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Abstract

In this paper, we present our approach to
SemEval-2013 Task 9.2. It is a feature rich
classification using LIBSVM for Drug-Drug
Interactions detection in the BioMedical do-
main. The features are extracted considering
morphosyntactic, lexical and semantic con-
cepts. Tools like openDMAP and TEES are
used to extract semantic concepts from the
corpus. The best F-score that we got for Drug-
Drug Interaction (DDI) detection is 50% and
61% and the best F-score for DDI detection
and classification is 34% and 48% for test and
development data respectively.

Keywords: text mining, event extraction, ma-
chine learning, feature extraction.

1 Introduction

Our approach to the Semeval 2013 drug-drug in-
teraction task explored the potential for integrat-
ing knowledge-based approaches with supervised
machine learning. In practice, most supervised
machine learning systems are actually hybrids of
machine learning and some knowledge-based ap-
proach. However, the integration between the two
is typically quite loose, with the knowledge-based
approach being realized either as heuristic pre-
processing or post-processing of the results. The
work reported here is an attempt to make a tighter
coupling between knowledge-based methods and
machine learning. In particular, we took the ap-
proach of using knowledge-based methods for fea-
ture extraction.

2 Methodology

In this challenge we approach the Drug-Drug inter-
action task 9.2 as a binary classification problem. A
pair of drugs is interacting if there is some kind of
influence between the two. Our approach for Drug-
Drug interaction extraction 2013 mainly makes use
of domain specific morphosyntactic, lexical and se-
mantic features between paired drugs.

We applied Machine Learning classification tech-
niques in order to determine whether a pair of drugs
within a biomedical text is interacting or not. For a
training set of labeled instances

(
Xi, yi

)
= 1, 2, ..., l

where Xi ∈ Rn and y ∈ {1,−1}l, the support vector
machines (SVMs) optimization problem is defined
as(Boser et al., 1992) (Cortes and Vapnik , 1995):

α̂ = arg max
α,w,b
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i=1

αi
)

(1)

such that yi
(
W Tφ(Xi) + b

)
> 1− αi,
αi ≥ 0.

2.1 Materials
The corpus is provided from two data sources. There
are 572 documents describing drug-drug interac-
tions from the DrugBank database and 142 abstracts
on the subject of drug-drug interactions from Med-
Line (Isabel et.al., 2011). We prepared datasets
for the entire corpus. Each instance in the dataset
is a set of paired drugs. In our dataset, there are
27787 instances. 93.57% of them are from Drug-
bank database and the remaining are from MedLine
abstracts. DDI shared task 2013 is not only interac-
tion detection but the challenge also includes detec-

684



tion of the type of interaction. In our approach, we
treated each interaction type as one class.

2.2 Methods
LIBSVM is a library for support vector machines (
LIBSVM, 2011). We used this tool for classify-
ing the dataset. Basically, the problem is a multi-
class classification problem. We applied the concept
of one-vs-all multi-class classification technique to
handle the multiple classes.

2.3 Feature Extraction
The features that we extracted for this challenge can
be categorized into three types:

2.3.1 Morphosyntactic Features
• Distance feature: this is distance between

paired drugs in number of words. The intuition
here is that the closer two drugs are, the more
chance that they might be interacting. Since
this feature takes word count as its value, the
text is split within white space when counting
number of words. Punctuation marks are not
considered when counting words.

• Part-Of-Speech tags: we chose the GENIA
dependency parser for parsing the corpus for
two reasons.

• Dependency parser related features: we con-
struct the dependency tree using the GENIA
dependency parser. Two features are extracted
from the tree:

– Presence of interaction word in the path
from the target drug node to the root of
the tree.

– Distance from one target drug name to
another one in the tree.

2.3.2 Lexical Features

– Bigrams: a sequence of bigrams is ex-
tracted for input text.

2.3.3 Semantic Features

– Interaction words: we collected the top
100 words that indicate drug-drug inter-
action. The presence of these words is

one feature for our system. The words are
checked before and after each target drug.
Such words include: increase, decrease,
inhibit, interaction, reduce, affect.

