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Abstract

Detecting aspectual properties of clauses
in the form of situation entity types has
been shown to depend on a combination
of syntactic-semantic and contextual fea-
tures. We explore this task in a deep-
learning framework, where tuned word
representations capture lexical, syntactic
and semantic features. We introduce an
attention mechanism that pinpoints rele-
vant context not only for the current in-
stance, but also for the larger context.
Apart from implicitly capturing task rel-
evant features, the advantage of our neu-
ral model is that it avoids the need to re-
produce linguistic features for other lan-
guages and is thus more easily transfer-
able. We present experiments for English
and German that achieve competitive per-
formance. We present a novel take on
modeling and exploiting genre informa-
tion and showcase the adaptation of our
system from one language to another.

1 Introduction

Semantic clause types, called Situation Entity (SE)
types (Smith, 2003; Palmer et al., 2007) are lin-
guistic characterizations of aspectual properties
shown to be useful for argumentation structure
analysis (Becker et al., 2016b), genre characteriza-
tion (Palmer and Friedrich, 2014), and detection of
generic and generalizing sentences (Friedrich and
Pinkal, 2015). Recent work on automatic identi-
fication of SE types relies on feature-based classi-
fiers for English that have been successfully ap-
plied to various textual genres (Friedrich et al.,
2016), and also show that a sequence labeling ap-
proach that models contextual clause labels yields
improved classification performance.

Deep learning provides a powerful framework
in which linguistic and semantic regularities can
be implicitly captured through word embeddings
(Mikolov et al., 2013b). Patterns in larger text
fragments can be encoded and exploited by re-
current (RNNs) or convolutional neural networks
(CNNs) which have been successfully used for
various sentence-based classification tasks, e.g.
sentiment (Kim, 2014) or relation classification
(Vu et al., 2016; Tai et al., 2015).

We frame the task of classifying clauses with re-
spect to their aspectual properties – i.e., situation
entity types – in a recurrent neural network archi-
tecture. We adopt a Gated Recurrent Unit (GRU)-
based RNN architecture that is well suited to mod-
eling long sequences (Yin et al., 2017). This ini-
tial model is enhanced with an attention mecha-
nism shown to be beneficial for sentence classifi-
cation (Wang et al., 2016) and sequence modeling
(Dong and Lapata, 2016). We explore the useful-
ness of attention in two settings: (i) the individ-
ual classification task and (ii) in a setting approx-
imating sequential labeling in which the attention
vector provides features that describe the clauses
preceding the current instance. Compared to the
strong baseline provided by the feature based sys-
tem of Friedrich et al. (2016), we achieve compet-
itive performance and find that attention as well
as context representation using predicted or gold-
standard labels of the previous N clauses, and text
genre information improve our model.

A strong motivation for developing NN-based
systems is that they can be transferred with low
cost to other languages without major feature en-
gineering or use of hand-crafted linguistic knowl-
edge resources. Given the highly-engineered fea-
ture sets used for SE classification so far (Friedrich
et al., 2016), porting such classifiers to other lan-
guages is a non-trivial issue. We test the portabil-
ity of our system by applying it to German.
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We present a novel take on modeling and ex-
ploiting genre information and test it on the En-
glish multi-genre corpus of Friedrich et al. (2016).

Our aims and contributions are: (i) We study
the performance of GRU-based models enhanced
with attention for modeling local and non-local
characteristics of semantic clause types. (ii) We
compare the effectiveness of the learned attention
weights as features for a sequence labeling system
to the explicitly defined syntactic-semantic fea-
tures in (Friedrich et al., 2016). (iii) We define
extensions of our models that integrate external
knowledge about genre and show that this can be
used to improve classification performance across
genres. (iv) We test the portability of our models
to other languages by applying them to a smaller,
manually annotated German dataset. The perfor-
mance is comparable to English.

