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Abstract

This paper describes the first shared task
on Taxonomy Extraction Evaluation organ-
ised as part of SemEval-2015. Participants
were asked to find hypernym-hyponym re-
lations between given terms. For each of
the four selected target domains the partici-
pants were provided with two lists of domain-
specific terms: a WordNet collection of terms
and a well-known terminology extracted from
an online publicly available taxonomy. A total
of 45 taxonomies submitted by 6 participating
teams were evaluated using standard structural
measures, the structural similarity with a gold
standard taxonomy, and through manual qual-
ity assessment of sampled novel relations.

1 Introduction

SemEval-2015 Task 17 is concerned with the auto-
matic extraction of hierarchical relations from text
and subsequent taxonomy construction. A taxon-
omy is a hierarchy of concepts that expresses parent-
child or broader-narrower relationships. Because of
their many applications in search, retrieval, website
navigation, and records management, taxonomies
are valuable resources for libraries, publishing com-
panies, online databases, and e-commerce compa-
nies. Taxonomies are most often manually created
resources that are expensive to construct and main-
tain, and therefore there is a need for automatic
methods for taxonomy enrichment and construction.
Recently, the task of taxonomy learning from text,
also called taxonomy induction, has received an in-
creased interest in the natural language processing

community, as taxonomical information is a valu-
able input to many semantically intensive tasks in-
cluding inference, question answering (Harabagiu et
al., 2003) and textual entailment (Geffet and Dagan,
2005).

Taxonomy learning can be divided into three main
subtasks: term extraction, relation discovery, and
taxonomy construction. Term extraction is a rel-
atively well-known task, hence we decided to ab-
stract from this stage and provide a common ground
for the next steps by making available the list of
terms beforehand. Most approaches for relation dis-
covery from text rely on lexico-syntactic patterns
(Hearst, 1992; Kozareva et al., 2008), co-occurrence
information (Sanderson and Croft, 1999), substring
inclusion (Nevill-Manning et al., 1999), or exploit
semantic relations provided in textual definitions
(Navigli and Velardi, 2010). Any asymmetrical rela-
tion that indicates subordination between two terms
can be considered, but here the focus is mainly on
hyponym-hypernym relations. Depending on the ap-
proach selected, the task may or may not require
large amounts of text to extract relations between
terms, therefore no corpus is provided as part of the
shared dataset.

This stage usually produces a large number of
noisy, inconsistent relations, that assign multiple
parents to a node and that contain cycles, i.e., se-
quences of vertices that start and end at the same
vertex. Hence, the third stage of taxonomy learn-
ing, taxonomy construction, focuses on the overall
structure of the resulting graph and aims to organ-
ise terms into a hierarchical structure, more specifi-
cally a directed acyclic graph (Kozareva and Hovy,
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Figure 1: The task workflow.

2010; Navigli et al., 2011; Wang et al., 2013). To
address the inherent complexity of evaluating tax-
onomy quality, several methods have been consid-
ered in the past including manual evaluation by do-
main experts, structural evaluation, and automatic
evaluation against a gold standard (Velardi et al.,
2012). In this task, all these existing evaluation ap-
proaches are considered, using a voting scheme to
aggregate the results for the final ranking of the sys-
tems. We introduce four new domains that have not
previously been considered for this task, covering
general knowledge domains such as food and equip-
ment and technical domains such as chemicals and
science. For each domain, we provide a gold stan-
dard taxonomy gathered exclusively from WordNet
(Fellbaum, 2005), as well as a gold standard tax-
onomy that combines terms and relations gathered
from other domain-specific sources.

2 Task workflow

In this section we present the task workflow, the con-
sidered dataset, and the evaluation method used in
this task.
Competition setup: In order to provide a common
ground to all the competing teams, we applied the
task workflow described in Figure 1, as follows: 1)
select and announce a set of target domains (see Sec-
tion 2.1 for more details); 2) define and collect gold
standard taxonomies that will be used for evalua-
tion and extract and release the set of terms that they
cover; 3) select and produce baseline taxonomies us-
ing naive baselines to be compared against the team
outputs in the competition.
Competition and evaluation flow: As described in

Table 1: Structural measures of Combined and WordNet
gold standard taxonomies.

