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Abstract

Clinical TempEval 2016 evaluated temporal
information extraction systems on the clinical
domain. Nine sub-tasks were included, cover-
ing problems in time expression identification,
event expression identification and temporal re-
lation identification. Participant systems were
trained and evaluated on a corpus of clinical
and pathology notes from the Mayo Clinic, an-
notated with an extension of TimeML for the
clinical domain. 14 teams submitted a total of
40 system runs, with the best systems achieving
near-human performance on identifying events
and times. On identifying temporal relations,
there was a gap between the best systems and
human performance, but the gap was less than
half the gap of Clinical TempEval 2015.

1 Introduction

The TempEval shared tasks have, since 2007, pro-
vided a focus for research on temporal information
extraction (Verhagen et al., 2007; Verhagen et al.,
2010; UzZaman et al., 2013). Participant systems
compete to identify critical components of the time-
line of a text, including time expressions, event ex-
pressions and temporal relations. However, the Temp-
Eval campaigns to date have focused primarily on
in-document timelines derived from news articles.
In recent years, the community has moved toward
testing such information extraction systems on clin-
ical data (Sun et al., 2013; Bethard et al., 2015) to

broaden our understanding of the language of time
beyond newswire expressions and structure.

Clinical TempEval focuses on discrete, well-
defined tasks which allow rapid, reliable and repeat-
able evaluation. Participating systems are expected
to take as input raw text, for example:

April 23, 2014: The patient did not have
any postoperative bleeding so we’ll resume
chemotherapy with a larger bolus on Friday
even if there is slight nausea.

The systems are then expected to output annotations
over the text, for example, those shown in Figure 1.
That is, the systems should identify the time expres-
sions, event expressions, attributes of those expres-
sions, and temporal relations between them.

Clinical TempEval 2016 addressed one of the ma-
jor challenges in Clinical TempEval 2015: data dis-
tribution. Because Clinical TempEval is based on
real patient notes from the Mayo Clinic, participants
go through a lengthy authorization process involving
a data use agreement and an interview. For Clini-
cal TempEval 2016, we streamlined this process and
were able to authorize data access for more than twice
as many participants as Clinical TempEval 2015. And
since all the training and evaluation data distributed
for Clinical TempEval 2015 was used as the training
data for Clinical TempEval 2016, participants had
more than a year to work on their systems. The result
was that four times as many teams participated.
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Figure 1: Example Clinical TempEval annotations

2 Data

The Clinical TempEval corpus was based on a set of
600 clinical notes and pathology reports from cancer
patients at the Mayo Clinic. These notes were man-
ually de-identified by the Mayo Clinic to replace
names, locations, etc. with generic placeholders,
but time expressions were not altered. The notes
were then manually annotated by the THYME project
(thyme.healthnlp.org) using an extension of ISO-
TimeML for the annotation of times, events and tem-
poral relations in clinical notes (Styler et al., 2014b).
This extension includes additions such as new time
expression types (e.g., PREPOSTEXP for expressions
like postoperative), new EVENT attributes (e.g., DE-
GREE=LITTLE for expressions like slight nausea),
and an increased focus on temporal relations of type
CONTAINS (a.k.a. INCLUDES).

The annotation procedure was as follows:

1. Annotators identified time and event expres-
sions, along with their attributes

2. Adjudicators revised and finalized the time and
event expressions and their attributes

3. Annotators identified temporal relations be-
tween pairs of events and events and times

4. Adjudicators revised and finalized the temporal
relations

More details on the corpus annotation process are
documented in a separate article (Styler et al., 2014a).

Because the data contained incompletely de-

identified clinical data (the time expressions were
retained), participants were required to sign a data
use agreement with the Mayo Clinic to obtain the
raw text of the clinical notes and pathology reports.1

The event, time and temporal relation annotations
were distributed separately from the text, in an open
source repository2 using the Anafora standoff format
(Chen and Styler, 2013).

