
Proceedings of SemEval-2016, pages 1116–1123,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

KeLP at SemEval-2016 Task 3:
Learning Semantic Relations between Questions and Answers

Simone Filice1, Danilo Croce2,
Alessandro Moschitti3 and Roberto Basili2

1 DICII, University of Roma, Tor Vergata
2 DII, University of Roma, Tor Vergata

3 ALT, Qatar Computing Research Institute, HBKU
{filice,croce,basili}@info.uniroma2.it

amoschitti@qf.org.qa

Abstract

This paper describes the KeLP system par-
ticipating in the SemEval-2016 Community
Question Answering (cQA) task. The chal-
lenge tasks are modeled as binary classifi-
cation problems: kernel-based classifiers are
trained on the SemEval datasets and their
scores are used to sort the instances and pro-
duce the final ranking. All classifiers and
kernels have been implemented within the
Kernel-based Learning Platform called KeLP.
Our primary submission ranked first in Sub-
task A, third in Subtask B and second in Sub-
task C. These ranks are based on MAP, which
is the referring challenge system score. Our
approach outperforms all the other systems
with respect to all the other challenge metrics.

1 Introduction
This paper describes the KeLP system participating
in the SemEval-2016 cQA challenge. In this task,
participants are asked to automatically provide good
answers in a cQA setting (Nakov et al., 2016). In
particular, the main task is: given a new question
and a large collection of question-comment threads
created by a user community, rank the most useful
comments on the top.

We participated in all English subtasks: the
datasets were extracted from Qatar Living1, a web
forum where people pose questions about multiple
aspects of their daily life in Qatar. Three subtasks
are associated with the English challenge:
Subtask A: Given a question q and its first 10
comments c1, . . . , c10 in its question thread, re-rank

1http://www.qatarliving.com/forum

these 10 comments according to their relevance with
respect to the question, i.e., the good comments have
to be ranked above potential or bad comments.
Subtask B: Given a new question o and the set of the
first 10 related questions q1, . . . , q10 (retrieved by a
search engine), re-rank the related questions accord-
ing to their similarity with respect to o, i.e., the per-
fect match and relevant questions should be ranked
above the irrelevant ones.
Subtask C: Given a new question o, and the set of
the first 10 related questions, q1, . . . , q10, (retrieved
by a search engine), each one associated with its first
10 comments, cq1, . . . , c

q
10, appearing in its thread,

re-rank the 100 comments according to their rele-
vance with respect to o, i.e., the good comments
are to be ranked above potential or bad comments.

All the above subtasks have been modeled as bi-
nary classification problems: kernel-based classi-
fiers are trained and the classification score is used
to sort the instances and produce the final ranking.
All classifiers and kernels have been implemented
within the Kernel-based Learning Platform2 (KeLP)
(Filice et al., 2015b), thus determining the team’s
name. The proposed solution provides three main
contributions: (i) we employ the approach proposed
in (Severyn and Moschitti, 2012), which applies tree
kernels directly to question and answer texts mod-
eled as pairs of linked syntactic trees. We further
improve the methods using the kernels proposed in
(Filice et al., 2015c). (ii) we extended the features
developed in (Barrón-Cedeño et al., 2015), by adopt-
ing several features (also derived from Word Em-
beddings (Mikolov et al., 2013)). (iii) we propose

2https://github.com/SAG-KeLP

1116



a stacking schema so that classifiers for Subtask B
and C exploit the inferences obtained in the previ-
ous subtasks.

Our primary submission ranked first in Subtask A,
third in Subtask B and second in Subtask C, demon-
strating that the proposed method is very accurate
and adaptable to different learning problems. These
ranks are based on the MAP metric. However, if we
consider the other metrics also adopted in the chal-
lenge (e.g., F1 or Accuracy) our approach outper-
forms all the remaining systems.

In the remaining, Section 2 introduces the sys-
tem, Sections 3 and 4 describe the feature and kernel
modeling, while Section 5 reports official results.

2 The KeLP system: an overview
In the three subtasks, the underlying problem is to
understand if two texts are related. Thus, in sub-
tasks A and C, each pair, (question, comment), gen-
erates a training instance for a binary Support Vec-
tor Machine (SVM) (Chang and Lin, 2011), where
the positive label is associated with a good comment
and the negative label includes the potential and
bad comments. In Subtask B, we evaluated the sim-
ilarity between two questions. Each pair gener-
ates a training instance for SVM, where the posi-
tive label is associated with the perfect match or rele-
vant classes and the negative label is associated with
the irrelevant ; the resulting classification score is
used to rank the question pairs.

