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Abstract

We explore the novel task of identify-
ing latent attributes in video scenes, such
as the mental states of actors, using
only large text collections as background
knowledge and minimal information about
the videos, such as activity and actor types.
We formalize the task and a measure of
merit that accounts for the semantic re-
latedness of mental state terms. We de-
velop and test several largely unsupervised
information extraction models that iden-
tify the mental states of human partici-
pants in video scenes. We show that these
models produce complementary informa-
tion and their combination significantly
outperforms the individual models as well
as other baseline methods.

1 Introduction

“Labeling a narrowly avoided vehicular
manslaughter as approach(car, person) is
missing something.”1 The recognition of ac-
tivities, participants, and objects in videos has
advanced considerably in recent years (Li et al.,
2010; Poppe, 2010; Weinland et al., 2011; Yang
and Ramanan, 2011; Ng et al., 2012). However,
identifying latent attributes of scenes, such as the
mental states of human participants, has not been
addressed. Latent attributes matter: If a video
surveillance system detects one person chasing
another, the response from law enforcement
should be radically different if the people are
happy (e.g., children playing) or afraid and angry
(e.g., a person running from an assailant).

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

1James Donlon, former manager of DARPA’s Mind’s Eye
program, personal communication.

Attributes that are latent in visual representa-
tions are often explicit in textual representations.
This suggests a novel method for inferring latent
attributes: Use explicit features of videos to query
text corpora, and from the resulting texts extract
attributes that are latent in the videos, such as men-
tal states. The contributions of this work are:

1: We formalize the novel task of latent attribute
identification from video scenes, focusing on the
identification of actors’ mental states. The input
for the task is contextual information about the
scene, such as detections about the activity (e.g.,
chase) and actor types (e.g., policeman or child),
and the output is a distribution over mental state
labels. We show that gold standard annotations
for this task can be reliably generated using crowd
sourcing. We define a novel evaluation measure,
called constrained weighted similarity-aligned F1

score, that accounts for both the differences be-
tween mental state distributions and the seman-
tic relatedness of mental state terms (e.g., partial
credit is given for irate when the target is angry).

2: We propose several robust and largely unsuper-
vised information extraction (IE) models for iden-
tifying the mental state labels of human partici-
pants in a scene, given solely the activity and actor
types: a lexical semantic (LS) model that extracts
mental state labels that are highly similar to the
context of the scene in a latent, conceptual vector
space; and an information retrieval (IR) model that
identifies labels commonly appearing in sentences
related to the explicit scene context. We show that
these models are complementary and their combi-
nation performs better than either model, alone.

3: Furthermore, we show that an event-centric
model that focuses on the mental state labels of
the participants in the relevant event (identified us-
ing syntactic patterns and coreference resolution)
outperforms the above shallower models.
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2 Related Work

As far as we know, the task proposed here is novel.
We can, however, review work relevant to each
part of the problem and our solution. Mental
state inference is often formulated as a classifica-
tion problem, where the goal is to predict target
mental state labels based on low-level sensory in-
put data. Most solutions try to learn classification
models based on large amounts of training data,
while some require human engineering of domain
knowledge. Hidden Markov Models (HMMs) and
Dynamic Bayesian Networks (DBNs) are popular
representations because they can model the tem-
poral evolution of mental states. For instance, the
mental states of students can be inferred from un-
intentional body gestures using a DBN (Abbasi et
al., 2009). Likewise, an HMM can also be used
to model the emotional states of humans (Liu and
Wang, 2011). Some solutions combine HMMs
and DBNs in a Bayesian inference framework to
yield a multi-layer representation that can do real-
time inference of complex mental and emotional
states (El Kaliouby and Robinson, 2004; Baltru-
saitis et al., 2011). Our work differs from these
approaches in several ways: It is mostly unsuper-
vised, multi-modal, and requires little training.

Relevant video processing technology includes
object detection (e.g., (Felzenszwalb et al., 2008)),
person detection, and pose detection (e.g., (Yang
and Ramanan, 2011)). Many tracking algo-
rithms have been developed, such as group track-
ing (McKenna et al., 2000), tracking by learn-
ing appearances (Ramanan et al., 2007), and
tracking in 3D space (Giebel et al., 2004; Brau
et al., 2013). For human action recognition,
current state-of-the-art techniques are capable of
achieving near perfect performance on the com-
monly used KTH Actions dataset (Schuldt et al.,
2004) and high performance rates on other more
challenging datasets (O’Hara and Draper, 2012;
Sadanand and Corso, 2012).

