
Proceedings of SemEval-2016, pages 803–808,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

UWB at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity
with Distributional Semantics for Chunks
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Abstract

We introduce a system focused on solving
SemEval 2016 Task 2 – Interpretable Seman-
tic Textual Similarity. The system explores
machine learning and rule-based approaches
to the task. We focus on machine learning
and experiment with a wide variety of ma-
chine learning algorithms as well as with sev-
eral types of features. The core of our system
consists in exploiting distributional semantics
to compare similarity of sentence chunks. The
system won the competition in 2016 in the
“Gold standard chunk scenario”. We have not
participated in the “System chunk scenario”.

1 Introduction

The goal of the Interpretable Semantic Textual Sim-
ilarity task is to go deeper with the assessment of
semantic textual similarity of sentence pairs. It is
requested to add an explanatory layer that offers a
deeper insight into the sentence similarities. The
sentences are split into chunks and the first goal is
to find corresponding chunks (with respect to their
meanings) among the compared sentences. When
the corresponding chunks are known, the chunks are
annotated with their similarity scores and their rela-
tion types (e.g. equivalent, more specific, etc).

The task follows a pilot task from the preced-
ing SemEval 2015 competition (Agirre et al., 2015).
The best performing systems adopted various ap-
proaches, (Banjade et al., 2015) relied on hand-
crafter rules, (Karumuri et al., 2015) employed a
classifier for relation types and they associated each
relation with a precomputed similarity score and

(Hänig et al., 2015) extended their word alignment
algorithm for the task.

1.1 Math notation
The data consist of sentence pairs Sa

i and Sb
i , where

a denotes the first item of the pair, b denotes the sec-
ond item of the pair and i indexes the sentences (for
simiplicity we further omit i for sentences). We per-
ceive a sentence Sa to be an ordered set of chunks
CHa

j ∈ Sa and the chunks to be ordered sets of
words wk ∈ CHa

j (and analogically for sentence
Sb).

Next we define two functions:
sim(CHa

i ,CHb
j) ∈ {0, 1, 2, 3, 4, 5} for chunk

similarity and rel(CHa
i ,CHb

j) ∈ TYPE for
chunk relation type.

The possible types are: TYPE = {EQUI,
OPPO, SPE1, SPE2, SIMI, REL}. These are the
main types. All these types can have two modifiers
(FACT, POL). The modifiers are optionally attached
to the main types. For example, you can generate
SPE1 FACT. For more information, please see the
annotation guidelines1.

2 System Overview

2.1 Preprocessing
As a first step of our approach we perform the fol-
lowing text preprocessing:

• Stopwords removal – we mark the words found
in a predefined list of 32 stopwords.

1http://alt.qcri.org/
semeval2016/task2/data/uploads/
annotationguidelinesinterpretablests2016v2.
2.pdf
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• Special character removal we remove special
characters that violate the tokenization. E.g. in
one of the datasets, dots, commas, quotation
marks and other punctuation characters were
present in tokens.

• Lowercasing – we remove casing from the
words.

• Lemmatization – we find lemmas with the Stan-
ford CoreNLP tool (Manning et al., 2014).

Our preprocessing rather adds new information
and does not modify the original information. Thus,
the original word and all the generated variants are
always available. In this way, we can generate the
output file with identical words (including the spe-
cial characters) from the input. The dataset are al-
ready tokenized.

2.2 Chunk Semantic Similarity

The core of our system is based upon comput-
ing semantic similarity of sentence chunks. More
precisely, we are looking for the best estimation
of sim(CHa

i ,CHb
j). The sim score should de-

scribe semantic similarity of a given chunk pair –
the higher score the more easily both chunks can
be replaced with each other without chaining the
meaning of both sentences. The similarity score
ranges from 0 to 5, where 0 is the lowest sim-
ilarity and 5 is the highest similarity. Eg. the
sim(“a new laptop”, “a new notebook”) = 5 and
sim(“a new laptop”, “an old rock”) = 0. We use
the chunk similarity as a feature in our machine
learning approach (Section 3) and as a metric in our
unsupervised approach (Section 4).