2 Semantic Clause Types

Semantic clause types can be distinguished by
the function they have within a text or discourse.
We use the inventory of semantic clause types,
also known as situation entity (SE) types, devel-
oped by Smith (2003) and extended in later work
(Palmer et al., 2007; Friedrich and Palmer, 2014).
SE types describe abstract semantic types of sit-
uations evoked in discourse through clauses. As
such, they capture the manner of presentation of
content, along with the information content itself.
The seven SE types we use are described below.

1. STATE (S): Armin has brown eyes.
2. EVENT (EV): Bonnie ate three tacos.
3. REPORT (R) provides attribution:

The agency said costs had increased.
4. GENERIC SENTENCE (GEN) predicates over

classes or kinds:
Birds can fly. – Scientists make arguments.

5. GENERALIZING SENTENCE (GS) describes
regularly occurring events:
Fei travels to India every year.

6. QUESTION (Q): Why do you torment me so?
7. IMPERATIVE (IMP): Listen to this.
An eighth class OTHER is assigned to clauses

without an SE label, e.g. bylines or email headers.
Features that distinguish SE types are a combi-

nation of linguistic features of the clause and its
main verb, and the nature of the main referent of
the clause.1 There is a correlation between the

1The main referent of a clause is roughly the per-

distribution of SE types in text passages and dis-
course modes, e.g., narrative, informative, or argu-
mentative (Palmer and Friedrich, 2014; Mavridou
et al., 2015; Becker et al., 2016a).

3 Related Work

Feature-based classification of situation entity
types. The first robust system for SE type clas-
sification (Friedrich et al., 2016) combines task-
specific syntactic and semantic features with dis-
tributional word features, as captured by Brown
clusters (Brown et al., 1992). This system seg-
ments each text into a sequence of clauses and
then predicts the best sequence of SE labels for the
text using a linear chain conditional random field
(CRF) with label bigram features.2

Although SE types are relevant across lan-
guages, their linguistic realization varies across
languages. Accordingly, some of Friedrich
et al. (2016)’s syntactic and semantic features are
language-specific and are extracted using English-
specific resources such as WordNet and Loaiciga
et al. (2014)’s rules for extracting tense and voice
information from POS tag sequences.

Friedrich et al. (2016)’s system is trained and
evaluated on data sets from MASC and Wikipedia
(Section 5), reaching accuracies of 76.4% (F1
71.2) with 10-fold cross-validation, and 74.7% (F1
69.3) on a held-out test set. To evaluate the con-
tribution of sequence information, Friedrich et al.
(2016) compare the CRF model to a Maximum
Entropy baseline, with the result that the sequen-
tial model significantly outperforms the model
which classifies clauses in isolation, particularly
for the less-frequent SE types of GENERIC SEN-
TENCE and GENERALIZING SENTENCE.

When trained and tested within a single genre
(of the 13 genres represented in the data sets),
Friedrich et al. (2016)’s system performance
ranges from 26.6 F1 (for government documents)
to 66.2 F1 (for jokes). Training on all genres lev-
els out this performance difference, with a range
of F1 scores from 58.1-69.8.

Neural approaches to sentence classification,
sequence and context modeling. Inspired by
research in vision, sentence classification tasks
have initially been modeled using Convolutional
Neural Networks (Kim, 2014; Kalchbrenner et al.,

son/thing/situation the clause is about, often realized as its
grammatical subject.

2Code and data: https://github.com/annefried/sitent
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2014). RNN variations – with Gated Recur-
rent Units (GRU) (Cho et al., 2014) or Long
Short-Term Memory units (LSTM) (Hochreiter
and Schmidhuber, 1997) – have since achieved
state of the art performance in both sequence mod-
eling and classification tasks. Recent work ap-
plies bi-LSTM models in sequence modeling (PoS
tagging, Plank et al. (2016), NER Lample et al.
(2016)) and structure prediction tasks (Semantic
Role Labeling, Zhou and Xu (2015) or seman-
tic parsing into logical forms Dong and Lapata
(2016)). Tree-based LSTM models have been
shown to often perform better than purely sequen-
tial bi-LSTMs (Tai et al., 2015; Miwa and Bansal,
2016), but depend on parsed input.