The corpus was split into three portions: Train
(50%), Dev (25%) and Test (25%). Patients were
sorted by patient number (an integer arbitrarily as-
signed by the de-identification process) and strati-
fied across these splits. The Train and Dev portions
were released to participants for training and tun-
ing their systems. The Test portion was reserved
for evaluation of the systems. Table 1 shows the
number of documents, event expressions (EVENT an-
notations), time expressions (TIMEX3 annotations)
and narrative container relations (TLINK annotations
with TYPE=CONTAINS attributes) in the Train, Dev,
and Test portions of the corpus.

3 Tasks

Nine tasks were included (the same as those of Clini-
cal TempEval 2015), grouped into three categories:

• Identifying time expressions (TIMEX3 annota-
tions in the THYME corpus) consisting of the

1Details on the process: http://thyme.healthnlp.org/
2https://github.com/stylerw/thymedata



Train Dev Test
Documents 293 147 151
TIMEX3s 3833 2078 1952
EVENTs 38890 20974 18990
TYPE=CONTAINS TLINKs 11176 6173 5894
Table 1: Number of documents, event expressions, time expres-

sions and narrative container relations in Train, Dev, and Test

portions of the THYME data. Both Train and Dev were released

as part of Clinical TempEval 2015.

following components:

– The span (character offsets) of the expres-
sion in the text

– Class: DATE, TIME, DURATION, QUAN-
TIFIER, PREPOSTEXP or SET

• Identifying event expressions (EVENT annota-
tions in the THYME corpus) consisting of the
following components:

– The span (character offsets) of the expres-
sion in the text

– Contextual Modality: ACTUAL, HYPO-
THETICAL, HEDGED or GENERIC

– Degree: MOST, LITTLE or N/A
– Polarity: POS or NEG

– Type: ASPECTUAL, EVIDENTIAL or N/A

• Identifying temporal relations between events
and times, focusing on the following types:

– Relations between events and the doc-
ument creation time (BEFORE, OVER-
LAP, BEFORE-OVERLAP or AFTER), rep-
resented by DOCTIMEREL annotations.

– Narrative container relations (Pustejovsky
and Stubbs, 2011), which indicate that an
event or time is temporally contained in
(i.e., occurred during) another event or
time, represented by TLINK annotations
with TYPE=CONTAINS.

The evaluation was run in two phases:

1. Systems were provided access only to the raw
text, and were asked to identify time expres-
sions, event expressions and temporal relations

2. Systems were provided access to the raw text
and the manual event and time annotations, and
were asked to identify only temporal relations

4 Evaluation Metrics

All of the tasks were evaluated using the standard
metrics of precision (P ), recall (R) and F1:

P =
|S ∩H|
|S|

R =
|S ∩H|
|H|

F1 =
2 · P ·R
P +R

where S is the set of items predicted by the system
and H is the set of items annotated by the humans.
Applying these metrics only requires a definition of
what is considered an “item” for each task.

• For evaluating the spans of event expressions
or time expressions, items were tuples of (be-
gin, end) character offsets. Thus, systems only
received credit for identifying events and times
with exactly the same character offsets as the
manually annotated ones.
• For evaluating the attributes of event expres-

sions or time expressions – Class, Contextual
Modality, Degree, Polarity and Type – items
were tuples of (begin, end, value) where begin
and end are character offsets and value is the
value that was given to the relevant attribute.
Thus, systems only received credit for an event
(or time) attribute if they both found an event
(or time) with the correct character offsets and
then assigned the correct value for that attribute.
• For relations between events and the document

creation time, items were tuples of (begin, end,
value), just as if it were an event attribute. Thus,
systems only received credit if they found a
correct event and assigned the correct relation
(BEFORE, OVERLAP, BEFORE-OVERLAP or
AFTER) between that event and the document
creation time. In the second phase of the evalua-
tion, when manual event annotations were pro-
vided as input, only recall (which in this case is
equivalent to standard classification accuracy)
is reported.
• For narrative container relations, items were tu-

ples of ((begin1, end1), (begin2, end2)), where
the begins and ends corresponded to the char-
acter offsets of the events or times participating
in the relation. Thus, systems only received
credit for a narrative container relation if they
found both events/times and correctly assigned
a CONTAINS relation between them.



