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Abstract

This paper explores the automatic learning
of distributed representations of the tar-
get’s context for semantic frame labeling
with target-based neural model. We con-
strain the whole sentence as the model’s
input without feature extraction from the
sentence. This is different from many pre-
vious works in which local feature extrac-
tion of the targets is widely used. This
constraint makes the task harder, especial-
ly with long sentences, but also makes our
model easily applicable to a range of re-
sources and other similar tasks. We evalu-
ate our model on several resources and get
the state-of-the-art result on subtask 2 of
SemEval 2015 task 15. Finally, we extend
the task to word-sense disambiguation task
and we also achieve a strong result in com-
parison to state-of-the-art work.

1 Introduction and Related Work

Semantic frame labeling is the task of selecting
the correct frame for a given target based on it-
s semantic scene. A target is often called lexi-
cal unit which evokes the corresponding seman-
tic frame. The lexical unit can be a verb, ad-
jective or noun. Generally, a semantic frame de-
scribes how the lexical unit is used and specifies
its characteristic interactions. There are many se-
mantic frame resources, such as FrameNet (Bak-
er et al., 1998), VerbNet (Schuler, 2006), Prop-
Bank (Palmer et al., 2005) and Corpus Pattern
Analysis (CPA) frames (Hanks, 2012). However,
most existing frame resources are manually creat-
ed, which is time-consuming and expensive. Au-
tomatic semantic frame labeling can lead to the de-
velopment of a broader range of resources.

∗The corresponding author

Early works for semantic frame labeling main-
ly focus on FrameNet, PropBank and VerbNet re-
sources. But most of them focus only one re-
source and rely heavily on feature engineering
(e.g., Honnibal and Hawker 2005; Abend et al.
2008). Recently, there are some works on learn-
ing CPA frames based on a new semantic frame
resource, the Pattern Dictionary of English Verbs
(PDEV) (El Maarouf and Baisa, 2013; El Maarouf
et al., 2014). The above two works also rely on
features and both are only tested on 25 verbs. Most
works aim at constructing the context represen-
tations of the target with explicit rules based on
some basic features, e.g., Parts Of Speech (POS),
Named Entities (NE) and dependency relations re-
lated to the target. Currently, some deep learning
models have been applied with dependency fea-
tures. Hermann et al. (2014) used the direct de-
pendents and dependency path to extract the con-
text representation based on distributed word em-
beddings on English FrameNet. Inspired by the
work, Zhao et al. (2016) used a deep feed forward
neural network on Chinese FrameNet with similar
features. This is different from our goal where we
want to explore an appropriate deep learning ar-
chitecture without complex rules to construct the
context representations. Feng et al. (2016) used
a multilayer perceptrons (MLP) model on CPA
frames without extra feature extraction, but the
model is quite simple and has an input window
which is not convenient.

In this paper, we present a target-based neural
model which takes the whole target-specific sen-
tence as input and gives the semantic frame label
as output. Our goal is to make the model light
without explicit rules to construct context repre-
sentations and applicable to a range of resources.
To cope with variable-length sentences under our
constraint, a simple idea is to use recurrent neu-
ral networks (RNN) to process the sentences. But
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noise caused by irrelevant words in long sentences
may hinder learning. In fact, the arguments re-
lated to the target are usually distributed near the
target because when we write or speak, we will
focus mainly on arguments that are in the imme-
diate context of a core word. We use two RNNs
each of which processes one part of the sentence
split by the target. The model takes the target as
the center and we call it the target-based recurren-
t networks (TRNN). In fact, TRNN itself is not
novel enough, but according to our knowledge, no
related research has focused on this topic. We will
show that TRNN is quite suitable for learning the
context of the target.

2 Model Description
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Figure 1: Architecture of TRNN with an example
sentence whose target word is in bold.

In our model we select long short-term memo-
ry (LSTM) networks, a type of RNN designed to
avoid the vanishing and exploding gradients. The
overall structure is illustrated Figure 1. wt is the
t-th word in the sentence the length of which is
T and target is the index of the target. xt is ob-
tained by mapping wt into a fixed vector through
well pre-trained word vectors. The model has t-
wo LSTMs each of which processes one part of
the sentence split by the target. The model can au-
tomatically learn the distributed representation of
target’s context from w with few manual design.