In KeLP, the SVM learning algorithm operates on
a linear combination of kernel functions, each one
applied over a specific representation of the targeted
examples: (i) feature vectors containing linguistic
similarities between the texts in a pair; (ii) shallow
syntactic trees that encode the lexical and morpho-
syntactic information shared between text pairs;
(iii) feature vectors capturing task-specific informa-
tion; (iv) in subtasks B and C, feature vectors en-
coding stacked information derived by applying the
classifiers obtained in the previous subtasks.

While (i) and (ii) use linguistic information that
can be applied in any semantic processing task de-
fined over text pairs (see Sec. 3), the information de-
rived via (iii) and (iv) is task specific (see Sec. 4).

3 Learning from Text Pairs with Kernels
The problem of deciding whether two questions are
related or whether a comment answers a question,

can be somehow connected to the problems of rec-
ognizing textual entailment, and paraphrase identi-
fication. From a machine learning perspective, in
these tasks, an example is a pair of texts, instead of
a single entity. Conventional approaches convert in-
put text pairs into feature vectors where each feature
represents a score corresponding to a certain type
of shared information or similarity between the ele-
ments within a pair. These intra-pair similarity ap-
proaches cannot capture complex relational pattern
between the elements in the pair, such as a rewriting
rule characterizing a valid paraphrase, or a question-
answer pattern. Such information might be man-
ually encoded into specific features, but it would
require a complex feature engineering and a deep
knowledge of the linguistic involved phenomena.

To automatize relational learning between pairs of
texts, e.g., in case of QA, one of the early works
is (Moschitti et al., 2007; Moschitti, 2008). This
approach was improved in several subsequent re-
searches (Severyn and Moschitti, 2012; Severyn et
al., 2013a; Severyn et al., 2013b; Severyn and Mos-
chitti, 2013; Tymoshenko et al., 2014; Tymoshenko
and Moschitti, 2015), exploiting relational tags and
linked open data. In particular, in (Filice et al.,
2015c), we propose new inter-pair methods to di-
rectly employ text pairs into a kernel-based learning
framework. In the proposed approach, we integrate
the information derived from simple intra-pair simi-
larity functions (Section 3.1) and from the structural
analogies (Section 3.2).

3.1 Intra-pair similarities

In subtasks A and C, a good comment is likely to
share similar terms with the question. In subtask
B a question that is relevant to another probably
shows common words. Following this intuition,
given a text pair (either question/comment or ques-
tion/question), we define a feature vector whose di-
mensions reflect the following similarity metrics:

• Cosine similarity, Jaccard coefficient (Jaccard,
1901) and containment measure (Broder, 1997)
of n-grams of word lemmas. It captures lexi-
cal information and word ordering information
(n = 1, 2, 3, 4 was used in all experiments).

• Cosine similarity of n-grams of part-of-speech
tags. It considers a shallow syntactic similarity
(n = 1, 2, 3, 4 was used in all experiments).

1117



S

·
·
?

NP

NNP

Qatar

PP

IN

in

ADVP

RB

here

REL-NP

NN

beach

REL-JJS

REL-best

DT

the

VP

VBZ

is

NP

WDT

which

S

REL-NP

NN

option

REL-JJS

REL-best

DT

the

VP

VBZ

is

NP

NNP

resort

NNP

Sealine

Figure 1: Structural Representation of a question-answer pair.

• Partial tree kernel (Moschitti, 2006) between
the parse tree of the sentences. It performs a
deep syntactic comparison.

• Longest common substring measure (Gusfield,
1997) determines the length of the longest con-
tiguous sequence of characters shared by two
text segments.

• Longest common subsequence measure (Alli-
son and Dix, 1986) drops the contiguity re-
quirement of the previous measure and al-
lows to detect similarity in case of word inser-
tions/deletions.

• Greedy String Tiling (Wise, 1996) provides a
similarity between two sentences by counting
the number of shuffles in their subparts.