For event and time attributes, we also measure how
accurately a system predicts the attribute values on
just those events or times that the system predicted.
The goal here is to allow a comparison across systems
for assigning attribute values, even when different
systems produce different numbers of events and
times. This metric is calculated by dividing the F1

on the attribute by the F1 on identifying the spans:

A =
attribute F1

span F1

For narrative container relations, the P and R defi-
nitions were modified to take into account temporal
closure, where additional relations are deterministi-
cally inferred from other relations (e.g., A CONTAINS

B and B CONTAINS C, so A CONTAINS C):

P =
|S ∩ closure(H)|

|S|
R =

|closure(S) ∩H|
|H|

Similar measures were used in prior work (UzZaman
and Allen, 2011) and TempEval 2013 (UzZaman
et al., 2013), following the intuition that precision
should measure the fraction of system-predicted rela-
tions that can be verified from the human annotations
(either the original human annotations or annotations
inferred from those through closure), and that recall
should measure the fraction of human-annotated re-
lations that can be verified from the system output
(either the original system predictions or predictions
inferred from those through closure).

5 Baseline Systems

Two rule-based systems were used as baselines to
compare the participating systems against.

memorize For all tasks but the narrative container
task, a memorization baseline was used.
To train the model, all phrases annotated as ei-
ther events or times in the training data were
collected. All exact character matches for these
phrases in the training data were then examined,
and only phrases that were annotated as events
or times greater than 50% of the time were re-
tained. For each phrase, the most frequently an-
notated type (event or time) and attribute values
for instances of that phrase were determined.
To predict with the model, the raw text of the
test data was searched for all exact character

matches of any of the memorized phrases, pre-
ferring longer phrases when multiple matches
overlapped. Wherever a phrase match was
found, an event or time with the memorized
(most frequent) attribute values was predicted.

closest For the narrative container task, a proximity
baseline was used. Each time expression was
predicted to be a narrative container, containing
only the closest event expression to it in the text.

6 Participating Systems

14 research teams submitted a total of 40 runs:

brundlefly (Fries, 2016) submitted 1 run for phase
1 based on recurrent neural networks, word em-
beddings, and logistic regression, and 1 run for
phase 2 run based on the DeepDive framework
(http://deepdive.stanford.edu).

CDE-IIITH (Chikka, 2016) submitted 2 runs for
each phase, the first based on deep learning mod-
els, and the second based on conditional random
fields and support vector machines.

Cental (Hansart et al., 2016) submitted 1 run for
phase 1, based on conditional random fields and
lexical resources.

GUIR (Cohan et al., 2016) submitted 2 runs for
phase 1 and 1 run for phase 2, based on con-
ditional random fields and logistic regression
with lexical, morphological, syntactic, depen-
dency, and domain specific features, combined
with pattern matching rules.

HITACHI (Sarath P R et al., 2016) submitted 2 runs
for the time portion of phase 1, based on en-
sembles of rule-based and machine learning sys-
tems with lexical, syntactic and morphological
features. The second run included 50% more
training data than the first.

KULeuven-LIIR (Leeuwenberg and Moens, 2016)
submitted 2 runs for phase 2, based on
the cTAKES-temporal machine-learning model
(Lin et al., 2015), with additional features.

LIMSI (Grouin and Moriceau, 2016) submitted 2
runs for each phase, based on conditional ran-
dom fields with lexical, morphological, and
word cluster features, and the rule-based Heidel-
Time (Strötgen and Gertz, 2013).

LIMSI-COT (Tourille et al., 2016) submitted 2 runs
for phase 2, the first based on support vector ma-



chines with lexical, syntactic, structural, and
UMLS features, and the second based on replac-
ing the lexical features with word embeddings.

