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Abstract

The Practical Lexical Function model (PLF)
is a recently proposed compositional distribu-
tional semantic model which provides an el-
egant account of composition, striking a bal-
ance between expressiveness and robustness
and performing at the state-of-the-art. In this
paper, we identify an inconsistency in PLF be-
tween the objective function at training and the
prediction at testing which leads to an over-
counting of the predicate’s contribution to the
meaning of the phrase. We investigate two pos-
sible solutions of which one (the exclusion of
simple lexical vector at test time) improves per-
formance significantly on two out of the three
composition datasets.

1 Introduction

Compositional distributional semantic models
(CDSMs) make an important theoretical contribution,
explaining the meaning of a phrase by the meanings
of its parts. They have also found application
in psycholinguistics (Lenci, 2011), in sentiment
analysis (Socher et al., 2012), and in machine
translation (Kalchbrenner and Blunsom, 2013).

A first generation of CDSMs represented all words
as vectors and combined them by component-wise
operations (Mitchell and Lapata, 2010). Given the
conceptual limitations of this simple approach, nu-
merous models were subsequently proposed which
represent the meaning of predicates as higher-order
algebraic objects such as matrices and tensors (Ba-
roni and Zamparelli, 2010; Guevara, 2010; Coecke
et al., 2010). For example, one-place predicates such

as adjectives or intransitive verbs can be modeled as
matrices (order-2 tensors), and two-place predicates,
e.g., transitive verbs, as order-3 tensors, and so forth.
While such tensors enable mathematically elegant ac-
counts of composition, their large degrees of freedom
lead to severe sparsity issues when they are learned
from corpora.

The recently proposed Practical Lexical Function
model (PLF; Paperno et al., 2014) represents a com-
promise between these two extremes by restricting
itself to vectors and matrices, effectively reducing
sparsity while retaining state-of-the-art performance
across multiple datasets. It does away with tensors by
ignoring interactions among the arguments of predi-
cates p. Instead, each argument position arg is mod-

eled as a matrix
�arg
p that is applied to a vector for the

argument’s meaning, −→a . The meaning of the phrase
is then defined as the sum of the lexical meaning of
the predicate, −→p , and the contributions of each ar-
gument (see Fig. 1). The matrices can be learned in
a supervised manner with regression from pairs of
corpus-extracted vectors for arguments and phrases.

In this paper, we identify an inconsistency between
the training and testing phases of the PLF. More
specifically, we show that its composition procedure
leads to over-counting of the contribution of the pred-
icate. We propose two remedies to harmonize the
training and prediction phases – by excluding the
predicate meaning from either training or testing. In
an evaluation of the standard PLF and our variants
on three datasets, we find that modifying the training
phase fails, but that modifying testing phase improves
performance on two out of three datasets. We analyze
this effect in terms of a bias-variance tradeoff.
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Figure 1: Practical Lexical Function model derivation for
the noun-verb-noun phrase “user writes software”.

2 Debugging the PLF model

2.1 An Inconsistency

We have identified an inconsistency in the PLF model
as a result of which the predicted vector for a phrase
systematically differs from the corpus-observed vec-
tor of the phrase. We will illustrate it on a minimal
example, the phrase “dogs sleep”.

Training Phase. The training of PLF creates three
representations: (1), a lexical vector for the noun
(−→n ); (2), the lexical vector for the verb (−→v ); and
(3), a matrix for the subject argument position of the

verb (
�Sv ). While (1) and (2) can be acquired directly

from the corpus, (3) involves optimization, since the
matrix (3) is supposed to account for the verb’s dis-
ambiguating effect on all its subjects. PLF proposes
to learn matrices via regression problems such as the
following (Guevara, 2010), where subj(v) comprises
the subjects seen with the verb v:1

�Sv := argmin
M

∑
n∈subj(v)

‖M ×−→n −−→n v‖2 (1)

That is, the verb’s subject matrix is learned as the
matrix which, multiplied with a subject noun vector,
best predicts the noun-verb phrase vector. If we as-
sume that the verb of our example (sleep) is only seen
with a single noun in the corpus, namely its subject
dog, Eq. (1) has a particularly simple solution where
the matrix can perfectly predict the phrase vector:

�S
sleep ×−→dog =

−−−−−−→
dog sleep (2)

1All matrices are learned using least-squares regression and,
for the sake of simplicity, we ignore regularization. Adjective
matrices are obtained in the same fashion.