• Cosine similarity between additive representa-
tions of word embeddings generated by apply-
ing word2vec (Mikolov et al., 2013) to the en-
tire Qatar Living corpus from SemEval 20153.
We derived 250 dimensional vectors for 37,000
words by applying the settings min-count=50,
window=5, iter=10 and negative=10. Five fea-
tures are derived considering (i) only nouns,
(ii) only adjectives, (iii) only verbs, (iv) only
adverbs and (v) all the above words.

These metrics are computed in all the subtasks be-
tween the two elements within a pair, i.e., q and ci
for subtask A, q and o for subtask B, o and ci for
subtask C. In addition, in subtasks B and C, the sim-
ilarity metrics (except the Partial Tree Kernel simi-
larity) are computed between o and the entire thread
of q, concatenating q with its answers. Similarities
between q and o are also employed in subtask C.

3.2 Inter-pair kernel methods

The kernels we proposed in (Filice et al., 2015c)
can be directly applied to Subtask B and to subtasks
A and C for learning question/question and ques-
tion/answer similarities, respectively. As shown in

3http://alt.qcri.org/semeval2015/task3

Figure 1, a pair of sentences is represented as pair
of their corresponding shallow parse trees, where
common or semantically similar lexical nodes are
linked using a tagging strategy (which is propagated
to their upper constituents). This method discrimi-
nates aligned sub-fragments from non-aligned ones,
allowing the learning algorithm to capture relational
patterns, e.g., the REL-best beach and the REL-
best option. Thus, given two pairs of sentences
pa = 〈a1, a2〉 and pb = 〈b1, b2〉, some tree kernel
combinations can be defined:

TK+(pa, pb) = TK(a1, b1) + TK(a2, b2)

All×TK(pa, pb) = TK(a1, b1)× TK(a2, b2)

+ TK(a1, b2)× TK(a2, b1),

where TK is a generic tree kernel, such as the Par-
tial Tree Kernel (PTK) (Moschitti, 2006), or the
Smoothed Partial Tree Kernel (SPTK) (Croce et al.,
2011). Tree kernels, computing the shared substruc-
tures between parse trees, are effective in evaluating
the syntactic similarity between two texts. The pro-
posed tree kernel combinations extend such reason-
ing to text pairs, and can capture emerging pairwise
patterns. Therefore this method can be effective in
recognizing valid question/answer pairs, or similar
questions, even in those cases in which the two texts
have few words in common that would cause the
failure of any intra-pair approach.

4 Task Specific Features
In this section, we describe features specifically de-
veloped for cQA. A single feature vector is gener-
ated for each of the following group of features.

4.1 Ranking Features
The ten questions related to an original question are
retrieved using a search engine. We use their abso-
lute and relative ranks4 as features for subtasks B

4Some of the results retrieved by the search engine were fil-
tered out, because they were threads with less than 10 com-
ments, or documents out of Qatar Living. Therefore, the threads
in the dataset may have an associated rank higher than 10. The
relative rank maps such absolute values into [1;10].

1118



and C (for the latter the question rank is given to all
the comments within the related question thread).

4.2 Heuristics
We adopt the heuristic features described in (Barrón-
Cedeño et al., 2015), which can be applied to sub-
tasks A and C. In particular forty-four boolean fea-
tures express whether a comment: (i) includes URLs
or emails (2 feats.). (ii) contains the word “yes”,
“sure”, “no”, “can”, “neither”, “okay”, and “sorry”,
as well as symbols ‘?’ and ‘@’ (9 feats.); (iii) starts
with “yes” (1 feat.); (iv) includes a sequence of three
or more repeated characters or a word longer than
fifteen characters (2 feats.); (v) belongs to one of the
categories of the forum (Socializing, Life in Qatar,
etc.) (26 feats.); (vi) has been posted by the same
user who posted the question, such a comment can
include a question (i.e., it contains a question mark),
and acknowledgment (e.g., it contains thank*, ac-
knowl*), or none of them (4 feats.);

An additional feature captures the length of the
comment (as longer —good — comments usually
contain detailed information to answer a question).

4.3 Thread-based features
In cQA, comments in a thread typically reflect an un-
derlying concrete discussion, which contains more
information than in a sequence of independent an-
swers retreived from different documents. For in-
stance, users replicate to each other, ask for further
details, or can tease other users. Therefore, as dis-
cussed in (Barrón-Cedeño et al., 2015), comments
in a common thread are strongly interconnected.
To exploit such thread-level dependencies, we used
some specific features for subtasks A and C. The fol-
lowing notation will be adopted: q is the question
posted by user uq, c is a comment from user uc, in
the comment thread.

