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Abstract

We introduce WHIC1, a challenging
testbed for detecting hypernymy, an asym-
metric relation between words. While pre-
vious work has focused on detecting hy-
pernymy between word types, we ground
the meaning of words in specific contexts
drawn from WordNet examples, and re-
quire predictions to be sensitive to changes
in contexts. WHIC lets us analyze com-
plementary properties of two approaches
of inducing vector representations of word
meaning in context. We show that such
contextualized word representations also
improve detection of a wider range of se-
mantic relations in context.

1 Introduction

Language understanding applications like ques-
tion answering (Harabagiu and Hickl, 2006) and
textual entailment (Dagan et al., 2013) bene-
fit from identifying semantic relations between
words beyond synonymy and paraphrasing. For
instance, given “Anand plays chess.”, and the
question “Which game does Anand play?”, suc-
cessfully answering the question requires know-
ing that chess is a kind of game, i.e. chess entails
game. Such lexical entailment relations are asym-
metric (chess =⇒ game, but game 6=⇒ chess),
and detecting their direction accurately is a chal-
lenge.

While prior work has defined lexical entailment
as a relation between word types, we argue that
it is better defined between word meanings illus-
trated by examples of usage in context. Ignoring
context is problematic since entailment might hold
between some senses of the words, but not others.
Consider the word game in the following contexts:

1https://github.com/yogarshi/whic

1. The championship game was played in NYC.
2. The hunters were interested in the big game.

Given the sentence, Anand is the world chess
champion, chess =⇒ game in the first context,
while chess 6=⇒ game in the second context.

Lexical entailment encompasses several seman-
tic relations, with one important relation being
hypernymy (Roller et al., 2014; Shwartz et al.,
2016). In this work, we focus on hypernymy de-
tection in context, and show that existing resources
can be leveraged to automatically create test beds
for evaluation. We introduce “Wordnet Hyper-
nyms in Context” (WHIC, pronounced which), a
large dataset, automatically extracted from Word-
Net (Fellbaum, 1998) using examples provided
with synsets. Crucially, WHIC includes challeng-
ing negative examples that assess the ability of
models to detect the direction of hypernymy.

We use WHIC to determine the effectiveness of
existing supervised models for hypernymy detec-
tion (Roller and Erk, 2016) applied to represen-
tations, not only of word types, but of words in
context. Such contextualized representations are
induced in two ways: the first is based on Con-
text2Vec, a BiLSTM model that embeds contexts
and words in the same space (Melamud et al.,
2016); the second aims to capture geometric prop-
erties of the context in a standard word embedding
space built using GloVe (Pennington et al., 2014).

We show that the two contextualized rep-
resentations improve performance over context-
agnostic baselines. The structure of WHIC lets
us show that they have complementary proper-
ties: Context2Vec-based models have higher re-
call and tend to identify directionality much bet-
ter than Glove-based models. We also show that
the context-aware representations improve perfor-
mance on identifying a broader range of semantic
relations (Shwartz and Dagan, 2016).
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Words (wl, wr) Exemplars (cl,cr) Does wl =⇒ wr ?

staff , stick cl = He walked with the help of a wooden staff .
Yes

cr = The kid had a candied apple on a stick.

staff , body cl = The hospital has an excellent nursing staff .
Yes

cr = The whole body filed out of the auditorium.

staff , stick cl = The hospital has an excellent nursing staff .
No

cr = The kid had a candied apple on a stick.

Table 1: Examples of the context-aware hypernymy detection task

2 Detecting Hypernymy in Context

2.1 Task Definition
We frame hypernymy detection in context as a bi-
nary classification task. Each example consists
of a 4-tuple (wl, wr, cl, cr), where wl and wr are
word types, and cl and cr are sentences which il-
lustrate each word usage. The example is treated
as positive if wl =⇒ wr, given the meaning of
each word exemplified by the contexts, and nega-
tive otherwise, as can be seen in Table 1.