To extract mental state information from texts,
one might use any or all of the technologies of
natural language processing, so a complete review
of relevant technologies is impossible, here. Of
immediate relevance is the work of de Marneffe
et al. (2010), which identified the latent meaning
behind scalar adjectives (e.g., which ages people
have in mind when talking about “little kids”).
The authors learned these meanings by extract-
ing scalars, such as children’s ages, that were

commonly collocated with phrases, such as “lit-
tle kids,” in web documents. Mohtarami et al.
(2011) tried to infer yes/no answers from indirect
yes/no question-answer pairs (IQAPs) by predict-
ing the uncertainty of sentiment adjectives in in-
direct answers. Their method employs antonyms,
synonyms, word sense disambiguation as well as
the semantic association between the sentiment
adjectives that appear in the IQAP to assign a de-
gree of certainty to each answer. Sokolova and La-
palme (2011) further showed how to learn a model
for predicting the opinions of users based on their
written contents, such as reviews and product de-
scriptions, on the Web. Gabbard et al. (2011)
found that coreference resolution can significantly
improve the recall rate of relations extraction with-
out much expense to the precision rate.

Our work builds on these efforts by combining
information retrieval, lexical semantics, and event
extraction to extract latent scene attributes.

3 Data

For the experiments in this paper, we focus solely
on videos containing chase scenes. Chases often
invoke clear mental state inferences, and depend-
ing on context can suggest very different mental
state distributions for the actors involved.

3.1 Video Corpus

We compiled a video dataset of 26 chase videos
found on the Web. Of these, five involve police
officers, seven involve children, four show sports-
related scenes, and twelve describe different chase
scenarios involving civilian adults (two videos in-
volve children playing sports). The average dura-
tion of the dataset is 8.8 seconds with a range of
[4, 18]. Most videos involve a single chaser and a
single chasee (a person being chased) while a few
have several chasers and/or chasees.

For each video, we used Amazon Mechanical
Turk (MTurk) to identify both the actors and their
mental states. Each worker was asked to view a
video in its entirety before answering some ques-
tions about the scene. We give no prior training to
the workers. The questions were carefully phrased
to apply to all participants of a particular role, for
example all chasers (if there are more than one).
We also ask obvious validation questions about the
participants in each role (e.g., are the chasers run-
ning towards the camera?) and use the answers to
these questions to filter out poor responses. In gen-
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eral, we found that most responses were good and
only a few incomplete submissions were rejected.

In the first experiment, we asked MTurk work-
ers to select the actor types and various other de-
tections from a predefined list of tags. This label-
ing task is a proxy for a computer vision detection
system that functions at a human level of perfor-
mance. Indeed, we restricted the actor type labels
to a set that can be reasonably expected from auto-
matic detection algorithms: person, police officer,
child, and (non-human) object. For instance, po-
lice officers often wear distinctive color uniforms
that can be learned using the Felzenszwalb detec-
tor (Felzenszwalb et al., 2008), whereas children
can be reliably differentiated by their heights un-
der a 3D-tracking model (Brau et al., 2013). Each
video was annotated by three different workers
and the union of their annotations is produced.
The overall accuracy of the annotation was excel-
lent. The MTurk workers correctly identified the
important actors in every video.

Next, we collected a gold standard list of mental
state labels for each video by asking MTurk work-
ers to identify all applicable mental state adjec-
tives for the actors involved. We used a text-box
to allow for free-form input. Studies have shown
that people of different cultures can perceive emo-
tions very differently, and having forced choice
options cannot always capture their true percep-
tion (Gendron et al., 2014). Therefore, we did not
restrict the response of the workers in any way.
Workers could abstain from answering if they felt
the video was too ambiguous. Each video was
evaluated by ten different workers. We converted
each term provided to the closest adjective form
if possible. Terms with no equivalent adjective
forms were left in place. On rare occasions, work-
ers provided sentence descriptions despite being
asked for single-word adjectives. These sentences
were either removed, or collapsed into a single
word if appropriate. The overall quality of the an-
notations was good and generally followed com-
mon intuition. Asides from the frequently used
terms, we also received some colorful (yet infor-
mative) descriptions, like incredulous and vindic-
tive. In general, chases involving police scenar-
ios often contained violent and angry states while
chases involving children received more cheerful
labels. There were unexpected descriptions, such
as annoy for a playful chase between two children.
Upon review of the video, we agreed that one child

did indeed look annoyed. Thus, the resulting de-
scriptions were subjective, but very few were hard
to rationalize. By aggregating the answers from
the workers, we generated a gold standard distri-
bution of mental state terms for each video.2