The first four features indicate whether c appears
in the proximity of a comment by uq. The assump-
tion is that an acknowledgment or further questions
by uq in the thread could signal a good answer. More
specifically, they test if among the comments fol-
lowing c there is one by uq (i) containing an ac-
knowledgment, (ii) not containing an acknowledg-
ment, (iii) containing a question, and, (iv) if among
the comments preceding c there is one by uq con-
taining a question. These four features depend on
the distance k, in terms of the number of comments,

between c and the closest comment by uq:

f(c) =

{
1.1− 0.1k
0 if no comments by uq exist,

that is, the closer the comment to uq, the higher the
value assigned to this feature. Other features try to
model potential dialogues, which at the end repre-
sent bad comments, by identifying interlacing com-
ments between two users. These dialogue features
are identifying conversation chains:

ui → . . .→ uj → . . .→ ui → . . .→ [uj ]

Comments by other users can appear in between
the nodes of this “pseudo-conversation” chain.
Three features consider whether a comment is at
the beginning, in the middle, or at the end of such
a chain. Three more features are defined when
uj = uq, i.e., the user who asked the question is one
of the participants of these pseudo-conversations.

Another interesting aspect is whether a user ui has
been particularly active in a question thread. One
boolean feature captures whether ui wrote more than
one comment in the current thread. Three more fea-
tures identify the first, the middle and the last com-
ments by ui. One extra feature counts the total num-
ber of comments written by ui. Moreover, it can be
empirically observed that the likelihood of a com-
ment being good decreases with its position in the
thread. Therefore, another real-valued feature was
included: i/10, where i represents the position of
the comment in the thread.

4.4 Stacking classifiers across subtasks
The three subtasks are interconnected: the predic-
tions from a subtask can provide useful information
to carry out the other subtasks. This suggests the use
of a stacking strategy.
Stacking classifiers in Subtask B. If the comments
in the question thread of q are good answers for an
original question o, we can suppose that o and q are
strongly related. In Subtask B, we thus exploit the
model trained on Subtask A. In particular, given the
original question o, and the related question q with
its comments, c1 . . . cn, we use the model from Sub-
task A to classify the question/comment pairs, 〈q, ci〉
and 〈o, ci〉, obtaining respectively the scores pq,ci
and po,ci . We consider these scores as distributions
and derive the following features: (i) mean squared

1119



error (MSE) =
∑

i(pq,ci − po,ci)
2; (ii) Pearson cor-

relation coefficient between the pq,c1 , . . . , pq,cn and
the po,c1 , . . . , po,cn ; (iii) ten features correspond-
ing to the sorted differences between pq,ci and
po,ci ; (iv) agreement percentage, i.e., percentage of
times sign(pq,ci) = sign(po,ci); (v) max score =
maxi(po,ci); (vi) mean score = 1

n

∑
i po,ci ; (vii) pos-

itive percentage, i.e., percentage of times po,ci > 0;
(viii) normalized positive percentage, i.e., percent-
age of times po,ci > 0 when pq,ci > 0.
Stacking classifiers in Subtask C. A
good comment for a question q should be also
good for an original question o if q and o are
strongly related, i.e., q is relevant or a perfect
match to o. We thus developed a stacking strategy
for Subtask C that uses the following scores in the
classification step, w.r.t. an original question o and
the comment ci from the thread of q:

• pq,ci , which is the score of the pair 〈q, ci〉 pro-
vided by the model trained on Subtask A;
• po,ci , which is the score of the pair 〈o, ci〉 pro-

vided by the model trained on Subtask A;
• po,q, which is the score of the pair 〈o, q〉 pro-

vided by the model trained on Subtask B.

Starting from these scores, we built the following
features: (i) values and signs of pq,ci , po,ci and po,q
(6 feats); (ii) a boolean feature indicating whether
both pq,ci and po,q are positive; (iii) min value =
min(pq,ci , po,q); (iv) max value = max(pq,ci , po,q);
(v) average value = 1

2(pq,ci + po,q).