As mentioned in Section 1, hypernymy is only
one specific case of lexical entailment. The nature
of entailment relations captured out-of-context can
be broader depending on the test beds consid-
ered2. These relations can include synonymy,
hypernymy, some meronymy relations, and also
cause-effect relations.

2.2 Motivation
The need to study hypernymy detection in con-
text is important due to several reasons. First,
many downstream tasks which might benefit from
detecting hypernyms will have words appearing
in specific contexts. Second, existing definitions
(and, by extension, annotations) of lexical entail-
ment do not explicitly or consistently address pol-
ysemy. For instance, the substitutional definition
for entailment by Zhitomirsky-Geffet and Dagan
(2009) asks the reader to think of a natural sen-
tence that provides the missing context to the two
words being considered, thus constraining the pos-
sible senses of the two words. On the other hand,
Turney and Mohammad (2013) propose a rela-
tional definition, inviting the reader to imagine a
semantic relation that connects the two words and
constrains their possible senses. In contrast, we
propose to detect hypernymy between word mean-
ings described by specific contexts.

2We refer the reader to Turney and Mohammad (2013)
and Shwartz et al. (2017) for comprehensive surveys of super-
vised and unsupervised methods for the out-of-context task.

Lexical entailment or hypernymy in context is
also different from recognizing textual entailment
(RTE). RTE (Dagan et al., 2006, 2013) involves
detecting entailment relations between sentences,
while hypernymy is a relation between words. Ad-
ditionally, the two contexts cl and cr in our task
can be very different, unlike in textual entailment,
where the premise and hypothesis are usually re-
lated. For instance, the first example in Table 1 il-
lustrates a scenario where the hypernymy relation
holds between staff and stick, but there is no en-
tailment relationship between the two sentences.
On the other hand, the sentence ”Children smile
and wave at the camera.” entails ”There are chil-
dren present.”, but there is no meaningful hyper-
nymy relationship between words in the two sen-
tences.

Finally, the proposed task is also related to, but
different from word sense disambiguation (WSD).
Unlike WSD, this task eschews an explicit sense
inventory, instead relying on the provided contexts
to decide the specific relation between the words.
This might provide a more natural way to think
about word senses for (untrained) human annota-
tors (Erk et al., 2013). WSD can in principle be
used as a preprocessing step to address hypernymy
detection in context, but it is not required. Also,
WSD remains a challenging task (Moro and Nav-
igli, 2015) and it might introduce errors early in
the preprocessing pipeline.

2.3 WHIC : A Dataset for Lexical
Entailment in Context

We require a dataset to study hypernymy detec-
tion in context to satisfy the following desiderata:
(1) the dataset should make it possible to assess
the sensitivity of context-aware models to con-
texts that signal different word senses, and (2) the
dataset should help quantify the extent to which
models detect the asymmetric direction of hyper-
nymy, rather than symmetric semantic similarity.
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Word : Study 
Example : he knocked on the door of the study

Word : Study 
Example : he made several studies before the final 
painting

Word : Room 
Example : the rooms were small but comfortable

Word : Drawing 
Example : he did complicated pen-and-ink drawings

Figure 1: Sample dataset creation process based on two synsets of the word study. The green/solid lines
indicate positive examples, while the red/dashed lines indicate negative examples

Existing datasets for lexical entailment (Baroni
and Lenci, 2011; Baroni et al., 2012; Kotlerman
et al., 2010) have driven progress on the out of
context task only, and are therefore insensitive
to context changes. In addition, they include a
variety of negative examples without controlling
for entailment direction. For instance, Baroni
and Lenci (2011) use cohyponyms and random
words as negative examples. Since cohyponyms
are words that share a common hypernym (for ex-
ample, salsa and tango are cohyponymys with re-
spect to dance), hypernymy does not hold between
them in any direction. On the other hand, ran-
dom examples (also used by Baroni et al. (2012))
are likely to be detected using symmetric seman-
tic similarity rather than asymmetric hypernymy
detection.

