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Abstract

We propose a novel method to learn negation
expressions in a specialized (medical) domain.
In our corpus, negations are annotated as ‘flat’
text spans. This allows for some infelicities
in the mark-up of the ground truth, making it
less than perfectly aligned with the underly-
ing syntactic structure. Nonetheless, the nega-
tions thus captured are correct in intent, and
thus potentially valuable. We succeed in train-
ing a model for detecting the negated pred-
icates corresponding to the annotated nega-
tions, by re-mapping the corpus to anchor its
‘flat’ annotation spans into the predicate argu-
ment structure. Our key idea—re-mapping the
negation instance spans to more uniform syn-
tactic nodes—makes it possible to re-frame
the learning task as a simpler one, and to lever-
age an imperfect resource in a way which en-
ables us to learn a high performance model.
We achieve high accuracy for negation detec-
tion overall, 87%. Our re-mapping scheme
can be constructively applied to existing flatly
annotated resources for other tasks where syn-
tactic context is vital.

1 Introduction

Accounting for extra-propositional aspects of mean-
ing in text is a very active NLP research area in
recent years, exploring different aspects of mean-
ing such as factivity (Saurı́ and Pustejovsky, 2009),
uncertainty/hedging (Farkas et al., 2010), commit-
ted belief (Prabhakaran et al., 2010), and modalities
(Prabhakaran et al., 2012a). Among these, negation
detection has generated special interest because of
demonstrated needs for negation detection capabil-

ity in practical applications such as information re-
trieval (Averbuch et al., 2004), information extrac-
tion (Meystre et al., 2008), sentiment analysis (Wie-
gand et al., 2010; Councill et al., 2010), and relation
detection (Chowdhury and Lavelli, 2013).

Accurately detecting negations is especially im-
portant in systems processing medical/clinical text.
Consider the segment “Mild hyperinflation without
focal pneumonia”, taken from a patient’s clinical
record. It indicates the absence of focal pneumonia
in the patient. Not capturing this extra-propositional
aspect of negation concerning focal pneumonia will
lead to wrong—and harmful—inferences in down-
stream processing, e.g. by a clinical decision sup-
port system. The need for sophisticated negation de-
tection capabilities in clinical text is even more ur-
gent given the broadening spectrum of applications
in this domain: clinical question answering (Lee
et al., 2006), clinical decision support (Demner-
Fushman et al., 2009), medical information extrac-
tion (Uzuner et al., 2010), medical entity relation
mining (Tymoshenko et al., 2012), patient history
tracking (Raghavan et al., 2012), etc. Our moti-
vation for detecting negations in medical texts also
stems from practical concerns of an operational
medical question answering (QA) system (Ferrucci
et al., 2013).

Most recent approaches to negation detection
adopt supervised machine learning techniques to
learn the phraseology of negation-containing ex-
pressions. They often follow a two step process—
detection of negation cues (“no”, “without”, . . .),
followed by detection of their associated scopes.
Cue detection is a relatively simple task, since the set
of cue words is not large. Determining the scope of
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a negation cue, on the other hand, is more challeng-
ing. Negation constructs do not necessarily apply
to entire sentences: in the earlier example, Mild hy-
perinflation is not negated. The scope detection task
is to identify the part(s) of the sentence that come
under the scope of a negation cue. Scope detection
is crucial for interpreting negations, and to that end,
the BioScope corpus (Vincze et al., 2008) was re-
leased, with annotations of both negation cues and
their associated scopes.

The fact that these scopes are represented only as
text-spans is a drawback of BioScope. Without be-
ing anchored to a syntactic analysis of the sentences
in which they occur, BioScope’s scope annotations
suffer from a variety of inconsistencies of mark-up.
They also may, and occasionally do, fail to align
with the underlying syntactic structures (Vincze et
al., 2011; Stenetorp et al., 2012). Such inconsisten-
cies make it hard for a system to learn the actual
syntactic patterns connecting negation cues and their
scopes—which are, after all, the real object of nega-
tion interpretation.

