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Abstract

Users combine attributes and types to
describe and classify entities into cate-
gories. These categories are fundamen-
tal for organising knowledge in a decen-
tralised way acting as tags and predi-
cates. When searching for entities, ca-
tegories frequently describes the search
query. Considering that users do not
know in which terms the categories are ex-
pressed, they might query the same con-
cept by a paraphrase. While some ca-
tegories are composed of simple expres-
sions (e.g. Presidents of Ireland), oth-
ers have more complex compositional pat-
terns (e.g. French Senators Of The Second
Empire). This work proposes a hybrid se-
mantic model based on syntactic analysis,
distributional semantics and named entity
recognition to recognise paraphrases of
entity categories. Our results show that the
proposed model outperformed the com-
parative baseline, in terms of recall and
mean reciprocal rank, thus being suitable
for addressing the vocabulary gap between
user queries and entity categories.

1 Introduction

A significant part of search queries on the web tar-
get entities (e.g. people, places or events) (Pound
et al., 2010). In this context, users frequently use
the characteristics of the target entity to describe
the search query. For example, to find Barack
Obama, it is reasonable that a user types the query
Current President of United States.

The combination of attributes and types of an
entity in a grammatically correct fashion defines
an entity category, which groups a set of entities
that share common characteristics. Examples of

entity categories are French Female Artistic Gym-
nasts, Presidents of Ireland and French Senators
Of The Second Empire. Considering that users do
not know in which terms the categories are ex-
pressed, they might query the same concept by a
paraphrase, i.e. using synonyms and different syn-
tactic structures.

The following text excerpt from Wikipedia
shows an example where Embraer S.A is defined
as Brazilian aerospace conglomerate:

“Embraer S.A. is a Brazilian aerospace
conglomerate that produces commer-
cial, military, executive and agricultural
aircraft and provides aeronautical ser-
vices. It is headquartered in São José
dos Campos, São Paulo State.”1

The flexibility and richness of natural language
allow describing Brazilian aerospace conglom-
erate both as Brazilian Planemaker2 or as Aircraft
manufacturers of Brazil3.

In addition to their occurrence in texts, en-
tity categories are also available in the form of
structured data. The Yago project (Suchanek et
al., 2007) shares unary properties associating hun-
dreds of thousands of descriptive categories ma-
nually created by the Wikipedia community to
DBpedia entities (Auer et al., 2007). Thus, a
mechanism to recognise paraphrases can make a
shortcut between a natural language expression
and a set of entities. Table 1 shows a list of en-
tity categories and associated paraphrases.

This paper focuses on the recognition of
paraphrases of entity categories, which is de-
signed as an information retrieval task. To

1Extracted from https://en.wikipedia.org/
wiki/Embraer

2In Brazilian Planemaker Unveils Its Biggest Military Jet
Yet published by Business Insider.

3The Wikipedia category Aircraft manufacturers of
Brazil.
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Original Paraphrased
Prehistoric Canines Ancestral Wolves
Soviet Pop Music Groups Popular Musical Bands in the USSR
American Architectural Styles Fashions of American Building Design
Defunct Companies of Finland Bankrupt Finnish Businesses

Table 1: Examples of paraphrases.

deal with this problem, we propose an ap-
proach which combines syntactic analysis, dis-
tributional semantics and named entity recogni-
tion. To support reproducibility and comparabil-
ity, we provide the test collection and the source
code related to this work at http://bit.ly/
cat-test-collection and http://bit.
ly/linse-code.

2 Understanding the Structure of an
Entity Category

An entity category names and classifies a set of en-
tities. It is composed of a central concept, called
core, and its specialisations. For example, the en-
tity category 2008 Film Festivals embraces fes-
tivals, which defines the category’s core. More
specifically, this category covers those festivals
that are related to films and occurred in 2008. In
its turn, Populated Coastal Places in South Africa
embraces places (the core) that are populated, in
the coast (coastal) and within South Africa. While
festivals and places act as cores, all other terms
work as specialisations, defining characteristics
such as temporality (specialisations of time), lo-
calization (specialisations of place) and other gen-
eral characteristics. These three types of terms are
respectively classified as temporal named entity,
spatial named entity, and general specialisation.

By analysing a large set of entity categories
generated in a decentralised setting, Freitas et al.
(2014) described them according to a group of re-
curring features: contains verbs, contains tempo-
ral references, contains named entities, contains
conjunctions, contains disjunctions and contains
operators. These features suggest a syntactic pat-
tern that can be described as a combination of
simple relations based on the lexical categories of
their constituent terms (Freitas et al., 2014). In
this manner, we apply a list of parsing rules to de-
termine the graph structure/hierarchy according to
Table 2, which defines the core-oriented segmen-
tation model.