2.1 Context Representations
An introduction about LSTM can be found in the
work of Hochreiter and Schmidhuber (1997). The
parameters of LSTM are Wx∗, Wh∗ and b∗ where

∗ stands for one of several internal gates. Wx∗ is
the matrix between the input vector xt and gates,
Wh∗ is the matrix between the output ht of LSTM
and gates and b∗ is the bias vector on gates. The
formulas of LSTM are:
it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 + bo)

ht = ot � tanh(ct)

where σ is the sigmoid function and � represents
the element-wise multiplication. it, ft ct and ot

are the output of input gates, forget gates, cell s-
tates and output gates, respectively. In our model,
two LSTMs share the same parameters. At last,
the target’s context representations cr are added
by the outputs of two LSTMs:

cr = htarget−1 + htarget

The dimension of cr is decided by the number of
hidden units in LSTM, which is a hyper parameter
in our model, and is usually much lower than that
of one word vector. Here we make some intuition-
s behind the above formulas. The gradients from
last layer flow equally on the (target− 1)-th LST-
M box and the target-th LSTM box and then the
two flows go to both ends. As it is quite common
in deep learning models, the gradients usually be-
come ineffective as the depth of the flow increas-
es especially when the sentence is very long. The
gradients on words far from the target get less im-
pact than those near the target. As a whole, more
data are usually required to learn the arguments
far from the target than those near the target. If
the real arguments are distributed near the target,
this model will be suitable as its architecture is de-
signed to take care of the local context of the tar-
get.

2.2 Output Layer
We use Softmax layer as the output layer on the
context representations. The output layer com-
putes a probability distribution over the semantic
frame labels. During the training, the cost we min-
imize is the negative log likelihood of the model:

L = −
M∑

m=1

logptm

Here M is number of the training sentences, tm is
the index of the correct frame label for the m-th
sentence and p is the probability.
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3 Experiments

3.1 Datasets
We simply divide all the datasets in two types:
per-target and non per-target. Per-target seman-
tic frame resources define a different set of frame
labels for each target and we train one model for
each target; different targets may share some se-
mantic frame labels in non per-target resources
and we train a single model for such resources. We
use the Semlink project (Loper et al., 2007) to cre-
ate our datasets 1. Semlink aims to link together
different lexical resources via a set of mappings.
We use its corpus which annotates FrameNet and
Propbank frames for the WSJ section of the Pen-
n Treebank. Another resource we use is PDEV 2

which is quite new and has CPA frame annotat-
ed examples on British National Corpus. All the
original instances are sentence-tokenized and the
punctuation was removed. The details of creating
the datasets are as follows:

• FrameNet: Non per-target type. We get
FrameNet annotated instances through Sem-
link. If one FrameNet frame label contains
more than 300 instances, we divide it propor-
tionately: 70%, 20% and 10%. Then we re-
spectively accumulate the three parts by each
frame label to create the training, test and val-
idation set.

• PropBank: Per-target type. The creation pro-
cess is same as FrameNet except that we fi-
nally get training, test and validation set for
each target and the cutoff is set to 70 instead
of 300.

• PDEV: Same as PropBank but with the cutoff
set to 100 instead of 70.

Since the performance of our model is almost
decided by the training data we empirically choose
the cutoff above to keep the instances of each label
enough. Summary statistics of the above datasets
are in Table 2.

3.2 Models and Training
We compare our model with the following base-
lines.:

1 The current version of the Semlink project has some
problems to get the right position of targets in WSJ section
of Penn Treebank. Instead, we use annotations of PropBank
corpus, also annotated in WSJ section of Penn Treebank, to
index targets.

2http://pdev.org.uk/

Sentences Frame Names
In Moscow they kept asking us
things like why do you make
15 different corkscrews

Activityongoing

It said it has taken measures to
continue shipments during
the work stoppage.

Activityongoing

But the Army Corps of Engineers
expects the river level to
continue falling this month.

Processcontinue

The oil industry’s middling profits
could persist through the rest
of the year.

Processcontinue

Table 1: Non per-target examples. Frames are
from FrameNet and the target words are in bold.

FrameNet PropBank PDEV
Per-target No 153 targets 407 targets
Train 41206 31212 (204) 152218 (374)
Test 11762 8568 (56) 42328 (104)
Valid. 5871 4131 (27) 20350 (50)
Frame 33 443 (2.89) 2197 (5.39)
Words/sent. 23 23 12

Table 2: Summary statistics for the datasets. The
average numbers per target are shown in the paren-
theses for per-target resources.