Shwartz and Dagan (2016) recently introduced
CONTEXT-PPDB, a dataset for fine-grained lexi-
cal inference in context. This dataset consists of
word pairs along with a pair of sentential con-
texts, with a label indicating the semantic rela-
tion between the two words in the given contexts.
However, since CONTEXT-PPDB only consists of
~3700 sentence pairs, it provides only a smaller
number of annotated examples per relation, mak-
ing it difficult to train large supervised models on
(we return to this dataset in Section 5).

We address these gaps by introducing, WHIC,
a large dataset automatically derived from Word-
Net (Fellbaum, 1998). WordNet groups synonyms
into synsets and defines semantic relations such as
hypernymy and meronymy between these synsets.
Most synsets are further accompanied by one or
more short sentences illustrating the use of the
members of the synset. WHIC uses these example
sentences as context for the words, and the hyper-
nymy relations to draw candidate word pairs. The
process starts from a seed list of words W and pro-
ceeds as follows (see Figure 1) :

1. For all word types w ∈W obtain synsets Sw.

2. For each synset i ∈ Sw, pick a hypernym
synset si

h, with a corresponding word form
wi

h. Also obtain ci and ci
h which are exam-

ple sentences corresponding to wi and wi
h re-

spectively - (wi, wi
h, ci, ci

h) serves as a posi-
tive example. Repeat this process for all hy-
pernyms (solid/green arrows in Figure 1).

3. Permute the positive examples to get neg-
ative examples. From (wi, wi

h, ci, ci
h) and

(wj , wj
h, cj , cj

h), generate negative examples
(wi, wj

h, ci, cj
h) and (wj , wi

h, cj , ci
h) (longer

dashed/red arrows in Figure 1).
4. Flip the positive examples to generate nega-

tive examples. From (wi, wi
h, ci, ci

h) generate
the negative example (wi

h, wi, ci
h, ci) (shorter

dashed/red arrows in Figure 1).

We run this process using the 9000 most fre-
quent words from Wikipedia as W (after filtering
the top 1000 as stopwords). This yields a total of
5239 positive examples, 12303 negative examples
from Step 3, and 5239 negative examples from
Step 4.

WHIC satisfies the desiderata outlined above.
The dataset has a well-defined focus, since we
only pick hypernym-hyponym pairs. The nega-
tive examples generated in Steps 3 and 4 require
discriminating between different word senses and
entailment directions. Finally, with over 22000
examples distributed over 6000 word pairs, the
dataset is large enough to train large supervised
models. We define a 70/5/25 train/dev/test split,
and ensure that each set contains different word
pairs, to avoid memorization and overfitting (Levy
et al., 2015).

3 Representing Words and their
Contexts for Entailment

How can we construct representations of the
meaning of target words wl and wr, and their re-
spective exemplar contexts cl and cr?
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river

bank

0.3 0.6 -0.1

1.5 -2.5 0

-1 0.2 1.8

cl,mean 0.27 -0.57 0.57

-1 -2.5 -0.1

1.5 0.6 1.8

Cl

cl,min
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(wl)

} -1 0.2 1.8

bank
⊙ 

wl,mean-0.27 -1.14 1.03

1 -5.0 -0.18

-1.5 0.12 3.24

wl,min

wl,max

Figure 2: Constructing word-in-context represen-
tations for “bank”, in the context “the river bank”.
� indicates element-wise multiplication.

We will construct representations for cl, and cr,
and create context-aware representations for wl

and wr by “masking” their word embeddings with
the embeddings for cl and cr (Section 3.3). We
compare two approaches to representing cl and cr.
The first (Section 3.1) builds on standard represen-
tations for word types, which have proven useful
for detecting lexical entailment and other seman-
tic relations out of context (Baroni et al., 2012;
Kruszewski and Baroni, 2015; Vylomova et al.,
2016; Turney and Mohammad, 2013). The sec-
ond approach (Section 3.2) uses a recurrent neural
model to embed words and contexts in the same
space, allowing direct comparisons between them.

3.1 Creating Context Representations from
Word Type Representations

Given an example (wl, wr, cl, cr), let ~wl and ~wr

refer to the context-agnostic representations of wl

and wr, and let Cl and Cr represent the matri-
ces obtained by row-wise stacking of the context-
agnostic representations of words in cl and cr re-
spectively.

