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Abstract

This research describes the development of a
supervised classifier of English Caused Mo-
tion Constructions (CMCs) (e.g. The goalie
kicked the ball into the field). Consistent iden-
tification of CMCs is a necessary step to a cor-
rect interpretation of semantics for sentences
where the verb does not conform to the ex-
pected semantics of the verb (e.g. The crowd
laughed the clown off the stage). We ex-
pand on a previous study on the classifica-
tion CMCs (Hwang et al., 2010) to show that
CMCs can be successfully identified in the
corpus data. In this paper, we present the clas-
sifier and the series of experiments carried out
to improve its performance.

1 Introduction

While natural language processing performance has
been improved through the recognition that there
is a relationship between the semantics of the verb
and the syntactic context in which the verb is real-
ized (Guildea and Palmer, 2002), sentences where
the verb does not conform to the expected syntax-
semantic patterning behavior remain problematic.

1. The goalie kicked the ball into the field.

2. The crowd laughed the clown off the stage.

These sentences are semantically related – an en-
tity causes a second entity to go along the path de-
scribed by the prepositional phrase: in 1, the goalie
causes the ball to go into the field, and in 2, the
crowd causes the clown to go off the stage.

While only the verb in the first sentence is gen-
erally identified as a verb of motion that can ap-
pear in a caused motion context, both are examples
of caused motion constructions (CMCs) (Goldberg,
1995). The verb laugh of sentence 2 is normally
considered an intransitive manner of speaking verb
(e.g. The crowd laughed at the clown), but in this
sentence, the verb is coerced into the caused motion
interpretation and the semantics of the verb gives
the manner in which the movement happened (e.g.
the crowd caused the clown to move off the stage
by means of laughing). The semantics parallel one
another: both sentences have a causal argument re-
sponsible for the event, an argument in motion, and
a path that specifies the initial, middle, or final lo-
cation, state or condition of the argument in motion
(Hwang et al., 2013).

Thus, if the semantic interpretation is strictly
based on the expected semantics of the verb and
its arguments, it fails to include the relevant infor-
mation from the CMC. Accurate semantic role la-
belling requires that NLP classifiers accurately iden-
tify these coerced usages in data.

In a previous study, we carried out prelim-
inary work on the supervised identification of
CMCs (Hwang et al., 2010). The pilot study was
conducted in a highly controlled environment over a
small portion of Wall Street Journal (WSJ) data. The
annotation of CMCs were limited to 1.8K instances
of WSJ data. In the pilot, we were able to estab-
lish a classifier predicting CMC with high accuracy
(87.2% precision, 86.0% recall, and 0.866 f-score).

In a subsequent study, we developed a detailed
set of criteria for identifying CMCs to insure the
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production of consistent annotation with high inter-
annotator agreement (Hwang et al., 2014). Through
the semantic typing of the CMCs, the annotation
guidelines defining CMCs were further refined from
the guidelines used during the pilot study. Using
the newly established criteria for annotation, we ex-
tended the annotation over the complete WSJ, and
further included the Broadcast News and Webtext
for the annotation of CMC. This study resulted in
over 20K instances of CMC annotation.

In this paper, we carry out a supervised classifi-
cation of the CMC. This study further expands on a
pilot study with the larger set of high-quality anno-
tated data for the further training and testing of CMC
classifiers.

2 Caused Motion Constructions

CMCs are defined as having the coarse-grained syn-
tactic structure of Subject Noun Phrase followed by
a verb that takes both a Noun Phrase Object and
a Prepositional Phrase: (NP-SBJ (V NP PP)); and
the semantic meaning ‘The agent, NP-SBJ, directly
causes the patient, NP, to move along the path spec-
ified by the PP’ (Goldberg, 1995). This construction
is exemplified by the following sentences:

3. Frank sneezed the tissue off the table.

4. John stuffed the letter in the envelope.

5. Sally threw a ball to him.

However, not all syntactic structures of the form
(NP-SBJ (V NP PP)):

6. Mary kicked the ball to my relief.

7. Jen took the highway into Pennsylvania.

8. We saw the bird in the shopping mall.

In 6, the PP does not specify a direction or a path.
In 8, PP indicates the location in which the “seeing”
event happened, not a path along which “we” caused
“the bird” to move. Though the PP in 7 expresses
a path, it is not a path over which Jen causes “the
highway” to move.