The insight that we develop in this paper is that
a scope span can be associated with one or more
nodes in the syntactic analysis of a negated expres-
sion, and that these will be further connected—in a
systematic way—to the negation cue node. Map-
ping loosely and/or inconsistently bounded spans to
unique syntactic nodes (and configurations thereof)
reduces the noise inherent in BioScope. The learn-
ing task for scope detection would now be the easier
one of learning negation scoping patterns from syn-
tactic representations.

To elaborate on this, we look at BioScope’s is-
sues in some detail (Section 3.1). Our intent here,
however, is not to offer a review or criticism of the
corpus, nor to suggest how to correct those issues.
Given that we do want to use BioScope (we moti-
vate our choice of BioScope separately in Section 2),
we propose a new method for learning how to de-
tect negated constructs which are rooted in syntac-
tic structure elements, and therefore directly usable
by downstream components, many of which typi-
cally assume awareness of syntax. Our method is
to re-map BioScope’s scope span annotations onto
the syntactic space and then to use those annota-
tions’ corresponding node structure(s) to train a sys-
tem to automatically detect negated syntactic nodes.

As outlined earlier, due to the re-mapping, many
syntactic inconsistencies would not be seen by the
learner, which now is trained on cleaner data and
consequently, faces a simpler learning problem.

We verify that our re-mapping process identifies
the correct negated syntactic node with high accu-
racy (93%); this validates the approach we propose
here. Our supervised learning system, trained us-
ing re-mapped scope nodes to detect them automat-
ically, obtains an overall accuracy of 87%, using
automatically tagged cues. In the light of state-of-
the-art performance figures, ours is a novel, con-
structive and pragmatic approach which allows us to
leverage effectively an important resource, despite
its representational imperfections, and to utilize the
essential ‘nuggets’ it captures and exposes—namely
the expressions of negated predicates. This strategy
can also be applied to other tasks where syntactic
context is important but resources are annotated by
text spans only (e.g. hedge detection (Farkas et al.,
2010)).

The rest of the paper is grounded in discussion
of related work, and of BioScope and its annotations
(Section 2), highlighting some relevant details of the
issues with these (Section 3). We then outline the
syntactic framework we use in Section 4. Section 5
presents our re-mapping of BioScope, and Section 6
offers experiments and results. In Section 7, we
compare our performance with previously published
studies. Section 8 concludes the paper.

2 Background

Early approaches in negation detection were lim-
ited in the nature of negation they were concerned
with. The prime example here, NegEx (Chapman et
al., 2001), took a view of negation interpretation to
be “determining whether a finding or disease ... is
present or absent”. From such a standpoint, the no-
tion of scope is limited, since the scope is always the
finding or disease that follows a negation cue. While
this works well for simpler expressions of negations,
it tends to fail for more complex negation constructs.
More recent approaches attempt to tackle the vari-
ability in scopes encountered in broader data by us-
ing statistical learning methods grounded in publicly
available corpora with cue and scope annotations.

The first such corpus was BioScope (Vincze et
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al., 2008), which annotates negation cues and asso-
ciated scopes in 3 genres—medical abstracts, sci-
entific papers and clinical records. The BioNLP
Event Extraction (EE) shared task corpus (Kim et
al., 2009) also marks negation in the event annota-
tions on sentences from molecular biology literature.
Most recently, the *SEM 2012 shared task corpus
(Morante and Blanco, 2012) marks negations, their
foci, and scopes in sentences from Conan Doyle sto-
ries in an attempt to extend the research on negation
to the general domain. Both the BioNLP-EE and
*SEM corpora capture negations within—and there-
fore aligned with—syntactic analyses. Thus they de-
ploy annotation schemes which assume downstream
consumers of some granular negation representa-
tion, learnable from the annotated resource(s). How-
ever, the language in both of them differs greatly
from the language encountered in clinical text, mak-
ing them unsuitable for our QA system require-
ments. In contrast, BioScope matches our genre of
clinical text. As an additional plus, it captures nega-
tion in a task-independent, linguistically motivated
framework, which enables the building of systems
applicable to a wider range of domains.

