All spans only”, “Time span & all proper-
ties”, and “Event span & all properties”.

4 Results and discussion

Our system outperformed other participating sys-
tems, receiving best or second best results extract-
ing TIMEX3 spans, EVENT spans, and CONTAINS

relations. Generally our domain adaptation pro-
cedure improved results, but it reduced the results
of CONTAINS relations. Although we received top
scores, we fell short of the single-domain perfor-
mance achieved in Clinical TempEval 2016.

Table 2 shows the results for TIMEX3 and
EVENT span extraction. Our system achieved the
top F1 score for TIMEX3 spans and the second
highest F1 score for EVENT spans in both phases.
Furthermore, our system met or exceeded the me-
dian and MEMORIZE baseline in all but one met-
ric (TIMEX3 precision), in which it had signif-
icant gains in recall. Table 3 shows the results
for TIMEX3 and EVENT attribute extraction. We
note that while our system performs well on some
of these categories, on some other categories it
underperforms the median results (e.g. such as
EVENT Modality and EVENT Polarity). Our sys-
tem performed well at CONTAINS relations, but
only achieved median results at DOCTIMEREL
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TIMEX3 Class EVENT Modality EVENT Degree EVENT Polarity EVENT Type

P R F1 P R F1 P R F1 P R F1 P R F1

Phase 1 (Unsupervised)
Our System 0.55 0.47 ‡0.51 0.50 0.64 0.56 0.61 ‡0.77 ‡0.68 0.59 ‡0.74 0.65 0.61 ‡0.76 ‡0.68
Median 0.56 0.45 0.46 0.55 0.63 0.59 0.62 0.71 0.68 0.60 0.70 0.66 0.61 0.70 0.66

Phase 2 (Supervised)
Our System ‡0.54 ‡0.59 †0.56 0.60 0.72 ‡0.66 ‡0.67 0.80 ‡0.73 0.54 0.64 0.58 ‡0.66 0.79 ‡0.72
Median 0.49 0.48 0.48 0.57 0.68 0.63 0.66 0.77 0.71 0.62 0.70 0.66 0.65 0.76 0.70

MEMORIZE 0.49 0.17 0.25 0.29 0.24 0.26 0.47 0.40 0.43 0.56 0.47 0.51 0.50 0.42 0.46

Table 3: Evaluation results for attribute extraction. †Top score. ‡Second highest score.

CONTAINS DOCTIMEREL

P R F1 P R F1

Phase 1 (Unsupervised)
Our System †0.52 0.25 †0.34 0.36 0.45 0.40
Median 0.33 0.25 0.32 0.39 0.45 0.41

Phase 2 (Supervised)
Our System †0.59 0.16 0.25 0.45 0.55 0.50
Median 0.20 0.16 0.16 0.42 0.51 0.46

CLOSEST 0.33 0.08 0.12 - - -
MEMORIZE - - - 0.22 0.18 0.20

Table 4: Evaluation results for relation extraction.
†Top score.

relations (see Table 4). In phase 1, our system
achieved the top results for CONTAINS precision
and F1. Our domain adaptation procedure re-
sulted in a drop in recall for CONTAINS relations.
We suspect this is due to overfitting the model
to the sample data. We suspect that including
more contextual or semantic features would im-
prove the performance of attribute extraction (in-
cluding DOCTIMEREL).

4.1 Error Analysis

We conducted an unsupervised domain adaptation
run against the “train10” dataset to get an idea of
failure cases. (We could not use the full target do-
main test set because these data are not available.)

One issue with TIMEX3 extraction is previ-
ously unseen or atypical date formats, for instance
“12Jun2013” (no hyphens). One way to resolve
this issue could be to use a more generalized li-
brary for extracting time expressions (e.g. Heidel-
Time), but even this library does not extract the
example shown above. Furthermore, it would not
generalize to new and otherwise unknown formats.
The supervised training subset could be used in
each domain to identify these kinds of conven-
tions, but this is labor-intensive and prone to error.

