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Abstract 

This paper describes FCICU team participa-

tion in SemEval 2015 for Semantic Textual 

Similarity challenge. Our main contribution is 

to propose a word-sense similarity method us-

ing BabelNet relationships. In the English 

subtask challenge, we submitted three systems 

(runs) to assess the proposed method. In 

Run1, we used our proposed method coupled 

with a string kernel mapping function to cal-

culate the textual similarity. In Run2, we used 

the method with a tree kernel function. In 

Run3, we averaged Run1 with a previously 

proposed surface-based approach as a kind of 

integration. The three runs are ranked 41
st
, 

57
th

, and 20
th

 of 73 systems, with mean corre-

lation 0.702, 0.597, and 0.759 respectively. 

For the interpretable task, we submitted a 

modified version of Run1 achieving mean F1 

0.846, 0.461, 0.722, and 0.44 for alignment, 

type, score, and score with type respectively. 

1 Introduction 

Semantic Textual Similarity (STS) is the task of 

measuring the similarity between two text snippets 

according to their meaning. Human has an intrinsic 

ability to recognize the degree of similarity and 

difference between texts. Simulating the process of 

human judgment in computers is still an extremely 

difficult task and has recently drawn much atten-

tion. STS is very important because a wide range 

of NLP applications such as information retrieval, 

question answering, machine translation, etc. rely 

heavily on this task. 

This paper describes our proposed STS systems 

by which we participated in two subtasks of STS 

task (Task2) at SemEval 2015, namely English 

STS and Interpretable STS. The former calculates 

a graded similarity score from 0 to 5 between two 

sentences (with 5 being the most similar), while 

the latter is a pilot subtask that requires aligning 

chunks of two sentences, describing what kind of 

relation exists between each pair of chunks, and a 

score for the similarity between the pair of chunks 

(Agirre et al., 2015). 

 Sense or meaning of natural language text can 

be inferred from several linguistic concepts, in-

cluding lexical, syntactic, and semantic knowledge 

of the language. Our approach employs those as-

pects to calculate the similarity between senses of 

text constituents, phrases or words, relying mainly 

on BabelNet senses. The similarity between two 

text snippets is firstly calculated using kernel func-

tions, which map a text snippet to the feature space 

based on a proposed word sense similarity method. 

Besides, the sense-based similarity score obtained 

is combined with a surface-based similarity score 

to study the consolidation impact in the STS task. 

The paper is organized as follows. Section 2 

explains our proposed word sense similarity meth-

od. Section 3 describes the proposed systems. Sec-

tion 4 presents the experiments conducted and 

analyzes the results achieved. Section 5 concludes 

the paper and suggests some future directions.   
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2 The proposed Word-Sense Similarity 

(WSS) Method 

Several semantic textual similarity (STS) methods 

have been proposed in literature. Sense-based 

methods are qualified when different words are 

used to convey the same meaning in different texts 

(Pilehvar et al., 2013). Surface-based methods, 

mostly fail in identifying similarity between texts 

with maximal semantic overlap but minimal lexical 

overlap. We present a sense-based STS approach 

that produces similarity score between texts by 

means of a kernel function (Shawe-Taylor and 

Cristianini, 2004). Then, we integrate the sense-

based approach with the surface-based soft cardi-

nality approach presented in (Jimenez et al., 2012) 

to demonstrate that both sense-based and surface-

based similarity methods are complementary to 

each other.  

The design of our kernel function relies on the 

hypothesis that the greater the similarity of word 

senses between two texts, the higher their semantic 

equivalence will be. Accordingly, our kernel maps 

a text to feature space using a similarity measure 

between word senses. We proposed a WSS meas-

ure that computes the similarity score between two 

word senses (wsi, wsj) using the arithmetic mean of 

two measures: Semantic Distance (simD) and Con-

textual Similarity (simC). That is: 
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2.1 Semantic Distance 