Combined WordNet
taxonomies taxonomies

Domain Root concept |V| |E| |V| |E|
Chemicals chemical 17584 24817 1351 1387
Equipment equipment 612 615 475 485
Food food 1156 1587 1486 1533
Science science 452 465 429 441

Figure 1, the next steps of the workflow concern the
participation of the competing teams and the eval-
uation of the resulting outputs as follows: 4) in this
stage participants produce and submit the output tax-
onomies. For each domain, test data consists of a
list of domain terms that participants have to struc-
ture into a taxonomy, with the possibility of adding
further intermediate terms. Each system will return
a list of pairs (term, hypernym). In this way, taxon-
omy learning is limited to finding relations between
pairs of terms and organising them into a hierarchi-
cal structure. Participants are encouraged to con-
sider polyhierarchies when organising terms. In this
setting, nodes can have more than one parent and
the final structure of the taxonomy is not necessar-
ily a tree; 5) compare system outputs (4) and base-
line taxonomies (3) with taxonomies produced as
gold standards (2); 6) manually annotate a sample of
system outputs to estimate the quality of hypernym-
hyponym relationships that are not in the gold stan-
dards; 7) create a combined rank of the teams based
on the individual rank that each team reached on dif-
ferent aspects of the evaluation.

2.1 Data

We selected four target domains with a rich, deep,
hierarchical structure (i.e. Chemicals, Equipment,
Food and Science) with four root concepts (i.e.
chemical, equipment, food and science, respec-
tively). Then, for each domain we produced two
kinds of gold standard taxonomies.

WordNet taxonomy Concepts and relation-
ships in the WordNet hypernym-hyponym hierarchy
rooted on the corresponding root concept.

Combined taxonomy Domain-specific terms and
relations from well-known, publicly available, tax-
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onomies other than WordNet: CheBI1 for Chemi-
cals, “The Google product taxonomy”2 for Foods,
the “Material Handling Equipment”3 taxonomy for
Equipment, and the “Taxonomy of Fields and their
Subfields”4 for Science. Hypernym-hyponym rela-
tionships were also gathered from a general purpose
resource, the Wikipedia Bitaxonomy (WiBi) (Flati
et al., 2014), using a semi-automatic approach. For
each domain we first manually identified domain
sub-hierarchies from WiBi (W ); Second we auto-
matically searched for the terms of W in common
with the corresponding gold standard G. For each
common term t we added in G the taxonomy rooted
on t from W .

Table 1 shows the resulting number of vertices
|V |, i.e., the number of terms given to the partic-
ipants, and the number of edges |E| of the pro-
duced gold standard taxonomies for the four target
domains. Finally, test data consists of eight lists of
domain concepts, for which participants were asked
to output a set of hypernym-hyponym relationships.

2.2 Evaluation method

Let S = (VS , ES) be an output taxonomy produced
by a system for a given domain, where VS includes
the set of domain concepts initially provided by the
task organisers and ES is the set of taxonomy edges
extracted by the system. To broadly analyze the
quality of the produced set of hypernymy relation-
ships ES , these results are benchmarked against two
naive baselines, described in Section 2.2.1, using
the following evaluation approaches: i) analyse the
graph structure and check if the produced taxonomy
is a Directed Acyclic Graph (DAG); ii) compare the
edges ES , against the set of relations from each type
of gold standard; iii) manually validate a sample of
novel relationships produced by the system that are
not contained in the gold standard.

The final ranking of the systems takes into consid-
eration these three types of evaluation by aggregat-
ing the achieved ranks using a voting scheme. First,

1http://www.ebi.ac.uk/chebi/init.do
2http://www.google.com/basepages/

producttype/taxonomy.en-US.txt
3http://www.ise.ncsu.edu/kay/mhetax/

index.htm
4http://sites.nationalacademies.org/PGA/

Resdoc/PGA_044522

the output taxonomies are ranked on the basis of the
average performance obtained for each evaluated as-
pect and for each domain. The resulting ranks are
simply summed up, favouring systems at the top of
the ranked list and penalising systems at the lower
end.