Following Thater et al. (2011); Erk and Padó
(2008), we apply a filter to word type represen-
tations to highlight the salient dimensions of the
exemplar context, emphasizing relevant dimen-
sions and downplaying unimportant ones. How-
ever, while prior work represents context by aver-
aging word vectors, we propose richer represen-
tations that better capture the salient geometrical
properties of the exemplar context that might get
lost by averaging.

We construct fixed length representations for
the contexts cl and cr by running convolutional fil-

ters over Cl and Cr. Specifically, we calculate the
column-wise maximum, minimum and the mean
over the matrices Cl and Cr, as done by Tang
et al. (2014) for supervised sentiment classifica-
tion. This yields three d-dimensional vectors for cl

(~cl,max, ~cl,min, ~cl,mean), and three d-dimensional
vectors for cr (~cr,max, ~cr,min, ~cr,mean). Comput-
ing the maximum and minimum across all vec-
tor dimensions captures the exterior surface of the
“instance manifold” (the volume in embedding
space within which all words in the instance re-
side), while the mean summarizes the density per-
dimension within the manifold (Hovy, 2015).

3.2 LSTM-based Context Representations:
Context2Vec

An alternative approach to contextualizing word
representations is to directly compare the repre-
sentations of words with representations of con-
texts. This can be done using Context2Vec (Mela-
mud et al., 2016), a neural model that, given
a target word and its sentential context, embeds
both the word and the context in the same low-
dimensional space using a BiLSTM, with the
objective of having the context predict the tar-
get word via a log-linear model. This model
approaches the state-of-the-art on lexical sub-
stitution, sentence completion, and supervised
word sense disambiguation. For each example
(wl, wr, cl, cr), we extract the word type repre-
sentations ~wl,c2v and ~wl,c2v from Context2Vec,
as well as the context representations ~cl,c2v, and
~cr,c2v.

3.3 Context-aware Masked Representations

Given these two methods to learn representations
for words and their contexts, we also learn context
aware word representations for the target words.
We transform initial context-agnostic representa-
tions for target word types by taking an element-
wise product of the word type vectors with vectors
representing the context.

Specifically, for the context representations
learned in Section 3.1, we take an element-
wise product of the word type vectors ( ~w∗) with
(~c∗,max, ~c∗,min, ~c∗,mean) where ∗ ∈ {l, r}. This
yields three d-dimensional vectors for wl (~wl,max,
~wl,min, ~wl,mean), and three for wr (~wr,max,
~wr,min, ~wr,mean). We refer to our final word-in-
context representations for wl and wr as ~wl,mask

and ~wr,mask respectively, where ~wl,mask is the
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concatenation of ~wl,max, ~wl,min, ~wl,mean, and
~wr,mask is also similarly constructed.

For the word and context representations ob-
tained from Context2Vec (Section 3.2), we cre-
ate the context-aware representations ~wl,c2v,mask

by vector multiplication between ~wl,c2v and ~cl,c2v.
We also obtain ~wr,c2v,mask similarly.

4 Comparing Words and Contexts for
Entailment

Given the word, context, and word-in-context rep-
resentations described above, we predict entail-
ment via supervised classification.

Our classifier is the Hypernymy-Feature detec-
tor (Roller and Erk, 2016), which is the current
state-of-the-art supervised model for detecting hy-
pernymy on several datasets. This model aims to
overcome the shortcomings of previous supervised
hypernymy detection models, which used linear
classifiers on top of concatenation of the two vec-
tors representing the target words. These models
only captured notions of prototypicality without
modeling the interactions between the two words;
that is, they guessed that (animal, sofa) is a pos-
itive example because animal looks like a hyper-
nym (Levy et al., 2015).