3.2 Text Corpus
The text corpus used for our models is the En-
glish Gigaword 5th Edition corpus3, made avail-
able by the Linguistics Data Consortium and in-
dexed by Lucene4. It is a comprehensive archive
of newswire text data (approximately 26 GB), ac-
quired over several years. It is in this corpus that
we expect to find mental state terms cued by con-
textual information from videos.

4 Neighborhood Models

We developed several individual models based on
the neighborhood paradigm, that is, the hypoth-
esis that relevant mental state labels will appear
“near” text cued by the visual features of a scene.

The models take as input the context extracted
from a video scene, defined simply as a list of “ac-
tivity and actor-type” tuples (e.g., (chase, police)).
Multiple actor types will result in multiple tuples
for a video. The actors can be either a person, a
policeman, a child, or a (non-human) object. If
the detections describe the actor as both a person
and a child, or a person and a policeman, we auto-
matically remove the person label as it is a Word-
Net (Miller, 1995) hypernym of both child and po-
liceman. For each human actor type, we further
increase our coverage by retrieving the synonym
set (synset) of its most frequent sense (i.e., sense
#1) from WordNet. For example, a chase involv-
ing a policeman would generate the following tu-
ples: (chase, policeman) and (chase, officer).

We call these query tuples because they are used
to query text for sentences that – if all goes well –
will contain relevant mental state labels.

Given query tuples, our models use an initial
seed set of 160 mental state adjectives to produce
a single distribution over mental state labels, re-
ferred to as the response distribution, for each
video. The seed set is compiled from popular
mental and emotional state dictionaries, includ-
ing the Profile of Mood States (POMS) (McNair
et al., 1971) and Plutchik’s wheel of emotion. We

2All videos and annotations are available at:
http://trananh.github.io/vlsa

3Linguistics Data Consortium catalog no. LDC2011T07
4Apache Lucene: http://lucene.apache.org
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Source Example Mental State Labels

POMS alert, annoyed, energetic, exhausted, helpful,
sad, terrified, unworthy, weary, etc.

Plutchik angry, disgusted, fearful, joyful/joyous,
sad, surprised, trusting, etc.

Others agitated, competitive, cynical, disappointed,
excited, giddy, happy, inebriated, violent, etc.

Table 1: The initial seed set contains 160 mental
state labels, compiled from different sources like
the popular Profile of Mood States dictionary and
Plutchik’s wheel of emotion.

also included frequently used labels gathered from
synsets found in WordNet (see Table 1 for exam-
ples). Note that the gold standard annotations pro-
duced by MTurk workers (Sec. 3) was not a source
for this set, nor was it restricted to these terms.

4.1 Back-off Interpolation in Vector Space
Our first model uses the recurrent neural net-
work language model (RNNLM) of Mikolov et
al. (2013) to project both mental state labels and
query tuples into a latent conceptual space. Simi-
larity is then trivially computed as the cosine sim-
ilarity between these vectors. In all of our experi-
ments, we used a RNNLM computed over the Gi-
gaword corpus with 600-dimensional vectors.

For this vector space (vec) model, we separate
the query tuples into different levels of back-off
context. The first level includes the set of activ-
ity types as singleton context tuples, e.g., (chase),
while the second level includes all (activity, actor)
context tuples. Hence, each query tuple will yield
two different context tuples, one for each back-off
level. For each context tuple with multiple terms,
such as (chase, policeman), we find the vector rep-
resentation for the context by aggregating the vec-
tors representing the search terms:

vec(chase, policeman) = vec(chase) +
vec(policeman) .

The vector representation for a singleton con-
text tuple is just the vector of the single search
term. We then calculate the distance of each men-
tal state labelm to the normalized vector represen-
tation of the context tuple by computing the cosine
similarity score between the two vectors:

cos(Θm) =
vec(m) · vec(context tuple)
||vec(m)|| ||vec(context tuple)|| .