• MF: The most frequent (MF) method selects
the most frequent semantic frame label seen
in training instances for each instance in the
test dataset. MF is actually a strong baseline
for per-target dataset because we observed
that most targets have one main frame label.

• Target-Only: For FrameNet dataset, we use
Target-Only method: if the target in the test
instance has a unique frame label in the train-
ing data we give this frame label to current
test instance; if the target has multiple frame
labels in the training data we select the most
frequent one in these labels; if the target is not
seen in the training data, we select the most
frequent label from the whole training data.
This baseline is especially for FrameNet be-
cause we observed that each frame label has a
set of targets but only a few targets have mul-
tiple frame labels. It may be easy to predict
the frame label for test instances only accord-
ing to the target.

• LSTM: The standard LSTM model.

• MaxEnt: The Maximum Entropy model. We
use the Stanford CoreNLP module 3 to ex-

3http://stanfordnlp.github.io/CoreNLP/
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tract features for MaxEnt toolkit 4. All de-
pendents related to the target, their POS tags,
dependency relations, lemmas, NE tags and
the target itself will be extracted as features.

The number of the iterations for MaxEnt is decid-
ed by the validation set. For simplicity, we set
the learning rate to 1.0 for TRNN and LSTM. The
number of hidden units is tested on validation da-
ta with the values {35, 45, 55} for per-target re-
source and {80, 100, 120} for non per-target re-
source. We use the publicly available word2vec
vectors, a dimensionality of 300, that were trained
through the GloVe model (Pennington et al., 2014)
on Wikipedia and Gigaword. For words not ap-
peared in the vector model, their word vectors are
all set to zero vectors. We train these models by
stochastic gradient descent with minibatches. The
minibatch is set to 10 for per-target resource and
50 for non per-target resource. We keep the word
vectors static since no obvious improvement has
been observed. Training will stop when the zero-
one loss is zero over training data.

3.3 Results

The results of the above datasets are in Table 3.
Target-Only gets very high scores on FrameNet
dataset. FrameNet dataset has 55 targets which
has multiple frame labels in the training data and
these targets have 1981 instances in the test da-
ta. We get 0.769 F-score on these instances and
0.393 F-score on 64 unseen targets with 77 test
instances. This can be the extreme case that the
main feature for the correct frame is the target it-
self. Despite this simple fact, standard LSTM per-
forms very badly on FrameNet. The main reason
is that sentences in FrameNet dataset are too long
and standard LSTM can not learn well due to the
large number of irrelevant words that appear in
long sentences. To show this, we select the size
of truncation window for original FrameNet sen-
tences and we get the best size of 5 on validation
data with each 2 words surrounding the target. Fi-
nally, we get 0.958 F-score on FrameNet test data
which is still lower than TRNN on full sentences.
As for PropBank and PDEV dataset, we train one
model for each target so the final F-score is the av-
erage of all targets. However, the number of train-
ing instances per target is limited. TRNN will usu-
ally not perform well when it tries to learn some

4https://github.com/lzhang10/maxent

frames which consist of many different concept-
s and especially when the frame has a few train-
ing instances. Considering the sentence 4 of Table
4 as an example, it is difficult to TRNN to learn
what is ’Activity’ in the correct frame because this
concept is huge. TRNN may need lots of data to
learn something related to this concept. Howev-
er, this correct frame only has 6 instances in our
training data. The second reason of TRNN’s fail-
ure is lack of knowledge due to unseen words in
test data. The sentence 1 of Table 4 shows TRNN
will make the right decision since we observe that
it has seen the word ’cow’ in the training data and
knows this word belongs to the concept ’Animate
or Plant’ in the correct frame. But TRNN does
not know the word ’Elegans’ in sentence 3 so it
usually selects the most frequent frame seen in the
training data. However, in many cases, the unseen
words can be captured by well trained word em-
beddings as the sentence 2 shows where ’ducks’,
’chickens’ and ’geese’ are all unseen words.

Models FrameNet PropBank PDEV
MF 0.38 0.78 0.61

Target-Only 0.911 - -
MaxEnt 0.829/125 0.874/30 0.704/10
LSTM 0.55/80 0.78/35 0.72/55
TRNN 0.962/100 0.887/35 0.794/55

Table 3: Results on several semantic frame
resources. The format of cell value is ”F-
score/hidden unit” for TRNN and LSTM and ”F-
score/iteration” for MaxEnt toolkit.

