
Proceedings of SemEval-2016, pages 1028–1033,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

CoastalCPH at SemEval-2016 Task 11:
The importance of designing your Neural Networks right

Joachim Bingel and Natalie Schluter
Centre for Language Technology

University of Copenhagen (Denmark)
{bingel,natschluter}@hum.ku.dk

Héctor Martı́nez Alonso
Alpage

INRIA & University Paris 7 (France)
hector.martinez-alonso@inria.fr

Abstract

We present two methods for the automatic de-
tection of complex words in context as per-
ceived by non-native English readers, for the
SemEval 2016 Task 11 on Complex Word
Identification (Paetzold and Specia, 2016).
The submitted systems exploit the same set of
features, but are highly disparate in (i) their
learning algorithm and (ii) their angle on the
learning objective, where especially the lat-
ter presents an effort to account for the spar-
sity of positive instances in the data as well as
the large disparity between the distributions of
positive instances in the training and test data.

We further present valuable insights that we
gained during intensive and extensive post-
task experiments. Those revealed that despite
poor results in the task, our neural network ap-
proach is competitive with the systems achiev-
ing the best results. The central contribution of
this paper is therefore a demonstration of the
aptitude of deep neural networks for the task
of identifying complex words.

1 Introduction

The identification of complex words plays an impor-
tant role in the development of simplified reading
resources. In particular, accurate automatic complex
word identification strongly benefits lexical simplifi-
cation (LS) as a first step in an LS pipeline (Paetzold
and Specia, 2013; Shardlow, 2014). As such, accu-
rate complex word identification may also be critical
to higher-level tasks in text simplification, e.g. sen-
tence compression, where the overall readability of

a text is at least partly influenced by the difficulty of
its vocabulary.

However, the perceived difficulty of words does
not generalise across different groups of readers.
That is, a system trained on manual annotations
of word difficulty among second-language learn-
ers does not necessarily perform well in predicting
words that are particularly difficult to persons of re-
duced literacy. The 2016 SemEval Task 11 puts
its focus on the identification of complex words for
second-language learners of English.

We chose to explore supervised methods for the
task, employing a simple feed-forward neural net-
work as well as a logistic regression classifier for
two separate system submissions. Both systems take
as input a single list of word and context features that
we deemed to potentially indicate the complexity of
words themselves and with respect to their context
in the sentence.

In this system description paper, we focus specif-
ically on our neural network model. As noted in the
task description paper (Paetzold and Specia, 2016),
systems based on neural networks generally per-
formed rather weakly in the task, which the organ-
isers speculate to be a consequence of the small
amount of training data. However, we show in post-
hoc experiments how careful network design may
lead to performance figures close to those of the
task-winning system. We make our revised system
publicly available.1

1https://github.com/jbingel/cwi2016

1028



2 Related work

The identification of complex words in context has
in the past been embedded, often implicitly, into
broader (lexical) simplification endeavours (Yatskar
et al., 2010; Medero and Ostendorf, 2011; Horn et
al., 2014). These models usually employ lexicons
or corpus frequencies to determine candidates for
lexical substitution. In a corpus study of the stan-
dard/Simple English Wikipedia, Medero and Osten-
dorf (2009) identify a number of word-level features
that are indicative of texts with more difficult vo-
cabulary. One of their findings is that words that
are typical of simple texts tend to have longer def-
initions and more user-entered translations in Wik-
tionary. They also tend to be more ambiguous with
respect to word class membership.

Research explicitly dedicated to complex word
identification in context, however, has only appeared
recently. Shardlow (2013a) presents experiments
based on his complex word dataset mined from edit
histories in Simple Wikipedia (Shardlow, 2013b);
his classification system uses an SVM over a small
number of features, achieving an F -score above 0.8
on the named dataset, where one word per sentence
is a positive instance.

3 Task data

The data for the task was collected in a survey with
400 non-native speakers of English, such that it may
in particular serve the identification of words that
pose problems to language learners.

The organisers chose to have each of the 200 sen-
tences in the training set annotated by 20 individu-
als, while in the test set each of the 9,000 sentences
was only seen by one annotator. This presents an ef-
fort to model “how well one’s individual vocabulary
limitations can be predicted from the overall limita-
tions of a group which they are part of” (Paetzold
and Specia, 2016). The training data is released in
two versions, once with the individual votings for
each of the 20 annotators, and once with a combined
vote that is defined as positive if at least annotator
deems the word to be complex, negative otherwise.
For both train training and the testing set, only a sub-
set of the words in each sentence are annotated, re-
sulting in 2,237 instances for training and 88,221 in-
stances for testing, corresponding to roughly 40%

and 39% of the overall number of tokens, respec-
tively.