3 Experimental Setup

3.1 Corpora
Our data comes from the latest version of
OntoNotes, version 5.0, (Weischedel et al., 2012).

Gold annotations for Penn Treebank, PropBank,
and Verb Sense Annotation are available for all of
OntoNotes corpora. As we did for the pilot study,
we use the Wall Street Journal (WSJ) corpus. This
corpus contains over 846K words selected from the
non “strictly” financial (e.g., daily market reports)
portion of the Wall Street Journal included in the
Penn Treebank II (Marcus et al., 1994). We also pull
from the smaller of the two WebText (WEB) data
sets published in OntoNotes. This corpus contains
85K words selected from English weblogs. This
portion of the data is not to be confused with the
the larger 200K word web data, which is a separate
corpus in OntoNotes. The third corpus used in our
experiments is the 200K word Broadcast News (BN)
data. OntoNotes’ BN data contains news texts from
broadcasting sources such as CNN, ABC, and PRI
(Public Radio International).

3.2 Data Selection

In order to narrow the data down to a more manage-
able size for annotation, we exclude instances that
can be deterministically categorized as NON-CMCs
using the gold Penn Treebank annotation of the cor-
pora. To do this we first select all sentences with the
base syntactic form (NP-SBJ (V NP PP)) based on
the Penn Treebank gold annotation.

Additionally, we use a set of heuristics (a smaller
set than the pilot) to further select instances of po-
tential CMCs. Instances which satisfy the following
three conditions are extracted for annotation:(1) an
NP exists in the verb phrase; (2) at least one PP ex-
ists in the verb phrase; and (3) the NP precedes the
PP in the verb phrase.

For the remaining data, already annotated in-
stances from the pilot study are separated out for
double-checking. We also set aside instances that
can be deterministically categorized as NON-CMC:
instances with the function tags ADV, EXT, PRD,
VOC, or TMP. These sentences are kept for a quick
verification at the annotation stage that they indeed
are cases of NON-CMCs and labeled as such.

3.3 Added Syntactic Complexity

In the pilot study, we had excluded passive instances
(e.g. Coffee was shipped from Colombia by Gra-
cie.), instances with traces in the object NP or PP in-
cluding questions, relative clauses, and subordinate
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clauses (e.g. What did Gracie ship from Colombia?
and It was Gracie that shipped coffee from Colom-
bia.) and instances in which the verb is a conjunct
to the main verb in the sentence (e.g. chop in He
peeled the potatoes and chopped them into a bowl),
opting to match sentences by their surface structure.
For the current study, our data selection includes in-
stances that retain an underlying syntactic form (NP-
SBJ (V NP PP)). In effect, we extend the syntactic
variability in the data.

Form WSJ BN WEB
Questions/

2.3% 3.9% 2.6%
Rel. clauses
Passives 4.4% 4.6% 1.6%
Conjuncts 7.9% 10.2% 16.3%
Other clauses 46.3% 41.2% 37.3%
Other 41.4% 44.1% 44.7%

Table 1: Syntactic forms found in data. Other clauses
include both subordinate and complement clauses.

Table 1 shows the breakdown of the syntactic
forms in the current data. The pilot data was solely
restricted to the “Other” category. More than half
of all the syntactic forms represented in our current
data add to the syntactic complexity beyond that of
the pilot dataset, and lower our baseline classifier
performance significantly.

3.4 Labels and Classfiers

The annotated data includes 4 major types of
CMCs (Hwang et al., 2014). CMC types are listed
below:

• Displacement: These CMCs express a (con-
crete or abstract) change of location of an entity
(e.g. The goalie kicked the ball into the field. or
The market tilted the economy into recession.).
This is the most prototypical CMC type.

• Change of Scale: These CMCs express a
change in value on a linear scale (e.g. Torren-
tial rains raised the water level to 500ft.).