BioScope’s negation-scope-as-span annotation
framework, however, limits th corpus utility. Vari-
ous approaches have used it to train negation scope
span detection systems, and many have shown the
importance of deep syntactic features in that task
(e.g., (Ballesteros et al., 2012; Velldal et al., 2012;
Zou et al., 2013)). They share a drawback: they are
optimized for predicting the spans as they are anno-
tated in BioScope—despite its various syntactic in-
consistencies. For example, Ballesteros et al. (2012)
use manual rules to detect the voice (passive or ac-
tive) of a verb phrase; this is motivated by an an-
notation guideline for whether to include verb sub-
jects in the span or not. In reality, what matters in
the end is whether a detection system can capture
the underlying phenomenon of negation that the an-
notations stand to represent, and not whether it can
accurately replicate the representational choices the
annotations follow. In light of this, our approach dif-
fers from the conventional ones, in that it mitigates
the effects of inconsistencies in BioScope’s original
annotations by re-mapping it, as we explain in Sec-
tion 5 below.

3 BioScope Corpus

The BioScope corpus (Vincze et al., 2008) is an-
notated for hedges and negations in sentences from
biomedical domain; in this work, we use only the
negation annotations. A negation (or hedge) annota-
tion comprises a cue and a corresponding scope. The
scope (hereafter BioScopeScopeSpan) is marked as
a contiguous text-span including the associated cue
annotation (BioScopeCue). BioScope contains sen-
tences from three sub-genres—abstracts, full papers,
and clinical records. We use all three sub-corpora.
We divide each sub-corpus into ‘Train’ (70%), ‘Dev’
(15%) and ‘Test’ (15%) sets through random sam-
pling. We use sentences in the Train and Dev sets
to build and select best models and report the results
obtained by our best models on Dev and Test sets.

3.1 Issues Challenging the Use of BioScope

BioScope is an important resource that has helped
deeper understanding of various linguistic aspects
of negation in a task independent manner. But, as
we saw in the preceding sections, while demonstrat-
ing the importance of syntactic context for negation
detection, recent efforts share the frustration aris-
ing from the fact that BioScopeScopeSpan annota-
tions do not align with underlying syntactic struc-
ture. This problem is further exacerbated by in-
consistencies in the corpus annotation. From a
performance-driven point of view alone, negation
detection systems trained over BioScope annota-
tions are optimized to match the annotated spans in
the corpus (as discussed in Section 2). However,
for a negation detection system followed by down-
stream components implementing negation-driven
inference, spans alone are not sufficient—especially
spans which do not align with syntax. Negated ex-
pressions need to be captured within their syntactic
context, and for this, we need the uniformity of syn-
tax structures.

The misalignment issues of BioScopeScopeSpan
annotations with respect to the underlying syntac-
tic structures have already been extensively studied
(Vincze et al., 2011; Stenetorp et al., 2012). Vincze
et al. (2011) point out infelicities and mismatches,
comparing BioScope annotations with the more syn-
tactically oriented negated event annotations in the
BioNLP-EE corpus (Kim et al., 2009). Inconsis-
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tencies are largely due to ‘loose’ annotation guide-
lines for BioScope, which are not rigorous enough in
ensuring that annotation spans align with syntactic
analyses. Given our position in this work—utilize
BioScope, despite its shortcomings, in an alterna-
tive framework of analysis and training (see Sec-
tion 2)—we explain some of the commonly occur-
ring inconsistencies in this section. For this pur-
pose, we use example annotations e1-e5 from Bio-
Scope. (Boldface denotes BioScopeCue annotations
and italics denotes corresponding BioScopeScopeS-
pan annotations as present in the BioScope corpus.)