5 Submission and Results
We chose parameters using a 10 fold cross valida-
tion (cv) on the official train and development sets5.
In Subtask B, some features depend on the scores
provided on Subtask A, while in Subtask C the de-
pendency is from both Subtasks A and B. Such
scores are generated with the 10-fold cv. We used
the OpenNLP pipeline for lemmatization, POS tag-
ging and chunking to generate the tree representa-
tions described in Section 3.2. All the kernel-based
learning models are implemented in KeLP (Filice
et al., 2015b). For all the tasks, we used the C-
SVM learning algorithm (Chang and Lin, 2011).
The MAP@10 was the official metric. In addition,
results are also reported in Average Recall (AvgR),

5We merged the official Train1, Train2 and Dev sets.

MAP AvgR MRR P R F1 Acc

CV
IR 57.70 72.75 66.82 - - - -

KeLP 74.76 88.24 80.90 69.64 61.51 65.32 76.02

test
IR 59.53 72.60 67.83 - - - -

KeLP 79.19 88.82 86.42 76.96 55.30 64.36 75.11

Table 1: Results on Subtask A on a 10 fold CV on the training

and development and on the official test set. IR is the baseline

system based on the search engine results

Mean Reciprocal Rank (MRR), Precision (P), Recall
(R), F1, and Accuracy (Acc).

5.1 Subtask A

Model: The learning model operates on question-
comment pairs p = 〈q, c〉. The kernel is
PTK+(pa, pb) + LKA(pa, pb). Such kernel lin-
early combines PTK+(pa, pb) = PTK(q1, q2) +
PTK(c1, c2) (see Section 3.2) with a linear ker-
nel LKA that operates on feature vectors including:
(i) the similarity metrics between q and c described
in Section 3.1; (ii) the heuristic features introduced
in Section 4.2; (iii) the thread-based features dis-
cussed in Section 4.3. PTK uses the default param-
eters (Moschitti, 2006), while the best SVM regular-
ization parameter we estimated during cv is C = 1.
Results: Table 1 reports the outcome on Subtask A.
The good results on the 10 fold cross validations are
confirmed on the official test set: the model is very
accurate and achieved the first position among 12
systems, with the best MAP. In this task the data dis-
tribution among classes is quite balanced and the ac-
curacy is also a good performance indicator. In this
case we achieved the second position.

5.2 Subtask B

Model: The proposed system operates on question-
question pairs p = 〈o, q〉. The kernel is
All×SPTK(pa, pb)+LKB(pa, pb), by adopting the ker-
nels defined in Section 3.2. This task is close to
Paraphrase Identification, which is inherently sym-
metric. Therefore, in our primary submission, we
adopted a tree kernel combination that exploits such
characteristic, performing cross comparisons be-
tween the questions within pairs: All×SPTK(pa, pb) =
SPTK(o1, o2) × SPTK(q1, q2) + SPTK(o1, q2) ×
SPTK(q1, o2). Such combination is based on the
SPTK with standard parameters and a word simi-
larity derived from the word embeddings described
in Section 3.1. LKB is a linear kernel that oper-

1120



MAP AvgR MRR P R F1 Acc

CV

IR 66.27 83.14 73.87 - - - -
KeLP 70.37 87.50 77.44 71.47 75.71 73.53 77.69
KC1 69.97 87.22 76.71 70.19 75.87 72.92 76.93
KC2 70.06 87.26 76.92 68.96 75.02 71.86 75.95

test

IR 74.75 88.30 83.79 - - - -
KeLP 75.83 91.02 82.71 66.79 75.97 71.08 79.43
KC1 76.28 91.33 82.71 63.83 77.25 69.90 77.86
KC2 76.27 91.44 84.10 64.06 77.25 70.04 78.00

Table 2: Results on Subtask B on a 10 fold Cross-Validation

(CV) and on the official test set. KeLP is our primary submis-

sion, while KC1 and KC2 are the contrastive ones. IR is the

baseline system based on the search engine results

ates on feature vectors including: (i) the similarity
metrics between o and q, and between o and the
entire answer thread of q, as described in Section
3.1; (ii) ranking features discussed in Section 4.1;
(iii) the features derived from the Subtask A scores
(see Section 4.4). The best SVM regularization pa-
rameter estimated during the tuning stage is C = 5.