During the parsing process, categories are ana-

POS Pattern Core-side
[VB, IN] left

[NN, VBG] left
[IN] left
[”,”] left

[POS] right
[CC] left

Table 2: Rules to construct the graph of an entity
category.

Populated Coastal Places

is specialized by Populated

South Africa

Places

in

Populated Coastal Places in South Africa

Coastal
Coastal Places

is specialized
 by

Figure 1: Graph of Populated Coastal Places in
South Africa.

lysed from left to right. Once a pattern is iden-
tified, the core-side attribute specifies the side
where the core is located. Both parts are then
recursively analysed, where the opposite part is
treated as specialisation(s). The order of the rules
determines their precedence. To simplify the rule
list, some tags are normalised, e.g. POS-tag TO
is converted to IN and NNPS is converted to NNP.
When no pattern is identified, the last term in the
resulting chunk is admitted as the core and all oth-
ers as specialisations, if any.

Figure 1 shows the graph generated by the core-
oriented segmentation method for the entity cat-
egory Populated Coastal Places in South Africa.
The graph root (places) represents the core.
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3 Semantic Approximation &
Compositionality

From a finite set of words, it is possible to express
unlimited utterances and ideas. This property is
credited to the principle of semantic composition-
ality (Baroni et al., 2014a).

Distributional semantics is based on the hypoth-
esis that words co-occurring in similar contexts
tend to have similar meaning (Harris, 1954; Tur-
ney and Pantel, 2010). Distributional semantics
supports the automatic construction of semantic
models from large-scale unstructured corpora, us-
ing vector space models to represent the meaning
of a word. The process to construct distributional
models ranges from statistical methods to models
based on machine learning (Dumais et al., 1988;
Mikolov et al., 2013; Jeffrey Pennington, 2014).

Distributional semantics allows measuring the
semantic compositionality by combining an ap-
propriate word representation and a suitable
method to semantically compose them. Its mean-
ing representation supports the construction of
more comprehensive semantic models which have
semantic approximation at its centre. We compute
the semantic similarity and relatedness between
two terms using vector operations in the vector
space.

4 Compositional-Distributional Model

This work proposes a hybrid model that combines
the core-oriented segmentation model with seman-
tic approximation based on distributional seman-
tics to provide a semantic search approach for en-
tity categories. This approach segments the en-
tity categories and stores their constituent parts ac-
cording to their type in a graph-based data model.

The graph data model has a signature Σ =
(C,Z,R, S,E), where C, Z, R and S represent
the sets of cores, general specialisations, tempo-
ral specialisations and spatial specialisations re-
spectively. E contains sets of edges, where each
set represents a graph. The elements in C and
Z are natural language terms indexed in distribu-
tional semantics spaces. The elements in R are
closed integer intervals representing the tempo-
ral expressions in years. The elements in S are
sets of equivalent terms referring to a geographic
place and its demonyms. The proposed graph data
model is inspired by the τ -Space (Freitas et al.,
2011), which represents graph knowledge in a dis-
tributional space.

Distributional semantics spaces represent terms
by distributional vectors. The distributional vec-
tors are generated from a large external corpus
to capture the semantic relation in a broader sce-
nario. It allows that even when dealing with a
small dataset, the semantic representation is not
limited to that context. The distributional space
allows searching by measuring the geometric dis-
tances or vector angles between the query term and
the indexed terms.

Temporal and spatial specialisations do not use
the same representation strategy. In the case of
spatial named entities, our tests have shown poor
performance when using general-purpose distribu-
tional semantics models to compare them. The
problem resides in the fact that places and de-
monyms have a high relatedness with common
nouns. For example, in one distributional model4,
American has a higher relatedness with war than
with Texas. To avoid this kind of misinterpreta-
tion, spatial expressions are compared using their
names, acronyms, and demonyms.

Because of the numerical and ordered nature of
temporal references, temporal specialisations are
represented as year intervals. By this represen-
tation, two expressions of time are compared by
computing the interval intersection. We consider
them as semantically related if the intersection is
not empty.

4.1 Constructing the Knowledge
Representation Model

The first step is to build the data model based on
the target set of entity categories. For each entity
category in the set, the segmentation model pre-
sented in Section 2 generates a graph representa-
tion G = (V,E). The set of vertices (V ) is the
union of the core term ~c, the set of general special-
isations (Z

′
), the set of temporal specialisations

(R
′
) and the set of spatial specialisations (S

′
), i.e.

