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Abstract

This paper describes the NUIG-UNLP sys-
tem submitted to SemEval-2016, Task 13. We
implement a semi-supervised method that ex-
tracts hypernym candidates for the terms pro-
vided in the test list. The main assumption of
our system is that hypernyms may be induced
by adding a vector offset to the corresponding
hyponym word embedding. The vector off-
set is obtained as the average offset between
200 pairs of hyponym-hypernym in the same
vector space. Our approach ranked second on
connectivity (c.c.) and categorisation (i.i.) for
the English taxonomy construction, and fifth
on the overall ranking. Despite of these mod-
est results, our system achieved comparable
evaluations scores with the other participants.

1 Introduction

Hyponyms and hypernyms (sometimes called sub-
ordinate and superordinate terms, respectively) de-
scribe a type of relation which, in general, can be
defined in terms of asymmetric entailment: given
the hyponym of feline, cat, and its hypernym, feline,
we can state that all cats are felines, but not that all
felines are cats.

Likewise, the relations that hyponyms and hyper-
nyms signal can also be characterized as a isa rela-
tion between a hyponym X and hypernym Y : for
nouns, X is a Kind of Y or X is a type of Y (Saint-
Dizier and Viegas, 1995). These particular type /
kind-of relations form the backbone of the construc-
tion of Lexical Taxonomies and Ontologies (Buite-
laar et al., 2004; Navigli et al., 2011), and those

in turn plays a essential role in many Natural Lan-
guage Processing applications: Question Answer-
ing, Textual Entailment, Natural Language Infer-
ence, or Text Summarization (Bordea et al., 2015).

In this regard, despite the fact that taxonomy
construction can be addressed from a diversity of
approaches, the lexico-syntactic patterns-based are
still the most widely used. Nevertheless, in the
last years some vector space-based approaches have
emerged for learning semantic hierarchies (Saxe et
al., 2013; Khashabi, 2013; Fu et al., 2014; Rei and
Briscoe, 2014; Tan et al., 2015; Nayak, 2015). In
the next sections we will mainly turn our attention
to this type of approaches.

1.1 Task Definition
The five participating teams in SemEval-2016 Task
13 were provided with six datasets in four lan-
guages (English, Dutch, French and Italian)1. The
datasets can be divided in three domains (science,
environment and food). Additionally, this year the
TExEval-2 task has a focus in four subtasks related
to taxonomy construction:

1. Taxonomy construction

2. Hypernym identification

3. Multilingual taxonomy construction

4. Multilingual hypernym identification

However, due to lack of time, we decided to ad-
dress only the English monolingual subtasks.

1The corresponding system description papers can be found
in Cleuziou and Moreno (2016), Panchenko et al. (2016) and
Tan (2016).
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The key idea behind TExEval tasks is the cre-
ation and evaluation of systems capable of auto-
matically extracting hierarchical relations from text
and then constructing taxonomies. Following (Fu et
al., 2014), ideally, the construction of those hierar-
chies can be seen as a directed acyclic graph DAG
with a finite set of nodes (words) and edges rep-
resenting the asymmetric and transitive hyponym-
hypernym relations. This is formally defined by Fu
et al. (2014) as follows:

• ∀x, y ∈ L : x
H−→ y ⇒ ¬

(
y

H−→ x
)

• ∀x, y, z ∈ L :
(
x

H−→ z ∧ z
H−→ y

)
⇒ x

H−→ y

where in our case x, y and z denote the terms in
the domain list Ld ∈ L, and the hyponym-hypernym
relation is represented by H−→. Therefore, the aim of
the task was to return a list of pairs x H−→ y for each
term in the six different domains Ld.

2 Experimental Setup

We describe in this section our taxonomy extraction
system.

2.1 Training Data
Since TExEval-2 organizers did not provide any
specific corpus for the task, we used the latest
Wikipedia dump2. We preprocessed it using the
WikiExtractor tool3, which generates a plain text
from a Wikipedia database dump discarding markup
tags and any other element different than text, such
as tables, references, lists and images. On the other
hand, in order to generate a single word embedding
for each entry in the test list, we underscore all the
entries containing open compound words:

civil engineering ⇒
civil engineering

2.2 Word Embeddings Generation
We use the log-bilinear model GloVe (Penning-
ton et al., 2014) trained over the above-mentioned
Wikipedia corpus to generate vector space represen-
tations of words. Following the analogy task results
presented in their paper and some pre-experimental

2We used the English snapshot of 17-Nov-2015
3https://github.com/attardi/wikiextractor

test, we set a windows size of 10 and 300 dimen-
sions word embeddings. The number of iterations
of the model was set to 20.