2.2.1 Baselines
The main purpose of introducing the baselines de-

scribed in this section is to check the performance
of a system that relies mainly on the fact that the
root of the domain is known and implements simple
string-based approaches. In this task, the following
two naive approaches for taxonomy construction are
implemented and used for benchmarking systems:

Baseline 1 Simply connect all the nodes to the
root concept: B1 = (VB1 , EB1) where EB1 =
{(root, a), a ∈ VB1 \ {root}};

Baseline 2 A basic string inclusion approach that
covers relations between compound terms such as
(science, network science): B2 = (VB2 , EB2) where
EB2 = {(a, b), b starts with a or ends with a and
|b| > |a|}, and where a is a term and b is a com-
pound term that includes a as a substring.

Both approaches require only the root of the tax-
onomy and the list of terms and do not require any
external corpora or other structured information.

2.2.2 Structural analysis
The main goal of the structural evaluation of a tax-

onomy is to quantify the size of the taxonomy under
investigation in terms of nodes and edges. A second
objective is to evaluate whether the overall structure
connects all the nodes in the graph with the root and
whether it is consistent with the semantics of the ISA
relation. Hierarchical relations are generally incon-
sistent with the presence of cycles. Also, we high-
light the number of nodes located on higher levels of
a taxonomy, called intermediate nodes. These nodes
are considered more important than leaves, to favour
taxonomies with a deep, rich structure.

Based on these considerations, structural evalua-
tion is performed by computing the cardinality of
|VS | and |ES |. A topological sorting-based algo-
rithm (Kahn, 1962) is used to establish if the taxon-
omy S contains simple directed cycles (self loop in-
cluded). We then use an approach based on the Tar-
jan algorithm (Tarjan, 1972) to calculate the number
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of connected components in S. Finally, we compute
the number of intermediate nodes as the number of
nodes |VS | − |LS | where LS is the set of leaf nodes
in S. A leaf node is a node with out-degree = 0.

2.2.3 Comparison against Gold Standard
Previous datasets for evaluating taxonomy extrac-

tion (Kozareva et al., 2008) mainly rely on Word-
Net to gather gold standards from several general
knowledge domains, such as animals, plants, and
vehicles. The datasets proposed in (Velardi et al.,
2013) enrich this experimental setting by including
two specialized domains, Virus and Artificial Intel-
ligence, that have low coverage in WordNet. A lim-
itation of these datasets is that currently there is no
gold standard taxonomy for these domains, therefore
only a manual evaluation is possible. The dataset
introduced here, instead, covers four new domains,
providing two separate gold standards for each do-
main: one collected from WordNet, a general pur-
pose resource, and a second one that combines re-
lations from domain-specific resources and from a
collaborative resource, Wikipedia, for a higher cov-
erage of the domain. This dataset allows us to in-
vestigate how a system performs when taxonomis-
ing frequently used terms in comparison with more
specialised, rarely used terms.

Given a gold standard taxonomy G = (VG, EG),
the comparison between a target taxonomy and a
gold standard taxonomy is quantified using the fol-
lowing measures:

• common nodes: |VS ∩ VG|
• vertex coverage: |VS ∩ VG|/|VG|
• number of common edges: |ES ∩ EG|
• edge coverage: |ES ∩ EG|/|EG|
• ratio of novel edges: (|ES | − |ES ∩ EG|)/|EG|
• edge precision: P = |ES ∩ EG|/|ES |
• edge recall: R = |ES ∩ EG|/|EG|
• F-score: F = 2(P ∗R)/(P + R)

Additionally, we consider the Cumulative
Fowlkes&Mallows (Cumulative F&M) measure
(Velardi et al., 2013): the value BS,G between 0.0
and 1.0 which measures level by level how well a
target taxonomy S clusters similar nodes compared
to a gold standard taxonomy G. BS,G is calculated
as follows: let k be the maximum depth of both

S and G, and Hij a cut of the hierarchy, where
i ∈ {0, ..., k} is the cut level and j ∈ {G, S} selects
the clustering of interest. Then, for each cut i, the
two hierarchies can be seen as two flat clusterings
CiS and CiG of the n concepts. When i = 0 the cut
is a single cluster incorporating all the objects, and
when i = k we obtain n singleton clusters. Now
let: n11 be the number of object pairs that are in
the same cluster in both CiS and CiG; n00 be the
number of object pairs that are in different clusters
in both CiS and CiG; n10 be the number of object
pairs that are in the same cluster in CiS but not in
CiG; n01 be the number of object pairs that are in
the same cluster in CiG but not in CiS .