We made two additional submissions in which
the model has minor variations: in the Contrastive
1 (KC1), we substituted All×SPTK with SPTK+

whereas in the contrastive 2 (KC2) we do not include
the features derived from the Subtask A scores.
Results: Table 2 shows the results on Subtask B.
On the official test set, our primary submission
achieved the third position w.r.t. MAP among 11
systems. Differently from what observed in the tun-
ing stage, on the official test set the contrastive sys-
tems achieve a higher MAP and would have ranked
second. The primary system achieves the highest F1

and accuracy on both tuning and test stages. Con-
sidering these two metrics, our primary submission
is overall the best model.

5.3 Subtask C
Model: The learning model operates on the
triplet, 〈o, q, c〉, using the kernel, PTK+(pa, pb) +
LKC(ta, tb), where PTK+(pa, pb) = PTK(o1, o2) +
PTK(c1, c2) (see Section 3.2) and LKC is a linear
kernel operating on feature vectors, which include:
(i) the similarity metrics between o and c, between
o and q, and between o and the entire thread of q,
as described in Section 3.1; (ii) the heuristic fea-
tures introduced in Section 4.2; (iii) the thread-based
features discussed in 4.3; (iv) the ranking features
(see Section 4.1); (v) the features derived from the
scores of subtasks A and B, described in Section 4.4.

MAP AvgR MRR P R F1 Acc

dev

IR 30.65 34.55 35.97 - - - -
KeLP 38.57 44.09 41.28 21.55 64.64 32.32 81.32
KC1 38.00 43.74 41.18 21.97 64.64 32.79 81.72
KC2 37.22 42.63 42.80 22.30 71.30 33.98 80.88

test

IR 40.36 45.97 45.83 - - - -
KeLP 52.95 59.27 59.23 33.63 64.53 44.21 84.79
KC1 52.95 59.34 58.06 34.08 65.29 44.78 84.96
KC2 55.58 63.36 61.19 32.21 70.18 44.16 83.41

Table 3: Results on Subtask C on the official development set,

and on the official test set. KeLP is our primary submission,

while KC1 and KC2 are the contrastive ones. IR is the baseline

system based on the search engine results

PTK uses the default parameters. The subtask data is
rather imbalanced, as the number of negative exam-
ples is about 10 times the positive ones. We took this
into account by setting the regularization parameter
for the positive class, Cp = #negatives

#positives C, as in (Morik
et al., 1999). The best SVM regularization parame-
ter estimated during the tuning stage is C = 5. We
also submitted a Contrastive 1 (KC1) with PTK+ us-
ing All×PTK and a Constrastive 2 (KC2) identical as
KC1 but with C set to 2.
Results: Table 3 shows the results for Subtask C.
The organizers reported that the training labels were
affected by noise, while the development labels were
double-checked. Therefore, we decided to perform
parameter tuning applying cv to the development set
only. Our primary submission achieved the second
highest MAP, while our Contrastive 2 is the best re-
sult. It should be also noted that the F1 our system is
the best among 10 primary submissions. In this sub-
task, accuracy is not a reliable measure, as the data
is significantly imbalanced.

In a future work we would like to change the
learning paradigm from classification, e.g., demon-
strated in (Filice et al., 2015a) for several NLP appli-
cations, to a learning to rank problem. This can be
enabled by the preference kernel (Severyn and Mos-
chitti, 2012) and should have a positive impact on
the MAP metric since the SVM classification algo-
rithm we used optimizes accuracy.

Acknowledgements
This work has been partially supported by the EC
project CogNet, 671625 (H2020-ICT-2014-2, Re-
search and Innovation action), the PROGRESS-IT
project (FILAS-CR-2011-1089) and by an IBM Fac-
ulty Award.

1121



References
Lloyd Allison and Trevor I. Dix. 1986. A bit-string

longest-common-subsequence algorithm. Inf. Pro-
cess. Lett., 23(6):305–310, December.

Alberto Barrón-Cedeño, Simone Filice, Giovanni
Da San Martino, Shafiq Joty, Lluı́s Màrquez, Preslav
Nakov, and Alessandro Moschitti. 2015. Thread-level
information for comment classification in community
question answering. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 687–693, Beijing, China, July.