V = {c′}∪Z ′∪R′∪S′
. Any of these three sets of

specialisations can eventually be empty. The pro-
cess of building the data space from a target set
of entity categories T is described in Algorithm 1.
In line 6, the category t is decomposed by the
core-oriented segmentation model. Each term is
indexed in their respective index according to their
type: the core (~c) in the core space (C) and the spe-
cialisations in the general specialisation space (Z),

4Distributional models used in the context of this work are
presented in Section 5.
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temporal space (R) and spatial space (S).
Spatial specialisations are identified by the

longest string matching method comparing against
a dictionary which contains the name, acronym
and demonym of places. Temporal expressions are
converted to an interval of years. Terms that are
considered neither spatial nor temporal specialisa-
tions fall into the general specialisation case.

Algorithm 1 Construction
1: input : T : target set of entity categories.
2: output : Σ : a filled graph data model.
3:

4: C ← ∅, Z ← ∅, R← ∅, S ← ∅, E ← ∅
5: for t ∈ T do
6: ~c, Z

′
, R

′
, S

′
, E

′ ← graphOf(t)
7: C ← ⋃{~c}
8: Z ← ⋃

Z
′

9: R← ⋃
R

′

10: S ← ⋃
S

′

11: E ← ⋃{flat(E′
)}

12: return Σ

To illustrate visually, Figure 2 depicts a dia-
gram where the entity categories 2000s Film Festi-
vals and Populated Coastal Places in South Africa
are represented within the model. The cores festi-
vals and places are stored in the core distributional
space (C: geometric representation). The first cat-
egory has two specialisations: the time interval
2000-2009, indexed in the temporal space (R: in-
terval representation); and film, indexed in the gen-
eral specialisation space (Z: also geometric repre-
sentation). Next, the second category has three
specialisations: the spatial named entity South
Africa, indexed in the spatial index (S: expanded
index); and the general specialisations coastal and
populated, indexed in (Z). Dashed lines connect-
ing the cores to their specialisations represent the
flattened edges of the graphs, i.e. all speciali-
sations are connected directly to their respective
core.

4.2 Searching as Semantic Interpretation

Algorithm 2 describes the interpretation process
that receives the query and the graph data model Σ
as inputs. Queries are paraphrases that follow the
same syntactic pattern of entity categories. The
process starts by generating the graph of the input
query (line 4). Considering the graph structure,
each vertice becomes a sub-query to be submit-

ted to their respective specific index (representa-
tion space).

The core defines the first sub-query. It needs
to be semantically aligned to relevant cores in Σ.
In line 5, distSearch(~c, C) searches for cores se-
mantically related to the query core ~c. In addition
to the simple searching of terms and synonyms,
the vector cosine defines how related ~c is to the
cores present in C. Given a threshold η, distri-
butional search returns K = {(~k, h)|~k ∈ C, h =
cosine(~k,~c), h > η}. The semantic relatedness
threshold η determines the minimum distance or
angle between the query core and the target cores
that makes them semantically relevant. In the con-
text of this work, η is defined dynamically accord-
ing to the result set. Let X be the descending-
order set of returned cosine scores, (η = xn|xn ∈
X,xn+1 ∈ X,xn/2 > xn+1). The distributional
search returns a set of pairs (~k, h) where~k is a core
term and h is the normalised cosine(~k,~c). Entity
categories containing relevant cores are select for
the next search step (lines 6, 7).

The next step deals with the specialisations.
Spatial and temporal named entities found in
the query are searched in their respective sub-
sets, identifying equivalent spatial representations
(lines 11-13) and comparing the time intervals
(lines 14-20). Temporal expressions out-of-range
are penalised by a negative score (line 20). The
pairing of general specialisations (lines 22-24) fol-
lows the same principle of the core search. When
there are two or more general specialisations, the
method maximiseMatching aims to avoid that
two terms from one side match to the same term
on the other side, selecting the pairs that maximise
the final score.

The final score is determined by the composi-
tion of all scores proportionally to the number of
terms in the categories according to the expres-
sions in the lines 26-29.

In the example of Figure 2, 2008 Movie Cele-
brations is the query which is segmented in cele-
bration (core), movie (general specialisation) and
2008 (temporal interval). The core term celebra-
tions feeds a sub-query in the distributional core
space. The alignment is defined by computing
a distributional semantic relatedness function be-
tween celebrations and all cores in the core space
and by filtering out all the elements which are be-
low the semantic relatedness threshold η.