The generalized Fowlkes&Mallows measure of
cluster similarity for the cut i (i ∈ {0, ..., k}), as
reformulated in (Wagner and Wagner, 2007), is de-
fined as:

Bi
S,G =

ni
11√

(ni
11 + ni

10) · (ni
11 + ni

01)
. (1)

And the cumulative Fowlkes&Mallows Measure:

BS,G =

∑k−1
i=0

i+1
k Bi

S,G∑k−1
i=0

i+1
k

=

∑k−1
i=0

i+1
k Bi

S,G

k+1
2

. (2)

2.2.4 Manual quality assessments
The gold standard taxonomies are not complete,

therefore it is possible for systems to identify cor-
rect relations that are not covered by the gold stan-
dard. Normally these relations are considered incor-
rect using a simple comparison with the gold stan-
dard taxonomy. For this reason we manually evalu-
ate a subset of new relations proposed by each sys-
tem to estimate the number of relations in ES that
do not belong to EG. A random sample is extracted
from all the taxonomies submitted by the partici-
pants and then manually annotated to compute the
precision P as: |correctISA|/|sample|. A total of
100 term pairs were evaluated by three different an-
notators for each system and each domain, for a total
of 800 pairs per system.

The chemical domain is not considered for this
evaluation because it requires a considerable amount
of domain knowledge and we did not have access to
experts in the chemical domain. Two of the authors
of this paper independently annotated each sample
relation, while the third assessment was done by
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a group of five annotators who have a background
in Computational Linguistics, with the exception of
one annotator who focused on the food domain. An-
notators were provided with a list of term pairs or-
ganised by domain and were asked if the relation
was a correct ISA relation, if the relation and the
terms were domain specific, and if the relation was
too generic. In our evaluation, a relation is con-
sidered correct only if it is a correct hypernym-
hyponym relation, if it is relevant for the given do-
main and not over-generic. Take for example the
following edges from the food domain: (linguine,
pasta) and (lemon, food). Both edges are correct
ISA relations and are domain specific, but the sec-
ond edge is over-generic because lemons are also
fruits. The agreement for identifying correct edges
is measured using the Fleiss kappa statistic and is
overall substantial (Fleiss kappa 0.65). The easi-
est domain is Food (Fleiss kappa 0.69), followed
by Equipment (Fleiss kappa 0.63). Not surprisingly,
the Science domain is the most challenging (Fleiss
kappa 0.60), as this is a rapidly changing domain
and there is in general less consensus about the rela-
tions between fields.

3 Submitted runs

Overall, 6 teams participated in the task. Partici-
pants were allowed to submit two runs for each of
the four domains, one for each type of gold standard,
for a total of 8 different runs. Most teams submit-
ted a run for each domain and type of gold standard,
with the exception of the LT3 team, which did not
submit a system for the Chemical domain and the
QASSIT team, which submitted only one run for the
WordNet Chemical taxonomy. Next, we will pro-
vide a short description of each approach in alpha-
betical order, discussing corpora collection and the
approaches adopted for relation discovery and tax-
onomy construction.

INRIASAC (supervised) Corpus: Wikipedia
search using terms; Relation discovery: substring
inclusion, lexico-syntactic patterns, co-occurrence
information based on sentences and documents; Tax-
onomy construction: none.