The hypothesis here is that mental state labels
that are related to the search context will have a

RNNLM vector that is closer to the context tuple
vector, resulting in a high cosine similarity score.
Because the number of latent dimensions is rela-
tively small (when compared to vocabulary size),
cosine similarity scores in this latent space tend to
be close. To further separate these scores, we raise
them to an exponential power:

score(m) = ecos(Θm)+1 − 1 .

The processing of each context tuple yields 160
different scores, one for each mental state label.
We normalize these scores to form a single distri-
bution of scores for each context tuple. The distri-
butions are then integrated into a single distribu-
tion representative of the complete activity as fol-
lows: (a) the distributions at each context back-off
level are averaged to generate a single distribution
per level – for the second level (which includes
activity and actor types), it means distributions for
all (activity, actor) tuples are averaged, whereas
the first level only has a single distribution from
the singleton activity tuple (chase); and (b) distri-
butions for the different levels are linearly interpo-
lated, similar to the back-off strategy of (Collins,
1997). Let e1 and e2 represent the weights of some
mental state label m from the average distribution
at the first and second level, respectively. Then the
interpolated distribution score e for m is:

e = λe1 + (1− λ)e2 .

Compiling the distribution scores for each m
produces the final distribution representing the ac-
tivity modeled. We prune this final distribution by
taking the top ranked items that make up some γ
proportion of the distribution. We delay the dis-
cussion of how γ is tuned to Section 6. The final
pruned distribution is normalized to produce the
response distribution.

4.2 Sentence Co-occurrence with Deleted
Interpolation

Our second model, the sent model, extracts mental
state labels based on the likelihood that they ap-
pear in sentences cued by query tuples. For each
tuple, we estimate the conditional probability that
we will see a mental state label m in a sentence,
where m is from the seed set, given that we al-
ready observed the desired activity and actor type
in the same sentence: P (m|activity, actor). In this
case, we refer to the sentence length as the neigh-
borhood window. Furthermore, all terms must ap-
pear as the correct part-of-speech (POS): m must
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appear as an adjective or verb, the activity as a
verb, and the actor as a noun. (Mental state adjec-
tives are allowed to appear as verbs because some
are often mis-tagged as verbs; e.g., agitated, deter-
mined, welcoming.) We used Stanford’s CoreNLP
toolkit for tokenization and POS tagging.5

Note that this probability is similar to a trigram
probability in POS tagging, except the triples need
not form an ordered sequence but must appear in
the same sentence and under the correct POS tag.
Unfortunately, we cannot always compute this tri-
gram probability directly from the corpus because
there might be too few instances of each trigram
to compute a probability reliably. As is common,
we instead estimate it as a linear interpolation of
unigrams, bigrams, and trigrams. We define the
maximum likelihood probabilities P̂ , derived from
relative frequencies f , for the unigrams, bigrams,
and trigrams as follows:

P̂ (m) =
f(m)
N

P̂ (m|activity) =
f(m, activity)
f(activity)

P̂ (m|activity, actor) =
f(m, activity, actor)
f(activity, actor)

for all mental state labels m, activities, and actor
types in our queries. N is the total number of to-
kens in the corpus. The aforementioned POS re-
quirement is enforced: f(m) is the number of oc-
currences of m as an adjective or verb. We define
P̂ = 0 if the corresponding numerator and denom-
inator are zero. The desired trigram probability is
then estimated as:

P (m|activity, actor) = λ1P̂ (m) +

λ2P̂ (m|activity) + λ3P̂ (m|activity, actor) .

As λ1 +λ2 +λ3 = 1, P represents a probability
distribution. We use the deleted interpolation algo-
rithm (Brants, 2000) to estimate one set of lambda
values for the model, based on all trigrams.

For each query tuple generated in a video, 160
different trigrams are computed, one for each men-
tal state label in the seed set, resulting in 160 con-
ditional probability scores. We normalize these
scores into a single distribution – the mental state
distribution for that query tuple. We then combine

5http://nlp.stanford.edu/software/
corenlp.shtml.

all resulting distributions, one from each query tu-
ple, and take the average to produce a single dis-
tribution over mental state labels for the video. As
before, we prune this distribution by taking the
top-ranked items that cover a large fraction γ of
total probability. The pruned distribution is renor-
malized to yield the final response distribution.