Navigating over the graph structure, the query
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Distributional and Named Entity Spaces
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QUERY: 2008 Movie Celebrations

2008

Figure 2: Depiction of the structured distributional vector space model.

terms representing specialisations are searched in
the subspaces according to their type. In the given
query example, movie is semantically aligned in
the general specialisation space applying the same
approach described in the core space. In its turn,
the intersection is calculated for the temporal spe-
cialisation 2008 in the temporal space.

5 Evaluation

The evaluation focuses on comparing the
compositional-distributional model to baseline
approaches and assessing the performance of
different distributional semantic models in com-
bination with our representation model. The
evaluation scenarios are designed to measure the
individual contribution of each component.

5.1 Setup

The evaluation has three comparative baselines:
Bag-of-words search: Target entity categories are
indexed in a state-of-the-art information retrieval
system treating each category as a separate docu-
ment. Additionally, the document is enriched by
synonyms obtained from WorNet (Miller, 1995).
Lucene5 4.10.1 is the information retrieval system
used in the experiment.
Pure core-oriented segmentation: The core-
oriented segmentation model incorporated by this
work is applied in an isolated fashion, i.e. without
the distributional component but making use of

5http://lucene.apache.org/

simple string matching, WordNet expansion and
temporal and spatial named entity indices.
Sum-algebraic-based method: Entity categories
are compared by an algebraic operation that sums
up component vectors using the resulting vectors
to calculate the cosine similarity. This method re-
sults in many scenarios, one for each distributional
model.

Five different models are analysed in this work:
Latent Semantic Analysis (Dumais et al., 1988):
LSA is a distributional semantic space that ex-
tracts statistical relations between words in narrow
context windows. It is characterised for executing
a costly operation to reduce the space dimension-
ality.
Random Indexing (RI) (Sahlgren, 2005): Ran-
dom Indexing was proposed to avoid the dimen-
sional reduction. It dynamically accumulates con-
text vectors based on the occurrence of words in
contexts to generate the semantic space.
Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007): ESA uses entire documents as
contexts. It was created under the assumption of
concept hypothesis6 which states that a portion of
information such as an article or document is as-
sociated with a particular concept, and the space
model could take advantage of this information.
Continuous Skip-gram Model (W2V) (Mikolov
et al., 2013): Skip-gram is a vector space model
created by deep learning techniques focused on lo-

6Studies contest the existence of this hypothesis (Gottron
et al., 2011).
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Algorithm 2 Semantic Interpretation Process

1: input : query and Σ = (C,Z,R, S,E)
2: output : Z : related categories and their score.
3:

4: ~c, Zq, Rq, Sq, Eq ← graphOf(query)
5: U ← distSearch(~c, C)
6: for (~k, h) ∈ K do
7: D ← selectGraphsByCore(~k,E)
8: for all D′ ∈ D do
9: ~k, Zc, Rc, Sc, Ec ← D

′

10: a← 0
11: for sc ∈ Sc do
12: if ∃s ∈ Sq | sc ≡ s then
13: a← a+ 1
14: b← 0
15: for rc ∈ Rc do
16: if ∃r ∈ Rq | rc ≡ r then
17: b← b+ 1
18: else
19: if Rq 6= ∅ then
20: b← b− 0.5
21: X ← ∅
22: for ~oc ∈ Oc do
23: J ← distSearch(~oc, Oq)
24: X.append(J)
25: Y ← maximiseMatching(X)
26: nq ←| Eq |
27: nc ←| Ec | +1
28: u← h+ a+ b+ (

∑n
x=1 yx|yx ∈ Y )

29: u← u ∗ (nq/nc)
30: U.append(D

′
, u)

31: return sort(U)

cal context windows.
Global Vectors (GloVe) (Jeffrey Pennington,
2014): GloVe aims to conciliate the statistical co-
occurrence knowledge present in the whole corpus
with the local pattern analysis (proposed by the
skip-gram model) applying a hybrid approach of
conditional probability and machine learning tech-
niques.

DINFRA (Barzegar et al., 2015), a SaaS distri-
butional infrastructure, provided the distributional
vectors. We generated all five ditributional models
using the English Wikipedia 2014 dump as a ref-
erence corpus, stemming by the Porter algorithm
(Porter, 1997) and removing stopwords. For LSA,
RI and ESA, we used the SSpace Package (Jur-
gens and Stevens, 2010), while W2V and GloVe
were generated by the code shared by the respec-

tive authors. All models used the default parame-
ters defined in each implementation.

