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Abstract

Multiword expressions (MWEs) are lex-
ical items that can be decomposed into
multiple component words, but have prop-
erties that are unpredictable with respect
to their component words. In this paper
we propose the first deep learning mod-
els for token-level identification of MWEs.
Specifically, we consider a layered feed-
forward network, a recurrent neural net-
work, and convolutional neural networks.
In experimental results we show that con-
volutional neural networks are able to out-
perform the previous state-of-the-art for
MWE identification, with a convolutional
neural network with three hidden layers
giving the best performance.

1 Introduction

Multiword expressions (MWEs) are lexical items
that can be decomposed into multiple component
words, but have properties that are idiomatic, i.e.,
marked or unpredictable, with respect to proper-
ties of their component words (Baldwin and Kim,
2010). MWEs include a wide range of phenom-
ena such as noun compounds (e.g., speed limit
and monkey business), verb–particle constructions
(e.g., clean up and throw out), and verb–noun id-
iomatic combinations (e.g., hit the roof and blow
the whistle), as well as named entities (e.g., Prime
Minister Justin Trudeau) and proverbs (e.g., Two
wrongs don’t make a right). One particular chal-
lenge for natural language processing (NLP) is
MWE identification — i.e., to identify which to-
kens in running text correspond to MWEs so that
they can be analyzed accordingly. The challenges
posed by MWEs have led to them to be referred to
as a “pain in the neck” for NLP (Sag et al., 2002);
nevertheless, incorporating knowledge of MWEs

into NLP applications can lead to improvements in
tasks including machine translation (Carpuat and
Diab, 2010), information retrieval (Newman et al.,
2012), and opinion mining (Berend, 2011).

Recent work on token-level MWE identification
has focused on methods that are applicable to the
full spectrum of kinds of MWEs (Schneider et al.,
2014a), in contrast to earlier work that tended to
focus on specific kinds of MWEs (Uchiyama et al.,
2005; Fazly et al., 2009; Fothergill and Baldwin,
2012). Deep learning is an emerging class of ma-
chine learning models that have recently achieved
promising results on a range of NLP tasks such
as machine translation (Bahdanau et al., 2015;
Sutskever et al., 2014), named entity recognition
(Lample et al., 2016), natural language generation
(Li et al., 2015), and sentence classification (Kim,
2014). Such models have, however, not yet been
applied to broad-coverage MWE identification.

In this paper we propose the first deep learn-
ing models for broad-coverage MWE identifica-
tion. Specifically, we propose and evaluate a
layered feedforward network, a recurrent neural
network, and two convolutional neural networks.
We compare these models against the previous
state-of-the-art (Kirilin et al., 2016) and several
more-traditional supervised machine learning ap-
proaches. We show that the convolutional neural
networks outperform the previous state-of-the-art.
This finding is particularly remarkable given the
relatively small size of the training data available,
and demonstrates that deep learning models are
able to learn well from small datasets. Moreover,
we show that our proposed deep learning models
are able to generalize more-effectively than pre-
vious approaches, based on comparisons between
the models’ performances on validation and test
data.
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2 Related Work

MWE identification is the task of determining, at
the token level, which words are parts of MWEs,
and which are not. For example, in the sentence
The staff leaves a lot to be desired (also used in
Figure 1) a lot and leaves to be desired are
MWEs. An important part of MWE identifica-
tion is to be able to distinguish between MWEs
and literal combinations that have the same surface
form; e.g., kick the bucket is ambiguous between
an idiomatic usage — meaning roughly ‘die’ —
which is an MWE, and a literal one which is not.
Many earlier studies on MWE identification have
focused on this type of ambiguity, and treated
the problem as one of word sense disambigua-
tion, where literal and idiomatic usages are con-
sidered different word senses (Birke and Sarkar,
2006; Katz and Giesbrecht, 2006; Li et al., 2010).
Other work has leveraged linguistic knowledge
of properties of MWEs in order to make these
distinctions (Uchiyama et al., 2005; Fazly et al.,
2009; Fothergill and Baldwin, 2012). Crucially,
this work has typically focused on specific kinds
of MWEs, and has not considered identification of
the full spectrum of MWEs.