ULISBOA (Barros et al., 2016) submitted 2 runs
for each phase, based on the IBEnt frame-
work’s support vector machines with lexical
and morphological features (https://github.
com/AndreLamurias/IBEnt), and rule-based
extensions to Stanford CoreNLP (Manning et
al., 2014). The runs differed on how rules were
incorporated for each subtask.

UtahBMI (AAl Abdulsalam et al., 2016) submit-
ted 2 runs for each phase, the first based on
conditional random fields and the second based
on support vector machines. Both runs used
lexical, morphological, syntactic, shape, charac-
ter pattern, character n-gram, section type, and
gazetteer features.

UTA-MLNLP (Li and Huang, 2016) submitted 2
runs for each phase, based on a neural network
with a different window size for each run.

UTHealth (Lee et al., 2016) submitted 2 runs for
each phase, based on linear and structural
(HMM) support vector machines using lexical,
morphological, syntactic, discourse, and word
representation features. The runs differed on the
features included.

VUACLTL (Caselli and Morante, 2016) submitted
2 runs for each phase, based on conditional
random fields with morpho-syntactic, lexical,
UMLS, and DBpedia features. The first run was
a two-step approach to temporal relations, the
second, a one step approach.

7 Human Agreement

We also provide two types of human agreement on
the task, measured with the same evaluation metrics
as the systems:

ann-ann Inter-annotator agreement between the two
independent human annotators who annotated
each document. This is the most commonly re-
ported type of agreement, and often considered
to be an upper bound on system performance.

adj-ann Inter-annotator agreement between the ad-
judicator and the two independent annotators.
This is usually a better bound on system perfor-
mance in adjudicated corpora, since the models

are trained on the adjudicated data, not on the
individual annotator data.

Precision and recall are not reported in these scenar-
ios since they depend on the arbitrary choice of one
annotator as human (H) and the other as system (S).

Note that since temporal relations between events
and the document creation time were annotated at
the same time as the events themselves, agreement
for this task is only reported in phase 1 of the evalu-
ation. Similarly, since narrative container relations
were only annotated after events and times had been
adjudicated, agreement for this task is only reported
in phase 2 of the evaluation.

8 Evaluation Results

8.1 Time Expressions

Table 2 shows results on the time expression tasks.
The UTHealth systems achieved the best results on
almost all time-related tasks. For finding times, while
one system had comparable precision to UTHealth
(0.836 UTHealth vs. 0.840 LIMSI), no system had
competitive recall (0.757 UTHealth vs. 0.714 from
the next best, UtahBMI), and thus the UTHealth sys-
tem consistently outperformed the other systems in
F1. The results were similar for jointly finding times
and assigning them a time class, though a couple
systems (HITACHI, GUIR) did have more accurate
predictions for the time class when scored only on
the times that they were able to find (0.971 UTHealth
vs. 0.975 HITACHI vs. 0.989 GUIR).

Compared to human agreement, the UTHealth and
UtahBMI systems exceeded the inter-annotator agree-
ment on times of 0.731, but even UTHealth’s F1 of
0.795 did not reach the annotator-adjudicator agree-
ment of 0.830, and the results were similar for jointly
finding times and assigning their classes (0.772 vs.
0.807). Nonetheless, these 0.025 and 0.035 gaps be-
tween the top system and the human agreement are
smaller than the 0.051 and 0.038 gaps observed in
Clinical TempEval 2015 (Bethard et al., 2015).