• Change of Possesion: These CMCs express a
change of possession (e.g. John gave a book to
Mary).

• Change of State: These CMCs express a
change of attribute of an item (e.g. I smashed
the vase into pieces.)

The experiments presented in this paper are
geared towards the identification of: (1) all 4 types
unified under a single label and (2) the “Displace-
ment” type of CMCs (1 of the 4 types). We build
two binary classifiers – one for each of the two la-
bels. We will refer to the former classifier as “CMC
classifier” and the latter as the “DISPLACE classi-
fier”. Table 2 shows the classification label distribu-
tion across the three corpora.

For all our experiments, 80% of the anno-
tated data is randomly selected as the train-
ing/development data and the remaining 20% is set
aside as the test/evaluation set. For our experiments,
we use a Support Vector Machine (SVM) classifier
with a linear kernel. In particular, we use LIBSVM
(Chang and Lin, 2001) as our training and testing
software. We use a 5-fold cross-validation process
for the development stage.

3.5 Features

The features encode syntactic and semantic informa-
tion that targets four elements in the sentence: (1)
the verb, which expresses the event or the situation
of the sentence, (2) the preposition, which instan-
tiates the path information in a caused motion sen-
tence, (3) the complement of the preposition, which
covers the rest of the prepositional phrase, (4) the
cause argument, which is recovered from the sub-
ject of the sentence or the prepositional by-phrase in
a passive sentence, and (5) the undergoer argument,
which is recovered from the direct object position of
the sentence or from the subject position in a passive
sentence. We will discuss the cause and undergoer
argument recovery in further detail later.

3.5.1 Feature Sets
The baseline feature set is encoded by the verb

lemma – the lemmatized and case-normalized verb.
The verb lemma feature is the baseline feature for
all our experiments. Following are the semantic
and syntactic features sets used in our experiments.
Anytime we use the terms “Full Set” or full feature
set, we are referring to a set of features that includes
all of the feature sets below for each of the four
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WSJ WEB BN
CMC 2250 14.8% 533 29.2% 703 18.6%
NONCMC 12959 85.2% 1291 70.8% 3073 81.4%
DISPLACE 1261 8.3% 412 22.6% 511 13.5%
NONDISPLACE 13948 91.7% 1412 77.4% 3265 86.5%

Table 2: CMC and DISPLACE label distribution in training and test data

elements as noted above.

Features encoding semantic information are as
following:

• Nominal Entity features which are auto-
matically generated using BBNs IdentiFinder
(Bikel et al., 1999). The IdentiFinder annotates
relevant noun phrases with labels such as “Per-
sons”, “Time”, “Location”, or “Organization”.

• PropBank Frameset features specify the
verb’s sense based on its subcategorization
frame. This is extracted from the gold anno-
tation provided by Ontonotes.

• Ontonotes Verb Sense features which specify
the verb’s sense. The semantics of these fea-
tures are generally finer grained than what the
PropBank framesets encode. These features are
also provided as gold annotation in OntoNotes.

• VerbNet Class features that encode each of the
VerbNet classes in which the verb is a member.
A verb can be a member of one or more classes.

• Preposition Type features obtained from the
automatic preposition labeller developed in a
recent study by (Srikumar, 2013). The labeller
introduces a set of 32 roles to disambiguate se-
mantics of prepositions as used in sentences
(e.g. from in Her sudden death from pneumo-
nia ... (Cause) vs. She copied the lines from the
film.(Source))

Features encoding syntactic information include:

• Part of Speech Tag of the lexical item in the
syntactic parse.

• Dependency Relation Tag of the lexical item
in a dependency parse.

Please note that while we depend on the phrasal
trees for the data selection process, for feature ex-
traction, we employ the CLEAR dependency parses
(Choi, 2012). These parses have been automat-
ically converted from the Penn Treebank phrasal
trees. The decision to encode syntactic features
from the dependency parses rather than from phrasal
parses was based on the flexibility and the amount
of additional information we gain through the de-
pendency parse type. After a series of experimen-
tal runs with features from both parse types, it was
determined that further syntactic features based on
the phrase trees produced relatively similar perfor-
mance to that of its counterpart labels on the de-
pendency trees. However, the dependency labels are
functionally finer grained than phrase structure la-
bels for those syntactic elements that are most rele-
vant to the CMCs.