Our attempts to estimate the sim function are
based upon estimating semantic similarity of indi-
vidual words and compiling them into one num-
ber for a given chunk pair. We experiment with
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) for estimating similarity of
words. We compile all the word similarities in one
number that reflects semantic similarity of whole
chunks via the following methods: 1) the vector
composition method and 2) an adapted method for
constructing vectors called lexical semantic vectors.

Vector composition requires that the semantics of
words is described by vectors. E.g. we have vectors
for all words ~mi : ∀wi ∈ CHa

j and ~ni : ∀wi ∈ CHb
k

in two given chunks CHa
j and CHb

k. The vectors for
words in each chunk are summed (or averaged) to
obtain one vector for each chunk: ~m =

∑
i(~mi) and

~n =
∑

j(~nj). The vectors are then compared with
cosine distance: sim(CHa

j ,CHb
k) = cos(θ) =

~m·~n
‖~m|‖~n| .

Lexical semantic vectors were originally intro-
duced in (Li et al., 2006). We have made two mod-
ifications. We do not weight words with their in-
formation content and we use methods for distribu-
tional semantics (Word2Vec and GloVe) rather than
semantic networks. The modified method is ex-
plained here. First of all, we create a combined vo-
cabulary of all unique words from chunks CHa

k and
CHb

l : L = unique(CHa
k ∪CHb

l ). Then we take
all words from vocabulary L: wi ∈ L and look for
maximal similarities with words from chunks a and
b, respectively. This way we get vectors ~m and ~n
containing maximal similarities of chunk words and
words from the combined vocabulary:

mi = max
j:1≤j≤|CHa

k|
sim(wi, wj) : ∀wi ∈ L

ni = max
j:1≤j≤|CHb

l |
sim(wi, wj) : ∀wi ∈ L

(1)
where mi and ni are elements of vectors ~m and ~n.

In order to obtain similarity of a chunk pair we
compare their respective vectors with the cosine
similarity similarly to the previous approach. The
principle of the method is illustrated by the example
in figure 1.

iDF weighting. We assume that some words are
more important than others. In order to reflect this
assumption, we try to weight the vectors with iDF
weighting. We compute the iDF weights on the ar-
ticles from English wikipedia text data (Wikipedia
dump from March 7, 2015).

3 Machine Learning Approach

The main effort of our team was focused on the ma-
chine learning approach to the task. We divided the
task into to three classification / regression tasks:
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CHa:   new  laptop

CHb:   new  notebook

L =   new  laptop  notebook
1.0

1.0 1.0

1.0

m =  1.0  1.0 0.68

0.68

0.68

n = 1.0 0.68 1.0

cos θ = 0.958

CHa:   new  laptop

CHb:    old  rock

    new  laptop  old  rock  
0.22

1.0 1.0       0.22     0.12

m = 1.0 1.0 0.22 0.12

0.10        1.0     1.0

n = 0.22 0.1 1.0 1.0

cos θ = 0.320

sim("a new laptop", "a new notebook"):

sim("a new laptop", "an old rock"):

Figure 1: An example of the modified lexical semantic vectors

method.

• Alignment binary classification – we decide
whether two given chunks should be aligned
with each other.

• Score classification / regression – we experi-
ment with both classification and regression of
the chunks similarity score.

• Type classification – we classify all aligned
pairs of chunks into a predefined set of types
– see Section 1.1.

3.1 Classifiers
We experiment with the following classifiers: Max-
imum Entropy Classifier (Berger et al., 1996), Sup-
port Vector Machines Classifier (Cortes and Vapnik,
1995), Multilayer perceptron and Voted perceptron
neural networks (Freund and Schapire, 1999) and
with Decision / regression tree learning (Breiman et
al., 1984).