Another issue is inconsistency in TIMEX3 annota-
tion conventions (e.g. annotating a date and time
separately sometimes and jointly in others). This
complicates the model and leads to otherwise in-
explicable annotation absences.

One example of an EVENT extraction failure is
the false positive of “Cancer” in the phrase “Can-
cer Research Hospital”. An approach to resolve
this would be to use named entity recognition fea-
tures, or by treating named entities as chunks that
are annotated using a different technique. False
positive EVENTs were common in certain sections
of the notes (e.g. ongoing care; suggested inter-
ventions), indicating that document segmentation
by section could be useful. This would only work
in a supervised environment, unless domain sec-
tions have a great degree of overlap and can be
mapped to one another.

TLINK error cases include the known limitation
of intra-sentence relations. Other false negatives
candidates seemed to be due to domain-specific
language (e.g. “temozolomide”), suggesting that
lexical features are overused, or the syntactic and
semantic features we use are inadequate.

5 Conclusions
The results of Clinical TempEval 2017 show that
there is still room to explore cross-domain tem-
poral information extraction. We presented a sys-
tem for both unsupervised and supervised tempo-
ral domain adaptation. It performed among best of
participating teams, receiving best or second best
scores in TIMEX3 span, EVENT span, and CON-
TAINS relation extraction. All teams fell short of
meeting the top results for the source domain. Fu-
ture work in this area could focus on techniques
for using a small number of annotations to tune
a system to other domains due to the modest im-
provements in phase 2.
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Abstract

In this paper, we describe the system
of the KULeuven-LIIR submission for
Clinical TempEval 2017. We participated
in all six subtasks, using a combination
of Support Vector Machines (SVM) for
event and temporal expression detection,
and a structured perceptron for extracting
temporal relations. Moreover, we present
and analyze the results from our submis-
sions, and verify the effectiveness of sev-
eral system components. Our system per-
formed above average for all subtasks in
both phases.

1 Introduction

In this paper, we describe the system used for the
KULeuven-LIIR submissions at SemEval task 12,
named Clinical TempEval 2017 (Bethard et al.,
2017), which is concerned with temporal infor-
mation extraction from clinical records. In Clin-
ical TempEval extraction of temporal information
is split into six subtasks. Our system participated
in all tasks:

1. Detection of event spans (ES)

2. Identification of event attributes (EA)

3. Detection of temporal expressions (TS)

4. Attribute identification of temporal expres-
sions (TA)

5. Extraction of document-creation-time rela-
tions for events (DR)

6. Extraction of narrative container relations
(CR)

This year, a new aspect of Clinical TempEval
is that systems will be evaluated across domains,
which involves two phases: Firstly, unsupervised
domain adaptation (Phase I), where the training
data is in the colon cancer domain, and the test
data in the brain cancer domain. And secondly, su-
pervised domain adaptation (Phase II), where the
vast majority of the training data are colon cancer
reports, and a small number of brain cancer reports
is made available for training as well. The test data
is again in the brain cancer domain.

Our system consist of a combination of linear
Support Vector Machines (SVM) for entity span
and attribute recognition (tasks ES, EA, TS and
TA), and a document-level structured perceptron
(Leeuwenberg and Moens, 2017) for relation ex-
traction tasks (tasks DR and CR). We used three
system components for the domain adaptation: (1)
assigning more weight to target-domain training
data, (2) introduction of a UNK (unknown) to-
ken to model out-of-vocabulary words, and (3) ex-
ploitation of relational properties of temporality
during prediction.

In Section 2, we provide a detailed description
of our full system, and in Section 3 we discuss the
results from our submissions.

2 Our System

Our system consist of three main components (1)
preprocessing, (2) entity detection, and (3) rela-
tion extraction. In Figure 1, we show a schematic
overview of our system.