This measure computes the similarity between 

word senses based on the distance between them in 

a multilingual semantic network, named BabelNet 

(Navigli and Ponzetto, 2010). BabelNet
1
 is a rich 

semantic knowledge resource that covers a wide 

range of concepts and named entities connected 

with large numbers of semantic relations. Concepts 

and relations are gathered from WordNet (Miller, 

1995); and Wikipedia
2
. The semantic knowledge is 

encoded as a labeled directed graph, where vertices 

are BabelNet senses (concepts), and edges connect 

pairs of senses with a label indicating the type of 

the semantic relation between them. Our semantic 

distance measure is a function of two similarity 

scores: simBn and simNBn.  
                                                           
1 http://babelnet.org/ 
2 http://en.wikipedia.org/ 

The first score (simBn) is based on the distance 

between two word-senses, wsi and wsj; where, the 

shorter the distance between them, the more se-

mantically related they are. That is: 

Maxlen
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where Maxlen
3
 is the maximum path length con-

necting two senses in BabelNet, and len(wsi,wsj) is 

the length of the shortest path between two senses, 

wsi and wsj, in BabelNet in both directions; i.e wsi 

 wsj, and wsj  wsi. The shortest path is calculat-

ed using Dijkstra's algorithm. 

The second score (simNBn) represents the degree 

of similarity between the neighbors of wsi and the 

neighbors of wsj, which influences the degree of 

similarity between the two senses. Hence, simNBn is 

calculated by taking the arithmetic mean of all 

neighbor-pairs similarity. That is: 
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where NSi and NSj are the sets of the most semanti-

cally related senses directly connected to wsi and 

wsj respectively in BabelNet; ni = | NSi |, and nj = | 

NSj |; and simWuP (wsk, wsl) is Wu and Palmer simi-

larity measure (Wu and Palmer, 1994). 

The values of the two scores presented above 

determine the way of calculating the semantic dis-

tance measure (simD) for word senses’ pair (wsi, 

wsj). For zero similarity of both scores, simD is 

simply equals to Wu and Palmer similarity meas-

ure; i.e. simD (wsi,wsj) = simWuP (wsi,wsj). Generally, 

for non-zero similarity scores, simD is calculated 

using the arithmetic mean of the two scores. 

2.2 Contextual Similarity 

This measure calculates the similarity between the 

word senses pair (wsi, wsj) based on the overlap 

between their contexts derived from a corpus. The 

overlap coefficient used is Jaccard Coefficient. 

That is:  
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jiC
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wswssim




),(          (4) 

where Ci is the set of: 1) all the word senses that 

co-occur with wsi in the corpus, and 2) all senses 

directly connected to wsi in BabelNet; Cj is similar. 

                                                           
3 We tried different values in experiments and the best was 7. 
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3 Systems Description 

3.1 Text Preprocessing 

The given input sentences are first preprocessed to 

map the raw natural language text into structured 

or annotated representation. This process includes 

different tasks: tokenization, lemmatization, Part-

of-Speech tagging, and word-sense tagging. All 

tasks except word-sense tagging are carried out 

using Stanford CoreNLP (Manning et al., 2014). 

Sense tagging is the task of attaching a sense to a 

word or a token. It is performed by selecting the 

most commonly used BabelNet sense that matches 

the part of speech (POS) of the word. Accordingly, 

we restricted sense tagging to: nouns, verbs, 

adjectives, and adverbs. 

3.2 English STS Subtask 

We submitted three systems in this subtask, named 

Run1, Run2, and Run3.  

3.2.1 Sense-based String Kernel (Run1) 

Given two sentences, s1 and s2, the similarity score 

between s1 and s2 resulted by this system is the 

value of a designed string kernel function between 

the two sentences. This kernel is defined by an 

embedded mapping from the space of sentences 

possibly to a vector space F, whose coordinates are 

indexed by a set I of word senses contained in s1 

and s2; i.e.  : s  (ws(s))wsI  F.  Thus, given a 

sentence s, it can be represented by a row vector 

as:  (s) = (ws1(s), ws2(s) … wsN(s)), in which 

each entry records how similar a particular word 

sense (wsI) is to the sentence s. The mapping is 

given by: 

 ),(max)(
1

i
ni

ws wswsWSSs


 , (5) 

where WSS(ws, wsi) is our defined word sense sim-

ilarity method ( Eq. (1) ), and n is the number of 

word senses contained in sentence s. 