One of the main source of inconsistencies within
the syntactic space is with regard to the inclusion
or exclusion of subjects of propositions. For exam-
ple, in e1, the annotations identify the negation span
to be the entire clause following the word but, in-
cluding its subject and object. However, in e2, only
the object of the predicate is marked as the negation
scope (Figure 1). Vincze et al. (2011) state that “the
treatment of subjects [in BioScope] remains prob-
lematic since in BioScope it is only the complements
that are usually included within the scope of a key-
word (that is, subjects are not with the exception of
passive constructions and raising verbs)”. Leaving
aside the rationale for such a guideline, we note that
such an inconsistency is harmful: proper interpreta-
tion of negated propositions does require a subject,
and making annotations consistent by ignoring sub-
jects, if present, does not help downstream compo-
nents. Additionally, it makes the learning of con-
texts of negated propositions difficult.

e1: The cDNA hybridized to multiple transcripts in
pre-B and B-cell lines, but transcripts were not
detected at significant levels in plasmacytoma,
T-cell, and nonlymphoid cell lines.

e2: Moreover, cAMP activators did not activate
NF-kappa B in Jurkat cells.

Another problem with BioScopeScopeSpan anno-
tations stems from the requirement that such anno-
tations should have contiguous spans. For exam-
ple, since sentence e3 is a passive construction, the
corresponding BioScopeScopeSpan annotation cap-
tures the subject (mechanism) as well. The conti-
guity requirement then forces the proposition IFNs
mediate this inhibition—which modifies the subject
but is itself not negated (Figure 2)—to be included

within the BioScopeScopeSpan and therefore to be
interpretable as negated. Clearly, there may be arbi-
trary intervening text in such, and similar, construc-
tions, again making the learning task difficult.

e3: However, the mechanism by which IFNs mediate
this inhibition has not been defined.

Sometimes, the BioScopeScopeSpan annotation
boundaries do not align with syntactic constituents.
For example, in e4, the BioScopeScopeSpan anno-
tation excludes the determiner the from the scope
while in e5, the determiner the is part of the scope.
This might be due to the guideline that the scope
should include the cue as well, causing to extend
the scope annotation leftward until it covers the cue
word (absence). Still, we are left with a span bound-
ary which crosses, partially, a noun phrase boundary.

e4: Tal-1 transcription was shown to be monoallelic in
Jurkat, a T-cell line that expresses tal-1 in the
absence of apparent genomic alteration of the locus.

e5: The effects of selenium were specific for NF-kappa
B, since the activity of the transcription factor AP-1
was not suppressed.

A system trained and optimized on how well it
predicts the BioScopeScopeSpan boundaries suffers
from also being forced to learn such syntactic in-
consistencies along with the syntactic patterns that
truly capture negation. In addition to learning the
actual negation patterns, such a system is also forced
to learn artifacts of annotation guidelines like: when
to include or exclude subjects and when to include or
exclude determiners. In order to circumvent this, we
propose an approach in which we first re-map Bio-
Scope annotations onto nodes in the syntactic tree,
and then train a system using features derived from
the nodes, and node configurations, providing the
context for the negation cue and scope nodes. We
next describe the syntactic framework we use and
then explain our approach in detail.

4 Syntactic Framework

Negation, as a language device, is naturally concep-
tualized as applying to fully instantiated predicate-
argument clusters. We therefore use predicate ar-
gument graphs as structural abstractions of syntax
trees. Additional advantages of these abstractions
include their affinity for having extra-propositional
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Figure 1: PAS for e2: “Moreover, cAMP activators did not activate NF-kappa B in Jurkat cells”

aspects of meaning ‘layered’ onto the representa-
tion (precedents in prior studies can be found in e.g.
(Saurı́ and Pustejovsky, 2009; Diab et al., 2009)),
and their pervasive use in a state-of-the-art QA
system—for question analysis, candidate genera-
tion, and analysis of passage evidence (Ferrucci et
al., 2010; Ferrucci, 2012)—which is at the heart of
our medical adaptation (Ferrucci et al., 2013).