– Presence of preposition within target
drugs: the text within the target drugs is
tested to see if it has preposition or not. If
the text has a preposition, the value is 1
otherwise it will have zero value.

– Presence of other drugs within target
drugs: firstly, we collect all drug names
into a list. The text within the target drugs
is searched for the drug names and the
value for this feature will have the num-
ber of hits.

– Concept from OpenDMAP:
OpenDMAP is an ontology-driven,
rule-based concept analysis and infor-
mation extraction system (Hunter et.al.,
2008). We used openDMAP to extract
drug-drug interaction concepts from the
DDI2013 corpus. We extracted pattern
based features using OpenDMAP only if
OpenDMAP recognizes target drugs.

3 Dataset Preparation

The challenge provided datasets from Drug-
Bank database and MedLine abstracts. We split
the dataset into 20% development data and 80%
training data. Table1 shows the percentage of
positive instances in the dataset.

DDI interaction 14.47%
Interaction type effect 6.07%
Interaction type advise 2.97%
Interaction type mechanism 4.75%
Interaction type int 0.68%

Table 1: positive instances for the different class types

The data is not balanced, as shown in table 1.
We penalized the negative classes during train-
ing in order to balance the data.

In section 4 we present results for three runs.
Run1 includes the basic features which are de-
scribed in section 2.3. In Run2 we included fea-
ture values made available by TEES ( Björne
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et.al., 2011). In addition to the features in the
first two runs, in Run3 the list of interaction
words were considered individually as features.
In this run, weight penalty and different opti-
mized LIBSVM parameters were considered.

4 Results

Table 2 shows the results for DDI detection
only, for both development and test data. The
best F1 score is 50% for test data and 61% for
development data.

Runs
1 2 3

test data precision 0.37 0.38 0.4
recall 0.73 0.75 0.64
F1 0.49 0.5 0.49

development data precision 0.28 0.82 0.62
recall 0.78 0.46 0.59
F1 0.41 0.59 0.61

Table 2: Partial Evaluation: only detection of DDI

Table 3 shows results for DDI detection and
classification. The best F1 score is 34% for test
data and 48% for development data.

Runs
1 2 3

test data precision 0.16 0.25 0.27
recall 0.32 0.5 0.44
F1 0.21 0.33 0.34

development data precision 0.13 0.59 0.49
recall 0.37 0.33 0.46
F1 0.2 0.42 0.48

Table 3: Detection and classification of DDI

And finally, the scores for the individual DDI
type for the best run are shown in table 4. Ap-
parently, Run3 outperforms in all the scores as
can be seen in tables 2 through 4.

Run3
precision recall F1

test data mechanism 0.39 0.29 0.33
effect 0.21 0.63 0.31
advise 0.45 0.39 0.42
int 0.4 0.28 0.334

development data mechanism 0.5 0.29 0.37
effect 0.44 0.61 0.51
advise 0.72 0.46 0.56
int 0.08 0.1 0.09

Table 4: Best scores for DDI type, Run3

5 Discussion

Generally speaking, the performance of our
system is better for DDI detection regardless of

their types compared to classifying what kind
of DDI they are.

Among the three runs that we submitted for the
challenge, Run3 outperforms in all the scores
as can be seen in tables 2 through 4 for the fol-
lowing reasons:

– weight penalty techniques are applied in
Run3

– optimal cost and gamma parameters are
selected while training for Run3

– Bag of interaction words are considered
as individual features. This specially in-
creases scores for detecting the individual
DDI types.

The best F-score that we got for DDI detec-
tion is 61% for development data and 50% for
test data as shown in Table 2. The reason why
scores are better for DDI detection is that our
approach is feature rich DDI detection and we
believe that our features mainly target detect-
ing DDIs. A further addition of features that
distinguishes the DDI types will hopefully im-
prove the scores for DDI classification. On the
other hand, it has been observed that scores are
lower for test data compared to development
data. And the reason for this is due to opti-
mization parameters that we heuristically chose
during training are possibly favoring to devel-
opment data than to test data. Another possible
reason could be overfitting.