Testing Phase. PLF predicts the phrase meaning P
for our example as predicate plus argument meaning:

P(dog sleeps) =
−−→
sleep+

�S
sleep ×−→dog (3)

Intuitively, what we would expect as the result of
this computation to be

−−−−−−→
dog sleeps — the empirically

observed vector for the noun-verb phrase. However,
substituting Eq. (2) into Eq. (3), we instead obtain:

P(dog sleeps) =
−−→
sleep +

−−−−−−→
dog sleeps (4)

The predicted phrase meaning does not correspond
to the empirical phrase vector because in PLF, the
verb contributes twice to the phrase meaning.

Discussion. This issue remains pertinent beyond
the minimal example presented above. The reason
is a discrepancy between the training and test se-
tups: The argument matrices in PLF are learned so
as to predict the complete phrase vector when mul-
tiplied with an argument (compare Eq. (1)).2 This
objective is inconsistent with the way phrase vectors
are predicted at test time. The addition of the pred-
icate’s lexical vector thus amounts to a systematic
over-counting of the predicate’s lexical contribution.

2.2 Two Ways to Remedy the Inconsistency
The above description gives direct rise to two simple
strategies to harmonize training and test procedures.

Adapting the Training Phase. One strategy is to
adapt the training objective from Eq. (1). Recogniz-
ing that the predicate vector is added in by Eq. (3)
at test time, we can attempt to learn a matrix that
predicts not the phrase vector, but the difference be-
tween the phrase vector and the predicate vector. That
means, the matrices capture only the disambiguating
contribution of argument positions such as subject:

�Sv = argmin
M

∑
n∈subj(v)

‖M ×−→n − (−→n v−−→v )‖2 (5)

Adapting the Testing Phase. Another strategy is
to adapt the phrase meaning prediction at test time by
simply leaving out the predicate vector. For subject-

verb combinations, we predict P(n v) =
�Sv ×−→n .

2A formal, more general argument can be made based on the

error term ~ε =
�arg
v ×−→n −−→n v which is minimized in training.
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verb in context landmark in context similarity

private landlord charge annual rent private landlord accuse annual rent low
private landlord charge annual rent private landlord bill annual rent high

armed police charge unemployed person armed police accuse unemployed person high
armed police charge unemployed person armed police bill unemployed person low

Table 1: Example of experimental items in the ANVAN data sets (target verb: charge).

For transitive sentences (cf. Figure 1), we predict

P(n v n) =
�Sv ×−→n +

�Ov ×−→n (the sum of the subject
and the object contributions), and analogously for
other constructions.

3 Experimental Setup

Evaluation Datasets. We evaluate the modifica-
tions from the last section on three standard bench-
marks for CDSMs: ANVAN-1 (Kartsaklis et al.,
2013), ANVAN-2 (Grefenstette, 2013) (Paperno et
al.’s term) and NVN (Grefenstette and Sadrzadeh,
2011) (our term).

As the abbreviations indicate, the two ANVAN
datasets contain transitive verbs whose NP arguments
are modified by arguments; the NVN dataset con-
tains only bare noun arguments. All three datasets
are built around ambiguous target verbs that are com-
bined with two disambiguating contexts (subjects
plus objects) and two landmark verbs in a balanced
design (cf. Table 1). Each context matches one of the
landmark verbs, but not the other. Annotators were
asked to rate the similarity between the target verb in
context and the landmark on a Likert scale.

Corpus and Co-Occurrences. We followed the
specifications by Paperno et al. (2014) as closely
as possible to replicate the original PLF results. As
corpora, we used ukWAC, English Wikipedia, and
the BNC. We extracted a square co-occurrence ma-
trix for the 30K most frequent content words using
a 3-word window and applied the PPMI transforma-
tion. Subsequently, the matrix was reduced to 300
dimensions with SVD. In the same manner, we built
a co-occurrence matrix for all corpus bigrams for
relevant adjectives and verbs from the experimental
materials, applying a frequency threshold of 5.