3.5.2 Cause & Undergoer Argument Recovery
We make a pre-processing pass of the data to re-

cover these arguments when possible. The recov-
ered arguments are as following:

• Passive Sentences: For passive sentences, the
complement of the by-prepositional phrase is
recovered as the cause argument and the sub-
ject is recovered as the undergoer argument.

• Conjunctions: Given two verbal conjuncts
sharing the subject, as in “He cut the peppers
and diced the tomatoes”, the CLEAR depen-
dency parse places the conjunction and the sec-
ond conjunct as dependents of the first verb.
This means that in dependency trees the two
conjuncts’ access to the cause argument is not
symmetrical. The argument He is accessible to
the verb diced via the verb cut, as the argument
is a direct dependent of the verb cut and not
the verb diced. To recover the arguments of the

54



WSJ WEB BN
P R F P R F P R F

Baseline 61.23 37.56 0.4656 75.6 55.7 0.641 71.4 53.6 0.612
Baseline+P 75.00 74.67 0.7483† 78.0 80.2 0.791† 84.8 75.7 0.800†
Full Set 74.00 77.78 0.7584† 79.0 78.3 0.787† 84.1 82.9 0.835†
Annotator Agreement 0.667 0.764 0.606

Table 3: System performance on CMC label classification.
Statistically significant change from the Baseline feature set is marked with a †.

WSJ WEB BN
P R F P R F P R F

Baseline 66.80 63.89 0.6531 72.7 58.5 0.649 71.3 55.9 0.626
Baseline+P 76.33 74.21 0.7525† 73.4 70.7 0.720 80.0 70.6 0.750†
Full Set 72.52 75.40 0.7393† 76.5 79.3 0.778† 80.6 77.5 0.790†

Table 4: System performance on DISPLACE label classification.
Statistically significant change from the Baseline feature set is marked with a †.

second verb conjunct we reach for the depen-
dent on the first conjunct as necessary.

• Subordinate clauses: For verbs that are found
in subordinate clauses whose head node is a
verb (also called matrix verb) such as an infini-
tival clause (e.g. He [plans]-HEAD to cut the
peppers into pieces), or a relative clause (e.g.
Joe [cut]-HEAD the tomatoes Mary washed.),
we reach for the head node’s arguments to fill
in the missing cause and theme arguments. If
there is an intervening relative pronoun (e.g.
Joe cut the tomatoes that Mary washed), the
relative pronoun is retrieved as the argument
(either as cause or theme depending whether or
not the subordinate clause is a passive), instead.

3.5.3 POS Tags & Dependency Relation Tags
After a series of experiments, it was determined

that the part of speech and the dependency relation
features might be too fine grained to provide useful
information to the classifier. Thus, all of the features
expressed by the part of speech and the dependency
relation are featurized in the following manner.

• Part of Speech Tags: (1) Cardinal numbers
(CD), pronouns (PRP), and gerundial (VBG)
and participial (VBN) forms of verbs are fea-
turized as found (one feature per tag). (2) Rest
of the verb forms are mapped to the base tag

VB. (3) Plural nouns are mapped to their sin-
gular counterparts. (4) Adjectives and adverbs
are mapped to the base tag JJ and RB, respec-
tively. (5) Rest are given the tag: OTHER.

• Dependency Relation Labels: (1) Relations
specifying subjects, direct object, and agent
(oblique of a passive sentence), and relations
specifying the object of the preposition, com-
plement clauses, and relative clauses are featur-
ized as found (one feature per tag). (2) Comple-
ment clauses (e.g. pcomp, acomp) are grouped
under a single comp label. (3) Modifiers (e.g.
partmod, advmod) are grouped under the mod
label. (4) Rest are given the tag: OTHER.