The string kernel between two sentences s1 and 

s2 is calculated as (Shawe-Taylor and Cristianini, 

2004): 
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The last step remaining is normalizing the ker-

nel (i.e. range = [0,1]) to avoid any biasness to sen-

tence length. The normalized string kernel 

κNS(s1,s2) is calculated by (Shawe-Taylor and 

Cristianini, 2004): 
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      (7) 

Hence, ),(),( 21211 sssssim NSRun  . 

3.2.2 Sense-based Tree Kernel (Run2) 

This system applies tree kernel instead of string 

kernel. Tree kernels generally map a tree to the 

feature space of subtrees. There are various types 

of tree kernel designed in literature, among them is 

the all-subtree kernel presented in (Shawe-Taylor 

and Cristianini, 2004). The all-subtree kernel is 

defined by an embedded mapping from the space 

of all finite syntactic trees to a vector space F, 

whose coordinates are indexed by a subset T of 

syntactic subtrees; i.e.  : t  (st(t))stT  F.  The 

mapping st(t) is a simple exact matching function 

that returns 1 if st is a subtree in t, and returns 0 

otherwise. We modified the mapping of all-subtree 

kernel to capture the semantic similarity between 

subtrees instead of the structural similarity. The 

semantic similarity between subtrees is calculated 

recursively bottom-up from leaves to the root, in 

which the similarity between leaves is calculated 

using our defined word sense similarity method.  

From this point, the remaining steps are typical 

to the string kernel steps followed in the first sys-

tem. Hence, given two sentences s1 and s2, their 

similarity score is the normalized kernel value be-

tween their syntactic parse trees t1 and t2; 

i.e. ),(),( 21212 ttsssim NTRun  . 

3.2.3 Sense-based with Surface-based (Run3) 

This system provides the results of taking the 

arithmetic mean of: 1) our sense-based string ker-

nel (Run1); and 2) the surface-based similarity 

function proposed by Jimenez et al. (2012). The 

approach presented in (Jimenez et al., 2012) 

represents sentence words as sets of q-grams on 

which the notion of Soft Cardinality is applied. In 

this system, all the calculations in the approach are 

used unchanged with the following parameters set-

up: p=2, bias=0, and =0.5. Accordingly, the 

similarity function is the Dice overlap coefficient 

on q-grams; i.e.  ''/'2),( BABABAsimSC  .  

Hence, 

2
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3.3 Interpretable STS Subtask 

The interpretable STS is a pilot subtask, which 

aims to determine the parts of sentences, chunks, 

that are equivalent in meaning and the parts that 

are not. This is twofold: (a) aligning corresponding 

chunks, and (b) assigning a similarity score, and a 

type to each alignment. Given two sentences split-

ted into gold standard chunks, our system carries 

out the task requirements using our sense-based 

string kernel by considering each chunk as a text 

snippet. Firstly, the similarity between chunks of 

all possible chunk-pairs is calculated, upon which 

chunks are aligned. Where, chunk pairs with a high 

similarity score are aligned first, followed by pairs 

with lower similarity. Thereafter, for each align-

ment of chunks c1 and c2, the alignment type is 

determined according to the following rules: 

• If the similarity score between c1 and c2 is 5, 

the type is EQUI.  

• If all word senses of c1 matched the word 

senses in c2, the type is SPEC2; similarly for 

SPEC1. 

• If both c1 and c2 contain a single word sense, 

and are directly connected by an antonym re-

lation in BabelNet, then the type is OPPO. 

• If the similarity score between c1 and c2 is in 

range [3,5[, the type is SIM; while if it is in 

range ]0,3[, the type is REL. 

• If any chunk has no corresponding chunk in 

the other sentence, then the type is either 

NOALI or ALIC based on the alignment re-

striction in the subtask. 