More-recent work has considered the identifica-
tion of a wider range of types of MWEs. Brooke
et al. (2014) present an unsupervised learning
approach to segment a corpus into multiword
units based on their predictability. Schneider
et al. (2014a) propose methods for broad-coverage
MWE identification, and evaluate them on a size-
able corpus (Schneider et al., 2014b). They pro-
posed a supervised learning approach based on the
structured perceptron (Collins, 2002). The sys-
tem labels tokens using the BIO convention, where
B indicates the beginning of an MWE, I indi-
cates the continuation of an MWE, and O indi-
cates that the token is not part of an MWE. The
model includes features based on part-of-speech
tags, MWE lexicons, and Brown clusters (Brown
et al., 1992). Qu et al. (2015) later improved
upon that system by using skip-gram embeddings
(Mikolov et al., 2013) instead of Brown clus-
ters with a variant of conditional random fields.
More recently, Constant and Nivre (2016) incor-
porate MWE identification along with dependency
parsing by forming two representations for a sen-
tence: a tree that represents the syntactic depen-
dencies, and a forest of lexical trees that includes
the MWEs identified in the sentence.

The recent SemEval shared task on Detect-
ing Minimal Semantic Units and their Meanings
(DiMSUM) focused on MWE identification along
with supersense tagging (Schneider et al., 2016).
The best performing system for MWE identifica-
tion for this shared task was that of Kirilin et al.
(2016) which took into consideration all of the ba-
sic features used by Schneider et al. (2014a) and
two novel feature sets. The first one is based on the
YAGO ontology (Suchanek et al., 2007), where
heuristics were applied to extract potential named
entities from the ontology. The second feature set
was GloVe (Pennington et al., 2014) word embed-
dings, with the word vectors scaled by a constant
and divided by the standard deviation of each of
its dimensions. None of the systems that partici-
pated in the DiMSUM shared task considered deep
learning approaches.

In this paper we propose the first deep learn-
ing approaches to MWE identification. We use
the DiMSUM data for training and evaluating our
models, and compare against the state-of-the-art
method of Kirilin et al. (2016). Here we focus
solely on the MWE identification task, leaving su-
persense tagging for future work.

3 Neural Network Models

In this section, we discuss the features extracted
for the neural network models, and the model ar-
chitectures. Schneider et al. (2014b) extracted
roughly 320k sparse features. Because of the large
input feature space, the only feasible way to train
a model on those features is by using a linear clas-
sifier. In contrast to Schneider et al. (2014b) our
aim is to create dense input features to allow neu-
ral network architectures, as well as other machine
learning algorithms, to be trained on them. Specif-
ically, we propose three neural network models:
a layered feedforward network (LFN), a recurrent
neural network (RNN), and a convolutional neural
network (CNN).1

3.1 Layered Feedforward Network
Although LFNs have been used to solve a wide
range of classification and regression problems,
they have been shown to be less effective for tasks
at which deep learning models excel, such as im-
age classification (Krizhevsky et al., 2012) and

1In preliminary experiments we also considered a
sequence-to-sequence model (Cho et al., 2014), but found it
to perform poorly relative to the other models, and so do not
discuss it further.
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machine translation (Bahdanau et al., 2015). The
LFN is therefore proposed as a benchmark for
comparing the performance of the other architec-
tures, as well as for developing informative input
features. Most feature engineering was carried out
while developing this model and then transferred
to the other architectures.