We use predicate-argument structure (PAS) (Mc-
Cord et al., 2012) derived from dependency parses
produced by the English Slot Grammar parser (Mc-
Cord, 1990). In addition to normalizing across dif-
ferent tree structures expressing essentially the same
meaning, PAS provides a simplified view over ‘raw’
syntactic trees, gathering all arguments to a predi-

cate from local, and distant, parse tree nodes (see
(McCord et al., 2012) for details). Figures 1 and 2
show the PASes for examples e2 and e3. By localiz-
ing the logical arguments to a proposition, predicate-
based representation provides direct access to all ar-
guments of e.g. a verb frame: an important require-
ment for extracting context-denoting syntactic fea-
tures.

PAS-based view into sentences offers unambigu-
ously uniform treatment of some of the issues high-
lighted in the previous section. For example, going
back to e2, and the rationale for including or exclud-
ing subjects in the scope of a negation, we observe
that verb nodes in the PAS always have fully instan-
tiated frames, with subject arguments bound to the

Figure 2: PAS for e3: “However, the mechanism by which IFNs mediate this inhibition has not been defined.”
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predicate nodes corresponding to the deep syntac-
tic subject: observe how activator is ‘subj’ both to
do and activate. Thus whether to include a subject
into a verb scope (e.g. not activate) becomes largely
irrelevant, and a PAS-based scope rendering can al-
ways include subjects. As another example, for the
PAS for e3, the granular analysis of the arguments to
the predicate for define can be leveraged to designate
the predicate node for mechanism as the scope of the
negation not (defined), while excluding the IFN me-
diate inhibition subtree from the same scope.

5 Learning Negations from Re-mapped
BioScope

Our goal is a system for automatic identification of
negations and their scopes within the PAS of a sen-
tence. Our resource for this is BioScope, with its
text-based span annotations. We propose a novel ap-
proach, realized as a two-step process:

(1) BioScope-to-PAS mapping: map BioScope’s
text-span cue and scope annotations to PAS
nodes (CuePredicate and NegatedPredicate) by
identifying the predicate nodes in the PAS of the
sentence that best capture the annotations.

(2) NegatedPredicate learning: train a statistical
model to automatically identify the scope predi-
cate using features from the PAS context of cue
and scope predicates.

5.1 BioScopeScopeSpan-to-NegatedPredicate
Mapping

Having obtained PASes for sentences in the corpus,
we mark the PAS node with the minimal span that
contains the entire BioScopeScopeSpan annotation
as the NegatedPredicate. We define the ‘span’ of a
PAS node to be the span of text covered by the sub-
tree rooted at that node, which includes the spans of
all of its descendants. Similarly, we mark the PAS
node with the minimal span that contains the Bio-
ScopeCue annotation as the CuePredicate.

For example, in Figure 1, the predicate labeled not
was marked as the CuePredicate and the predicate
labeled do was marked as the corresponding Negat-
edPredicate. In order to perform a sanity check
on our re-mapping, we judged whether the predi-
cate nodes that we mark as NegatedPredicate in sen-
tences from our Dev set are in fact the ones being

negated. Of the 470 sentences containing negations,
13 (2.8%) failed to parse, breaking the mapping. In
other words, our mapping strategy has coverage of
about 97.2%. Of the sentences where a Negated-
Predicate was obtained, our mapping achieved an
accuracy of 92.8% in finding the correct negated
predicate.

5.2 NegatedPredicate Learning
We now build a supervised learning system which,
given a CuePredicate in a sentence, will identify its
corresponding NegatedPredicate. For every predi-
cate p in a sentence PAS with a CuePredicate, we
create an instance <CuePredicate, p>. The instance
<CuePredicate, p> is assigned true if p is the cor-
responding NegatedPredicate. For all other p in the
PAS, <CuePredicate, p> is assigned false.