LT3 (unsupervised) Corpus: web corpus con-
structed using BootCat (Baroni and Bernardini,
2004) using the provided terms as seed terms; Re-

lation discovery: lexico-syntactic patterns, mor-
phological structure of compound terms, WordNet
lookup (Lefever et al., 2014); Taxonomy construc-
tion: none.

ntnu (unsupervised) Corpus: Wikipedia and
WordNet definitions; Relation discovery: hyper-
nym extraction from definitions, WordNet lookup,
Wikipedia categories, similarity between keywords;
Taxonomy construction: none.

QASIT (semi-supervised) Corpus: Wikipedia,
DBpedia; Relation discovery: lexico-syntactic pat-
terns, co-occurrence information; Taxonomy con-
struction: Learning Pretopological Spaces (LPS)
method that learns a Parameterized Space by using
an evolutionary strategy.

TALN-UPF (semi-supervised) Corpus:
Wikipedia definitions retrieved using BabelNet
(Navigli and Ponzetto, 2012); Relation discovery:
based on (Navigli and Velardi, 2010), CRF model
trained with the WCL dataset, linguistic rules added
to traverse the dependency tree, missing nodes
connected to root; Taxonomy construction: none.

USAAR (semi-supervised) Corpus: Wikipedia
documents; Relation discovery: lexico-syntactic
patterns, co-occurrence information used to con-
struct a vector space model using the word2vec
tool;5 Taxonomy construction: none.

4 Results

Table 2 presents the results of the structural anal-
ysis (see Section 2.2.2) for all the system outputs
and for the two baselines. Only 20 out of 45 sub-
mitted taxonomies consist of one weakly connected
component (c.c. = 1), and 18 out of 45 are di-
rected acyclic graphs (Cycles=N). Overall, only 10
taxonomies comply with the ideal structural require-
ments of a taxonomy and are directed acyclic graphs
consisting of one connected component. 6 of these
were submitted by the only system that addressed
the taxonomy construction subtask, QASSIT. Table
3 shows the average edge precision, recall and F-
score of the six systems compared to the baselines
(see Sections 2.2.3 and 2.2.4). LT3 outperforms the
other systems on all the measures. It is worth not-
ing that our string-based baseline (B2) achieves the

5https://code.google.com/p/word2vec/
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Table 2: Structural analysis of the submitted taxonomies and of the baseline taxonomies, including the number of:
nodes (|V |), edges (|E|), connected components (c.c.), and intermediate nodes (i.n.).

Combined gold standard taxonomies

INRIASAC LT3 ntnu QASSIT TALN-UPF USAAR B1 B2

Chemicals |V| 12432 n.a. 1114 n.a. 17584 13785 17584 10120
|E| 28444 1563 17606 30392 17583 12672
c.c. 293 116 1 302 1 991

Cycles Y N N Y N N
i.n. 5808 1052 34 13766 1 10117

Equipment |V| 520 260 251 610 612 337 612 248
|E| 1168 282 247 614 665 548 611 244
c.c. 6 10 35 1 1 28 1 17

Cycles N Y N N Y Y N N
i.n. 164 174 251 70 20 320 1 229

Food |V| 1518 819 834 1550 1549 1118 1549 636
|E| 4363 1632 1227 1560 1569 2692 1548 627
c.c. 2 6 27 1 1 23 1 47

Cycles Y N Y Y N Y N N
i.n. 397 159 810 72 18 1105 1 631

Science |V| 417 187 338 453 1280 355 452 232
|E| 1164 441 386 511 1623 952 451 214
c.c. 3 8 23 1 1 14 1 28

Cycles N Y N N Y Y N N
i.n. 151 88 329 80 422 261 1 207

WordNet gold standard taxonomies
INRIASAC LT3 ntnu QASSIT TALN-UPF USAAR B1 B2

Chemicals |V| 1913 n.a. 1475 1351 1347 1173 1351 820
|E| 4611 1855 1380 1451 3107 1350 808
c.c. 2 28 1 1 31 1 129

Cycles Y Y N Y Y N N
i.n. 1262 1272 56 63 920 1 819

Equipment |V| 468 462 1081 476 2574 354 475 232
|E| 1369 1452 1333 490 3370 547 474 188
c.c. 1 1 12 1 1 43 1 46