3.4 CPA Experiment

Corpus Pattern Analysis (CPA) is a new technique
for identifying the main patterns in which a word
is used in text and is currently being used to build
the PDEV resource as we mentioned above. It is
also a shared task in SemEval-2015 task 15 (Baisa
et al., 2015). The task is divided into three sub-
tasks: CPA parsing, CPA clustering and CPA lex-
icography. We only introduce the first two relat-
ed subtasks. CPA parsing aims at identifying the
arguments of the target and tagging predefined se-
mantic meaning on them; CPA clustering clusters
the instances to obtain CPA frames based on the
result of CPA parsing. However, the first step re-
sults seem unpromising (Feng et al., 2015; Mill-
s and Levow, 2015; Elia, 2016) which will influ-
ence the process of obtaining CPA frames. Since
our model can be applied on sentence-level input
without feature extraction we can directly evaluate
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ID Sentences Frame Prediction True Frame

1 One of the farmer’s cows had died of BSE
raising fears of cross-infection... Same with true frame Animate or Plant dies

2 One of the farmer’s ducks|chickens|geese
had died of BSE raising fears of cross-infection... Same with true frame Animate or Plant dies

3 Elegans also in central America
die of damping off as a function of distance

Human dies ((Time Point)(Location)(Causation)
(at Number or at the age of or at birth or earlage)) Animate or Plant dies

4 Indeed, the MEC does not advise
the use of any insecticidal shampoo for...

Human 1 or Institution 1 advises Human 2
or Institution 2 to-infinitive Human or Institution advises Activity

Table 4: Case study for CPA frames. The target words are in bold.

our model on CPA clustering. Unfortunately, the
datasets provided by CPA clustering is a per-target
resource for our model and the targets in train-
ing and test set are not the same. Since this task
is not limited to use extra resources, we use the
training set of FrameNet, a type of non per-target,
mentioned in section 3.1 to solve this problem.
The hyper parameters are the same as before. C-
PA clustering is evaluated by B-cubed F-score, a
metric for clustering problem, so we do not need
to convert the FrameNet frame label to CPA frame
label. The result is in Table 5. All the models
are supervised except for baseline and DULUTH.
Feng et al. (2016) used the MLP to classify fixed-
length local text of the target based on distribut-
ed word embeddings. But the representation of
the target’s context is simply constructed with con-
catenated word embeddings and the length of local
context has to be chosen manually. Besides, MLP
may fail to train or predict well when some key
words are out of its input window.

System B-cubed F-score
BOB90(Best in SemEval 2015) 0.741
SemEval 2015 baseline 0.588
DULUTH 0.525
Feng et al. (2016) 0.70

This paper 0.763

Table 5: Results on Microcheck dataset of CPA
clustering.

3.5 Word Sense Disambiguation Experiment

Finally, we choose Word Sense Disambiguation
(WSD) task to extend our experiment. As our
benchmark for WSD task, we choose English Lex-
ical Sample WSD tasks of SemEval-2007 task
17 (Pradhan et al., 2007). We use cross-validation
on the training set and we observe the model per-
forms better when we update the word vectors
which is different from the preceding experimen-
tal setup. The number of hidden units is set to 55.
The result is in Table 6. The rows from 4 to 6
come from Iacobacci et al. (2016). They inte-

grate word embeddings into IMS (It Makes Sense)
system (Zhong and Ng, 2010) which uses support
vector machine as its classifier based on some s-
tandard WSD features and they get the best result;
they use an exponential decay function, also de-
signed to give more importance to close context, to
compute the word representation, but their method
need manually choose the window size of the tar-
get word and one parameter of their exponential
decay function. Both with word vectors only, our
model is comparable with the sixth row.

System F-score
Rank 1 system in SemEval 2007 0.887
Rank 2 system in SemEval 2007 0.869
IMS (2010) 0.879
IMS + word vectors (2016) 0.894
IMS + word vectors only (2016) 0.880
This paper 0.886

Table 6: Result on Lexical Sample task of
SemEval-2007 task 17

4 Conclusion

In this paper, we describe an end-to-end neural
model to target-specific semantic frame labeling.
Without explicit rule construction to fit for some
specific resources, our model can be easily applied
to a range of semantic frame resources and similar
tasks. In the future, non-English semantic frame
resources can be considered to extend the coverage
of our model and our model can integrate the best
features explored in the state-of-the-art work to
see how many improvements our model can make.
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