2.1 Preprocessing
The corpus used in Clinical TempEval 2017 is the
THYME corpus (Styler IV et al., 2014). For the
unsupervised domain adaptation phase (Phase I),
we use all colon cancer sections for training. For
the supervised domain adaptation (Phase II) par-
ticipants also received a small training section in
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Figure 1: Schematic overview of our system. Components we expect to help domain adaptation are
dashed.

the brain cancer domain. Some statistics about the
dataset can be found in Table 1.

Table 1: Dataset statistics for the THYME sec-
tions used in our experiments.

Section Documents

Training Colon Cancer 591
Training Brain Cancer 30
Test Brain Cancer 148

Our first simple method for adapting to a new
domain, when given target-domain training data
(Phase II), is to assign more weight to the target-
domain data at training time (Jiang and Zhai,
2007). In our submissions we assigned a 10 times
higher weight to the target-domain training data
compared to the colon cancer training data.

In all experiments, we preprocess the text by
using a very straightforward tokenization proce-
dure considering punctuation1 or newline tokens
as individual tokens, and splitting on spaces. We
also employ lowercasing, and conflate all digits to
a single representation. An example would be:

October 20, 1991⇒ october 55 , 5555

For our part-of-speech features, we rely on the
Stanford POS Tagger (Toutanova et al., 2003),
with the English bidirectional tagger model. We
also take the transitive closure of the CONTAINS
relation on the training data, as this has shown
to improve results in existing work (Mani et al.,
2006).

1, ./\"’=+-;:()!?<>%&$*|[]{}

Our second domain adaptation modification in-
volves the introduction of an unknown word to-
ken (UNK) to the input vocabulary of the extrac-
tion models. This is a widely used technique in
statistical language modeling to account for out-
of-vocabulary (OOV) words. In a language mod-
eling setting, we can expect that the proportion of
OOV words in the test set can be modeled by using
the proportion of one-time-occurring words from
the training set, by Good Turing estimation (Gale
and Sampson, 1995). In our system, we train the
weights for the UNK token by replacing all tokens
that occur only once in the training data by the
UNK token. At prediction time we simply replace
all words that are OOV by the UNK token. We
expect this technique to be effective for domain
adaptation as new words can be a serious problem
when crossing domains.

2.2 Entity Detection

For all span and attribute tasks we employ linear
SVM classifiers2. We only resort to token and
POS features, and use the same features for span
detection as for attribute detection. More elaborate
feature descriptions are shown in Table 2. We con-
sider all single tokens as EVENT candidates, and
all token {1,2,3,4,5,6}-grams as TIMEX3 candi-
dates (upper bound 6 is based on tuning on the
colon cancer training data).

2.3 Relation Extraction

For relation extraction we rely on the lin-
ear document-level structured perceptron by

2Trained using LIBLINEAR(Fan et al., 2008) with regu-
larization constant C=1.0 (tuned on the colon cancer section
of the training data from {0.1, 1.0, 10})
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Table 2: Features of the local feature functions of each subtask: φcr for CR, φdr for DR, φe∗ for ES and
EA, and φt∗ for TS and TA.

Features φdr φcr φe∗ φt∗

Strings for tokens and POS of each entity X X X X
Strings for tokens and POS in a window of size {3, 5}, left and right of each entity X X X X
Booleans for entity attributes (event polarity, event modality, event degree, and type) X X
Strings for tokens and POS of the closest verb X
Strings for tokens and POS of the closest left and right entity X
Strings for token {1, 2, 3}-grams and POS {1, 2, 3}-grams in-between the entities X
Booleans on if the first argument occurs before the second (w.r.t. word order) X

Table 3: Global DR (document-level) features.

Feature Description

Φsdr Bigram and trigram counts of subsequent
DCTR-labels in the document

Leeuwenberg and Moens (2017)3. Their model
employs a structured learning paradigm, assigning
a score S to each label assignment. Prediction cor-
responds to finding the label assignment with the
highest score. The score for a document-level la-
bel assignment is constructed by joining all local
features (shown in Table 2) within a document for
both tasks (DR and CR), together with a global
DR feature shown in Table 3, resulting in a joint
feature vector Φ(X,Y ).