We extract three types of features for each in-
stance <CuePredicate, p>: 1) token features (word
lemma and POS tag) of CuePredicate and p, 2) syn-
tactic context features (token features of parent pred-
icates and all argument predicates) of CuePredicate
and p, and 3) predicate pair features (is CuePredi-
cate argument of p or vice versa?; distance between
CuePredicate and p; relative position of CuePredi-
cate and p).

We use the ClearTk (Ogren et al., 2008) frame-
work to build our system and perform experi-
ments. We use quadratic kernel SVMs in all our
experiments. The ClearTK wrapper for SVM-
Light (Joachims, 2006) internally shifts the predic-
tion threshold using sigmoid fitting to deal with the
highly skewed class imbalance (around 5% of posi-
tive cases) in our data. Prior studies (Prabhakaran et
al., 2012b) have shown this approach to be effective
in addressing the class imbalance problem.

During prediction, given an unseen sentence PAS
and a CuePredicate (either GOLD or automatically
predicted) in it, we need to find the correspond-
ing NegatedPredicate. We iterate over all candi-
date predicates c in the sentence PAS and apply
our trained model to assign a true or false value
to <CuePredicate, c>. For any CuePredicate in a
sentence there must be one and only one Negat-
edPredicate, since BioScope corpus marks a single
BioScopeScopeSpan for every BioScopeCue. We
choose the c for which <CuePredicate, c> is as-
signed a true value with the highest confidence as
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On Dev On Test
Precision Recall F-measure Precision Recall F-measure

Clinical 95.68 95.68 95.68 96.15 96.9 96.53
Abstracts 94.4 94.4 94.4 95.42 96.9 96.15

Papers 79.22 96.83 87.14 85.29 98.31 91.34
Overall 92.36 95.11 93.71 94.13 97.09 95.58

Table 1: Performance of our CuePredicate detection on Dev and Test sets

the NegatedPredicate. If <CuePredicate, c> is as-
signed a false value for all c, we choose the c with
the least confident false assignment as the Negated-
Predicate.

6 Experiments and Results

The most commonly used metric to evaluate nega-
tion scope span detection is Percentage of Correct
Scopes (PCS). PCS measures the percentage of ex-
act matches between predicted and actual scope
spans. Since our task is different—negated predicate
detection as opposed to negated span detection—
we report the Percentage of Correct Scope Predi-
cates (PCSP) obtained in our experiments. Mod-
els built from the composite training corpus com-
prising training corpora of all three genres (see Sec-
tion 3) perform better than models built separately
over each sub-corpus. We report results separately
for each sub-corpus, as well as for the entire corpus,
and compare them with a strong baseline.

6.1 Gold vs. Predicted CuePredicates

We report results for the NegatedPredicate detection
task obtained using GOLD CuePredicates as well as
predicted CuePredicates. In order to measure the
performance on predicted CuePredicates, we built a
CuePredicate detector using linear kernel SVM to
detect whether a predicate is a negation cue or not.
We use three types of features: 1) token features
(lemma and POS) of the predicate, 2) linear con-
text (token features of the token after the predicate in
the sentence; features of tokens before the predicate
turned out to be not useful), and 3) syntactic context
(token features of parent and argument predicates).
As shown in Table 1, our CuePredicate tagger ob-
tained F-measures in the range of state-of-the-art re-
sults on negation cue detection using the BioScope
(90-96% F-measure (Velldal et al., 2012)).

6.2 Baseline NegatedPredicate Predictor

Since this formulation of the task is new, we built
a strong baseline system appropriate for it. In our
baseline, we predict the NegatedPredicate to be the
parent predicate of the CuePredicate, if the CuePred-
icate is a terminal node in the PAS (this will cover
the most common cues such as no and not). If the
CuePredicate is not a terminal node (which covers
the cases of verbal negation cues such as failed),
we choose the CuePredicate itself as the Negated-
Predicate. Columns 1 and 3 of Table 2 show PCSP
obtained by the baseline algorithm on our Dev and
Test sets respectively using GOLD CuePredicates.
Columns 5 and 7 show corresponding results using
predicted CuePredicates.