Instead, the H-Feature detector model trains a
linear classifier using concatenation, as described
above, and then removes this prototypical infor-
mation from the word vectors by projecting them
on a hyperplane orthogonal to the separating hy-
perplane learned by the linear classifier. By re-
peating this process, one can learn multiple classi-
fiers, each of which increases the models represen-
tational power. In each iteration i, four features are
extracted to represent the word pair, based on the
current representations of the word pair (~x, ~y) and
the hyperplane ~pi learned in the current iteration :

1. The similarity between ~x and the hyperplane,
~x.~pi

2. The similarity between ~y and the hyperplane,
~y.~pi

3. The similarity between the two words, ~x.~y
4. The similarity between the difference of the

two words, and the hyperplane, (~y − ~x).~pi

Features 1 and 2 capture similarities like the
one included in the concatenation classifier. The
third feature aims to overcome the shortcomings
of the concatenation model by directly modeling

the similarities between the two target words. Fi-
nally, the fourth feature captures the distributional
inclusion hypothesis (Geffet and Dagan, 2005) – if
word v is a hypernym of u, then the set of features
of u are included in the set of features of v – by
intuitively capturing whether y includes x (Roller
et al., 2014).

5 Experimental Set-up

Tasks In addition to WHIC, we evaluate
our context-aware representations on CONTEXT-
PPDB. As mentioned in Section 2.3, CONTEXT-
PPDB is a dataset for fine-grained lexical infer-
ence in context that captures other semantic rela-
tions beyond hypernymy. It has been created us-
ing 375 word pairs from a subset of the English
Paraphrase Database (Ganitkevitch et al., 2013;
Pavlick et al., 2015). These word pairs are semi-
automatically labeled with semantic relations out-
of-context. Shwartz and Dagan (2016) augmented
them with examples of word usage in context, and
re-annotated the word pairs given the extra con-
textual information. The final dataset consists of
3750 words/contexts tuples with a corresponding
semantic label, one of which is entailment.

All our experiments are with the default
train/dev/test splits on both datasets.

Contextualized Word Representations To ob-
tain the Context2Vec representations, we use
an existing 600-dimensional model trained on
ukWaC (Ferraresi et al., 2006). We use 600 di-
mensional GloVe embeddings trained on the same
corpus to create ~wl, ~wr, Cl, and Cr, and allow for
a controlled comparison with Context2Vec. Con-
text2Vec representations are significantly more ex-
pensive to train: Melamud et al. (2016) indicate
that training requires ~30 hours on a Tesla K80
GPU, while the GloVe embeddings can be trained
on the exact same amount of data in less than 7
hours on a CPU.

Supervised Lexical Entailment Classifier We
use an SVM with an RBF kernel for WHIC and
Logistic Regression for CONTEXT-PPDB as im-
plemented in Scikit-Learn 3 as our classifiers, to
allow for exact comparisons with past work on
CONTEXT-PPDB. We use default parameters, ex-
cept for adding class weights in the WHIC exper-
iments to account for the unbalanced data. For
WHIC we use features derived from the H-Feature

3http://scikit-learn.org
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model described in Section 4. For CONTEXT-
PPDB we simply concatenate the representations
and use them directly as the features. We evaluate
the predictions using F1 score.

6 Experiments on WHIC

In our first set of experiments, we evaluate the two
models described in Section 3 on WHIC under a
variety of combinations.

6.1 Overall Results

Results are summarized in Table 2. Supervised
models4 outperform the baseline that always pre-
dict that hypernymy holds (“All True Baseline”)
by up to 16 F-score points. Context-aware mod-
els outperform context-agnostic models by up
to 3 points5. GloVe and Context2Vec mod-
els yield similar F1, both when used as word
type representations alone, and when combined
with masked representations. However, GloVe
and Context2Vec representations capture comple-
mentary information: GloVe yields slightly bet-
ter precision while Context2Vec models yield
significantly better recall. The best perfor-
mance overall is obtained by a hybrid model that
uses word-type representations from Context2Vec
and masked context-aware representations derived
from GloVe.

Additionally using Context2Vec vectors di-
rectly (~cl,c2v,~cr,c2v) performs much worse than us-
ing them as masks (~wl,c2v,mask,~cr,c2v,mask). This
highlights the benefit of using context to influence
the word type representation rather than to directly
compare word and context representations.