The composition of the DiMSUM corpus
(Schneider et al., 2016), and the token-level
lemma and part-of-speech annotations it provides,
influenced our feature extraction. Most of the text
in the DiMSUM corpus is social media text. The
tokens and lemmas were therefore preprocessed
by removing # characters from tokens and lemmas
that contain them, and mapping URLs, numbers,
and any token or lemma containing the @ symbol
to the special tokens URL, NUMBER, and USER,
respectively. After pre-processing, distributed rep-
resentations of all tokens and lemmas were ob-
tained from a skip-gram (Mikolov et al., 2013)
model. Specifically, the gensim (Řehůřek and
Sojka, 2010) implementation of skip-gram was
trained on a snapshot of Wikipedia from Septem-
ber 2015 to learn 100 dimensional word embed-
dings. Any token occurring less than 15 times
was discarded, the context window was set to 5,
the negative sampling rate was set to 5, and un-
known tokens were represented with a zero vector.
The part-of-speech tag for each token was also en-
coded, in this case as a one-hot vector.

Schneider et al. (2014a) included word shape
features, which can be informative for the iden-
tification of MWEs, especially named entities. We
therefore also include word shape features. These
are binary features for each token and lemma
that capture whether it includes single or double
quotes; consists of all capital letters; starts with
a capital letter (but is otherwise lowercase); con-
tains a number; includes a # or @ character; cor-
responds to a URL; contains any punctuation; and
consists entirely of punctuation characters.

Schneider et al. (2014a) include features based
on MWE lexicons that represent which tokens and
lemmas are potentially part of an MWE and ac-
cording to which lexicon. We use a script provided
by Schneider et al. (2014a) to include these same
features in our representation.

Finally, Salton et al. (2016) showed that embed-
ding the entire sentence in which a target MWE
occurs was helpful for distinguishing idiomatic
from literal verb–noun idiomatic combinations.

We therefore also include a representation for the
entire sentence. Specifically, we separately aver-
age the skip-gram embeddings for the tokens and
lemmas in the sentence containing the target word.
These features were then input into an LFN model
with a single hidden layer, which we refer to as
LFN1.

3.2 Recurrent Neural Network

RNNs are a natural fit for many NLP problems due
to their ability to model sequences. Here we apply
an RNN to broad coverage MWE identification.
The token for the current time step is represented
using the same features as LFN1 described above,
except we do not include the average of the skip-
gram representations for tokens and lemmas in the
same sentence as the target word because we ex-
pect the RNN to be able to learn a representation
of the sentence by itself. We use a single layer
RNN model, referred to as RNN1.

3.3 Convolutional Neural Network

CNNs have been shown to be powerful classifiers
(Kim, 2014; Kim et al., 2016), and since MWE
identification can be formulated as a classification
task, CNNs have the potential to perform well on
it. The feature representation for the CNN was
split into feature columns to enable the implemen-
tation of the convolution layer. Each feature col-
umn contains the same features as those for the
RNN at each time step but since the CNN does not
learn sequential information, a window of feature
columns was given as an input.

Multiple filters can then be applied on these
feature columns to extract different local features
across different window sizes. After finding the
optimal number of filters and their sizes, a max-
pooling operation is executed on the values ex-
tracted by the feature map to form the hidden layer
which will be used to produce the predicted out-
put. For our evaluation, we use CNN architectures
with two and three fully connected hidden layers,
which we refer to as CNN2 and CNN3, respec-
tively. We observed that CNNs with 2 and 3 hid-
den layers performed well on the validation set but
adding more layers resulted in overfitting. Simi-
larly, adding more hidden layers to the LFN and
RNN also resulted in overfitting.
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4 Data and Evaluation

This section presents the statistics and structure of
the dataset used for this task, as well as the evalu-
ation methodology.

4.1 Dataset
We use the DiMSUM dataset (Schneider et al.,
2016) for our experiments, which allows for direct
comparison with previous results. Table 1 displays
the source corpora from which the dataset was
constructed; their domain (i.e., reviews, tweets,
or TED talks); the number of sentences, words,
MWEs, and gappy (i.e., discontiguous) MWES in
each source corpus; and the percentage of tokens
belonging to an MWE in each source corpus. The
dataset is split into training and testing sets such
that the testing data contains a novel text type, i.e.,
TED talks.