Cycles Y Y Y N Y Y N N
i.n. 371 142 1036 65 1025 339 1 213

Food |V| 1458 1471 1843 1487 1486 1200 1486 826
|E| 4238 6913 2760 1539 1548 3465 1485 812
c.c. 2 1 35 1 1 23 1 79

Cycles N Y Y N N Y N N
i.n. 478 374 1386 60 53 1189 1 813

Science |V| 366 370 524 371 370 307 370 217
|E| 1102 1573 681 436 393 892 369 174
c.c. 1 1 11 1 1 8 1 48

Cycles Y Y N N N Y N N
i.n. 135 114 505 74 25 255 1 208

highest precision, which leads to high F-score, sec-
ond only to the best system. This is an indication
that the test dataset can be improved by removing
relations that do not require more sophisticated ap-
proaches. The first baseline (B1) is not competitive,
because the gold standard taxonomies are specifi-
cally selected to have a rich, deep structure. A large
number of novel relations produced by the USAAR
system are too generic because they apply a simi-
lar strategy. The results of the manual analysis of
previously unknown edges are shown in the last line
of Table 3. Again, LT3 and INRIASAC systems take
the lead. The ntnu system discovers the largest num-

ber of novel edges compared to other systems on
the WordNet Science taxonomy. In this case, LT3
discovers a larger number of new edges than other
participants on Combined taxonomies. In Table 4
we report the Cumulative F&M measure (see Sec-
tion 2.2.3) for the 45 systems and for the 16 base-
line taxonomies. Results are grouped on the basis
of the source of the gold standard, that is, combined
taxonomies and WordNet taxonomies. LT3 outper-
forms the other systems on all three submitted Word-
Net taxonomies by a wide margin (there is no sub-
mission for the Chemicals domain), but for the com-
bined taxonomies the INRIASAC system holds the
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Table 3: Average Precision, Recall and F-score of ISA relationships across gold standards and Average Precision of
novel relations based on human judgement.

Comparison against gold standards
INRIASAC LT3 ntnu QASSIT TALN-UPF USAAR B1 B2

Average Precision 0.1725 0.3612 0.1754 0.1564 0.0720 0.2015 0.0226 0.5432
Average Recall 0.4279 0.6307 0.2756 0.1589 0.1165 0.3139 0.0212 0.2413
Average F-score 0.2427 0.3886 0.2076 0.1575 0.0799 0.2377 0.0219 0.3326

Manual evaluation

Average Precision 0.4800 0.5967 0.4200 0.3533 0.2467 0.1017 - -

Table 4: Cumulative Fowlkes&Mallows measure for 45 system runs and for 16 baselines.

Combined gold standard taxonomies
INRIASAC LT3 ntnu QASSIT TALN-UPF USAAR B1 B2

Chemicals 0.2353 n.a 0.0009 n.a 0.2225 0.00001 0.2281 0.0
Equipment 0.4905 0.1137 0.0000 0.4881 0.4482 0.0000 0.3970 0.0012
Food 0.4522 0.2163 0.0076 0.3405 0.3267 0.0037 0.3162 0.0007
Science 0.4706 0.3303 0.0088 0.5232 0.2202 0.2249 0.4214 0.0108

WordNet gold standard taxonomies

Chemicals 0.0084 n.a 0.0719 0.3947 0.2787 0.2103 0.2683 0.0
Equipment 0.0700 0.6892 0.0935 0.3637 0.0901 0.0015 0.2969 0.0007
Food 0.4804 0.5899 0.2673 0.3153 0.3091 0.0036 0.2933 0.0022
Science 0.4153 0.5391 0.0158 0.2921 0.2126 0.1721 0.1963 0.0016

lead. This difference is explained by the fact that
LT3 makes use of a WordNet lookup of hypernym-
hyponym relations, which is similar to the method
used to collect the WordNet gold standard. More
detailed statistics and charts are available on the
task website6. Finally, in order to obtain an over-
all rank of the system outputs we first assigned a
penalty score (from 1 to 6) for six cue aspects of the
evaluation: presence of Cycles, Cumulative F&M
measure, number of Intermediate Nodes, F-score
from Gold Standard Evaluation, number of Submit-
ted Domains and estimated precision from Manual
Evaluation. Then, the total number of penalty points
was computed and, following the inverse order of
the total penalty scores, we finally ranked the teams
(see Table 5).