The challenge of the data. The task at hand poses
two major challenges with regard to the data, spar-
sity of positive examples and disparity between
train and test data. Regarding sparsity, combining
the individual votings as described above results in
roughly one third of the train data being marked pos-
itive. A one-to-two proportion is not too skewed,
but if one considers each annotator in the training
set separately, a mere 4.5% of the individual votings
were positive.

Regarding disparity, the share of complex exam-
ples is very different between the train and test in-
stances (31.9% vs. 4.7%). Furthermore, the percep-
tion of word complexity shows great variation across
annotators, with more than half of the complex ex-
amples in the training data (360 out of 716) marked
as such by only one of the 20 annotators, and only
5.4% being perceived as difficult by the majority of
the annotators.

4 Features

Both systems that we describe in Section 5 use the
same set of features. We preprocessed the data us-
ing the Stanford NLP tools (Manning et al., 2014),
obtaining for every sentence lemma forms, part-of-
speech tags, name-entity types, and a dependency
parse. We make use of Wikipedia and Simple
Wikipedia for features based on corpus frequencies.

For a word w in a sentence s, we thus collect fea-
tures from the following classes:

1. SIMPLE This feature group contains simple
word properties such as length of w in charac-
ters, its named-entity type (if any) and its part-
of-speech. Our feature model is delexicalised
and we do not use word forms or lemmas as
features.

2. POSITION This feature group contains the rel-
ative position of the w in s, and the number of
commas as well as the number of verbs before
or after w.

3. MORPH This feature group describes whether
w has a Latin root, the length difference in char-
acters between w and its lemma and stem, and
the number of steps the Porter stemmer spends

1029



(a) Submitted predictions (b) Revised predictions

Figure 1: Histograms of submitted (left) and revised (right) Neural Network predictions. Solid vertical lines
indicate the learned threshold at which we classify targets into simple and complex. The dashed vertical
lines indicate the thresholds that would optimise the G-scores (cf. also Figure 3).

on w (Porter, 2001), which we use as a proxy
for the number of inflectional morphemes that
w has. We use the NLTK Porter for the lat-
ter and the Etymological WordNet (De Melo,
2014) for detecting Latin roots.

4. SYNTAX This class contains the distance (in
tokens) between w and the root of the depen-
dency tree, the dependency relation connecting
w and its head, the distance to its head, and the
number of dependents of w and its head.

5. PROB This group contains the probability of
w in the English Wikipedia, in the Simple
Wikipedia, and their ratio.

6. CHARCOMPLEXITY The feature group con-
tains the character-level unigram and bigram
probability of the word based on frequencies
in Wikipedia and Simple Wikipedia, as well as
the respective ratios. This is motivated by the
observation that “words with simple grapheme-
to-phoneme ratios [are] easier to learn than
more phonetically complex words” (Dela Rosa
and Eskenazi, 2011). Finally, this group in-
cludes the share of vowels in the word.

7. BROWN This feature group includes the Brown
cluster of w, as well as height and depth of
the cluster in the hierarchical clustering tree
(Brown et al., 1992). We use the default 1000

clusters generated by Percy Liang’s implemen-
tation.2

8. EMBS This feature group contains the 300-
dimensional GloVe embeddings of w, calcu-
lated using Word2Vec over a Wikipedia dump.3

9. WORDNET This feature reflects the semantic
complexity of w as measured by its number of
WordNet synsets (Fellbaum, 1998).

5 Our systems

System 1: NeuralNet. We train a deep neural net-
work with 2 hidden layers of 150 and 50 units, re-
spectively, using PyCnn.4 At every hidden layer, we
perform L2-regularisation.

The network has a single output unit that yields
a value between 0 and 1, which we map to binary
complexity judgements after applying a threshold. If
our neural network learned a perfect fit to the data,
i.e. if it assigned a value close to 0 to every nega-
tive example and a value close to 1 to every positive

2https://github.com/percyliang/
brown-cluster. We obtained the clusters from http:
//derczynski.com/sheffield/brown-tuning/.

3Downloaded from http://nlp.stanford.edu/
projects/glove/.

4PyCnn is a Python wrapper for the C++ neural network li-
brary available at https://github.com/clab/cnn. The
wrapper ships with the main library.

1030



example, the natural decision boundary of 0.5 would
be a good classification threshold to binarise the pre-
dicted values. However, as the model fit is far from
perfect, the learning problem extends to finding an
appropriate threshold (see below).