For parameter tuning purposes, we also require
validation data. We form a validation set from the
training data by splitting the training data to cre-
ate 5 folds, where every fold contained 20% vali-
dation data, and the remaining 80% was used for
training.

4.2 Structure
Every line in the dataset provides 8 pieces of in-
formation: the numeric position of the token in
its sentence; the token itself; its lemmatized form;
its part-of-speech tag; its gold-standard MWE tag;
the position of the last token that is part of its
MWE; its supersense tag;2 and the sentence ID.
Six MWE tags are used for MWE identification
in this dataset, B which indicates the beginning of
an MWE, I which indicates the continuation of an
MWE, O which indicates that the token is not part
of an MWE, b indicates the beginning of a new
MWE inside an MWE, i indicates the continua-
tion of the new MWE inside an MWE, and finally,
o indicates that the token that is inside an MWE is
not part of the nested MWE. This convention as-
sumes that MWEs can only be nested to a depth
of one (i.e., an MWE inside an MWE), and that
MWEs must be properly nested.

4.3 Performance Metric
We use the link-based F-score evaluation met-
ric from Schneider et al. (2014a), which allows

2Schneider et al. (2014a) consider MWE identification
and super-sense tagging. We focus only on MWE identifica-
tion in this work and so don’t use the super-sense tag infor-
mation provided in the dataset.

Figure 1: An example of how a model could tag
a sequence, along with its gold standard tagging
(adapted from Schneider et al. (2016)).

for direct comparison with prior work. Table 1
shows that the percentage of tokens occurring in
MWEs ranges from 9–22%. As such, MWEs oc-
cur much less frequently than literal word combi-
nations. This evaluation metric correspondingly
puts more emphasis on the ability of the model
to detect MWEs rather than literal word combi-
nations.

Figure 1 is a diagram adapted from Schneider
et al. (2016) which shows an example of how a
model could tag a sequence, as well as its gold
standard tagging. The MWE tags on top represent
the gold standard, and the MWE tags predicted by
a system are shown on the bottom. A link is de-
fined as the path from one token to another, as in
Figure 1, regardless of the number of tokens in
that path. Precision is calculated as the ratio of
the number of correctly predicted links to the total
number of links predicted by the model. Recall is
calculated in the same way but swapping the gold
standard and predicted links.

For example, in Figure 1, the model was able
to correctly predict two links. The first link goes
from b to i in the gold standard which is matched
by a predicted link from token 4–5 by the model.
The second link is from token 6–7 in the gold stan-
dard which matches the model’s prediction. Since
the model predicted five links in total, the preci-
sion is 2

5 .
To calculate recall, the roles of the gold standard

and model predictions are reversed. This way,
three links have been correctly predicted. Two of
the three links are the previously mentioned links.
The third one is the link from B to I in the gold
standard which corresponds to the path from to-
ken 3–6. Because there are four links in the gold
standard, the recall is therefore 3

4 .
The F-score is then calculated based on preci-

sion and recall according to the following equa-
tion:
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Split Domain Source corpus Sentences Words MWEs Gappy MWEs % tokens in MWE

Train
REVIEWS STREUSLE 2.1 (Schneider and Smith, 2015) 3,812 55,579 3,117 397 13%
TWEETS Lowlands (Johannsen et al., 2014) 200 3,062 276 5 22%
TWEETS Ritter (Ritter et al., 2011; Johannsen et al., 2014) 787 15,185 839 65 13%

Train Total 4,799 73,826 4,232 467 13%

Test

REVIEWS Trustpilot (Hovy et al., 2015) 340 6,357 327 13 12%
TWEETS Tweebank (Kong et al., 2014) 500 6,627 362 20 13%

TED NAIST-NTT (Cettolo et al., 2012; Neubig et al., 2014) 100 2,187 93 2 9%
TED IWSLT test (Cettolo et al., 2012) 60 1,329 55 1 9%

Test Total 1,000 16,500 837 36 12%

Table 1: Statistics describing the composition of the DiMSUM dataset.