4.3 Event-centric with Deleted Interpolation
The sent model has two limitations. On one hand,
it is too sparse: the single sentence neighborhood
window is too small to reliably estimate the fre-
quencies of trigrams for the probabilities of men-
tal state terms. On the other hand, it may be too
lenient, as it extracts all mental state mentions ap-
pearing in the same sentence with the activity, or
event, under consideration, regardless if they ap-
ply to this event or not. We address these limita-
tions next with an event-centric model (event).

Intuitively, the event model focuses on the men-
tal state labels of event participants. Formally,
these mental state terms are extracted as follows:

1: We identify event participants (or actors). We
do this by analyzing the syntactic dependencies of
sentences containing the target verb (e.g., chase)
to find the subject and object. In most cases, the
nominal subject of the verb chase is the chaser and
the direct object is the person being chased. We
implemented additional patterns to model passive
voice and other exceptions. We used Stanford’s
CoreNLP toolkit for syntactic dependency parsing
and the downstream coreference resolution.

2: Once the phrases that point to actors are iden-
tified, we identify all mentions of these actors in
the entire document by traversing the coreference
chains containing the phrases extracted in the pre-
vious step. The sentences traversed in the chains
define the neighborhood area for this model.

3: Lastly, we identify the mental state terms of
event participants using a second set of syntac-
tic patterns. First, we inspect several copulative
verbs, such as to be and feel, and extract men-
tal state labels from these structures if the corre-
sponding subject is one of the mentions detected
above. Second, we search for mental states along
adjectival modifier relations, where the head is an
actor mention. For all patterns, we make sure to
filter for only mental state complements belong-
ing to the initial seed list. The same POS restric-
tion as in the other models also applies. We incre-
ment the joint frequency f for the n-gram once for
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each neighborhood that properly contain all search
terms from the n-gram in the correct POS.

The event model addresses both limitations of
the sent model: it avoids the lenient extraction of
mental state labels by focusing on labels associ-
ated with event participants; it addresses sparsity
by considering all mentions of event participants
in a document.

To understand the impact of this model, we
compare it against two additional baselines. The
first baseline investigates the importance of focus-
ing on mental state terms associated with event
participants. This model, called coref, implements
the first two steps of the above algorithm, but in-
stead of extracting only mental state terms associ-
ated with event actors (last step), it considers all
mentions appearing anywhere in the coreference
neighborhood. That is, all unique sentences tra-
versed by the relevant coreference chains are first
pieced together to define a single neighborhood for
a given document; then the relative joint frequen-
cies of n-grams are computed by incrementing f
once for each neighborhood that contains all terms
with correct POS tags.

The second baseline analyzes the importance of
coreference resolution to our problem. This model
is similar to sent, with the modification that it in-
creases the size of the neighborhood window to in-
clude the immediate neighbors of target sentences
that contain activity labels. We call this the win-n
model: The window around a target verb contains
2n + 1 sentences. We build the context neigh-
borhood by concatenating all target sentences and
their windows together for a given document. This
defines a single neighborhood for each document.
This contrasts with the sent model, in which the
neighborhood is defined for each sentence con-
taining the activity label in the document, resulting
in several possible neighborhoods in a document.
The joint frequency f for each n-gram – where
n > 1 – is computed similarly with the coref
model: it is incremented once for each neighbor-
hood that contains all the terms from the n-gram
in the correct POS. Frequencies for unigrams are
computed similar to sent.

As before, 160 different trigrams are generated
for each query tuple, one for each mental state la-
bel in the seed set, resulting in 160 conditional
probability scores. We similarly combine these
scores and generate a single pruned distribution as
the response for each of the model above.

G (irate, 0.8), (afraid, 0.2)
R1 (angry, 0.6), (mad, 0.4)
R2 (irate, 0.2), (afraid, 0.8)
R3 (mad, 0.4), (irate, 0.4), (scared, 0.2)

Table 2: We show an example gold standard dis-
tribution G and several candidate response distri-
butions to be matched against G. Here, R3 best
matches the shape and meaning of G, because
(irate, mad) and (afraid, scared) are close syn-
onyms. R2 appears to match G semantically, but
matches its shape poorly. R1 misses one of the
mental state labels, afraid, but contains labels that
are semantically close to the weightiest term in G.

4.4 Ensemble Model

We combined the results from the event and
vec models to produce an ensemble model (ens)
which, for a mental state label m, returns the aver-
age of m’s scores according to the response distri-
butions of the two individual models.