Composition Models and Evaluation. We build
matrix representations for adjectives and subject and

−−−→
charge +

�S
charge ×−→np subj+

�O
charge ×−→np obj

{ −−−→charge +
�S

charge ×−→np subj,
�O

charge}

−→np subj:=
−−−→
private +

� N
private ×−−−−−→landlord

{ −−−→charge,
�S

charge,
�O

charge}

−→np obj:=
−−−→
annual +

� N
annual ×−−→rent

Figure 2: PLF Derivation for ANVAN phrase “private
landlord charge yearly rent”.

object positions of verbs using the DISSECT toolkit
(Dinu et al., 2013). In addition to the standard
PLF model, which we see as a baseline, we imple-
ment both proposals from Section 2.2. On the NVN
dataset, both training and test modification can ap-
ply only to the verb (cf. Figure 1), which gives us
two conditions. On the ANVAN datasets (cf. Fig-
ure 2), the changes can be applied to the verb, to the
adjectives, or to both, for a total of six conditions.

Our evaluation measure is the nonparametric
Spearman correlations between each annotator’s sim-
ilarity rating and the cosine between the predicted
sentence vectors containing the ambiguous and land-
mark verb, respectively.

4 Evaluation

Main Results. The main results are shown in Ta-
ble 2. Our PLF re-implementation in the first column
almost replicates the results reported by Paperno et
al. (2014) for ANVAN1 and ANVAN2 (20 and 36,
respectively). On NVN, no results for the PLF were
previously reported. Our result (35.4) is substantially
above the result of 21.0 reported by Greffenstette and
Sadrzadeh (2011) for their categorial model. This
supports our general focus on the PLF as an interest-
ing target for analysis.
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Training phase modifications Test phase modifications

Dataset PLF Sub Adj Sub Verb Sub Both No Adj No Verb No Both

ANVAN1 20.6 18.7 -0.3 3.8 19.2 20.7 22.1∗
ANVAN2 35.2 32.8 13.8 17.0 33.8 35.7 35.4
NVN 35.4 – 25.5 – – 40.6∗∗ –

Table 2: Experimental results (Spearman’s ρ) on three dataset. Significant improvements over the PLF results are
indicated with stars (∗: p<0.05, ∗∗: p<0.01 ), – denotes non-applicability of parameter.

The results for the training phase modification are
overwhelmingly negative. There is a minor degrada-
tion when the adjective is subtracted at training time,
and major degradation when the verb is subtracted.
We will come back to this result below.

In contrast, we obtain improvements when we
modify the test phase, when we either leave out the
verb or both the verb and the adjective in the composi-
tion. For two out of the three datasets, the respective
best models perform statistically significantly better
than the PLF as determined by a bootstrap resampling
test (Efron and Tibshirani, 1993): ANVAN1 (+1.5%,
p<0.05) and NVN (+5.2%, p<0.01). The improve-
ment for ANVAN2 (+0.5%) is not large enough to
reach significance.

Discussion. These results leave us with two main
questions: (a), why does the modification at training
time fail so completely; and (b), can we develop a
better understanding of the kind of improvement that
the modification at test time introduces?

Regarding question (a), we believe that the dif-
ference between the phrase vector and the predicate
vector that we are training the matrix to predict in
Eq. (5) is, in practice, a very brittle representation.
The reason is that typically the phrase nv is much
less frequent than v, and therefore −→n v−−→v ≈ −−→v
(cf. Figure 3). Consequently, the matrix attempts to
predict the verb vector from the noun – not only a
very hard problem, but one that does not help solve
the task at hand.