1
F

=
1
2

(
1
P

+
1
R

) (1)

where F is the F-score, and P and R are precision
and recall, respectively.

5 Parameter Settings

In this section, the architecture and parameters of
all neural network models are presented in detail.
The cost function used to train the neural network
models was based on the cost function used by
Schneider et al. (2014a) for this task:

cost =
|ȳi|∑
i=1

c(ȳi, yi) (2)

where ȳi is the ith gold standard MWE tag, and yi

is the ith MWE tag predicted by the neural net-
work model. To ensure that the MWE tag pre-
dicted by the neural network is a probability dis-
tribution, the output layer of all neural models was
the softmax layer. The function c in Equation 2 is
defined as:

c(ȳi, yi) = ȳi log(yi) + ρ(ȳiε{B}∧ yiε{O}) (3)

Some MWE tag sequences are invalid, for ex-
ample, a B followed immediately by an O (be-
cause MWEs are composed of multiple tokens),
and similarly, an O cannot occur immediately be-
fore an I (because the beginning of every MWE
must be tagged with a B). We therefore use the
Viterbi algorithm on the output of the neural net-
work models to obtain the valid MWE tag se-
quence with the highest probability. In prelimi-
nary experiments we observed that setting all valid

transitions to be of equal probability, and the prob-
ability of all invalid transitions to 0, performed
best, and therefore use this strategy.

5.1 Layered Feedforward Network

The LFN was used as a benchmark neural network
model against which the performance of the other
deep learning models was compared. The param-
eters that had to be tuned for this model were
the size of the context window, the misclassifica-
tion penalty ρ (in Equation 3), the number of neu-
rons in each hidden layer, the number of iterations
before training is stopped, and the dropout rate.
Optimizing these parameters is important as they
greatly influence the performance of the LFN. For
all models considered, all parameter tuning was
done using the validation data; the test data was
never used for setting parameters.

Context window of sizes of 1, 2, and 3 tokens to
the left and right were considered. A larger con-
text window allows the model to see additional to-
kens, but also makes the training process longer
and more prone to overfitting. In the case of ρ,
we investigated setting it between 40 and 100. A
small value of ρ would cause the model to have
high precision but low recall, while a larger value
would trade off recall for precision. The number
of neurons in the hidden layer that was examined
ranged from 100 to 1200. Adding more neurons in
a hidden layer, and introducing more hidden lay-
ers, allows the LFN to model more complex func-
tions, but can also make it more prone to over-
fitting. We avoid overfitting by stopping training
after a defined number of iterations (by observ-
ing the performance of the model on the valida-
tion set), and by using dropout (Srivastava et al.,
2014). Dropout combats overfitting by randomly
switching off a percentage of the neurons in a hid-
den layer during training, which allows a neural
network to be more robust in its predictions as it
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decreases the association between neurons. It also
has the same effect as ensembling multiple neu-
ral network models because different neurons are
switched on and off in every training iteration. The
dropout rates that we considered ranged from 0.4
to 0.6.

After running multiple experiments, the best
performing LFN model (LFN1) had a context win-
dow of size 1, which means that the features for
the tokens before and after the target token were
input into the LFN along with the features of the
target token. The value of ρ was set to 50, and
the LFN had a single hidden layer containing 1000
neurons with the tanh activation function. The
LFN was trained for 1000 iterations with a dropout
rate of 0.5.

5.2 Recurrent Neural Network
As previously mentioned in Section 3.2, RNNs
are a natural fit to many NLP problems due to
their ability to model sequences. At each timestep,
the features for a token were input into the RNN
which then output the corresponding MWE tag for
that token. Many of the parameters that had to be
tuned for the LFN had to be tuned for the RNN
as well: ρ ranged from 10 to 50; the number of
neurons in each hidden layer ranged from 50 to
300; the dropout rate ranged from 0.5 to 1; and we
again tuned the number of iterations before train-
ing is stopped.3 Parameters specific to the RNN
model that had to be tuned include whether the
RNN is unidirectional or bidirectional, and the cell
type, where we consider a fully connected RNN,
an LSTM cell, and a GRU cell.