Finally, there is no benefit in using the context-
aware masked representations without the word
type representations: using just the masked rep-
resentations by themselves does worse than using
them in combination with the word type represen-
tations.

Overall, the scores in Table 2 highlight the chal-
lenging nature of WHIC, and leave scope for
improvement with potentially better models for
context-aware representations.

4We also tried two unsupervised context-agnostic base-
lines using cosine similarity and balAPinc (Kotlerman et al.,
2010) but they trivially predicted all pairs as entailing

5A statistically significant difference with p < 0.01 under
the McNemar’s test (McNemar, 1947)

Supervised Model Config.
Word-type Context-aware P R F

GloVe None 44 60 51
GloVe GloVe Masks 42 73 53
None GloVe Masks 32 64 43

C2V None 40 73 52
C2V C2V Masks 41 73 52
None C2V Masks 30 94 45
C2V C2V Contexts 23 10 14
None C2V Contexts 8 2 3

C2V Words GloVe Masks 41 78 54
GloVe Words C2V Masks 44 64 52

All True Baseline 24 100 38

Table 2: Results on WHIC. a) Word type indi-
cates (GloVe or Context2Vec (C2V)) H-Features
extracted from context-agnostic representations.
b) Context aware indicates H-Features extracted
from the context-aware representations described
in Section 3.

6.2 Sensitivity to context

To determine the sensitivity of our models to con-
text changes, we evaluate on the balanced sub-
set of WHIC comprised of positive examples and
negative examples created by permuting contexts
in Step 3 of the dataset creation process. We an-
alyze the predictions using a modified version of
precision, recall and F-score, defined as the pre-
cision, recall, and F1-score calculated over each
(wl,wr) word pair, and then averaged over all word
pairs. We call these measures the Macro-P/R/F1.

Table 3 shows that context-aware representa-
tions generally improve performance on all three
metrics, but the gain is larger on recall. Again
we observe that models using Context2Vec word
types and masks have a better Macro-R than the
corresponding GloVe models. Overall, the masked
representations obtained from Context2Vec per-
form the best on these metrics, closely followed by
the overall best model that uses the Context2Vec
word type representations and the masked repre-
sentations from GloVe.

Finally, note that the all-true baseline surpris-
ingly does as well as the best context-aware model
on this metric. However, it cannot detect the direc-
tion of hypernymy (Section 6.3), and the structure
of WHIC allows us to distinguish these two fac-
tors.
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Supervised Model Config. Context sensitivity Directionality
Word Type rep. Context-aware rep. Macro-P Macro-R Macro-F Pairwise Acc.

GloVe None 13 28 17 59
GloVe GloVe Masks 17 35 22 71
None GloVe Masks 13 30 18 59

C2V None 15 35 21 71
C2V C2V Masks 16 35 21 72
None C2V Masks 18 45 25 62
C2V C2V Contexts 5 5 4 9
None C2V Contexts 1 1 1 1

C2V GloVe Masks 17 37 23 76
GloVe C2V Masks 14 29 19 63

All True Baseline 18 50 25 0

Table 3: Macro-P/R/F1 and Pairwise accuracy, are intended to capture context-awareness (Section 6.2)
and directionality-discrimination abilities (Section 6.3) of the models, respectively.

6.3 Sensitivity to Entailment Direction

Next, we evaluate to what extent the models cap-
ture the direction of hypernymy using the balanced
subset of WHIC that consists of all positive exam-
ples and flipped negative examples generated in
Step 4 in the dataset creation process. We mea-
sure directionality by looking at the fraction of
pairs ((wl, wr, cl, cr), (wr, wl, cr, cl)) where both
examples are correctly labeled, i.e. the former is
labeled as =⇒ and the latter as 6=⇒ . We call
this metric the pairwise accuracy.

As seen in Table 3, the best pairwise accu-
racy is again obtained by the hybrid model using
word type representations from Context2Vec and
the masked representations from GloVe. Overall
Context2Vec models do a better job at capturing
directionality than GloVe.