To answer question (b), we perform a mixed ef-
fects linear regression analysis (Hedeker, 2005) on
the three datasets, concentrating on a comparison of
the standard PLF and the best respective test phase
modification. We follow the intuition that the fre-
quency and ambiguity of the target verbs should in-
fluence the quality of the prediction both in the PLF

ANVAN1 ANVAN2 NVN

logf -359∗∗∗ -182 n.s. -96∗∗∗

ambig 118∗∗∗ 8 n.s. 6∗∗∗

ModTest 438∗∗∗ -2606∗∗∗ -1413∗∗∗

ModTest:logf -53∗∗ 165∗∗∗ 94∗∗∗

ModTest:ambig 20∗ 32∗∗∗ 8∗∗∗

Table 3: Coefficients of Linear Mixed Effects Model.
∗: p<0.05; ∗∗: p<0.01; ∗∗∗: p<0.001. See text for details.

and in the modified model, and that it might be in-
formative to look at differences in these effects. To
this effect, we construct a mixed-effects model which
predicts, for each experimental item (cf. Table 1), the
absolute rank difference between the item’s rank in
the gold standard ratings and the item’s rank in the
model prediction. Thus, high values of the output
variable denote items which are difficult to predict,
while low values of the output variable denote items
which are easy to predict. As fixed effects, we include
the target verbs’ logarithmized corpus frequencies
(logf ), their ambiguities, measured as the number of
WordNet top nodes subsuming their synsets (ambig),
the presence of the test phase modification (NoVerb
for ANVAN2 and NVN, NoBoth for ANVAN1; Mod-
Test) as well as interaction terms between ModTest
and the two other predictors. We also include the
identity of the target verb as random effect.

The results are shown in Table 3. There are consid-
erable differences between the datasets, but the over-
all patterns are nevertheless comparable. Notably,
frequency has a negative effect on rank difference. In
other words, more frequent verbs are easier to pre-
dict. Conversely, the ambiguity of the target verb has
a positive effect on rank difference, that is, higher
ambiguity makes predictions more difficult. Both of
these effects are very strong on ANVAN1 and NVN

156



●●

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Similarity to ModTrain−Phrase Vector

verb noun

Figure 3: Similarities between the training-time modified
phrase vector (subject-verb & verb-object) and the respec-
tive word vectors in the NVN dataset. The low values and
smaller variance in verb similarities shows the informa-
tion encoded by the modified phrase vector aligns better
with the verb’s (or predicate’s) information than that of
the noun (argument).

and not significant on ANVAN2, which appears to be
a more controlled dataset. Taken together, the models
still seem to struggle with ambiguous and infrequent
target verbs.

The coefficients that we obtain for ModTest look
puzzling at first glance: we obtain a negative coeffi-
cient (i.e., an overall improvement) only for AN-
VAN2 and NVN while the coefficient is positive
for ANVAN1. For ANVAN1, the improvement is
brought about by the interaction with the frequency
variable: when the test phase is modified, the (ben-
eficial) effect of frequency becomes much stronger,
that is, the predictions for high-frequency verbs im-
prove. In contrast, the effect of frequency becomes
weaker for the test phase modification on ANVAN2
and NVN. What is true for all three datasets is that the
effect of ambiguity gets stronger when the test phase
is modified: ambiguous verbs become significantly
more difficult to model.

On the basis of this analysis, we believe that this
difference between the standard PLF and our test
phase modification can be understood as a classical

bias-variance tradeoff: the addition of the predicate
meaning in the standard PLF reduces variance, ensur-
ing that the phrase meaning stays close to the predi-
cate meaning prior even for matrices that are difficult
to learn, e.g., due to sparse data or high ambiguity. At
the same time, this dilutes the disambiguating effect
of composition. In our modified scheme, the situa-
tion is reversed: the composed representations vary
more freely, which benefits well-learned matrices but
leads to worse predictions for poorly learned ones.

5 Conclusion

In this paper, we have presented an analysis of the re-
cent Practical Lexical Function (PLF) model in com-
positional distributional semantics. We have shown
that the PLF contains an inconsistency between the
objective function at training time and the definition
of compositional phase construction at testing time.
We have argued that either training or testing needs
to be modified to harmonize the two. Our empiri-
cal evaluation found that testing phase modification
is indeed effective (by reducing bias in the predic-
tions), while the training phase modification is not
(by relying on brittle representations). In the spirit of
the bias-variance analysis, future work is to experi-
ment with weighting schemes to optimize the relative
contributions of predicate and arguments.
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