8.2 Event Expressions

Table 3 shows results on the event expression tasks.
Again, UTHealth dominated the field, achieving the
highest score on almost every event-related task.
However, the gap to the second place team was much
smaller for events than it was for times: only a 0.011



span span + class
Team P R F1 P R F1 A
UTHealth-1 0.836 0.757 0.795 0.812 0.735 0.772 0.971
UTHealth-2 0.826 0.758 0.790 0.800 0.734 0.765 0.968
UtahBMI-crf 0.798 0.714 0.754 0.771 0.690 0.729 0.967
UtahBMI-svm 0.810 0.690 0.745 0.792 0.674 0.728 0.977
HITACHI-1 0.781 0.685 0.730 0.759 0.671 0.712 0.975
HITACHI-2 0.781 0.668 0.720 0.758 0.654 0.702 0.975
Cental-crf 0.777 0.564 0.653 0.752 0.545 0.632 0.968
LIMSI-2 0.830 0.518 0.638 0.804 0.503 0.619 0.970
LIMSI-1 0.840 0.510 0.635 0.815 0.495 0.616 0.970
CDE-IIITH-crf 0.752 0.515 0.612 0.644 0.439 0.522 0.853
CDE-IIITH-dl 0.614 0.560 0.586 0.468 0.426 0.446 0.761
brundlefly 0.686 0.415 0.517 0.639 0.387 0.482 0.932
VUACLTL-1 0.660 0.372 0.476 0.638 0.363 0.462 0.971
VUACLTL-2 0.660 0.372 0.476 0.638 0.363 0.462 0.971
GUIR-2 0.649 0.256 0.367 0.640 0.253 0.362 0.986
GUIR-1 0.486 0.273 0.349 0.480 0.269 0.345 0.989
Baseline: memorize 0.774 0.428 0.551 0.746 0.413 0.532 0.966
GUIR† 0.802 0.678 0.735 0.775 0.655 0.710 0.966
ULISBOA-2† 0.776 0.692 0.732 - - - -
ULISBOA-1† 0.623 0.065 0.118 - - - -
Agreement: ann-ann - - 0.731 - - 0.688 0.941
Agreement: adj-ann - - 0.830 - - 0.807 0.972

Table 2: System performance and annotator agreement on TIMEX3 tasks: identifying the time expression’s span (character offsets)

and class (DATE, TIME, DURATION, QUANTIFIER, PREPOSTEXP or SET). The best system score from each column is in bold.

Systems marked with † were submitted after the competition deadline and are not considered official.

gap between UTHealth’s 0.903 F1 and UtahBMI’s
0.892. The gap was even smaller if we look at pre-
cision and recall separately: a 0.007 gap between
UTHealth’s 0.915 precision and UTA’s 0.908, and
a 0.005 gap between UTHealth’s 0.891 precision
and UtahBMI’s 0.886. The results were similar for
most of the attributes, though the precision gaps were
larger (1.1-1.4) and the recall gaps were smaller (0.3-
0.7).

Compared to human agreement, UTHealth,
UtahBMI, Cental, GUIR, and UTA all exceeded
inter-annotator agreement on identifying events, and
UTHealth and UtahBMI exceeded inter-annotator
agreement on all of the attributes. None of the sys-
tems reached the level of annotator-adjudicator agree-
ment: even UTHealth’s F1 on events of 0.903 had a
gap of 0.019 from the annotator-adjudicator agree-
ment of 0.922, and the results were similar for event
attributes: 0.049 for modality, 0.021 for degree, 0.029

for polarity, 0.024 for type. These gaps are almost
all bigger than the gaps observed in Clinical Temp-
Eval 2015: 0.005 for event spans, 0.031 for modality,
0.007 for degree, 0.012 for polarity, 0.030 for type.
However, Clinical TempEval 2016’s human agree-
ment was substantially higher, with all annotator-
adjudicator agreement above 0.90, while in Clini-
cal TempEval 2015, annotator-adjudicator agreement
ranged from 0.853 to 0.880.