4 Classifier Experiments

Tables 3 and 4 show the precision and recall per-
centages and the f-score values for our experiments.
Here we show results for three feature combina-
tions: the Baseline set encoded from the verb’s
lemma, the Baseline plus the preposition feature set
(Baseline+P), and the Full Set that includes all of
the features listed in Section 3.5. The best per-
formance values are bold-faced. The significance
of a feature set’s performance was evaluated via a
chi-squared test (McNemar, p < 0.05). Statisti-
cally significant change from the Baseline feature
set is marked with a †. Additionally, for the CMC
classification we show the inter-annotator agreement
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(Gold) f-score (Hwang et al., 2014). Our best per-
formances in CMC classification as measured by the
f-score are comparable or higher than the inter anno-
tator agreement f-score.

4.1 Syntactic vs. Semantic Features
With the exception of the DISPLACE classifier on
the WEB corpus, both the Baseline+P and the Full
Set of features perform significantly better than the
Baseline in both sets of experiments. It is interest-
ing that the Baseline+P set performs just as well and
sometimes better than the full set of feature consis-
tently across the corpora, though the differences in
the values are not statistically significant.

In order to gain a better understanding of the per-
formance on the full set of features, the full feature
set was divided into syntactic features and seman-
tic features as described in Section 3.5. As a means
of control, both the syntactic and semantic feature
sets also include the features for the verb lemma and
the preposition. Out of the different feature com-
binations examined, the distinction between seman-
tic and syntactic features is the most salient. Ta-
ble 5 shows the system performance values for the
syntactic and semantic features. We also show the
performance of the Baseline+P plus VerbNet class
(Baseline+PV) feature set, as it gives better insight
into the semantic feature performance.

The numbers indicate that the semantic features
have a consistently higher performance than the syn-
tactic features. The syntactic feature sets, perform
significantly lower than the full feature sets and they
barely pass the Baseline features in performance.
In fact, the syntactic features are significantly lower
than the Baseline+P features, despite the fact that,
just like the semantic features, they include the verb
lemma feature and the preposition feature. This sug-
gests, that the syntactic features even in the presence
of the lexical features are not strongly predictive of
caused motion constructions. Moreover, these num-
bers seem to indicate that the performance on the
full set of features likely comes from the semantic
feature performance.

Amongst the semantic features, the Baseline fea-
ture, the Baseline+P feature, and the feature for
VerbNet class membership of the verb (i.e. Base-
line+PV) give the highest results. With the excep-
tion of the CMC classifier on the BN corpus, the

numbers for the Baseline+PV set are not signifi-
cantly different from either the semantic feature or
the full feature set performance. Other semantic
combinations were also tested, but they did not re-
sult in any particular change from the semantic fea-
ture set and the full feature set.

The semantic features perform as the most predic-
tive features. This finding makes intuitive sense. Re-
call that during the data selection stage, we selected
for instances that show syntactic compatibility with
CMCs. Although syntactic variability still exists in
the selected data (e.g. relative clauses and passive
sentences), because of the data selection stage based
on syntax, the task of identification comes primarily
down to the semantic distinction between existing
sentences. Additionally, some of the existing syntac-
tic differences are neutralized by the cause and un-
dergoer argument pre-processing stage described in
Section 3.5.2. Thus, it stands to reason that most of
the useful contributions come from the lexical items
themselves and the semantics of the verb and its ar-
guments.

Finally, the baseline system of the DISPLACE
classification shows either a similar or improved
performance over the CMC classifier. The overall
performances across the different feature sets show
similar values. Given that DISPLACE makes up a
smaller percentage of the total data as shown in Sec-
tion 3.4 (e.g. DISPLACE label for WSJ accounts
for just under 9% of the total test and training data),
the comparable performance is likely indicative that
the DISPLACE label represents a more semantically
coherent phenomenon than the CMC label.

4.2 Removing Frequent NON-CMC Verbs
In this experiment, we remove the top 25 highly fre-
quent verbs1 that do not appear in a CMC usage
from both the training and testing data2. Their se-
mantics are not compatible with the established def-
initions of CMCs. For example, verbs like be, do, or
have cannot have caused motion usages, and verbs

1We effectively went down the list of the most frequent verbs
in our WSJ data, and stopped at the first verb that could be
judged as compatible and non-contrary to the established def-
initions of CMCs. 25 is the number of verbs in this list before
the first CMC-compatible verb was reached.