5.2 Test Collection
The test collection is composed of a knowledge
base of more than 350,000 entity categories ob-
tained from the complete set of Wikipedia 2014
categories, but removing those containing non-
ASCII characters. Each category has between one
to three paraphrases.

The creation of the queries was guided by seed
target categories. The use of seed entity categories
was deliberately decided to ensure the presence of
one paraphrase equivalence for each query.

Queries were generated by asking a group
of English-speaking volunteers to paraphrase the
subset of 105 categories. They were instructed to
describe the same meaning using different words
and, if possible, different syntactic structures. Af-
ter that, we applied a curation process conducted
by two researchers to validate the paraphrase’s
equivalence intuitively. In the end, we admitted
a set of 233 paraphrased pairs.

To create various degrees of difficulty in the top-
ics, we balanced the test collection with categories
varying in size (two to ten terms), in the occur-
rence of places and demonyms references, in the
presence of temporal expressions and, in the oc-
currence of noun phrase components (verbs, ad-
jectives, adverbs).

Test collection files are available at http://
bit.ly/cat-test-collection.

5.3 Results and Discussion
We evaluate our approach in three scenarios. The
first considers the TOP-10 list of each execution.
The second considers the TOP-20 list and the third
the TOP-50.

For each query in the test collection, we cal-
culate the recall and mean reciprocal ranking, to-
gether with their aggregate measures (Table 3).
Figure 3 provides a visual representation of the
recall scores. In the experiment, we assumed
that only one category corresponded to the cor-
rect answer. This assumption makes precision a
redundant indicator since it can be derived from
recall (precision = recall/range|range ∈
{10, 20, 50}).

The evaluation shows that distributional seman-
tic models address part of the semantic match-
ing tasks since distributional approaches outper-
form simple stemming string search and WordNet-
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Approaches Recall MRR
Top 10 Top 20 Top 50 Top 10 Top 20 Top 50

Lucene 0.0904 0.1040 0.1357 0.0410 0.0420 0.0429
Core-Oriented Segmentation 0.0985 0.1126 0.1361 0.0613 0.0623 0.0630
Sum-algebraic-based method - - - - - -

with LSA 0.1126 0.1621 0.2117 0.0595 0.0631 0.0645
with RI 0.0630 0.0945 0.1216 0.0348 0.0371 0.0379
with ESA 0.0540 0.0900 0.1486 0.0271 0.0296 0.0312
with W2V 0.2657 0.3333 0.3963 0.1356 0.1403 0.1422
with GloVe 0.2702 0.3558 0.4324 0.1417 0.1476 0.1501

Our proposed method - - - - - -
with LSA 0.3545 0.4000 0.4590 0.1981 0.2013 0.2033
with RI 0.3073 0.3743 0.4078 0.1768 0.1813 0.1823
with ESA 0.2818 0.3182 0.4000 0.1822 0.1846 0.1872
with W2V 0.3727 0.4364 0.4909 0.2448 0.2491 0.2510
with GloVe 0.3727 0.4090 0.4500 0.2274 0.2300 0.2314

Table 3: Results for recall and mean reciprocal rank (MRR).

based query expansion. By applying either
sum-algebraic-based method and our proposed
method, most of the distributional models present
significant performance improvement in compar-
ison to non-distributional methods. It is also im-
portant to stress that Word2Vec and GloVe consis-
tently deliver better results for the test collection.
Apart the controversies about predictive-based and
count-based distributional models (Baroni et al.,
2014b; Lebret and Collobert, 2015; Levy and
Goldberg, 2014), in the context of this work, these
results suggest that predictive-based distributional
models outperform count-based methods (despite
the proximity of LSA results).

Regarding the compositional method, the re-
sults of the core-oriented strategy combined with
the named entity recognition exceeded all results
delivered by the sum-algebraic-based method
when comparing the same distributional model.
The performance increases not only in the recall,
which represents more entity categories retrieved
but also in the mean reciprocal rank, reflecting that
the target categories are better positioned in the
list. Our proposed method succeed in almost 50%
of the test collection when considered the Top-50
scenario.

Sales et al. (2015) shows a prototype demon-
stration of this work.

5.4 Analysing Unsuccessful Cases

The most significant limitation is the restriction
of comparing words one-by-one, assuming that

each word in a paraphrase is semantically equiv-
alent to only one word in the target categories and
vice-versa. For example, the pair (Swedish Met-
allurgists, Metal Workers from Sweden) is ranked
at #1173 when using W2V. It occurs because
metallurgists and workers have low relatedness
(0.0031). Comparing the relatedness of metallur-
gists to metal workers would have a higher score.