Attention. Attention has been established as an
effective mechanism that allows models to focus
on specific words in the larger context. A model
with attention learns what input tokens or token se-
quences to attend to and thus does not need to cap-
ture the complete input information in its hidden
state. Attention has been used successfully e.g. in
aspect-based sentiment classification (Wang et al.,
2016), for modeling relations between words or
phrases in encoder-decoder models for translation
(Bahdanau et al., 2015), or bi-clausal classifica-
tion tasks such as textual entailment (Rocktäschel
et al., 2016). We use attention to larger context
windows and previous labeling decisions to cap-
ture sequential information relevant for our classi-
fication task. We investigate the learned weights to
gain information about what the models learn, and
we start to explore how they can be used to provide
features for a sequential labeling approach.

4 Models

We aim for a system that can fine-tune input word
embeddings to the task, and can process clauses as
sequences of words from which to encode larger
patterns that help our particular clause classifica-
tion task. GRU RNNs are used because they can
successfully process long sequences and capture
long-term dependencies. Attention can encode
which parts of the input contain relevant informa-
tion. These modeling choices are described and
justified in detail below. The performance of the
models is reported in Section 6.

4.1 Basic Model: Gated Recurrent Unit
Recurrent Neural Networks (RNNs) are modifica-
tions of feed-forward neural networks with recur-

rent connections, which allow them to find pat-
terns in – and thus model – sequences. Sim-
ple RNNs cannot capture long-term dependencies
(Bengio et al., 1994) because the gradients tend to
vanish or grow out of control with long sequences.
Gated Recurrent Unit (GRU) RNNs, proposed by
Cho et al. (2014), address this shortcoming. GRUs
have fewer parameters and thus need less data to
generalize (Zhou et al., 2016) than LSTM RNNs,
and also outperform the LSTM in many cases (Yin
et al., 2017), which makes them a good choice for
our relatively small dataset.3 The relevant equa-
tions for a GRU are below. xt is the input at time
t, rt is a reset gate which determines how to com-
bine the new input with the previous memory, and
the update gate zt defines how much of the previ-
ous memory to keep. ht is the hidden state (mem-
ory) at time t, and h̃t is the candidate activation at
time t. W∗ and U∗ are weights that are learned.
� denotes the element-wise multiplication of two
vectors.

rt = σ(Wrxt + Urht−1)
h̃t = tanh(Wxt + U(rt � ht−1))
zt = σ(Wzxt + Uzht−1)

ht = (1− zt)� ht−1 + zt � h̃t (1)

The last hidden vector ht will be taken as the
representation of the input clause. After compress-
ing it into a vector whose length is equal to the
number of class labels (=8) using a fully connected
layer with sigmoid function, we apply softmax.

4.2 Attention Model
We extend our GRU model with a neural attention
mechanism to capture the most relevant words
in the input clauses for classifying SE types.
Specifically, we adapt the implementation of
attention used in Rocktäschel et al. (2016) for our
clause classification task as follows:

M = tanh(WhH +Wvht ⊗ eL)
α = softmax(wTM)
r = HαT

where H is a matrix consisting of the hidden
vectors [h1, ..., ht] produced by the GRU, ht is the
last output vector of the GRU, and eL is a vec-
tor of 1s where L denotes the L words of the in-
put clause. ⊗ denotes the outer product of the

3Comparison of GRUs, bi-GRUs, LSTMs and bi-LSTMs
on our dataset for our classification task showed that GRUs
outperform the latter three, confirming this assumption.
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two vectors. α is a vector consisting of attention
weights and r is a weighted representation of the
input clause. Wh,Wv, and w are parameters to be
learned during training.

The final clause representation is obtained from
a combination of the attention-weighted represen-
tation r of the clause and the last output vector v.

h∗ = tanh(Wpr +Wxht) (2)

where Wp and Wx are trained projection matrices.
We convert h∗ to a real-valued vector with length 8
(the number of target classes) and apply softmax
to transform it to a probability distribution.