System 2: Information Sieve. Departing from the
observation that different language learners consider
different words as complex, the motivation for this
system is to prevent our classifier from learning id-
iosyncratic annotator behaviour. To achieve this, we
take an information sieve approach, which is meant
to filter out idiosyncratic information. We train a lo-
gistic regression classifier based on the concatena-
tion of all individual votings in the training set, such
that every instance is seen 20 times during train-
ing, namely one per annotator. The intention behind
this training method is to expose the learning algo-
rithm to all individual annotator decisions, acquiring
a preference for annotation decisions that are more
consistent across annotators. We retrieve the proba-
bility outputs from the classifier and predict as posi-
tive the top decile.5

Hyperparameter optimisation All hyperparame-
ter tuning for the neural network, including its archi-
tecture and the classification threshold, is based on
10-fold cross-validation over the training set. For
each fold, we test the respectively trained model on
each of the 20 individual votings in the test split,
rather than on the combined votings. We do this in
order to account for the mentioned disparity in the
share of positive examples that we expect to find in
the training and final testing data. Evaluating the
performance of a single hyperparameter configura-
tion thus involves training 10 models and testing on
200 sets of individual annotations.

For optimising the classification threshold, we
compare the system’s predictions to the respective
train/test split annotations at every cross-validation
fold (again testing on the individual votings of 20
annotators), and record the decision boundary that
best separates negative and positive instances. For
each of the 10 cross-validation folds, we thus get an
array of 20 annotator-wise optimal thresholds. We
finally compute the best threshold for a single fold

5The decision to predict the top 10% as positive was based
on our expectation of the positive share in the test data.

System G-score Recall Acc. Rank
NeuralNet .506 .398 .693 35
InfoSieve .285 .171 .869 41
SV000gg .774 .769 .779 1
Revised NN .756 .725 .791 (8)

Table 1: Test set results for the two submitted sys-
tems, the winning system and our revised system.

as the median over these values, and the best overall
threshold as the average over the per-fold medians.

6 Results and System Revision

Table 1 shows the performance of our systems as
measured by the G-score6 as well as recall and ac-
curacy. As suggested by a post-hoc experiment on
the combined training examples, the poor result ob-
tained by the InfoSieve system is due to its sampling
strategy much more than the training and inference
algorithm or any hyperparameters. We therefore dis-
card this strategy and focus on the neural network in
our following analysis.

In order to get a better understanding of the neu-
ral network’s performance, Figure 1a visualises the
distribution of the submitted predictions that we ob-
tain in the original set-up. With a threshold at 0.27,
we correctly discard only 43.8% of the non-complex
examples, while identifying 69.3% of all complex
instances. We observe that, relatively independent
of the threshold, the model fails to clearly separate
simple and complex instances.

With these numbers, the neural network is very far
from the results achieved by the best systems in the
task, which we generally observe to employ some
variant of ensemble methods, most notably random
forests. In the remainder of this section, we recon-
sider some design decisions for our neural network
and introduce a revised model, which we demon-
strate to obtain results on the test set that place it
in the region of the mentioned ensemble systems.

Neural network library and architecture In a
first post-task experiment, we exchange the PyCnn

6The task organisers define G as the harmonic mean be-
tween recall and accuracy. In using this metric to gauge system
performance, the organisers reward systems that primarily max-
imise the number of true positives, while giving less weight to
minimising false positives.

1031



Figure 2: Contribution of feature classes in a deep
neural network with three hidden layers of 50 com-
putational units each.

implementation of deep NNs with Keras.7 Surpris-
ingly, we observe a tremendous increase in perfor-
mance when using Keras: with the same set of fea-
tures and the same basic network architecture, we
reach a G-score that exceeds the 0.70 mark.8 Subse-
quently, we evaluate different network architectures,
including different rates of dropout after the hid-
den layers as an alternative way of regularising the
model (Srivastava et al., 2014). Note that all hyper-
parameter optimisation is still performed in cross-
validation experiments.

We finally find that we achieve a good fit to the
data with a network of three hidden layers, each of
which comprises 50 computational units, and a mod-
erate dropout rate of 10% after every hidden layer.

Feature contribution To gain insights into which
features are salient for our system, we train models
on the individual feature classes listed in Section 4,
as well as combinations of the classes. As Figure
2 shows, word embeddings are by far the most im-
portant single feature class, and they also contribute
to the best combination of feature types, which is
WORDNET+PROB+MORPH+EMBS. In the remain-

7https://github.com/fchollet/keras. Keras
is a Python neural networks library running on top of Theano
and TensorFlow.