The joint features Φ(X,Y ) are assigned a
weight vector λ, resulting in the linear scoring
function in Equation 1.

S(X,Y ) = λΦ(X,Y ) (1)

The weight vector λ is trained using the structured
perceptron algorithm (Collins, 2002), with averag-
ing (Freund and Schapire, 1999).

At prediction time integer linear programming
(ILP) is used to find the best label assignment
Y ∗, as shown in 2, using the Gurobi ILP Solver
(Gurobi Optimization, 2015).

Y ∗ = arg max
Y

S(X,Y ) (2)

We also experimented with the constraints on
the output labeling formulated by Leeuwenberg
and Moens (2017). The constraints enforce the
model to output labeling to be temporally con-
sistent, by enforcing relational properties onto the
predictions. We only chose the properties relevant

3Using the code at https://github.com/tuur/SPTempRels

for the CR and DR subtasks, which are transitivity
of containment, but also consistency between con-
tainment and the document-creation time relations
of the events. The relational properties that we en-
force as constraints during prediction are captured
in the following rules (condition above, and con-
clusion below the horizontal line):

contains(x, y) ∧ contains(y, z)
contains(x, z)

(3)

contains(x, y) ∧ before(x, doctime)
before(y, doctime)

(4)

contains(x, y) ∧ after(x, doctime)
after(y, doctime)

(5)

Our hypothesis is that these constraints can
help with assigning labels to unfamiliar input (e.g.
from the target-domain), by ensuring that local as-
signments are consistent with surrounding labels.

3 Experiments and Results

We conducted a number of experiments with our
system to test the effectiveness of the different sys-
tem components4. We submitted in phase I, and in
phase II. In Phase I, we used our system as shown
in Figure 1, only with the UNK introduction, so
without increased weight for target-domain train-
ing data (as there is none in Phase I), and without
constraints. In Phase II, our system includes the
full system, with all proposed components for do-
main adaptation.

When we look at the results of Phase I, in Fig-
ure 2, we can see that our system performs above
average on all tasks, and for both attribute iden-
tification tasks, it performs best (for EA there is
another system with best performance).

If we look at the results of Phase II, in Figure
2, our system again performs above average in all

4Code at https://github.com/tuur/ClinicalTempEval2017
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Figure 2: Results from Phase I (left) and Phase II (right): We compare our submission (indicated by *)
to the best performing system, and to the average score of all participating systems in each task. Out of
competition, an ablation of each modification is also evaluated (¬ indicates absence of a component).

cases. However, it seems our system does not lie
as close to the best system as in Phase I, suggest-
ing that we could have better exploited the target-
domain training data.

When looking at the ablation of the system
components in Figure 2, we can see that us-
ing the UNK modification (comparing Full with
Full¬unk), decreases performance for the ES, EA
and the DR subtask. Furthermore, employing tem-
poral constraints (C) appears to have a slightly
negative influence in Phase I for DR, and little in-
fluence in Phase II.

The effect of adding more weight to target-
domain training data (10TD) is mixed, leaning to-
wards a negative influence. For DR performance
increased by 1 point (because of increase in preci-
sion). However, for CR, TS, TA and EA it seems
to have a negative effect, for various reasons. For
example, for CR mostly due to a big decrease in
recall, but for TS due to a big decrease in precision

(hardly any difference in recall). This shows that
the effectiveness of weighting the target-domain
training data is highly task-dependent.

An interesting observation is that there is hardly
improvement in CR performance in Phase II com-
pared to Phase I (the best system score is even
lower). This suggests that domain-adaptation for
CR is more challenging than the other subtasks.

4 Conclusions

We described the KULeuven-LIIR system at Clin-
ical TempEval 2017, for all six subtasks. Our
system exploits SVM for entity detection and a
document-level structured perceptron for relation
extraction. Our system performed above average
for all subtasks in both phases. For future research
it would be interesting to analyze the errors that
were made by the system, and explore methods
to better exploit small amounts of target-domain
training data, or unlabeled target-domain data.
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