2.3 Offset Model

Mikolov et al. (2013) and subsequently Levy and
Golberg (2014) demonstrated that word embeddings
generated by neural nets (and also other traditional
distributional methods) preserve some syntactic and
semantic information. Some of this encoded infor-
mation, such as relational similarities between pairs
of words, can be recovered by simple vector off-
sets between the vector embeddings of each word.
Thus, as Mikolov et al. (2013) and Levy and Gol-
berg (2014) showed, given two pairs of words that
share a relation, a : a∗, b : b∗, the relation between
those two words can be represented by their vector
offset, as follows:

a∗ − a ≈ b∗ − b (1)

Therefore, the vector of the word b∗ should be
similar to the proxy vector y′

y′ = b− a+ a∗ (2)

where y′, ideally, corresponds to the vector repre-
sentation of b∗. Since y′ will rarely match the exact
position of the word b∗, different similarity measures
may be applied to find the most similar word to y′.
In this paper we will focus only in Cosine similarity
(4) and Euclidean distance (5):

cos(b∗, y) =
b∗ · y′

‖ b∗ ‖‖ y′ ‖ (3)

maximizing the function:

argmax
b∗∈V

(cos(b∗, y′)) (4)

where V is the vocabulary.
And given the Euclidean distance formula, subse-

quently we obtain the following function:

d(b∗, y′) =‖ b∗ − y′ ‖2 ⇒ argmin
b∗∈V

‖ b∗ − y′ ‖2

(5)
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2.4 Offset Model for Hypernym-Hyponym
Relation

Mikolov et al. (2013) and Levy and Golberg (2014)
have only tested the vector offset method for sim-
ple symmetric relations such a capital-country, gen-
der inflections, adjective-to-adverbs, etc. However,
as Rei and Briscoe (2014) pointed out, hypernym-
hyponyms relations are conceivable much more dif-
ficult to represent by simple vector offsets, as their
relations rarely are symmetric.

Rei and Briscoe (2014) in their paper first as-
sess how word embeddings perform in hypernym-
hyponym detection and generation, and second, pro-
pose a new directional similarity measure (Weight-
edCosine) based on two new properties to detecting
these relations.

In our submitted system, though, we finally de-
cided not to implement this new measure due to lack
of time.

2.5 Offset Model for the Hypernym-Hyponym
Relation

We first generate a random list of 200 pairs of
hypernym-hyponyms. This training list was ex-
tracted from the trial data provided in Bordea et al.
(2015) and WordNet (Miller, 1995; Fellbaum, 1998)
covering different domains.

Using the Gensim library4 (Řehůřek and Sojka,
2010) we compute the vector offset as the aver-
age offset of all the pairs generated in the above-
mentioned training data (Mikolov et al., 2013;
Nayak, 2015):

voffset =
1

n

n∑

i=1

(
vhyper(i) − vhypo(i)

)
(6)

where n = 200, as the number of pairs of
hypernym-hyponym in our training data.

Once the voffset has been obtained, we add it to
the target terms in the test list:

y′ ≈ vterm + voffset (7)

where we assume that the addition of the vectors
voffset and vterm projects y′ close enough to the hid-
den hypernym representation b∗. Thus, we apply ei-
ther the measure similarity (4) or (5) and we rank

4http://radimrehurek.com/gensim/

either the top 10 or 5 candidates, discarding those
terms not included in the test list. We also imple-
ment a substring inclusion approach based on regexp
(Nevill-Manning et al., 1999) so that

civil engineering
H−→ engineering

social psychology
H−→ psychology

In other words, given an open compound word
such civil engineering, we assume that the second
term engineering is the most likely hypernym of
civil engineering.

3 Evaluation Metrics

In this section we present the results obtained in
the second task on Taxonomy Extraction Evalua-
tion as part of SemEval-2016. The metrics corre-
spond to the structural analysis and the comparison
against the Gold Standard effectuated by Bordea et
al. (2016). The best results among all the systems
appear in a bold font (note that Euclidean 5 and Co-
sine 5 have been excluded as they were not submit-
ted on time).

3.1 Results

Table 1 shows the structural analysis of our sys-
tem and the corresponding results when compared
to Gold Standard. We were only able to submit the
first system (Euclidean 10), and we had to exclude
the food domains due to time limitations. However,
we will also present here metrics beyond the offi-
cial system submission, i.e, Euclidean 5 and Cosine
5 covering all domains provided on the test data.

The hyphen (-) is used in cases when the number
of cycles could not be computed due to hardware
limitations. This outcome should be interpreted as
negative, as the presence of cycles goes against Di-
rected Acyclic Graph (DAG) definition.