5 Evaluation Measures

LetR denote the response distribution over mental
state labels produced for a single video by one of
the models described in the previous section, and
let G denote the gold standard distribution pro-
duced for the same video by MTurk workers. If
R is similar to G then our models produce simi-
lar mental state terms as the workers. There are
many ways to compare distributions (e.g., KL dis-
tance, chi-square statistics) but these give bad re-
sults when distributions are sparse. More impor-
tantly, for our purposes, the measures that compare
the shapes of distributions do not allow semantic
comparisons at the level of distribution elements.
Suppose R assigns high scores to angry and mad,
only, while G assigns a high score to happy, only.
Clearly, R is wrong. But if insteadG had assigned
a high score to irate, only, then R would be more
right than wrong because, at the level of the indi-
vidual elements, angry and mad are similar to irate
but not similar to happy.

We describe a series of measures, starting with
the familiar F1 score, and discuss their applicabil-
ity. To illustrate the effectiveness of each measure,
we will use the examples shown in Table 2.

5.1 F1 Score

The F1 score measures the similarity between two
sets of elements, R and G. F1 = 1 when R = G
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and F1 = 0 when R and G share no elements. F1

is the harmonic mean of precision and recall:

precision =
|R ∩G|
|R| , recall =

|R ∩G|
|G| ,

(1)

F1 = 2 · precision · recall
precision+ recall

. (2)

The F1 score penalizes the responses in Table 3
that include semantically similar labels to those in
G, and fails to reflect the weights of the labels in
G and R.

5.2 Similarity-Aligned F1 Score
Although the standard F1 does not immediately fit
our needs, it is a good starting point. We can in-
corporate the semantic similarity of distribution el-
ements by generalizing the formulas for precision
and recall as follows:

precision =
1
|R|

∑
r∈R

max
g∈G

σ(r, g) ,

recall =
1
|G|

∑
g∈G

max
r∈R

σ(r, g) ,
(3)

where σ ∈ [0, 1] is a function that yields the simi-
larity between two elements. The standard F1 has:

σ(r, g) =
{

1 , if r = g
0 , otherwise

,

but clearly σ can be defined to take values pro-
portional to the similarity of r and g. We can
choose from a wide range of semantic similarity
and relatedness measures that are based on Word-
Net (Pedersen et al., 2004). The recent RNNLM
of Mikolov opens the door to even more similar-
ity measures based on vector space representations
of words (Mikolov et al., 2013). After experi-
mentations, we settled on one proposed by Hirst
and St-Onge (1998). It represents two lexicalized
concepts as semantically close if their WordNet
synsets are connected by a path that is not too
long and that “does not change direction too of-
ten” (Hirst and St-Onge, 1998). We chose this
metric because it has a finite range, accommodates
numerous POS pairs, and works well in practice.

Given the generalized precision and recall for-
mulas in Eq 3, our similarity-aligned (SA) F1

score can be computed in the usual way, as the
harmonic mean of precision and recall (Eq 2).

SA-F1 is inspired by the Constrained Entity-
Aligned F-Measure (CEAF) metric proposed

F1 SA-F1 CWSA-F1

p r f1 p r f1 p r f1

R1 0 0 0 1 .5 2
3 1 .8 .89

R2 1 1 1 1 1 1 .4 .4 .4
R3

1
3 .5 .4 1 1 1 1 1 1

Table 3: The precision (p), recall (r), and F1

(f1) scores under various evaluation models are
presented for the examples from Table 2. Sup-
pose that σ(irate, angry) = σ(irate,mad) =
σ(afraid, scared) = 1, with σ of any two identi-
cal strings being 1, and σ of all other pairs are 0.

by (Luo, 2005) for coreference resolution. CEAF
computes an optimal one-to-one mapping between
subsets of reference and system entities before it
computes recall, precision and F. Similarly, SA-F1

finds optimal mappings between the labels of the
two sets based on σ (this is what the max terms in
Eq 3 do). Table 3 shows that SA-F1 correctly re-
wards the use of synonyms. The high scores given
to R2, however, indicate that it does not measure
the similarity between distribution shapes.

5.3 Constrained Weighted Similarity-Aligned
F1 Score

Let R(r) and G(r) be the probabilities of label
r in the R and G distributions, respectively. Let
σ∗S(`) denote the best similarity score achievable
when comparing elements from set S to ` us-
ing the similarity function σ. That is, σ∗S(`) =
maxe∈S σ(`, e). We can easily weight σ∗S(`) by
the probability of `. For example, we might re-
define precision as

∑
r∈R R(r) ·σ∗G(r). However,

this would not account for the probability of r in
the gold standard distribution, G.