4.3 Modeling Context and Genre

Text types differ in their situation entity type dis-
tributions: Palmer et al. (2007) find that GENERIC

SENTENCES and GENERALIZING SENTENCES

play a predominant role for texts associated with
the argument or commentary mode (such as es-
says), and EVENTS and STATES for texts associ-
ated with the report mode (such as news texts).
(Becker et al., 2016a) find that argumentative
texts are characterized by a high proportion of
GENERIC and GENERALIZING SENTENCES and
very few EVENTS, while reports and talks con-
tain a high proportion of STATES, and fiction is
characterized by a high number of EVENTS. N-
gram analyses show that sequences of SE types
differ among different genres: e.g. while ST-ST
is the most frequent bigram within journal arti-
cles, the most frequent bigram in Wikipedia ar-
ticles is GEN-GEN. The most frequent trigram
in Jokes is EV-EV-EV, followed by ST-ST-ST,
whereas in government documents the most fre-
quent trigrams are ST-ST-ST and EV-ST-ST.
These results show that n-grams cluster in texts
(cf. (Friedrich and Pinkal, 2015)), and they differ
among genres. This supports the choice of incor-
porating (sequential) context information for clas-
sification of SE types. Fig. 1 illustrates both the
context and the genre information our models con-
sider for classifying SE types, while Fig. 2 illus-
trates our model’s architecture.

4.3.1 Context Modeling: Clauses and Labels
We develop two models that not only consider the
local sentence for SE classification in model train-
ing, but also the previous clauses’ token sequences
or the labels of previous clauses. When attending
to tokens of previous clauses we add one GRU
model with attention mechanism for each previous

clause (N denotes the number of previous clauses)
and concatenate their final outputs with the final
output of the GRU with attention for the current
clause (cf. Fig. 2).

h∗con1 =< tanh(Wpr1 +Wxv1); ...;
tanh(WprN +WxvN ) >

We then transform the concatenated vector into
a dense vector equal to the number of class labels
and apply softmax.

For attending to labels of the previous clauses,
we first transform the gold labels used during
training into embeddings and apply attention as
described in section 4.2 to these representations.
We then concatenate the last output of the current
clause with the embeddings for the labels of the
previous clauses (here N denotes the number of
previous labels):

h∗con2 =< tanh(Wpr+Wxv); yt−1; ...; yt−N >

where yt−i is the embedding representation for the
previous t-i label. At test time we use the predicted
probability distribution vector as the labels of the
previous clauses.

4.3.2 Feature Modeling: Textual Genres
The English corpus we use consists of texts from
13 genres; the German corpus covers 7 genres
(Section 5).

Information about genre is encoded as dense
embeddings g of size 10 initialized randomly,
and we apply attention mechanism to these rep-
resentations. Adding genre information pro-
duces three new versions of the model: (i)
genre+basic model: < g;ht > (ht from eq.1), (ii)
genre+attention model < g;h∗ > (h∗ from eq.2),
(iii) genre+context in form of previous labels (cf.
Fig.2). Results for all three combinations are re-
ported in Section 6.

4.4 Word embeddings

Word embeddings have been shown to capture
syntactic and semantic regularities (Mikolov et al.,
2013b) and to benefit from fine tuning for spe-
cific tasks. The features used by Friedrich et al.
(2016) cover a variety of linguistic features – such
as tense, voice, number, POS, semantic clusters
– some of which we expect to be encoded in
pre-trained embeddings, while others will emerge
through model training. We start with pre-trained
embeddings for both English and German, be-
cause this leads to better results than random ini-
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Figure 1: Context and genre information modeled in our system, example from Wikipedia

Figure 2: Model Architecture, illustrated with an example (cf. Fig. 1).

tialization. For German, we use 100-dimensional
word2vec embeddings trained on a large German
corpus of 116 million sentences (Reimers et al.,
2014).4 For English, we use 300-dimensional
word2vec embeddings (Mikolov et al., 2013a)
trained on part of the Google News dataset (about
100 billion words). The pre-trained embeddings
are tuned during training.