8.3 Temporal Relations

Table 4 shows performance on the temporal relation
tasks. In both phase 1 (where systems were provided
only the raw text) and phase 2 (where systems were
provided the manually annotated events and times),
the UTHealth system was again the top system for
most tasks. For relating events to the document cre-
ation time, the UTHealth system had the best preci-
sion, recall, and F1 (0.766, 0.746, and 0.756) in phase



span span + modality span + degree
Team P R F1 P R F1 A P R F1 A
UTHealth-1 0.915 0.891 0.903 0.866 0.843 0.855 0.947 0.911 0.887 0.899 0.996
UTHealth-2 0.903 0.886 0.895 0.855 0.839 0.847 0.946 0.899 0.883 0.891 0.996
UtahBMI-svm 0.897 0.886 0.892 0.841 0.831 0.836 0.937 0.892 0.881 0.887 0.994
UtahBMI-crf 0.902 0.883 0.892 0.850 0.832 0.841 0.943 0.898 0.879 0.889 0.997
Cental-crf 0.892 0.878 0.885 - - - - - - - -
GUIR-2 0.887 0.872 0.880 0.836 0.822 0.829 0.942 0.883 0.868 0.875 0.994
GUIR-1 0.886 0.872 0.879 0.830 0.817 0.824 0.937 0.882 0.868 0.875 0.995
UTA-4 0.908 0.842 0.874 0.842 0.780 0.810 0.927 0.904 0.838 0.869 0.994
UTA-5 0.900 0.850 0.874 0.837 0.790 0.813 0.930 0.896 0.845 0.870 0.995
VUACLTL-1 0.868 0.828 0.847 0.795 0.758 0.776 0.916 0.864 0.824 0.844 0.996
VUACLTL-2 0.868 0.828 0.847 0.795 0.758 0.776 0.916 0.864 0.824 0.844 0.996
LIMSI-1 0.885 0.808 0.845 0.811 0.742 0.775 0.917 0.880 0.805 0.841 0.995
LIMSI-2 0.869 0.816 0.842 0.798 0.749 0.772 0.917 0.865 0.812 0.838 0.995
CDE-IIITH-crf 0.835 0.797 0.815 0.764 0.729 0.746 0.915 0.830 0.793 0.811 0.995
CDE-IIITH-dl 0.838 0.786 0.811 0.779 0.731 0.754 0.930 0.834 0.783 0.807 0.995
brundlefly 0.883 0.660 0.755 0.819 0.612 0.701 0.928 0.878 0.657 0.752 0.996
Baseline: memorize 0.878 0.834 0.855 0.810 0.770 0.789 0.923 0.874 0.831 0.852 0.996
GUIR† 0.891 0.872 0.881 0.836 0.818 0.827 0.939 0.887 0.868 0.877 0.995
ULISBOA-1† 0.881 0.745 0.807 - - - - - - - -
ULISBOA-2† 0.879 0.739 0.803 - - - - - - - -
Agreement: ann-ann - - 0.864 - - 0.833 0.964 - - 0.861 0.997
Agreement: adj-ann - - 0.922 - - 0.904 0.980 - - 0.920 0.998

span + polarity span + type
Team P R F1 A P R F1 A
UTHealth-1 0.900 0.875 0.887 0.982 0.894 0.870 0.882 0.977
UTHealth-2 0.888 0.872 0.880 0.983 0.880 0.863 0.871 0.973
UtahBMI-svm 0.879 0.869 0.874 0.980 0.854 0.843 0.849 0.952
UtahBMI-crf 0.885 0.867 0.876 0.982 0.875 0.857 0.866 0.971
Cental-crf 0.870 0.857 0.864 0.976 - - - -
GUIR-2 0.871 0.856 0.864 0.982 0.864 0.850 0.857 0.974
GUIR-1 0.869 0.855 0.862 0.981 0.863 0.850 0.857 0.975
UTA-4 0.876 0.812 0.842 0.963 0.877 0.813 0.844 0.966
UTA-5 0.861 0.813 0.836 0.957 0.869 0.820 0.844 0.966
VUACLTL-1 0.780 0.743 0.761 0.898 0.839 0.800 0.819 0.967
VUACLTL-2 0.780 0.743 0.761 0.898 0.839 0.800 0.819 0.967
LIMSI-1 0.867 0.792 0.828 0.980 0.825 0.754 0.788 0.933
LIMSI-2 0.851 0.799 0.824 0.979 0.811 0.761 0.785 0.932
CDE-IIITH-crf 0.750 0.716 0.733 0.899 0.806 0.769 0.787 0.966
CDE-IIITH-dl 0.813 0.764 0.788 0.972 0.814 0.765 0.789 0.973
brundlefly 0.856 0.640 0.733 0.971 0.829 0.620 0.709 0.939
Baseline: memorize 0.812 0.772 0.792 0.926 0.855 0.813 0.833 0.974
GUIR† 0.875 0.856 0.866 0.983 0.868 0.849 0.858 0.974
Agreement: ann-ann - - 0.852 0.986 - - 0.835 0.966
Agreement: adj-ann - - 0.916 0.993 - - 0.906 0.983
Table 3: System performance and annotator agreement on EVENT tasks: identifying the event expression’s span (character offsets),