An analogy might help here: Suppose we have
an unknown “mystery bag” of 100 colored pen-
cils that we will try to match with a “response
bag” of pencils. If we fill our response bag with
100 crimson pencils, while the mystery bag con-
tains only 25 crimson pencils, then our precision
score should get points only for the first 25 pen-
cils, while the remaining 75 in the response bag
should not be rewarded. For recall, the reward
given for each color in the mystery bag is capped
by the number of pencils of that color in the re-
sponse bag. The analogy is complete when we
consider that crimson pencils should perhaps be
partially rewarded when matched by cardinal, rose
or cerise pencils. In other words, a similarity mea-

127



sure should account for an accumulated mass of
synonyms. Let MS(`) denote the subset of terms
from S that have the best similarity score to `:

MS(`) = {e | σ(`, e) = σ∗S(`), ∀e ∈ S} .

We define new forms of precision and recall as:

p =
∑
r∈R

min

R(r),
∑

e∈MG(r)

G(e)

σ∗G(r) ,

r =
∑
g∈G

min

G(g),
∑

e∈MR(g)

R(e)

σ∗R(g) .

(4)
The resulting constrained weighted similarity-

aligned (CWSA) F1 score is the harmonic mean
of these new precision and recall scores. Table 3
shows that CWSA-F1 yields the most intuitive
evaluation of the response distributions, down-
weighting R2 in favor of R3 and R1.

6 Experimental Procedure

As described in Section 3, MTurk workers anno-
tated 26 videos by identifying the actor types and
mental state labels for each video. The actor types
become query tuples of the form (activity, actor)
and the mental state labels are compiled into one
probability distribution over labels for each video,
designated G. The query tuples were provided to
our neighborhood models (Sec. 4), which returned
a response distribution over mental state labels for
each video, designated R.

We selected four videos of the 26 to calibrate
the prune parameters γ and the interpolation pa-
rameters λ (Sec. 4). One of these videos contains
children, one has police involvement, and two con-
tain adults. We asked additional MTurk workers to
annotate these videos, yielding an independent set
of annotations to be used solely for calibration.

The experimental question is, how well does G
match R for each video?

7 Results & Discussions

We report the average performance of our mod-
els along with two additional baseline methods in
Table 4. The naı̈ve baseline method unif simply
binds R to the initial seed set of 160 mental state
labels with uniform probability, while the stronger
freq baseline uses the occurrence frequency dis-
tribution of the labels from the Gigaword corpus
(note that only occurrences tagged as adjectives or

F1 CWSA-F1

p r f1 p r f1
unif .107 .750 .187 .284 .289 .286
freq .107 .750 .187 .362 .352 .355
sent .194 .293 .227 .366 .376 .368
vec .226 .145 .175 .399 .392 .393

coref .264 .251 .253 .382 .461 .416
event .231 .303 .256 .446 .488 .463
ens .259 .296 .274 .488 .517 .500

Table 4: The average evaluation performance
across 26 different chase videos are shown against
2 different baselines for all proposed models. Bold
font indicates the best score in a given column.

verbs were counted). All average improvements
of the ensemble model over the baseline models
are significant (p < 0.01). Significance tests were
one-tailed and were based on nonparametric boot-
strap resampling with 10, 000 iterations.

Using the classical F1 measure, the coref model
scored highest on precision, while the ensemble
method did best on F1. Not surprisingly, no model
can top the baseline methods on recall as both
baselines use the entire seed set of 160 terms.
Even so, the average recall for the baselines were
only .750, which means that the initial seed set did
not include words that were used by the MTurk an-
notators. As we’ve mentioned, the classical F1 is
misleading because it does not credit synonyms.
For example, in one movie, one of our models
was rewarded once for matching the label angry
and penalized six times for also reporting irate,
enraged, raging, upset, furious, and mad. Fre-
quently, our models were penalized for using the
terms scared and afraid instead of fearful.