8The great performance differences between the two li-
braries are actually more than surprising. The differences are
consistent across several experiments, which is why an infe-
licitous random initialisation or local optima can be ruled out
as possible explanations. Other intuitions as to what might the
reason for the different results touch on possible errors in the
implementation of one of the libraries, but this is clearly very
speculative.

Figure 3: G-score curves in dependence of the
threshold t for the submitted (red dashed) and the
revised (blue solid) system.

der of the paper, we refer to the system trained on
this feature combination as the ‘revised system.’

Threshold For the submitted as well as for the
revised system, there is a certain discrepancy be-
tween the G-scores that we obtain from setting
the thresholds to the value computed in the cross-
validation and the figures we could achieve with op-
timal threshold setting. Concretely, this difference
pertains to .05 in G-score (.506 vs. .556) for the sub-
mitted system and .002 (.756 vs. .758) for the re-
vised system (cf. Figure 3).

While in Figure 1b it appears that we have missed
the optimal threshold by a wide margin for the re-
vised system, the actual difference in performance
(as measured by G) is rather small. In fact, as Figure
3 illustrates, finding the optimal threshold is consid-
erably less critical for the revised system due to a
much flatter curve between threshold values 0.2 and
0.8.

Optimal result In conclusion, a G-score of .758
poses an upper bound for our system architecture
(a neural network with three hidden layers of 50
units and a dropout rate of 10% after each hidden
layer). How closely this figure can be approximated
depends on the optimisation of the threshold.

1032



7 Conclusion

This paper presented our submissions to the Sem-
Eval 2016 Shared Task 11, Complex Word Identi-
fication, which we approached with two very dis-
parate systems: a deep neural network trained on
the combined votings from 20 annotators, and a lo-
gistic regression classifier trained on each annotator
separately. While neither of these systems reaches
competitive performance figures, we re-design our
neural network approach to train a revised system,
which shows that neural networks do have the po-
tential to successfully identify complex words.

Specifically, we find that 300-dimensional word
embeddings carry a strong signal for word complex-
ity, such that our revised system finally reaches a G-
score that would place it in the top quartile of the
task submissions. The strong contribution of word
embeddings is not easily explained, but we suspect
that certain distributional features may encode the
presence of a complex word in more specific con-
texts such as technical jargon.

Our results contrast with the observation that
task submissions which employed neural networks
and/or word embeddings generally achieved rather
poor results, and it shows that competitive perfor-
mance figures can be reached with neural networks
despite a relatively small amount of training data.

References
Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-

cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional linguistics, 18(4):467–479.

Gerard De Melo. 2014. Etymological wordnet: Trac-
ing the history of words. In LREC, pages 1148–1154.
Citeseer.

Kevin Dela Rosa and Maxine Eskenazi. 2011. Effect
of Word Complexity on L2 Vocabulary Learning. In
Proc Workshop on Innovative Use of NLP for Building
Educational Applications, pages 76–80, Portland, OR,
USA.

Christiane Fellbaum. 1998. WordNet. Wiley Online Li-
brary.

Colby Horn, Cathryn Manduca, and David Kauchak.
2014. Learning a lexical simplifier using wikipedia.
In ACL 2014, pages 458–463.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.

2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, pages 55–60.

Julie Medero and Mari Ostendorf. 2009. Analysis of vo-
cabulary difficulty using wiktionary. In SLaTE, pages
61–64.

Julie Medero and Mari Ostendorf. 2011. Identifying tar-
gets for syntactic simplification. In SLaTE, pages 69–
72.

Gustavo H. Paetzold and Lucia Specia. 2013. Text sim-
plification as tree transduction. In Proceedings of the
9th Brazilian Symposium in Information and Human
Language Technology, pages 116–125.

Gustavo H. Paetzold and Lucia Specia. 2016. SemEval
2016 Task 11: Complex Word Identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval 2016).

Martin F. Porter. 2001. Snowball: A language for stem-
ming algorithms.

Matthew Shardlow. 2013a. A Comparison of Tech-
niques to Automatically Identify Complex Words. In
ACL 2013 Student Research Workshop, pages 103–
109. Citeseer.

Matthew Shardlow. 2013b. The CW Corpus: A New
Resource for Evaluating the Identification of Complex
Words. ACL 2013, page 69.

Matthew Shardlow. 2014. Out in the open: Finding
and categorising errors in the lexical simplification
pipeline. In LREC, pages 1583–1590.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Mark Yatskar, Bo Pang, Cristian Danescu-Niculescu-
Mizil, and Lillian Lee. 2010. For the sake of simplic-
ity: Unsupervised extraction of lexical simplifications
from Wikipedia. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 365–368. Association for Computational
Linguistics.

1033