contextual modality (ACTUAL, HYPOTHETICAL, HEDGED or GENERIC), degree (MOST, LITTLE or N/A), polarity (POS or NEG)

and type (ASPECTUAL, EVIDENTIAL or N/A). The best system score from each column is in bold. Systems marked with † were

submitted after the competition deadline and are not considered official.



To document time Narrative containers
P R F1 P R F1

Phase 1: systems are provided only the raw text
UTHealth-1 0.766 0.746 0.756 0.488 0.471 0.479
UTHealth-2 0.757 0.743 0.750 0.479 0.466 0.472
UtahBMI-crf 0.753 0.737 0.745 0.502 0.215 0.301
UtahBMI-svm 0.741 0.732 0.736 0.498 0.215 0.300
GUIR-2 0.719 0.707 0.713 - - -
GUIR-1 0.712 0.701 0.706 - - -
VUACLTL-1 0.655 0.624 0.639 0.531 0.244 0.334
VUACLTL-2 0.655 0.624 0.639 0.493 0.268 0.347
CDE-IIITH-dl 0.643 0.604 0.623 0.285 0.225 0.252
LIMSI-1 0.635 0.580 0.607 - - -
LIMSI-2 0.624 0.585 0.604 - - -
CDE-IIITH-crf 0.481 0.460 0.470 0.431 0.167 0.241
brundlefly 0.389 0.290 0.332 - - -
UTA-4 0.340 0.315 0.327 - - -
UTA-5 0.336 0.317 0.326 - - -
Baseline: memorize / closest 0.620 0.589 0.604 0.403 0.067 0.115
GUIR† 0.719 0.704 0.711 - - -
ULISBOA-1† - - - 0.122 0.009 0.017
ULISBOA-2† - - - 0.108 0.009 0.017
Agreement: ann-ann - - 0.721 - - -
Agreement: adj-ann - - 0.844 - - -

Phase 2: systems are provided manually annotated EVENTs and TIMEX3s
UTHealth-1 - 0.835 - 0.588 0.559 0.573
UTHealth-2 - 0.833 - 0.568 0.564 0.566
LIMSI-COT-lexical - 0.769 - 0.704 0.436 0.538
GUIR-1 - 0.813 - 0.546 0.471 0.506
LIMSI-COT-embedding - 0.807 - 0.751 0.320 0.449
KULeuven-LIIR-1 - - - 0.714 0.428 0.536
KULeuven-LIIR-2 - - - 0.715 0.429 0.536
VUACLTL-2 - 0.701 - 0.589 0.368 0.453
VUACLTL-1 - 0.701 - 0.642 0.345 0.449
UtahBMI-crf+svm - 0.843 - 0.562 0.254 0.350
CDE-IIITH-dl - 0.705 - 0.348 0.284 0.313
UtahBMI-svm - 0.571 - 0.605 0.230 0.333
ULISBOA-1 - - - 0.273 0.255 0.264
brundlefly - 0.742 - - - -
uta-5 - 0.788 - - - -
uta-6 - 0.786 - - - -
LIMSI-1 - 0.687 - - - -
CDE-IIITH-crf - 0.588 - 0.493 0.185 0.269
LIMSI-2 - 0.679 - - - -
ULISBOA-2 - - - 0.823 0.056 0.105
Baseline: memorize / closest - 0.675 - 0.459 0.154 0.231
UtahBMI-crf+svm† - 0.843 - 0.693 0.425 0.527
UtahBMI-svm† - 0.571 - 0.711 0.372 0.489
Agreement: ann-ann - - - - - 0.651
Agreement: adj-ann - - - - - 0.817