2Top 25 verbs include: accuse, base, be, build charge, cre-
ate, do, fall, file, find, have, hold, keep, leave, offer, open, play,
prevent, produce, quote, reach, rise, see, use, and view.
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CMC Classification
WSJ WEB BN

P R F P R F P R F
Syntactic 63.79 41.11 0.5000 76.6 55.7 0.645 72.4 54.3 0.620
Semantic 71.02 72.44 0.7173 77.3 64.2 0.701 80.5 76.4 0.784
Baseline+PV 71.78 76.89 0.7425 78.8 77.4 0.781 85.9 82.9 0.844

DISPLACE Classification
WSJ WEB BN

P R F P R F P R F
Syntactic 66.80 63.89 0.6531 73.8 58.5 0.653 72.3 58.8 0.649
Semantic 72.94 73.81 0.7337 76.3 70.7 0.734 74.3 79.4 0.768
Baseline+PV 74.81 76.59 0.7569 78.7 72.0 0.752 82.8 75.5 0.790

Table 5: System performance on semantic and syntactic features.

like keep, leave, or prevent are contrary to the se-
mantics of CMCs. By removing large number of
NON-CMC instances, we focus on how well the
classifier performs on truly ambiguous cases. Fur-
thermore, because these verbs have no instances of
CMCs or DISPLACEs, only the negative label was
reduced in size. Effectively, the removal of the verbs
increases the proportion of the positive labels in the
corpora. The numbers are shown in Table 6.

CMC DISPLACE
Corpus Before After Before After
WSJ 14.8% 18.3% 8.86% 10.2%
WEB 29.2% 33.1% 24.2% 25.6%
BN 18.6% 21.6% 14.3% 15.7%

Table 6: Removed lemma count and effect on CMC label

Tables 7 and 8 show the precision and recall per-
centages and the f-score values when the instances
of the most frequent NON-CMC verbs are removed
from the training and testing data.

There is a general improvement in performance
after the removal of the verbs from the data. The
most marked improvement is in the WEB models
(both CMC and DISPLACE) and the BN model’s
DISPLACE label classification. In particular the
recall value shows improvement in these classifier
models. As we have seen before, the Baseline+PV
set and the full feature set show the best predictions.
There is no noticeable improvement in the WSJ clas-
sifiers except for a slight (statistically insignificant)
increase in the baseline values.

4.3 Random Downsampling of Negative Labels

As we have seen in Section 3.4, the CMC and the
DISPLACE instances in WSJ are outnumbered by
the negative, NON-CMC labels. The previous ex-
periment on removing NON-CMC verbs effectively
brought up the percentage of positive labels for the
CMC and DISPLACE labels to 20% and 11%, re-
spectively. However, label proportions of 20-80
or, worse, 11-89 are still highly unbalanced. Sev-
eral studies have shown that in cases of training
size imbalance, downsampling data can help with
the performance of supervised classifiers (Weiss and
Provost, 2001; Kubat and Matwin, 1997). Thus, for
this experiment, we randomly downsample the neg-
ative labels in the WSJ training data to increase the
percentage of positive labels3. For the sake of sim-
plicity, we base the downsampling proportions on
the CMC label: we cut the negative label so that
the CMC label makes up 25% (Downsample1 ”D1”)
and 30% (Downsample2 ”D2”)of the total data. The
proportions of the DISPLACE labels are, therefore,
14.0% (D1)and 16.8% (D2), respectively.

Table 9 shows the performance of the WSJ mod-
els on the downsampled training set. The results in-
dicate that the downsampling of the negative labels
in the training data leads to increased performance.
We have also tested the semantic feature set and the
Baseline+P feature set as well. Their performances

3The downsampling was only applied to the training set, al-
tering the distribution of labels only for the training data. The
test set remains identical from its previous distribution in Sec-
tion 4.2
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WSJ WEB BN
P R F P R F P R F

Baseline 63.32 40.67 0.4953 69.0 54.7 0.611 75.7 60.0 0.669
Baseline+P 71.71 71.56 0.7164 80.7 86.8 0.836 79.2 81.4 0.803
Baseline+PV 70.97 73.33 0.7213 81.6 87.7 0.845 79.6 83.6 0.815
Semantic 69.37 68.44 0.6890 74.6 80.2 0.773 77.1 84.3 0.805
Full Set 73.88 76.67 0.7525 76.2 87.7 0.816 79.5 82.9 0.811

Table 7: System performance on CMC label classification with frequent NON-CMC verbs removed.