We employ the following two frameworks:
Brainy (Konkol, 2014) and Weka (Hall et al., 2009).

3.2 Features
We divide the employed features into four cate-
gories: lexical, syntactic, semantic, external.

Lexical features consist of the following features:
word base form overlap, word lemma overlap, chunk
length difference, word sentence positions differ-
ence.

Syntactic features contains closest common par-
ent comparison (we compute the closest common
parent of all words for each chunk in the parse tree
and retrieve the name of the parent node), parse tree
path comparison (we compute the path from the root
of the sentence to the chunk). POS (Part Of Speech)
count difference (e.g. differences in counts of nouns,
adjectives, verbs, etc). POS tagging and syntac-
tic parsing are performed with Stanford CoreNLP
(Manning et al., 2014).

Semantic features are described in Section 2.2.
Additionally, some members of our team partici-
pated in the STS task (task 1) of the SemEval 2016
(Brychcı́n and Svoboda, 2016) and they annotated
the semantic similarity of the whole sentences with
their system for us. This score is used as one feature.

External features consist of the WordNet – Lin
similarity metric (Lin, 1998) and the paraphrase
database (Ganitkevitch et al., 2013) feature.

3.3 Post-processing

The alignment of chunks is generated by the binary
classification of all possible chunk pairs. If one
chunk is aligned with multiple chunks in the other
sentence, these chunks should be merged into one
chunk. Also, impossible multiple chunks to multiple
chunks alignments are generated in some cases (e.g.
two chunks from the first sentence belong a chunk in
the second sentence but one of the two chunks from
the first sentence belong also to a different chunk in
the second sentence). These cases are resolved with
few hand crafted rules.

4 Rule-based Approach

We attempt to solve the task with a rule-based ap-
proach as well. First, we define the similarity of
chunks as described in Section 2.2. The similarity
is then used for the chunk alignment. We employ
an algorithm inspired by the IBM word model II for
machine translation (Brown et al., 1993). We iter-
ate over all chunks from sentence Sa and find the
chunk with maximal similarity from sentence Sb.
More chunks from sentence Sa can be aligned to one
chunk in the sentence Sb. In this way, we obtain N:1
mapping. Then, we do the same with the reversed
order of sentences and get the 1:M mapping. Then,
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we compare the mappings and take the one with the
highest overall similarity. In this way, it is ensured
that we generate only valid mappings (unlike in the
previous case of machine learning – see Section 3.3).

The relation types are then determined by an ex-
tremely simple algorithm:

• If the similarity is 5, then the relation type is
EQUI.

• If the similarity is 4 or 3 and chunks contain
the same amount of words, then the relation is
SIMI.

• If the similarity is 4 or 3, then chunk with more
words is more specific.

• If the similarity is 2 or 1, then the relation is
SIMI.

• If the similarity is 0, then the relation type is
NOALI.

5 Results

5.1 Experimental setup
Machine learning approach We employ the fol-
lowing classifiers and classification frameworks:

• Alignment binary classification – Voted percep-
tron (Weka).

• Score classification – Maximum entropy
(Brainy).

• Type classification – Support vector machines
(Brainy).

These classifiers perform best on the evaluation
datasets.

We achieved the best results for estimating chunk
similarity with Word2Vec and the modified lexical
semantic vectors – see Section 2.2.

We experimented with reduced feature set (word
overlap, word positions difference, POS tags differ-
ence, semantic similarity, global semantic similarity,
paraphrase database) – run 1 and with all features –
run 3. The run 1 contains the optimal combination
of features. Since this combination is established on
evaluation datasets it does not need to be optimal
for the test datasets. To increase our chances in the

completion, we also run the system with all features
– run 3.

We use the provided annotated evaluation dataset
(Images, Headlines, Answer students) for training
the models. We train three models, each for one
dataset. For development, we use the 10-fold cross-
validation. For final test runs, we train the three
models on evaluation datasets and run the system on
the corresponding test datasets (e.g. Images evalua-
tion dataset based model is used to annotate Images
test data). We do not neither modify the original
datasets nor annotate any additional data.