Concerning named entities, we observed three
relevant issues. Our approach uses a simple
longest string matching method to identify places.
Categories containing terms such as Turkey are
always considered a spatial named entity. In
the pair (American Turkey Breeds and Chicken
Breeds Originating in the US) the terms turkey
and chicken would not be semantically compared,
since Turkey is always considered a spatial named
entity. Secondly, when searching for Water Parks
in the USA, all parks at Texas, Tennessee or Penn-
sylvania are also relevant for the user. Our model
does not contain this hierarchical information to
provide a geographic match. Finally, expressions
such as WWI and USSR should be identified as the
paraphrasing of Wold War I and the Soviet Union
or even other variations, what is not available in
our model.

6 Related Work

Balog and Neumayer (2012) propose the hier-
archical target type identification problem which
aims to identify the most specific type grounded
in a given ontology that covers all entities sought
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Figure 3: Chart of recall values grouped by different approaches.

by a query. Yao et al. (2013) propose an entity
type prediction considering the universal schema.
In this work, a predictor is expected to label a
given entity with types. This schema is composed
of all types from diverse available ontologies. To
identify types from texts, they compose named en-
tity recognition with dependency parsing. These
works focus on identifying the ontological types
that are sought by the query.

Regarding entity similarity, Moreau et al.
(2008) propose a method to calculate entity si-
milarity based on Soft-TFIDF. Liu and Birnbaum
(2007) propose a method based on the Open Di-
rectory Project (ODP) to capture category names
in all pages where the named entity appears to gen-
erate a vector space. Liu et al. (2008) describe a
method that uses the set of URLs in which enti-
ties are present to measure similarity. The differ-
ence to these works is that they focus on compar-
ing named entities, not based on their description,
but based on non-linguistic attributes.

Other related topics are paraphrasing and text
entailment. Androutsopoulos and Malakasiotis
(2010) present an extension overview of datasets
and approaches applied in these fields. Papers in
this context deal with the paraphrasing of com-
plete sentences (formed of subject and predicate)
which cannot benefit from the core-oriented seg-
mentation model. The different format of their
target datasets inhibits a direct comparison, while
their lack of association with entities does not cre-
ate the required bridge between unstructured and
structured data.

This work distinguishes mainly from existing
approaches by proposing a novel compositional

method grounded in syntactic analysis to com-
bine distributional vectors and by using distribu-
tional semantics models generated from external
resources. The target knowledge base (the dataset
of categories) is not part of the data used to pro-
duce the distributional models. This isolation sup-
ports a more comprehensive semantic matching.

7 Conclusion

This work proposes a compositional-distributional
model to recognise paraphrases of entity cate-
gories. Distributional semantics in combination
with the proposed compositional model supports
a search strategy with robust semantic approxima-
tion capabilities, largely outperforming string and
WordNet-based approaches in recall and mean re-
ciprocal rank. The proposed compositional strat-
egy also outperforms the tradional vector-sum
method.

This work also provides additional evidence to
reinforce (i) the suitability of distributional mod-
els to cross the semantic gap (Freitas et al., 2012;
Aletras and Stevenson, 2015; Agirre et al., 2009;
Freitas et al., 2015) and (ii) suggest that prediction
methods generate better semantic vectors when
compared to count-based approaches. Consider-
ing the controversies about the comparisons be-
tween predictive-based and count-based distribu-
tional models (Baroni et al., 2014b; Lebret and
Collobert, 2015; Levy and Goldberg, 2014), this
evidence is restricted to the distributional models
involved in the experiment and cannot be gener-
alised. In the context of our work, we conjecture
that the better performance is credited to the fact
that our problem comprises much more paradig-
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matic than syntagmatic relations.
Additionally, the use of distributional semantic

models provides a better base for transporting the
solution to multi-lingual scenarios, since it does
not depend on manually constructed resources.

Future work will focus on the investigation of
specialised named entity distributional methods in
the context of the semantic search problem.

Acknowledgments

This publication has emanated from research sup-
ported by the National Council for Scientific and
Technological Development, Brazil (CNPq) and
by a research grant from Science Foundation Ire-
land (SFI) under Grant Number SFI/12/RC/2289.
The authors also would like to thank Douglas
N. Oliveira (Florida Institute of Technology) and
the anonymous reviewers for the valuable critical
comments.

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
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