6.3 Our NegatedPredicate Predictor

The results obtained by our NegatedPredicate de-
tection system (Section 5.2) on Dev and Test sets
using GOLD CuePredicates is shown in Columns
2 and 4 of Table 2. Our system outperforms the
baseline by a large margin in all cases, with espe-
cially high performance in clinical records. We ob-
tain an overall PCSP of 90.2% and 89.2% on Dev
and Test sets respectively. The results we obtain in
Test set are in the range of what we obtain using
Dev set, which shows that our system does not over-
fit to our Dev set. On applying our system on pre-
dicted CuePredicates, the overall results (columns 6
and 8) decrease by around 3-5% from using GOLD
CuePredicates. The overall PCSP value of 86.8%
obtained on the Test set reflects the accuracy of our
end-to-end system on a blind test. Note that this is a
conservative estimate since we penalize our system
for failed parses where the mapping step could not
find a GOLD NegatedPredicate to compare against.
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Gold Cues (On Dev) Gold Cues (On Test) Predicted Cues (On Dev) Predicted Cues (On Test)
Baseline System Baseline System Baseline System Baseline System

(1) (2) (3) (4) (5) (6) (7) (8)

Clinical 83.45 97.12 88.37 100.00 82.01 93.53 87.60 96.90
Abstracts 81.34 89.18 79.07 84.50 76.49 83.96 77.52 82.56

Papers 73.02 79.37 81.36 86.44 66.67 71.43 77.97 83.05
Overall 80.85 90.21 82.06 89.23 76.81 85.11 80.49 86.77

Table 2: Percentage of Correct NegatedPredicate (PCSP) on Dev and Test sets

7 Comparison with Previous Approaches

Comparing our system with previously published
approaches to negation scope detection is not
straightforward, essentially because our and their
tasks are different: negated predicate detection vs.
negated scope span detection. The resulting differ-
ence in evaluation metrics makes PCS numbers re-
ported elsewhere not directly comparable with our
PCSP results presented in Table 2. To make such
a comparison meaningful, we transform (reverse
map) the NegatedPredicates we identify back into
text spans and use those to derive PCS values better
aligned with previously published ones. (Note that
these PCS numbers are still not directly comparable,
due to differences in experiment setup, e.g. cross
validation vs. held out test set.

Transforming the NegatedPredicates back to Bio-
ScopeScopeSpan annotations is not trivial. As dis-
cussed in Section 5.1, we choose NegatedPredicate
to be the predicate node that minimally covers Bio-
ScopeScopeSpan. Hence, the span of a Negated-
Predicate may include text spans that were originally
not part of the corresponding BioScopeScopeSpan
annotation. Therefore, we built a statistically trained

system to predict whether the span of a descendant
node of a NegatedPredicate should, or should not,
be included in reverse mapping that NegatedPredi-
cate to the corresponding BioScopeScopeSpan.

We use the same set of features and learning con-
figuration as we used for NegatedPredicate learning
(Section 5.2). Our transformation obtained high ac-
curacy (94.9%) for the clinical records. However, it
was a harder task for abstracts (66.1%) and papers
(73.1%) which contain more complex sentences.