4.5 Parameters and Tuning

Hyperparameter settings were determined through
exhaustive random search using optunity (Bergstra
and Bengio, 2012) on the development set, and
we use the best setting for evaluating on the test
set. We tune batch size, number of layers, GRU
cell size, and regularization parameter (L2). For
learning rate optimization we use AdaGrad (Duchi
et al., 2011) and tune the initial learning rate. For
the basic model (without attention), the best result
on the development set is achieved for GRU with
batch size 100, 2 layers, cell size 350, learning rate
0.05, and L2 regularization parameter (0.01). For
the model using attention mechanism the parame-
ters are identical except for L2 (0.0001).

4https://public.ukp.informatik.tu-darmstadt.de
/reimers/2014 german embeddings

Data set # Clauses/SEs # Tokens

English: MASC 30,333 357,078
English: Wiki 10,607 148,040
German: all 18,194 236,522

Table 1: Data sets with SE-labeled clauses

5 Data

We use the English dataset described in Friedrich
and Palmer (2014).5 The texts, drawn from
Wikipedia and MASC (Ide et al., 2010), range
across 13 genres, e.g. news texts, government
documents, essays, fiction, jokes, emails. For
German, we combine two data sets described in
Mavridou et al. (2015) and Becker et al. (2016a)
and additional data annotated by ourselves.6 The
German texts cover 7 genres: argumentative es-
says (Peldszus and Stede, 2015), Wikipedia, fic-
tion, commentary, news texts, TED talks, and eco-
nomic reports. Statistics appear in Table 1.

The distribution of SE types varies with the
genre. For the selected English Wiki texts, 50%
of the SE types are GENERIC SENTENCE clauses,

5Available at: https://github.com/annefried/sitent
6The data is available at http://www.cl.uni-heidelberg.de/

english/research/downloads/resource pages/GER SET/GER
SET data.shtml. This dataset only contains the German data

that has been annotated within the Leibniz Science campus.
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Acc F1
Palmer07, Brown dataset 53.1 -
Fried16, set A (CRF, test) 69.8 63.9
Fried16, set B (CRF, test) 71.4 65.5
Fried16, set A+B (CRF, test) 74.7 69.3
Fried16, set A+B (CRF, CV) 76.4 71.2
Fried16, set A+B (MaxEnt+CRF, 77.9 73.9
CV, seq-oracle)

Table 2: Reported results of baseline models for
English (accuracy and macro-average F1 score).
CV=10-fold cross validation, test=eval. on test set.

with STATES second at 24.3%.7 For the 12 MASC
genres, STATE is the most frequent type (49.8%),
with EVENTS second at 24.3%. GENERIC SEN-
TENCES make up only 7.3% of the SE types in
the MASC texts. In the German data, the distribu-
tions of SE types also differ according to genre: in
argumentative texts, for example, GENERIC SEN-
TENCES make up 48% of the SE types, followed
by STATES with a frequency of 32%, while in most
other genres the most frequent class is STATE.

The texts of the English dataset are split
into clauses using SPADE (Soricut and Marcu,
2003). For segmenting the German dataset into
clauses we use DiscourseSegmenter’s rule-based
segmenter (edseg, Sidarenka et al. (2015)), which
employs German-specific rules. Because Dis-
courseSegmenter occasionally oversplit segments,
we did a small amount of post-processing.

6 Experiments and Evaluation

For the English dataset, we use the same test-
train split as Friedrich et al. (2016).8 The German
dataset was split into training and testing with a
balanced distribution of genres (as is the case for
the English dataset). Both datasets have a 80-20
split between training and testing (20% of training
is used for development).

We report results in terms of accuracy and
macro-average F1 score on the held-out test set.

Baseline systems. The feature-based system of
Palmer07 (Palmer et al., 2007) (Palmer07 in Table
2) simulates context through predicted labels from
previous clauses. Friedrich et al. (2016) (Fried16
in Table 2) report results for their CRF-based SE

7The Wiki texts were selected by Friedrich et al. (2015)
precisely in order to target GENERIC SENTENCE clauses.