4 Experimental Results 

4.1 English STS  

The main evaluation measure selected by the task 

organizers was the mean Pearson correlation be-

tween the system scores and the gold standard 

scores calculated on the test set (3000 sentence 

pairs from five datasets). Table 1 presents the offi-

cial results of our submissions in this subtask on 

SemEval-2015 test set. It also includes the results 

of the Soft Cardinality STS approach (SC) on the 

same test set for analysis. Our best system (Run3) 

achieved 0.7595 and ranked the 20
th
 out of 73 sys-

tems.  

We conducted preliminary experiments on the 

training dataset of SemEval-2015 for evaluating 

our sense-based string and tree kernel similarity 

methods, and the integration between each of them 

with the SC approach. The results of those experi-

ments led to the final submission of the two ker-

nels separately (Run1 and Run2) and integrating 

the string kernel method with SC (Run3). Table 2 

focuses on the results obtained from our integrated 

system (Run3) and SC approach in training, but 

includes also the recent SC approach (SC-ML) 

proposed in (Jimenez et al., 2014).  

It is noteworthy from the tables that Run3 im-

proved the SC system results on both the training 

and testing sets for all the different settings for al-

pha value in the SC approach. The possible reason 

based on our observation on the training datasets is 

that the two systems have opposite strength and 

weakness points. Figure 1 depicts the similarity 

scores resulted from Run1, Run3, and SC systems 

along with the gold standard scores (GS) on some 

sentence pairs from images dataset. It is shown 

from the figure that Run1 outperforms SC for se-

mantically equivalent sentence pairs (i.e. scores > 

3.5), while SC outperforms Run1 for less-related 

sentence pairs (i.e. score < 2). Hence, their integra-

tion by taking their average (Run3) improves the 

performance of their individual use and did not 

reduce the SC results. Also, though this integration 

is simple, it outperformed SC-ML that applies ma-

chine learning on some extracted text features. 

 
Figure 1. Sample Results of Run1, Run3, and SC on 

‘images’ Dataset of SemEval Training data. 

4.2 Interpretable STS 

There were two datasets only in the test set, name-

ly images and headlines. The results in this subtask 

are evaluated by four F1 measures for alignment, 

score, alignment type, and both score with align-

ment. The results of our submitted run (average of 

the two datasets) were 0.846, 0.461, 0.722, and 

0.44 for F1-Ali, F1-type, F1-score, and F1-

score+type respectively. 
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System answers-forums answers-students belief headlines images Mean Rank 

Run1 0.6152 0.6686 0.6109 0.7418 0.7853 0.7022 41st/73 

Run2 0.3659 0.6460 0.5896 0.6448 0.6194 0.5970 57th/73 

Run3 0.7091 0.7096 0.7184 0.7922 0.8223 0.7595 20th/73 

SC 0.7078 0.7020 0.7232 0.7966 0.8120 0.7565 - 

Table 1. Our Results on SemEval-2015 Test Datasets. 

 System deft-forum deft-news headlines images OnWN tweet-news Mean 

- Run1 0.4259 0.7271 0.6914 0.7576 0.7597 0.7227 0.6955 

- SC-ML 0.4607 0.7216 0.7605 0.7782 0.8426 0.6583 0.7209 

0.25 
Run3 0.5092 0.7479 0.7383 0.7902 0.7857 0.7744 0.7387 

SC 0.5047 0.7311 0.7362 0.7785 0.7727 0.7709 0.7307 

0.5 
Run3 0.4937 0.7531 0.7377 0.7887 0.7834 0.7723 0.7359 

SC 0.4789 0.7407 0.7374 0.7763 0.7671 0.7641 0.7257 

0.7 
Run3 0.4816 0.7541 0.7356 0.7862 0.7806 0.7681 0.7322 

SC 0.4558 0.7396 0.7321 0.7694 0.7586 0.7496 0.7158 

Table 2. Results of Run3 vs. SC on SemEval-2014 Test Datasets (SemEval-2015 Training dataset).

5 Conclusions and Future work 

Our experiments proved that sense-based and sur-

face-based similarity methods are complementary 

to each other in STS. We also realized that string 

kernel is more beneficial than tree kernel. Our po-

tential future work includes: 1) enhancing our 

sense-based kernel approach, and 2) further en-

hancement in the integration between SC and our 

sense-based approach. 
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