After observing the performance of the RNN
on the validation set, the best performing RNN
model (RNN1) was a bidirectional LSTM with ρ
set to 25, with a single hidden layer containing 100
neurons. It was trained for 60 iterations with no
dropout. This indicates that the LSTM cell was
able to handle the complexity of the sequences of
tokens without requiring regularization.

As we will see in Section 6, RNN1 unfortu-
nately did not perform as well as the other neu-
ral network models. We therefore attempted to
improve its performance using two additional ap-
proaches. In the first approach, the RNN LSTM
was orthogonally initialized. Saxe et al. (2014)
showed that orthogonally initializing RNNs led to

3We choose parameter settings to explore based on per-
formance on the validation data, and so consider different pa-
rameter settings here than for LFN1.

better learning in deep neural networks. Never-
theless, orthogonal initialization did not seem to
have an effect on the performance of RNN1. In
the second approach, the dataset was artificially
expanded by splitting the input sentences on punc-
tuation. This provided more “sentences” for the
RNN LSTM to learn from, but again did not im-
prove performance.

5.3 Convolutional Neural Network

Every token was represented by a feature column
and these feature columns were then concatenated
to form the input to the CNN. A convolutional
layer was then applied to the input and then max-
pooled to form the hidden layer which was used
to produce the predicted output. There were again
many parameters to optimize in the CNN. We con-
sidered the same settings for the context window
size as for LFN1, i.e., 1, 2, and 3 tokens to the
left and right. The number of neurons in each hid-
den layer ranged from 25 to 200. In contrast to
LFN1 and RNN1, here we consider varying num-
bers of fully connected hidden layers from 1–3.
The dropout rate at the fully connected layers, as
well as the convolutional layer, ranged from 0.3 to
1, and ρ ranged from 10 to 30. Parameters specific
to the convolutional neural network that were op-
timized were the number of filters, which ranged
from 100 to 500, and spanned 1, 2, or 3 feature
columns, and the types of convolution and pooling
operations that were performed. Having a large
number of filters can cause the network to pick up
noise patterns which makes the CNN overfit. The
size of the filters and the types of convolution and
pooling operations is largely dependent on the data
and were optimized according to the performance
of the model on the validation set.

We experiment with two CNN models, the best
performing CNN model with two hidden layers
(CNN2) and the best performing CNN model with
three hidden layers (CNN3). CNN2 was trained
for 600 iterations and had a context window of size
1 and ρ equal to 20, with 250 filters that spanned
2 feature columns, and 200 filters that spanned all
3 feature columns. Narrow convolution was used
which produced a hidden layer with 450 neurons.
This layer was then input into another hidden layer
containing 50 neurons with the sigmoid activation
function before being passed to the output softmax
layer.
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CNN3 is similar to CNN2 but was trained for
900 iterations and had the 450 neuron hidden layer
feed to a hidden layer containing 100 neurons with
the sigmoid activation function. The output of that
layer was then passed to another layer containing
50 neurons with the tanh activation function be-
fore being passed to the output softmax layer. The
intuition behind the tanh activation function for
the last hidden layer is that the layer before it has
the sigmoid activation function. This means that
the values that are passed to the last hidden layer
are between 0 and 1 multiplied by the weights be-
tween the two layers. Since these weights can be
negative, a sigmoid function that can deal with
negative values is required, and the tanh function
satisfies this requirement. Both models have a
dropout rate of 60% on the convolutional and hid-
den layers. They were also given batches of 6000
random examples at each training iteration.