Table 4: System performance and annotator agreement on temporal relation tasks: identifying relations between events and the

document creation time (DOCTIMEREL), and identifying narrative container relations (CONTAINS). The best system score from

each column is in bold. Systems marked with † were submitted after the competition deadline and are not considered official.



1, and the second best score (0.835 vs. UtahBMI’s
0.843) in phase 2. For finding narrative container
relations, the UTHealth system had the best recall
(0.471 in phase 1, 0.559 in phase 2), and though
other systems (UtahBMI, VUACLTL, LIMSI-COT,
and KULeuven-LIIR) had higher precisions, the re-
call gap from UTHealth to the next system was large
(0.203 in phase 1 and 0.088 in phase 2) and thus
UTHealth had the best F1 in both phases (0.479 in
phase 1, 0.573 in phase 2).

Compared to human agreement, UTHealth and
UtahBMI exceeded inter-annotator agreement on re-
lations to the document time (while still leaving a
gap of 0.088 to the annotator-adjudicator agreement),
but no participant system was near the human agree-
ment for narrative containers (a gap of 0.078 from
inter-annotator agreement and a gap of 0.244 from
annotator-adjudicator agreement). For relations to
the document time, the 0.088 gap between systems
and annotator-adjudicator agreement is slightly larger
than the 0.059 of Clinical TempEval 2015, but for
narrative container relations the 0.244 gap is much
smaller than the 0.412 of Clinical TempEval 2015.
As with other tasks, human agreement is higher this
year (0.844 and 0.817 in 2016 vs. 0.761 and 0.672
in 2015), which may explain the larger gap for doc-
ument time relations. The smaller gap for narrative
container relations despite the increased human agree-
ment suggests that major improvements have been
made to the systems for this task.

9 Discussion

The results of Clinical TempEval 2016 suggest that
current state-of-the-art systems are close to solving
most event and time related tasks. For all of these
tasks, the gap between system performance and hu-
man performance was less than 0.05, and for half the
tasks (time spans, event spans, event degree, event
type) it was 0.025 or less.

The temporal relation tasks were more difficult.
Systems trying to predict the temporal relation be-
tween an event and the time at which the document
was written lagged about 0.09 behind human perfor-
mance. And systems trying to predict narrative con-
tainers (whether one event or time contains another)
lagged about 0.25 behind human performance, even
when provided human-annotated events and times.

Nonetheless, the latter result was a major improve-
ment over Clinical TempEval 2015, where the gap
on narrative containers was more than 0.4.

While there was variability across the subtasks
in the rankings of teams, UTHealth and UtahBMI
were always at the top of the lists. Both of these sys-
tems relied on structured learning models (UTHealth
used HMM support vector machines; UtahBMI used
conditional random fields) with a wide variety of fea-
tures (lexical, morphological, syntactic, and many
others). We can thus infer that such approaches hold
promise for temporal information extraction. How-
ever, these two teams were also among the first to
make it through the data use agreement process, so
their success may in part reflect the advantage of
having more time for experimentation and feature
engineering on the training data.

Overall, Clinical TempEval 2016 represented a
major step forward from Clinical TempEval 2015. It
saw a much greater breadth of participating systems
(14 teams in 2016 vs. 3 teams in 2015), with the
top systems maintaining 2015’s high performance
on the event and time tasks, while making major
progress on the harder temporal relation tasks. Future
plans for Clinical TempEval target the robustness of
these systems: instead of testing on only colon cancer
notes from the Mayo Clinic (the same domain as the
training set), systems will be tested on other types of
medical conditions and notes from other institutions.
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