6.4 Nature of Contextualized Masks

We also hypothesized that masked contextual-
ized representations based on the full volume of
the context using min and max operations (Sec-
tion 3.1) better capture salient context dimensions
than the more usual vector averaging approach.
We test this hypothesis empirically by replacing
masked word-in-context representations ~wl,mask

and ~wr,mask by two other ways to capture context.
In the first method, we use the mean of the con-
texts (~cl,mean,~cr,mean). In the second method, we
use (~wl,mean, ~wr,mean), i.e. the masked represen-
tations calculated by using only the mean of the
context, and not the max and min.

Table 4 shows that our preferred method out-
performs the two alternatives on WHIC, with our
proposed representations outperforming the other
methods by 3 F1 points. Additionally, this in-
crease in performance also comes with significant
improvement in detection of asymmetric relations.

6.5 Summary

Overall, both Context2Vec and Glove representa-
tions improve performance over context-agnostic
baselines. Using masking to contextualize word
type representations works better than just us-
ing the context representations as is. The best
performing model is a hybrid model that uses
word type representations from Context2Vec and
masked representations from GloVe. Analysis en-
abled by the structure of the dataset shows that all
masked representations are sensitive to changes in
meaning indicated by glosses from distinct Word-
Net synsets. However, the more expensive Con-
text2Vec representations do a better job at recall
and direction of hypernymy.

7 CONTEXT-PPDB

We now experiment on CONTEXT-PPDB to test
the ability of contextualized representations to
capture semantic relations beyond hypernymy, to
aid future work on recognizing other contextual-
ized relationships.

Shwartz and Dagan (2016) establish a base-
line of 67 F1 on this dataset using rich features
characterizing word pairs drawn from PPDB as
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Dataset Representations P R F Context sensitivity Directionality

WHIC
~cl,mean,~cr,mean 45 59 51 17 58
~wl,mean,~wr,mean 43 62 51 18 61
~wl,mask,~wr,mask 42 73 53 22 71

Table 4: Impact of masks on WHIC measured by Precision (P), Recall (R), F-Measure (F), context sen-
sitivity (Macro-F1) and directionality (Pairwise accuracy). Replacing our contextualized representations
by a mean representation of the context, or a contextualized representation based only on the mean, leads
to drops in performance.

Word Type P R F

Baseline 68 70 67
++ context-aware rep.s 72 72 72

Table 5: Results on CONTEXT-PPDB. Baseline
indicates the previous state of the art result on this
dataset (Shwartz and Dagan, 2016)

well as similarity scores between words and con-
texts. The PPDB features notably include scores
for likelihood of context-agnostic entailment la-
bels, distributional similarities, and probabilities
of the word pair being paraphrases, among other
scores. Additionally, word representation fea-
tures are used: given two word/context pairs
(wx, cx, wy, cy), GloVe vectors are used to repre-
sent wx and wy, as well as words in cx and cy, and
are used to extract the following feature, which
capture the most salient word/context similarities
between the two pairs :

{max
w∈cy

~wx · ~w, max
w∈cx

~wy · ~w, max
w∈cx,w′∈cy

~w · ~w′}

We augment this system with contextualized
word representations. We use the GloVe based
masked representations, as they can be obtained
with a negligible computation cost in addition the
features already included in the baseline, and as
the labels denote a mix of directional and non-
directional relations. This remarkably yields an
improvement ~5 F1 points compared to the previ-
ous state-of-the-art (Table 5). Breaking down re-
sults per label (Table 6) shows an increase of 8 F1
points for the entailment class. This improvement
again stems from a large increase in recall, mir-
roring the behavior observed on WHIC. The di-
verse “other-related” category also benefits from
context-aware representations.