5.4 Traditional Machine Learning Models
To demonstrate the effectiveness of neural net-
work models, we compare them against more-
traditional, non-neural machine learning models.
Here we consider k-nearest neighbour, random
forests, logistic regression, and gradient boosting.4

These models were given the same features that
were input into LFN1, and parameter tuning was
also carried out on the validation set. For the k-
nearest neighbour algorithm, k was set to 3, and
the points were weighted by the inverse of their
distance. For random forests, 100 estimators were
used while multiplying the penalty of misclassify-
ing any class other than O as O by 1.2. In the case of
logistic regression, L2 regularization was utilized
with a regularization factor of 0.5. For gradient
boosting, 100 estimators with a maximum depth
of 13 nodes were used. Using a larger number of
estimators for random forest and gradient boost-
ing has shown to improve their cross validation
performance. However, the point of diminishing
returns was found to be at around 50 estimators,
and it was clear that increasing the number of esti-
mators above 100 would not yield any significant
increase in performance. Added to that, with gra-
dient boosting, the cross validation performance
also increased with the maximum node depth, but
the point of diminishing returns was found to be
at around 9, and it was clear that increasing the

4In preliminary experiments we also considered an
SVM, but found the training time to be impractical, and so
did not consider it further.

maximum depth beyond 13 would not yield any
significant increase in performance.

5.5 Implementation Details

Overall, 983 features were input into the LFN and
traditional machine learning models, and more
than 50 parameter combinations were examined.
Every LFN model required up to 2 days of train-
ing. For the RNN, every token was represented
by a feature vector of length 257, and took around
10 hours to train. More than 30 parameter combi-
nations were examined for the RNN model. Ev-
ery feature column in the CNN model contained
257 features, this amounts to a total of 771 input
features. More than 130 parameter combinations
were tested for the CNN, and it required around
12 hours of training. Tensorflow (et al., 2015) ver-
sion 0.12 was used to implement the neural net-
work models, and scikit-learn (Pedregosa et al.,
2011) was used to implement the traditional ma-
chine learning models. The experiments were run
on 2 GHz Intel Xeon E7-4809 v3 CPUs.

6 Results

The average F-score of the models on the five fold
cross validation set, and their F-score on the test
set, along with their generalization, is shown in
Table 2. All models except for that of Kirilin et al.
(2016) — which was already optimized for this
task by its authors — were run on the validation
set to tune their parameters. To evaluate the per-
formance of the models on the test set, the models
were trained on the entire training set (which in-
cludes the validation splits) and then tested on the
test set.

We first consider the traditional machine learn-
ing models. Amongst these models, gradient
boosting performed best on the validation set,
which can be attributed to the ability of gradient
boosting to learn complex functions and its ro-
bustness to outliers. However, it did not perform
as well on the test set, where logistic regression
performed best, and achieved the best generaliza-
tion out of the traditional machine learning mod-
els. This shows that relatively many instances in
the test set can be correctly classified by using a
hyperplane to separate the dense feature represen-
tations.

Turning to the proposed neural network mod-
els, LFN1 is indeed a strong baseline for this task.
This model achieved an F-score on the test set that
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Model Class Model F-score GeneralizationValidation Set Test Set

Traditional
Machine

Learning Models

k-Nearest Neighbour 48.35 31.30 64.74%
Random Forest 52.26 32.02 61.27%

Logistic Regression 57.68 53.37 92.53%
Gradient Boosting 64.98 48.79 75.08%

Neural Network
Models

LFN1 66.48 57.99 87.23%
RNN1 56.96 53.07 93.17%
CNN2 66.95 59.18 88.39%
CNN3 67.40 59.96 88.96%

Baseline Models Schneider and Smith (2015) 67.84 57.74 85.11%
Kirilin et al. (2016) - 58.69 -

Table 2: The average F-score of each model on the 5 fold cross validation set, and their F-score on the
test set, along with their generalization. The best performance in each column is shown in boldface.