8The cross validation splits of the data used by Friedrich
et al. (2016) are not available.

Acc F1
Basic GRU 66.55 46.04
Basic GRU + genre 65.82 46.32
GRU + attention 68.99 68.87
GRU + attention + genre 71.12 67.95
GRU + att + clause (1) 69.06 59.39
GRU + att + clause (2) 70.20 60.01
GRU + att + clause (3) 69.64 37.29
GRU + att + pLab (1) 69.20 61.95
GRU + att + pLab (2) 69.37 62.13
GRU + att + pLab (3) 68.77 60.85
GRU + att + pLab (4) 68.05 59.31
GRU + att + pLab (5) 68.11 60.75
GRU + att + pLab + genre (1) 71.59 64.94
GRU + att + pLab + genre (2) 71.61 64.28
GRU + att + pLab + genre (3) 70.37 63.55
GRU + att + pLab + genre (4) 70.96 63.74
GRU + att + pLab + genre (5) 70.57 63.65

Table 3: SE-type classification on English test set,
with context as predicted labels (pLab).

type labeler for different feature sets, with 10-fold
cross validation and on a held-out test set. To test
if the context is useful they extend their classifier
with a CRF that includes the predicted label of the
preceding clause. In the oracle setting it includes
the gold label of the previous clause.

Feature set A consists of standard NLP features
including POS tags and Brown clusters. Feature
set B includes more detailed features such as tense,
lemma, negation, modality, WordNet sense, Word-
Net supersense and WordNet hypernym sense. We
presume that some of the information captured by
feature set B, particularly sense and hypernym in-
formation, may not be captured in the word em-
beddings we use in our approach.

Evaluation of our neural systems. Our local
system (cf. Section 4.1) achieves an accuracy of
66.55 (Table 3). Adding genre information does
not help, but adding attention within the local
clause yields an improvement of 2.44 percentage
points (pp). Using both attention and genre infor-
mation leads to a 2.13 pp increase over the model
that uses only attention. Adding context infor-
mation beyond the local clause – a window of
up to three previous clauses – improves the word-
based attention models slightly, but a wider win-
dow (four or more clauses) causes a major drop
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Acc F1
GRU + att + gLab (1) 72.71 65.37
GRU + att + gLab (2) 72.68 66.51
GRU + att + gLab (3) 72.66 65.03
GRU + att + gLab (4) 72.61 64.33
GRU + att + gLab (5) 73.40 66.39
GRU + att + gLab + genre (1) 73.44 66.76
GRU + att + gLab + genre (2) 73.45 66.51
GRU + att + gLab + genre (3) 72.84 66.29
GRU + att + gLab + genre (4) 73.12 66.21
GRU + att + gLab + genre (5) 73.34 66.13

Table 4: SE-type classification on English test set,
sequence oracle model using gold labels (gLab).

in accuracy.9 Using context as predicted labels of
previous clauses improves the model slightly (up
to 0.38 pp), but adding genre on top of that im-
proves the model by up to 2.62 pp compared to the
basic model with attention. The oracle model (cf.
Table 4), which uses the gold labels of previous
clauses, gives an upper bound for the impact of
sequence information: 73.40% accuracy for pre-
vious 5 gold labels. Combined with genre infor-
mation, the upper bound reaches 73.45% accuracy
when using the previous 2 gold labels.

The best accuracy on the English data (ignor-
ing the oracle) is achieved by the model that uses
2 previous predicted labels plus genre information
(71.61%). This model outperforms Friedrich et al.
(2016)’s results when using standard NLP features
(feature set A) and their model using feature set B
separately. Our model comes close to Friedrich et
al.’s best results obtained by applying their entire
set of features, particularly considering that our
system only uses generic word embeddings.

Window size as hyper-parameter? We achieve
best results when incorporating two previous la-
bels or two previous clauses (cf. Table 3). This
is in line with Palmer et al. (2007) who report that
in most cases performance starts to degrade as the
model incorporates more than two previous labels.
A window size of two does not always lead to
best performance on the German dataset (cf. Sec-
tion 7), where the model using predicted labels
from the maximum window size (5) performs best.
When adding genre information, we achieve best
results with window size two (cf. Table 5 and 6).
This inconsistency can possibly be traced back to
the fact that we applied the best-performing vari-

9We achieve 36.24 acc for 4 and 36.17 acc for 5 clauses.