As per the structural analysis, the main goal is to
evaluate the number of correct nodes and edges in
comparison with the Gold Standard. Thus, the quan-
tifying metrics in the left block (|V| ... i.n.) cannot
really be considered aside of the Golden Standard
evaluation. Therefore, in this section we will mainly
focus on the qualifying metrics instead of the quan-
tifying ones.

We observe that, likely, due to the restrictions im-
posed in our algorithm not allowing hypernym can-
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Euclidean 10 |V| |E| #c.c cycles i.n. #VC %VC :VN #EC %EC :EN

Enviro Eu. 312 456 58 347 176 221 0.8467 0.2917 72 0.2758 1.4713
Science 596 1656 99 - 409 422 0.9336 0.2907 163 0.3505 3.2107
Science Eu. 97 218 13 269 72 83 0.6620 0.1443 29 0.2339 1.5242
Science WN 251 929 9 - 195 241 0.6513 0.0398 163 0.3602 1.6947

Euclidean 5 |V| |E| #c.c cycles i.n. #VC %VC :VN #EC %EC :EN

Enviro Eu. 329 944 58 310 192 221 0.8467 0.3283 134 0.5134 3.1034
Science 594 1366 94 - 396 417 0.9226 0.2980 132 0.2839 2.6538
Science Eu. 98 212 13 239 72 83 0.6640 0.1531 26 0.2097 1.5000
Science WN 246 748 9 1175180 188 236 0.6378 0.0406 127 0.2810 0.1374

Cosine 5 |V| |E| #c.c cycles i.n. #VC %VC :VN #EC %EC :EN

Enviro Eu. 246 294 48 71 136 177 0.6781 0.2804 56 0.2145 0.9118
Food 909 888 206 84 460 679 0.4383 0.2530 190 0.1197 0.4398
Food WN 983 1160 181 157 520 813 0.5471 0.1729 332 0.2106 0.5253
Science 403 835 45 1173 281 316 0.6991 0.2159 118 0.2538 1.5419
Science Eu. 76 106 14 13 46 63 0.5040 0.1710 22 0.1774 0.6774
Science WN 200 353 16 89 137 190 0.5135 0,0500 99 0.2190 0.5619

Table 1: Official Evaluation metrics for Euclidean measure top 10, 5 and Cosine measure 5 with substring
inclusion. Number of nodes and edges |V|), |E|, connected components (c.c.), cycles, intermediate nodes
(i.n.), number of vertices, vertices coverage and vertex novelty (#VC, %VC, VN), number of edges, edge
coverage and edge novelty (#EC, %EC and EN)

Euclidean 10 Euclidean 5 Cosine 5

Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Enviro Eu. 0.1579 0.2759 0.2008 0.1419 0.5134 0.2224 0.1905 0.2145 0.2018
Food N/A N/A N/A N/A N/A N/A 0.2140 0.1197 0.1535
Food WN N/A N/A N/A N/A N/A N/A 0.2862 0.2106 0.2427
Science 0.0984 0.3505 0.1537 0.0967 0.2839 0.0144 0.1413 0.2537 0.1815
Science Eu. 0.1330 0.2339 0.1695 0.1226 0.2097 0.1548 0.2075 0.1774 0.1913
Science WN 0.1754 0.3606 0.2360 0.1698 0.2810 0.2117 0.2804 0.2190 0.2460

AVERAGE 0.1412 0.3052 0.1900 0.1327 0.3220 0.1508 0.2200 0.1100 0.2028

Table 2: Precision, Recall and F-Score for Euclidean Distance 10, 5 and Cosine 5

didates out of the test list, there are no significant
differences between Euclidean top 10 and 5.

We also note that the number of cycles was con-
siderably higher on the euclidean approaches, in
fact, exceeding the computer memory capacities for
some domains, namely, Science, Science WordNet
(see the surprisingly high figure for Euclidean 5,
Science WN). On the other hand, unlike our ini-
tial assumptions, the cosine approach did not per-
form much better than the Euclidean ones. Our sys-
tem obtained comparable recall values with the other
systems, at the expenses, though, of the precision.
Therefore, the results achieved by our systems are in
general modest, especially taking into consideration
that our algorithm also included a substring inclu-
sion module (as described in section 2.5).

3.2 Conclusion and Discussion

Although there is still room for improvement in our
system, we conclude that the diversity involved in
the complex hypernym-hyponym relations cannot
easily be captured by a simple vector offset mean.
As direction for future work, it might be worth con-
sidering domain specific vectors as well as incre-
menting the number of training pairs for the vector
offset mean.

Our system ranked second on connectivity (c.c.)
and categorisation (i.i.) for the English taxonomy
construction, and fifth on the overall ranking (see
Bordea et al. (2016) for further details on the evalu-
ation metrics).
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