Label Baseline ++ Context-aware Rep.s

Equivalence 76 76
Entailment 79 87
Alternation 55 55

Other-related 12 28
Independent 77 78

Table 6: Performance of the baseline and
augmented model on all semantic relations in
CONTEXT-PPDB measured using per-class F1

8 Related Work

WordNet and lexical entailment The “is-a” hi-
erarchy of WordNet (Fellbaum, 1998) is a promi-
nent source of information for unsupervised de-
tection of hypernymy and entailment (Harabagiu
and Moldovan, 1998; Shwartz et al., 2015), as well
as a source of various datasets (Baroni and Lenci,
2011; Baroni et al., 2012). WHIC is inspired by
the latter line of work, except that we extract ex-
emplar contexts from WordNet in addition to rela-
tions between words.

Modeling word meaning in context Prior mod-
els for the meaning of a word in a given context
aimed to capture semantic equivalence in tasks
such as lexical substitution, word sense disam-
biguation or paraphrase ranking, rather than asym-
metric relations such as entailment. One line
of work (Dinu and Lapata, 2010; Reisinger and
Mooney, 2010) views each word as a set of la-
tent word senses. These models rely on token rep-
resentations for individual occurrences of a word
and then choose a set of token vectors based on
the current context. An alternate set of models
(Erk and Padó, 2008; Thater et al., 2011; Dinu
et al., 2012) avoids defining a fixed set of word
senses, and instead contextualizes word type vec-
tors as we do here. These models share the idea
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of using an element-wise multiplication to apply a
context mask to word type representations. The
nature of the context representation varies: Erk
and Padó (2008) use inverse selectional prefer-
ences; Thater et al. (2010) combine a first order
co-occurrence based representation for the context
with a second order representation for the target,
Thater et al. (2011) rely on syntactic dependencies
to define context. Apidianaki (2016) shows that
bag-of-word context representation within a small
context window works as well as syntactic defini-
tions of context for ranking paraphrases in context.

Our use of convolution is motivated by success
of similar models on sentence classification tasks.
Tang et al. (2014) uses convolution over embed-
ding matrices for unigrams, bigrams, and trigrams,
while Hovy (2015) uses just unigrams. However,
all these works use the resulting representations to
predict properties of the sentence (e.g., sentiment),
rather than to contextualize target word represen-
tations.

In-context lexical semantic tasks Besides en-
tailment, other lexical semantic tasks studied in
context include lexical substitution (McCarthy and
Navigli, 2007) and cross-lingual lexical substitu-
tion (Mihalcea et al., 2010). The focus of these
tasks and their related datasets is on synonymy
and translation equivalence, since they require one
to predict substitutes for a target word instance,
which preserve its meaning in a given sentential
context. On the other hand, the focus of this work
and WHIC is on detecting more fine-grained rela-
tions via lexical entailment. Another related task
is that of paraphrase ranking (Apidianaki, 2016).
The work by Apidianaki (2016) is also notable be-
cause of their successful use of models of word-
meaning in context from Thater et al. (2011),
which is closely related to our work.

9 Conclusion

We introduced WHIC, a dataset to evaluate lexi-
cal entailment in context, providing exemplar sen-
tences to ground the meaning of words being
considered for entailment, and challenging exam-
ples designed to capture entailment direction ac-
curately.

We showed that supervised models developed
for context-agnostic lexical entailment can address
the context-aware task to some extent, when re-
placing word representations with a contextual-
ized version. We compared two contextualized

representations including (1) a simple context-
aware representation based on the geometry of
word embeddings, and (2) Context2Vec, a more
expensive BiLSTM-based model that yields repre-
sentations of words and their context in the same
space. Both improve performance over context-
agnostic models, and have complementary prop-
erties: models using Context2Vec are more accu-
rate at discriminating the direction of entailment.
They also have a better recall when measured us-
ing metrics designed to test sensitivity to context.
Finally, we also showed that contextualized repre-
sentations can improve detection of other semantic
relations in context.

While encouraging, the performance of mod-
els considered leave substantial room for improve-
ment. For instance, it remains to be seen whether
richer features for the supervised models and
richer context representations can improve sensi-
tivity to context, and whether the nuances of the
task can be better captured with annotations on
a graded scale, following previous work on word
meaning in context (Erk et al., 2013).
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