Figure 3: Visualization of attention for ST, GS,
GEN, and REP.

Figure 4: Mean attention scores per POS tags on
English dataset. POS tags from PTB.

ations of our system developed on English data to
our German dataset without further hyperparame-
ter tuning.

Results for single classes. Fig. 6 shows macro-
average F1 scores of our best performing system
for the single SE classes. The scores are very sim-
ilar to the results of Friedrich et al. (2016). Scores
for GENERALIZING SENTENCE are the lowest as
this class is very infrequent in the data set, while
scores for the classes STATE, EVENT, and RE-
PORT are the highest. In addition, we explored
our system’s performance for binary classification
(Fig. 6): here we classified STATE vs. the re-
maining classes, EVENT vs. the remaining classes
etc. Binary classification achieves better perfor-
mance and can be helpful for downstream applica-
tions which only need information about specific
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Figure 5: Position of words with maximum atten-
tion within clauses. x-axis represents the normal-
ized position within the clause, y-axis the number
of words with maximum attention at that position.

Figure 6: Macro-average F1 scores of our best per-
forming system for single SE classes, multiclass
vs. binary classification.

SE types, for example for distinguishing generic
from non-generic sentences.

Analysis of attention. Attention is not only an
effective mechanism that allows models to focus
on specific parts of the input, but it may also en-
able interesting linguistic insights: (1) the atten-
tion to specific words or POS for specific SE types,
(2) the overall distribution of attention weights
among POS tag labels and SE types, and (3) the
position of words with maximum/high attention
scores within a clause.

Fig. 3 shows example clauses with their at-
tention weights. In the first clause, a STATE,
the model attends most to the nouns “China” and
“Japan”. In the next clause, a GENERALIZING

SENTENCE, the noun “system” is assigned the
highest attention weight. The highest weighted
word in the GENERIC SENTENCE is the pronoun
“their”, and in REPORT it is the verb “answered”.

Fig. 4 visualizes the mean attention score per
POS tag for all SE types (gold labels).10 Inter-
estingly, attention seems to be especially impor-
tant for classes that are rare, such as IMPERA-

10We post-process our data with POS tags using spaCy11

with the PTB tagset (Marcus et al., 1993).

TIVE or REPORT, each less than 5% of the English
dataset. The heat map indicates that the model
especially attends to verbs when classifying the
SE type REPORT. This is not surprising, since
REPORT clauses are signaled by verbs of speech.
GENERALIZING SENTENCE attend to symbols,
mainly punctuation, and genitive markers such as
“’s”. The OTHER class, which includes clauses
without an assigned SE type label, attends mostly
to interjections. Indeed, OTHER is frequent in gen-
res with fragmented sentences (emails, blogs), and
numerous interjections such as “wow” or “um”.

Fig. 5 shows the relative positions of words with
maximum attention within clauses. The model
mostly attends to words at the end of clauses and
almost never to words in the first half of clauses.
This distribution shifts to the left when consider-
ing more words with high attention scores instead
of only the word with maximum attention – words
with 2nd (3rd, 4th, 5th) highest attention score can
often be found at the beginning of clauses. The
model seems to draw information from a broad
range of positions.

We explored the impact of the attention vec-
tors as inputs to a sequence labeling model –
each clause is described through the words with
the highest attention weights and these weights,
and used in a conditional random field system
(CRF++12). The best performance was obtained
when using the attention vector of the current
clause (and no additional context) – 61.68% ac-
curacy (47.18% F1 score). CRF++ maps the at-
tention information to binary features, and as such
cannot take advantage of information captured in
the numerical values of the attention weights, or
the embeddings of the given words.