Rule-based approach There are little options in
this approach. Again, we have achieved the best re-
sults for estimating chunk similarity with Word2Vec
and the modified lexical semantic vectors – see Sec-
tion 2.2. We set the threshold for the similarity score
to 2.5. All lower values are set to 0. This is the run
2.

Individual setting for different dataset We re-
strained from setting individual configurations for
different datasets. The setup is completely identical
for all datasets.

5.2 Results
In this section, we summarize the official results for
the SemEval 2016 competition – see table 1. The re-
sults are calculated for the following dataset: Head-
lines, Images and Answer students. The results show
F1 scores for chunk alignment (Ali), determination
of the relation type (Type), chunk similarity score
(Score) and combination of relation type and score
similarity (T+S). The bold numbers are the overall
best scores. We participated only in the gold stan-
dard chunk scenario.

The results clearly show that the unsupervised run
2 perform much worse than the supervised runs 1
and 3. We expected that. However, it is worth of
noticing that the unsupervised alignment algorithm
inspired by machine translation alignment placed
quite well. In fact, it is newer looses more than
3% from the best alignment score in all datasets.
The overall rank of the run 2 places in the top half
among all system with exception of the answer stu-
dent dataset. The poor performance of the run 2 on
this dataset is most likely caused by the fact that the
hand-crafted rules were prepared for the images and
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Run Ali Type Score T+S Rank
Images dataset (756 sentence pairs)

3 0.8922 0.6867 0.8408 0.6708 1
1 0.8937 0.6829 0.8397 0.6672 2
2 0.8713 0.6346 0.8083 0.6206 6

Headlines dataset (750 sentence pairs)

3 0.8987 0.6412 0.8382 0.6296 6
1 0.8979 0.6319 0.8346 0.6212 7
2 0.8897 0.6146 0.815 0.6013 8

Answer students dataset (330 sentence pairs)

1 0.8644 0.6299 0.8089 0.6248 3
3 0.8588 0.6167 0.8038 0.6114 5
2 0.8752 0.4806 0.7826 0.4748 17

Overall results (mean)

1 0.6672 0.6212 0.6248 0.6377 1
3 0.6708 0.6296 0.6114 0.6373 2
2 0.6206 0.6013 0.4748 0.5656 12

Table 1: Official system evaluation.

headlines datasets and they are clearly not applica-
ble on the answer student which is substantially dif-
ferent.

The runs 1 and 3 perform very similarly. The op-
timized feature set of the run 1 helps especially in
the answer student dataset. However, the differences
between these runs are too small and they can be
caused by chance. It is worth of noticing that the
run 1 is not the best one in any of the datasets and it
still wins in the overall results table. The reason is
that it provides the most consistent results among all
other runs of all systems in the competition.

In order to provide additional information about
the features effectiveness, we have evaluated them
on the final test datasets. In many cases, the obtained
results are not conclusive. On some datasets, the fea-
tures help slightly on others they even decrease the
performance. However, the following three features
have significant influence on the final results: mod-
ified lexical semantic vectors (+3% of the mean of
T+S F1 scores), shared words (+2%), POS tags dif-
ference (+2%). The modified lexical semantic vec-
tors method performed better than vector composi-
tion by 1% for the machine learning approach and
by 2% for the rule-based approach in average. By
optimizing the feature set, we were able to increase
the mean score to 0.6484 of T+S F1 measure.

6 Conclusion

The machine learning approach with combination of
methods for the distributional semantics (Word2Vec
and GloVe) proved to be very capable of solving
the advanced task of Interpretable Semantic Textual
Similarity. We have chosen not to tune the system
for individual datasets but to tune it for the task as
a whole. The modified lexical semantic vectors ap-
proach seems to be an attractive alternative to the
more traditional vector composition.
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