comes close to the previous state-of-the-art of Kir-
ilin et al. (2016). RNN1 achieved the best gener-
alization out of all models considered; however, it
performed relatively poorly compared to the other
neural network models on both the validation and
test sets. The CNN models, CNN2 and CNN3,
both improved over the previous best results on the
test set — with CNN3 achieving the best F-score
overall — and outperformed all other models ex-
cept for (Schneider et al., 2014a) on the validation
set. This shows that the CNN filters were able to
learn what makes a feature column a part of an
MWE or not. That CNN3 outperforms CNN2 fur-
ther shows that adding an extra hidden layer for the
CNN model improves its performance as it is able
to handle more complex mappings. Moreover, the
training data for this task is relatively small; it con-
sists of less than 5,000 sentences. These results
therefore further show that convolutional neural
networks can still achieve good performance when
the amount of training data available is limited.

The highest F-score on the test set — achieved
by CNN3 — is 59.96. This shows that the task is
quite difficult, and suggests that there is scope for
further improvements. One issue, however, is that
there are notable inconsistencies in the annotations
in the dataset. For example, the expression a few is
labeled as an MWE 15 out of 32 times in the train-
ing set, even though there appears to be no vari-
ation in its usage. Recent efforts have, however,
proposed semi-automated methods for resolving
these inconsistencies (Chan et al., 2017).

7 Conclusions and Future Work

We proposed and evaluated the first neural net-
work approaches for multiword expression identi-
fication, and compared their performance against
the previous state-of-art, and more-traditional ma-
chine learning approaches. We showed that our
proposed approach based on a convolutional neu-
ral network (CNN2 and CNN3) outperformed the
previous state-of-the-art for this task. Therefore,
although the task is inherently sequential, formu-
lating it as a classification task enabled the CNN
models to perform well on it. This finding sug-
gests that deep learning methods can still be ef-
fective when only limited amounts of training data
are available. Furthermore, the proposed neural
network-based approaches were able to generalize
more-effectively than previous approaches.

In future work, we intend to carry out an in-
depth analysis of the errors committed by the neu-
ral network models. Additionally, an ablation
study of the features can be conducted to deter-
mine the effect of each feature set on the overall
performance of the models. The proposed deep
learning models can also be extended to predict
supersense tags in addition to the MWE tags. In
particular, we intend to compare the performance
of a single model that predicts the supersense and
MWE tags, versus two separate models for each
task. Furthermore, we plan to measure the impact
of MWE identification on downstream NLP tasks
by incorporating the predicted MWE tags into ap-
plications such as machine translation.
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Gábor Berend. 2011. Opinion expression mining by
exploiting keyphrase extraction. In Proceedings
of 5th International Joint Conference on Natural
Language Processing. Chiang Mai, Thailand, pages
1162–1170.

Julia Birke and Anoop Sarkar. 2006. A clustering ap-
proach for nearly unsupervised recognition of non-
literal language. In Proceedings of the 11th Con-
ference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL-2006).
Trento, Italy, pages 329–336.

Julian Brooke, Vivian Tsang, Graeme Hirst, and Fraser
Shein. 2014. Unsupervised multiword segmentation
of large corpora using prediction-driven decompo-
sition of n-grams. In COLING 2014, 25th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers.
Dublin, Ireland, pages 753–761.

Peter F. Brown, Vincent J. Della Pietra, Peter V.
de Souza, Jennifer C. Lai, and Robert L. Mercer.
1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics 18(4):467–479.

Marine Carpuat and Mona Diab. 2010. Task-based
evaluation of multiword expressions: a pilot study
in statistical machine translation. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics. Los Angeles, Cali-
fornia, pages 242–245.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. Web inventory of transcribed and trans-
lated talks. In Proceedings of the 16th Annual Con-
ference of the European Association for Machine
Translation (EAMT 2012). Trento, Italy, pages 261–
268.

King Chan, Julian Brooke, and Timothy Baldwin.
2017. Semi-automated resolution of inconsistency

for a harmonized multiword expression and depen-
dency parse annotation. In Proceedings of the 13th
Workshop on Multiword Expressions (MWE 2017).
Valencia, Spain, pages 187–193.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
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