7 Porting the System to German

One advantage for developing NN-based systems
that do not rely on hand-crafted features is that
they can be used with different language data.
We use the system described above with German
data, only adjusting the size of the input embed-
dings.13 Compared to the English dataset, the Ger-
man dataset is smaller (44% in size) and less di-
verse with respect to genre (7 genres). The gen-
res in the German dataset (argumentative texts,
wikipedia, commentary, news, fiction, report, talk)

12https://taku910.github.io/crfpp/
13The different size of the embeddings (for English and

German cf. section 4.4, may have an impact on the results.
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Acc F1
Basic GRU 72.67 61.55
Basic GRU + genre 72.08 66.33
GRU + attention 72.31 72.23
GRU + attention + genre 73.75 65.69
GRU + att + clause (1) 73.49 63.99
GRU + att + clause (2) 70.21 58.66
GRU + att + clause (3) 49.31 47.01
GRU + att + pLab (1) 69.83 44.31
GRU + att + pLab (2) 70.12 44.33
GRU + att + pLab (3) 70.50 44.91
GRU + att + pLab (4) 72.16 45.12
GRU + att + pLab (5) 72.85 45.52
GRU + att + pLab + genre (1) 72.19 53.22
GRU + att + pLab + genre (2) 73.98 54.78
GRU + att + pLab + genre (3) 70.78 46.25
GRU + att + pLab + genre (4) 72.88 48.94
GRU + att + pLab + genre (5) 72.60 45.98

Table 5: SE-type classification on German test set.

Acc F1
GRU + att + gLab (1) 71.33 58.32
GRU + att + gLab (2) 72.23 59.43
GRU + att + gLab (3) 73.81 59.12
GRU + att + gLab (4) 75.74 60.39
GRU + att + gLab (5) 76.32 61.01
GRU + att + gLab + genre (1) 74.79 59.34
GRU + att + gLab + genre (2) 77.97 61.47
GRU + att + gLab + genre (3) 74.28 59.84
GRU + att + gLab + genre (4) 74.10 59.70
GRU + att + gLab + genre (5) 74.96 58.18

Table 6: SE-type classification on German test set,
sequence oracle model .

are more similar to one another than the ones in the
English dataset. The results comparing the effec-
tiveness of integrating context and genre informa-
tion are in Table 5. The results of the oracle model
using gold labels for previous clauses are in Ta-
ble 6. Compared to English, the models achieve
higher performance, but attention by itself does
not improve the results, and neither does the inclu-
sion of genre information. Used jointly, attention
and genre information yield a moderate increase
of 1.06 pp. accuracy compared to the basic GRU.
Attention may need more data and possibly more
diversity to be learned effectively, and we will ex-
plore this in future work.

Modeling context seems to have a larger impact:

compared to the basic GRU using attention, infor-
mation about the current and the previous clauses
improves the model by up to 1.67 pp. More con-
textual information leads to higher accuracy.

8 Conclusion

We presented an RNN-based approach to situation
entity classification that bears clear advantages
compared to previous classifier models that rely
on carefully hand-engineered features and lexical
semantic resources: it is easily transferable to
other languages as it can tune pre-trained embed-
dings to encode semantic information relevant
for the task, and can develop attention models to
capture – and reveal – relevant information from
the larger context. We designed and compared
several GRU-based RNN models that jointly
model local and contextual information in a
unified architecture. Genre information was
added to model common properties of specific
textual genres. What makes our work interesting
for linguistically informed semantic models
is the exploration of different model variants
that combine local classification with sequence
information gained from the contextual history,
and how these properties interact with genre
characteristics. We specifically explore attention
mechanisms that help our models focus on
specific characteristics of the local and non-local
contexts. Attention models jointly using genre
and context information in the form of previous
predicted labels perform best for our task, for
both languages. The performance results of
our best models outperform the state of the art
models of Fried16 for English when using either
off-the-shelf NLP features (set A) or, separately,
hand-crafted features based on lexical resources
(set B). A small margin of ca. 3 pp accuracy is
left to achieve in future work to compete with the
knowledge-rich models of (Friedrich et al., 2016).
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