We applied this transform on the predicate nodes
identified by our end-to-end system (Section 6.3) in
order to derive PCS values. In Table 3, we com-
pare these PCS values against four previous studies
above (due to lack of space, we do not discuss their
techniques here), as well as with a baseline of our
own where we use the covered text of the predicate
node and all of its descendants as scopes used in the
comparison. Our system (with transform) obtains
higher PCS values than all other reported studies on
the clinical records. The PCS values obtained for the
abstracts and papers sub-corpora are lower, but still
in comparable range to the other studies. It is im-
portant to note that the main source of error here is
the NegatedPredicate-to-BioScopeScopeSpan trans-

Morante09 Ballestros12Velldal12 Ours (With Covered Text) Ours (With Transform) Zou13
On Dev On Test On Dev On Test

(1) (2) (3) (4) (5) (6) (7) (8)

Clinical 70.75 89.06 89.41 88.49 89.92 91.37 92.25 85.31
Abstracts 66.07 68.92 72.89 35.45 35.27 61.94 58.53 76.90

Papers 41.00 61.43 68.09 33.33 23.73 53.97 47.46 61.19
Overall - - - 50.85 49.55 69.57 66.82 -

Table 3: PCS measures from previous BioScope span detection approaches and our end-to-end system.
Col. 1-3: end-to-end systems (Morante and Daelemans, 2009), (Ballesteros et al., 2012), and (Velldal et al., 2012);

Col. 4-7: our end-to-end system with different ways of obtaining the spans in our Dev and Test sets;
Col. 8: (Zou et al., 2013) system using GOLD cues (often 5-10% higher than using predicted cues)
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form step, with its inherent lower accuracies for
these two corpora, as reported above. We emphasize
that for practical applications this transformation is
of little use: what matters more, certainly for a nega-
tion detection system feeding downstream compo-
nents, are the PCSP values presented in Section 6.

8 Discussion and Conclusion

The results for our system, with reverse map-
ping, offer indirect evidence for our observation
in Section 3.1: training a system to predict Bio-
ScopeScopeSpan boundaries would require it also
to learn inconsistencies in BioScope annotations.
This is a hard learning task, given the noise dis-
cussed in Section 3.1. Indeed, our results for learn-
ing the reverse-mapping transformation show that it
is harder to learn the specific annotation criteria in
BioScope than to learn the structural patterns ex-
pressing negations (which, as we saw in Section 6,
obtained close to 90% accuracy). While we had to
build a system to transform nodes back to spans for
the purposes of comparative analysis, such a system
has no role in our quest for practical negation detec-
tion and representation.

This substantiates our strategy of using BioScope,
as is, to learn not scope spans of negation expres-
sions, but negated predicates within the predicate-
argument structure (Section 5). The re-mapping
route takes us where we want to be, from the point
of view of a practical application of negation-based
inference: with access to negated predicate nodes.
The end-to-end accuracy (overall, across three dif-
ferent genres) of 87% on blind test validates the cre-
ative way we propose to make use of a valuable and
unique resource—despite its imperfections—by ex-
tracting the real value in it, while mitigating the ef-
fects of its various inconsistencies.

The results in Tables 2 and 3 show that we have
achieved our primary objective: using BioScope to
train a system which detects structured negation ex-
pressions in clinical text. Our approach to nega-
tion scope learning in the syntactic space is a two-
step one—first, re-mapping the text-span annota-
tions for negation scopes in BioScope to the syn-
tactic space and then training a scope predicate pre-
dictor. We show that our transformation introduces
only a small percentage of error and also that our

predicted nodes can be transformed back to original
span annotations with performance comparable to
other negation scope span prediction systems trained
on the same dataset. Notably, in clinical records, our
system outperforms reported state-of-the-art results
(column 8 of Table 3).

In a broader context, the work we report here indi-
rectly argues that the method we propose to circum-
vent certain limitations of a corpus like BioScope
can be applied to similar tasks (such as hedging, sen-
timent analysis, and variety of modalities, cf. Sec-
tion 1), for which current annotation resources offer
flat, and possibly inconsistent, annotations. In addi-
tion, we chose PAS as our syntactic framework for
the reasons listed in Section 4, but our approach is
not limited to PAS. Indeed, the claims, and methods,
are presented to be applicable, and workable, in a
more general syntactic framework.
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