At the end of the evaluation it emerged that the
INRIASAC team had outperformed the other teams
in the production of taxonomies for the selected tar-
get domains. Although the LT3 team achieved bet-
ter performance for quantitative approaches (preci-
sion, F-score, Cumulative F&M), it was penalised
in the final ranking because the constructed tax-

6http://alt.qcri.org/semeval2015/task17/
index.php?id=evaluation

Table 5: Overall ranking of submitted systems: IN-
RIASAC (INR), LT3, ntnu, QASSIT (QA), TALN-UPF
(TA), USAAR (US).

INR LT3 ntnu QA TA US

Cycles 3 4 2 1 3 4
Cumulative F&M 2 1 6 3 4 5
Intermediate Nodes 2 5 3 6 4 1
Gold Standard Evaluation 2 1 4 5 6 3
Submitted Domains 1 3 1 2 1 1
Manual Evaluation 2 1 4 5 6 3

Total 12 15 20 22 24 17
Final Ranking 1 2 4 5 6 3

onomies were generally smaller than the taxonomies
produced by INRIASAC, the LT3 team did not sub-
mit a taxonomy for Chemicals, and they submitted a
larger number of taxonomies with cycles.

5 Discussion

A main limitation of this shared task is that partic-
ipants were allowed to use the same resources as
those used to create the gold standards, and were
able to apply simple lookups to retrieve the relations.
No recall was computed on the basis of the man-
ual evaluation because of the relatively small num-
ber of evaluated relations. A possible solution for
this problem would be to use result pooling from
all the systems to estimate recall. But this solu-
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Figure 2: Intermediate nodes of the QASSIT taxon-
omy on Science.

Figure 3: Intermediate nodes of the gold standard
taxonomy on Science.

tion would be more appropriate when there was a
larger number of systems. Most participants de-
cided not to address the taxonomy construction sub-
task, focusing mainly on relation discovery. This
could be because the subtask is less well-known and
more recently introduced, but also because exist-
ing approaches for taxonomy construction are com-
plex and difficult to reimplement. None of the sys-
tems was able to address this subtask for the com-
bined Chemicals taxonomy, which is the largest in
our dataset. This points to the computational lim-
its of existing algorithms for taxonomy construction.
The choice of corpora shows a trend towards us-
ing Wikipedia-based corpora instead of web-based
corpora (Hovy et al., 2013). Only one participant
team relied on web-based corpora. Another les-
son that can be drawn from this shared task is that
lexico-syntactic patterns, known to have high preci-
sion but low recall, can benefit from co-occurrence
based approaches, even if these tend to be less re-
liable. A visualisation of the top levels of the tax-
onomy constructed by the QASSIT system is pre-
sented in Figure 2. The relative size of the nodes
within a graph is proportional to the degree of the
node. Compared to the gold standard taxonomy for
the same domain presented in Figure 3, the QAS-
SIT taxonomy connects a larger number of leaves
directly to the Science root, introducing a large num-
ber of over-generic relations. There are three times

more relations between intermediate nodes and the
root node than in the gold standard taxonomy. The
QASSIT hierarchy is more shallow than the gold
standard, and contains a smaller number of interme-
diate nodes.

6 Conclusion

This paper provides an overview of the SemEval
2015 task on Taxonomy Extraction. The task aimed
to foster research in hierarchical relation extraction
from text and taxonomy construction. We con-
structed and released benchmark datasets for four
domains (chemicals, equipment, foods, science).
The task attracted 45 submissions from six teams
that were automatically evaluated against gold stan-
dards collected from WordNet, as well as other well
known sources. This evaluation was complemented
by a structural analysis of the submitted taxonomies
and a manual evaluation of previously unknown
edges. Most systems focused on the relation ex-
traction subtask, with the exception of the QASSIT
team who addressed the taxonomy construction sub-
task as well. In future, the datasets can be improved
by removing relations that can be identified through
string-based inclusion.
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