WSJ WEB BN
P R F P R F P R F

Baseline 63.25 58.73 0.6091 70.3 63.4 0.667 71.1 57.8 0.638
Baseline+P 72.77 67.86 0.7023 74.1 76.8 0.754 79.4 75.5 0.774
Baseline+PV 74.89 69.84 0.7228 76.1 81.7 0.788 79.8 81.4 0.806
Semantic 71.81 64.68 0.6806 73.8 75.6 0.747 74.5 77.5 0.760
Full Set 73.60 73.02 0.7331 76.7 84.1 0.802 81.4 81.4 0.814

Table 8: System performance on DISPLACE label classification with frequent NON-CMC verbs removed.

are approximately equal with no significant differ-
ence from the Baseline+PV, so we do not include
those numbers.

We observe a large increase in the recall values,
resulting in the overall improvement of the classi-
fiers trained on downsampled data4 . Interestingly,
with the random downsampling of the training data,
we see a boost in the full feature set’s performance
far more than the Baseline+PV set’s performance.
In fact, in all cases we observed that the full features
now show a significantly higher performance than
the other features (McNemar, p < 0.05). The ob-
served results for the two downsampled classifiers
are not statistically distinct from one another.

5 Final Considerations and Future Work

We have presented our work on the automatic clas-
sification of CMCs in corpus data using the anno-
tated data produced in our earlier study (Hwang et
al., 2014). Our studies have shown that we can
achieve the identification of caused motion instances
at a higher rate than the inter-annotator agreement
scores, the best performance that can be realistically
expected. We have also shown that semantic in-
formation is highly indicative of the caused motion

4We only show the recall values in Table 9 as the increase
observed in the f-score was mainly due to the recall values.

CMC Classification:
D1 D2

R F R F
Baseline 55.33 0.5900 68.00 0.6207
Baseline+PV 86.00 0.7866 89.11 0.7886
Full Set 88.89 0.8180 91.33 0.8171
DISPLACE Classification:

D1 D2
R F R F

Baseline 69.05 0.6705 75.40 0.6798
Baseline+PV 85.32 0.7776 88.10 0.7776
Full Set 88.10 0.8177 91.27 0.8084

Table 9: Classification performance with downsampled
training data.

phenomenon, confirming our general intuition that
the caused motion construction is a semantic phe-
nomenon. We have also carried out cross-genre ex-
periments, which we were not able to include in this
paper in the interest of length. In these experiments,
we find that syntax provides scalable features that
generalize well across different types of text, pro-
ducing better results in cross-genre experiments. We
have also shown that the downsampling of the nega-
tive label has a positive impact on the classification
of the labels.
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This work has made use of various gold anno-
tations for the purposes of feature extraction. The
most obvious next step in this investigation will in-
volve experimentation with automatically obtained
features. Additionally, we hope to examine the im-
pact of further features. As the experiments have
shown, the lexical and semantic features (lemma,
preposition, VerbNet classes) surface as strong pre-
dictors of CMCs. It follows from this, that we
should expand the feature search to other seman-
tic information. One particular set of features that
might be interesting, would be based on FrameNet
frames. Since FrameNet’s frames represent dif-
ferent conceptual semantic domains, features from
FrameNet may be instrumental at capturing and
highlighting the semantics of CMCs that are spread
across VerbNet classes of differing semantic types.
Moreover, it would also be interesting to expand on
the lexical features: lexical features can be extended
to not just the verb of the sentence but also to the
noun phrases. Further investigation into using re-
sources like WordNet (Miller, 1995; Fellbaum et al.,
1998) might be needed to remedy sparse data issues
that lexical features based on words from the noun
phrases might create.
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