Under the CWSA-F1 evaluation measure,
which correctly accounts for both synonyms and
label probabilities, our ensemble model performed
best. The average CWSA-F1 score of the ensem-
ble model improves upon the simple uniform base-
line unif by almost 75%, and over the stronger
freq baseline by over 40%. The ensemble method
also outperforms each individual method in all
measured scores. These improvements were also
found to be significant. This strongly suggests
that the vec and event models are complementary,
and not entirely redundant. Furthermore, Table 4
shows that the event model performs considerably
better than coref. This result emphasizes the im-
portance of focusing on the mental state labels of
event participants rather than considering all men-
tal state terms collocated in the same sentence with
an actor or action verb.
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Models CWSA-F1 Versus coref p-value
win-0 0.388682 −0.027512 0.0067
win-1 0.415328 −0.000866 0.4629
win-2 0.399777 −0.016417 0.0311
win-3 0.392832 −0.023362 0.0029

Table 5: The average CWSA-F1 scores for the
win-n model with different window parameters are
shown in comparison to the coref model. The
coref model outperformed all tested configura-
tions, though the difference is not significant for
n = 1. The p-value based on the average differ-
ences were obtained using one-tailed nonparamet-
ric bootstrap resampling with 10, 000 iterations.

Table 5 explores the effectiveness of corefer-
ence resolution in expanding the neighborhood
area. The coref model outperformed the simple
windowing method under every tested configura-
tion. However, the improvement over windowing
with n = 1 is not significant. This can be ex-
plained by fact that immediately neighboring sen-
tences are more likely to be related. Moreover,
since newswire articles tend to be short, the neigh-
borhoods generated by win-1 tend to be similar to
those generated by coref. In general, coref does
not do worse than a simple windowing method and
has the bonus advantage of providing references to
the actors of interest for downstream processes.

In Table 6, we show the performance results
based on the types of chase scenarios happening in
the videos. The average scores under the uniform
baseline unif for chase videos involving children
and sporting events are lower than for police and
other chases. This suggests that our seed set of
160 mental state labels is biased towards the latter
types of events, and is not as fit to describe chases
involving children.

On average, videos involving police officers
show the biggest improvement in the CWSA-F1

scores over the unif baseline (+0.2693), whereas
videos involving children received the lowest gain
(+0.1517). We believe this is the effect of the
Gigaword text corpus, which is a comprehensive
archive of newswire text, and thus is heavily bi-
ased towards high-speed and violent chases in-
volving the police. The Gigaword corpus is not
the place to find children happily chasing each
other. Similarly, sports-related chases, which are
also news-worthy, have a higher gain than chil-
dren’s videos on average.

Categories Unif Ensemble Gain
children 0.2082 0.3599 +0.1517
police 0.3313 0.6006 +0.2693
sports 0.2318 0.4126 +0.1808
others 0.3157 0.5457 +0.2300

Table 6: The average CWSA-F1 scores for the en-
semble model are shown in comparison to the uni-
form baseline method, categorize by video types.

8 Conclusion and Future Work

We introduced the novel task of identifying latent
attributes in video scenes, specifically the men-
tal states of actors in chase scenes. We showed
that these attributes can be identified by using ex-
plicit features of videos to query text corpora, and
from the resulting texts extract attributes that are
latent in the videos. We presented several largely
unsupervised methods for identifying distributions
of actors’ mental states in video scenes. We de-
fined a similarity measure, CWSA-F1, for com-
paring distributions of mental state labels that ac-
counts for both semantic relatedness of the labels
and their probabilities in the corresponding distri-
butions. We showed that very little information
from videos is needed to produce good results that
significantly outperform baseline methods.

In the future, we plan to add more detection
types. Additional contextual information from
videos (e.g., scene locations) should help improve
performance, especially on tougher videos (e.g.,
videos involving children chases). Moreover, we
believe that the initial seed set of mental state la-
bels can be learned simultaneously with the ex-
traction patterns of the event model using a mutual
bootstrapping method, similar to that of (Riloff
and Jones, 1999).

Currently, our experiments assume one distri-
bution of mental state labels for each video. They
do not distinguish between the mental states of the
chaser and chasee, while in reality these partici-
pants may be in very different states of mind. Our
event model is capable of making this distinction
and we will test its performance on this task in the
future. We also plan to test the effectiveness of our
models with actual computer vision detectors. As
a first approximation, we will simulate the noisy
nature of detectors by degrading the quality of an-
notated data. Using artificial noise on ground-truth
data, we can simulate the performance of real de-
tectors and test the robustness of our models.
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