As shown in section 4, the knowledge-based
lexical features produced our best run. The se-
mantic parser made a smaller contribution to
performance, almost certainly because of low
coverage- - -historically, in past shared tasks
on information extraction, its behavior has been
characterized by very high precision but low re-
call.

5.1 Error Analysis

Table 5 shows false positive predictions col-
lected from the results for Run3. In FP-1, the
system predicts detecting the first pair (etan-
ercept and anakinra) correctly and then clas-
sifying as type effect but it failed to deter-
mine whether etanercept is interacting with
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interleukin-1 antagonist. A close examina-
tion of this sentence shows that the last two
drugs are separated by parentheses and in fact
the last drug is a further explanation of the
second one. The system couldn’t distinguish
this concept — rather it is treating all the three
drugs separately and both pairs i.e. (etanercept,
anakinra) and (etanercept, interleukin-1 antag-
onist) are predicted the same. This is happening
due the syntactic nature of the text. One possi-
ble way to avoid such confusion is to expand
the sentence. In other words, we believe initial
data clean up might improve the performance
of the system. Avoiding punctuation marks
such as parenthesis for this case and other de-
limiters and representing them in words if pos-
sible might improve the performance of the
classifier.

It is also observed that there is poor prediction
for pairs of drugs that have negation. The two
examples, i.e. FP-2 and FP-3 in table 5 are
wrongly predicted because there is no feature
that handles negation in the system.

FP-1 Concurrent administration of etanercept
(another TNF -blocking agent) and anakinra
(an interleukin-1 antagonist) has been as-
sociated with an increased risk of serious in-
fections, and increased risk of neutropenia
and no additional benefit compared to these
m edicinal products alone.

FP-2 When used in external subcutaneous infu-
sion pumps for insulin, NovoLog should not
be mixed with any other insulins or diluent.

FP-3 With the exception of albuterol, there are
no formal studies fully evaluating the in-
teraction effects of ATROVENT Inhalation
Aerosol and these drugs with respect to ef-
fectiveness.

Table 5: False positive samples. In this table false positive DDIs are in bold font.

False negative predictions have a negative ef-
fect on the recall evaluation parameter. In ta-
ble 6 we show false negative predictions and
their possible analysis for the development
data. A close analysis of FN-1 and FN-2 shows
that both sentences have a comma between the
paired drugs. From a linguistic point of view,
the punctuation mark comma can be used to
separate interdependent clauses. Represent-
ing this dependency as a feature might help to

avoid false negatives. FN-3 are a bit differ-
ent and it apprears that there is much knowl-
edge that can be extracted from the given text
which is in number format. Currently, the fea-
tures that we have don’t extract information
written in numbers. Also, the list of interac-
tion words doesn’t include words like admin-
istered, administration though words like co-
administration, coadministered are included.
A further development of the list of interaction
words will avoid such false predictions.

FN-1 Anticholinergic agents: Although iprat-
ropium bromide is minimally absorbed into
the systemic circulation, there is some poten-
tial for an additive interaction with concomi-
tantly used anticholinergic medications.

FN-2 Lymphocytopenia has been reported in pa-
tients receiving CAMPTOSAR, and it is
possible that the administration of dexam-
ethasone as antiemetic prophylaxis may
have enhanced the likelihood of this effect.

FN-3 Betaseron administration to three cancer pa-
tients over a dose range of 0.025 mg to
2.2 mg led to a dose-dependent inhibition
of antipyrine elimination.14 The effect of
alternate-day administration of 0.25 mg of
Betaseron on drug metabolism in MS pa-
tients is unknown.

Table 6: False negative samples. In this table false negative DDIs are in bold format.

6 Conclusion

Our approach to Extraction of Drug-Drug In-
teractions from BioMedical Texts task 9.2 is a
feature rich SVM classification. The perfor-
mance on detecting Drug-Drug interactions is
encouraging but it is a bit lower when it comes
to further classfying the type of the interaction.
As described in section 5.1, addition of fea-
tures such as negation will reduce false posi-
tive prediction and this will increase precision
score. Further development of the list of inter-
action words is also a important task to handle
the different forms of words that could indicate
an interaction type. We have also observed that
pattern-based semantic features are not well ex-
tracted in our system.
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