A. Broder. 1997. On the resemblance and containment
of documents. In Proceedings of the Compression and
Complexity of Sequences 1997, SEQUENCES ’97,
pages 21–, Washington, DC, USA. IEEE Computer
Society.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27.

Danilo Croce, Alessandro Moschitti, and Roberto Basili.
2011. Structured lexical similarity via convolution
kernels on dependency trees. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’11, pages 1034–1046,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Simone Filice, Giuseppe Castellucci, Danilo Croce, and
Roberto Basili. 2015a. Kelp: a kernel-based learn-
ing platform for natural language processing. In Pro-
ceedings of ACL-IJCNLP 2015 System Demonstra-
tions, pages 19–24, Beijing, China, July. Association
for Computational Linguistics and The Asian Federa-
tion of Natural Language Processing.

Simone Filice, Giuseppe Castellucci, Danilo Croce, Gio-
vanni Da San Martino, Alessandro Moschitti, and
Roberto Basili. 2015b. KeLP: a Kernel-based Learn-
ing Platform in java. In The workshop on Ma-
chine Learning Open Source Software (MLOSS): Open
Ecosystems, Lille, France, July. International Confer-
ence of Machine Learning.

Simone Filice, Giovanni Da San Martino, and Alessandro
Moschitti. 2015c. Structural representations for learn-
ing relations between pairs of texts. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), pages 1003–1013, Beijing, China,
July.

Dan Gusfield. 1997. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational Bi-

ology. Cambridge University Press, New York, NY,
USA.

Paul Jaccard. 1901. Étude comparative de la distribution
florale dans une portion des Alpes et des Jura. Bul-
letin del la Société Vaudoise des Sciences Naturelles,
37:547–579.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Katharina Morik, Peter Brockhausen, and Thorsten
Joachims. 1999. Combining statistical learning with a
knowledge-based approach - a case study in intensive
care monitoring. In ICML, pages 268–277, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Alessandro Moschitti, Silvia Quarteroni, Roberto Basili,
and Suresh Manandhar. 2007. Exploiting syntactic
and shallow semantic kernels for question answer clas-
sification. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, pages
776–783, Prague, Czech Republic, June. Association
for Computational Linguistics.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees. In
ECML, pages 318–329, Berlin, Germany, September.
Machine Learning: ECML 2006, 17th European Con-
ference on Machine Learning, Proceedings.

Alessandro Moschitti. 2008. Kernel Methods, Syn-
tax and Semantics for Relational Text Categorization.
In Proceeding of ACM 17th Conf. on Information
and Knowledge Management (CIKM’08), Napa Val-
ley, CA, USA.

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim Frei-
hat, Jim Glass, and Bilal Randeree. 2016. SemEval-
2016 task 3: Community question answering. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation, SemEval ’16, San Diego, Califor-
nia, June. Association for Computational Linguistics.

Aliaksei Severyn and Alessandro Moschitti. 2012.
Structural relationships for large-scale learning of an-
swer re-ranking. In Proceedings of the 35th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’12, pages
741–750, New York, NY, USA. ACM.

Aliaksei Severyn and Alessandro Moschitti. 2013. Au-
tomatic feature engineering for answer selection and
extraction. In EMNLP, pages 458–467. ACL.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013a. Building structures from classi-
fiers for passage reranking. In Proceedings of the
22nd ACM international Conference on Information
and Knowledge Management, CIKM ’13, pages 969–
978, New York, NY, USA. ACM.

1122



Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013b. Learning adaptable patterns for
passage reranking. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning, pages 75–83, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Kateryna Tymoshenko and Alessandro Moschitti. 2015.
Assessing the impact of syntactic and semantic struc-
tures for answer passages reranking. In Proceedings
of the 24th ACM International on Conference on In-
formation and Knowledge Management, CIKM ’15,
pages 1451–1460, New York, NY, USA. ACM.

Kateryna Tymoshenko, Alessandro Moschitti, and Ali-
aksei Severyn, 2014. Encoding semantic resources
in syntactic structures for passage reranking, pages
664–672. Association for Computational Linguistics
(ACL), 1.

Michael J. Wise. 1996. Yap3: Improved detection of
similarities in computer program and other texts. In
Proceedings of the Twenty-seventh SIGCSE Technical
Symposium on Computer Science Education, SIGCSE
’96, pages 130–134, New York, NY, USA. ACM.

1123


