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Abstract

Named entity recognition (NER) systems
are often based on machine learning tech-
niques to reduce the labor-intensive devel-
opment of hand-crafted extraction rules and
domain-dependent dictionaries. Nevertheless,
time-consuming feature engineering is often
needed to achieve state-of-the-art performance.
In this study, we investigate the impact of such
domain-specific features on the performance
of recognizing and classifying mentions of
pharmacological substances. We compare the
performance of a system based on general fea-
tures, which have been successfully applied
to a wide range of NER tasks, with a system
that additionally uses features generated from
the output of an existing chemical NER tool
and a collection of domain-specific resources.
We demonstrate that acceptable results can be
achieved with the former system. Still, our ex-
periments show that using domain-specific fea-
tures outperforms this general approach. Our
system ranked first in the SemEval-2013 Task
9.1: Recognition and classification of pharma-
cological substances.

1 Introduction

The accurate identification of drug mentions in text
is an important prerequisite for many applications, in-
cluding the retrieval of information about substances
in drug development (e.g. Roberts and Hayes (2008)),
the identification of adverse drug effects (e.g. Lea-
man et al. (2010)) and the recognition of drug-drug
interactions (e.g. Thomas et al. (2011)). Given that
most of the information related to drug research is

covered by medical reports and pharmacological pub-
lications, computational methods for information ex-
traction should be used to support this task.

The SemEval-2013 Task 9.1 competition1 (Segura-
Bedmar et al., 2013) aims at a fair assessment on the
state-of-the-art of tools that recognize and classify
mentions of pharmacological substances in natural
language texts – a task referred to as drug named
entity recognition (NER). The goal of participating
teams is to recreate the gold annotation on a held-
out part of an annotated corpus. Four classes of en-
tities have to be identified: Drug, DrugN, Group
and Brand. Entities of class Drug denote any kind
of drug that is approved for use in humans, whereas
DrugN denotes substances that are not approved.
Group are terms describing a group of drugs and
Brand stands for drug names introduced by a phar-
maceutical company.

The aim of this study is to examine whether it is
worthwhile to implement domain-specific features
for supporting drug NER. The question we attempt
to answer is whether such features really help in iden-
tifying and classifying mentions of drugs or whether
a mostly domain-independent feature set, which can
be applied to many other tasks, achieves a compara-
ble performance.

2 Related work

Various NER systems for identifying different
classes of chemical entities, including mentions of
drugs, trivial names and IUPAC terms, have been pro-
posed.

1http://www.cs.york.ac.uk/semeval-2013/task9/
(accessed 2013-04-29)
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Klinger et al. (2008) trained a conditional random
field (CRF) (Lafferty et al., 2001) for extracting men-
tions of IUPAC and IUPAC-like entities. They report
an F1 measure of 85.6% on a hand-annotated corpus
consisting of MEDLINE abstracts.

Segura-Bedmar et al. (2008) introduced Drug-
NER, which is based on UMLS MetaMap Trans-
fer (MMTx) and nomenclature rules by the World
Health Organization International Nonproprietary
Names (INNs). Their system extracts and classifies
mentions of drugs and achieves a precision of 99.1%
and a recall of 99.8% on a silver-standard corpus.

OSCAR (Open-Source Chemistry Analysis Rou-
tines) (Corbett and Murray-Rust, 2006; Jessop et al.,
2011) extracts mentions of a wide range of chemi-
cals using a maximum entropy Markov model (Mc-
Callum et al., 2000). It achieves an F1 of 83.2% on
a corpus consisting of PubMed abstracts and 80.7%
on a corpus consisting of chemistry papers (Corbett
and Copestake, 2008).

Hettne et al. (2009) compiled Jochem (the joint
chemical dictionary) from ChemIDplus, ChEBI,
DrugBank, PubChem, HMDB, KEGG, MeSH and
CAS Registry IDs. Jochem was used with Peregrine
(Schuemie et al., 2007), a dictionary-based NER tool,
achieving an F1 of 50% on the SCAI corpus (Kolárik
et al., 2008).

We developed ChemSpot (Rocktäschel et al.,
2012), a system for extracting mentions of various
kinds of chemicals from text. We applied a CRF
for extracting mentions of IUPAC entities based on
the work of Klinger et al. (2008) and used Jochem
(Hettne et al., 2009) with an adapted matching-
mechanism for identifying trivial names, drugs and
brands. ChemSpot v1.0 achieved an overall F1 of
68.1% on the SCAI corpus. In the meantime, we have
worked on several enhancements (see Section 3.1).

The SemEval-2013 Task 9.1 poses new challenges
on NER tools. Instead of targeting all kinds of chem-
icals, it focuses on drugs, i.e., pharmacological sub-
stances that affect humans and are used for adminis-
tration. Moreover, entities need to be classified into
the four categories mentioned above.

3 Methods

Our approach is based on a linear-chain CRF with
mostly domain-independent features commonly ap-

plied to NER tasks. In addition, we employ vari-
ous domain-specific features derived from the out-
put of ChemSpot’s components, as well as Jochem,
the PHARE ontology (Coulet et al., 2011) and the
ChEBI ontology (De Matos et al., 2010). In the
following, we first explain extensions to ChemSpot.
Subsequently, we give a brief introduction to linear-
chain CRFs before describing the general and
domain-specific features used by our system. Finally,
we explain the experimental setup and discuss our
results.

3.1 Improvements of ChemSpot

To improve ChemSpot’s chemical NER performance,
we extend it by two components and modify its
match-expansion mechanism.

The first addition is a pattern-based tagger
for chemical formulae. In its basic form it ex-
tracts mentions matching the regular expression
(S N?(\+|-)?)+ where S denotes a chemical
symbol and N a natural number greater one.2 This
pattern is augmented by filters to comply with other
naming conventions, such as correct grouping of
compounds with parentheses.

The second extension targets ambiguous ab-
breviations. For example, the abbreviation “DAG”
could denote “diacylglycerol” or “directed acyclic
graph”. We use ABBREV, an algorithm proposed
by Schwartz and Hearst (2003), for extracting such
abbreviations and their definitions (e.g. “diacylglyc-
erol (DAG)”). Note that the position of the long form
(LF) and short form (SF) is interchangeable. To dis-
ambiguate between chemical and non-chemical ab-
breviations, we apply the following two rules to the
mentions extracted by ChemSpot: (1) For a given
pair of LF and SF, we check whether the LF was
found to be a chemical but the SF was not. In this
case we add a new annotation for every occurrence
of the SF in the document. (2) Contrary to that, if
only the SF was tagged as a chemical but the LF was
not, we assume that the abbreviation does not refer
to a chemical and remove all annotations of the SF
in the document.

ChemSpot’s match-expansion often leads to the
extraction of non-chemical suffixes corresponding to
verbs, e.g., “-induced”, “-enriched” or “-mediated”.

2By convention, 1 is ommited (e.g. CO2 instead of C1O2).
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Figure 1: A factor graph for a 1st-order linear-chain
CRF (2nd-order with dashed edges). Note that for
each feature function fj in the factor Ψ, the same
weight θj is used at all other positions (gray) in the
sequence (parameter tying).

To tackle this issue we stop the expansion at tokens
whose part-of-speech tag refers to a verb form. Fur-
thermore, we integrated OPSIN (Lowe et al., 2011)
to normalize entity mentions to InChI strings.

The current v1.5 release of ChemSpot achieves an
overall F1 of 74.2% on the SCAI corpus, improving
the performance by 6.1 percentage points (pp) F1
compared to ChemSpot v1.0.

3.2 Linear-chain conditional random fields

Contrary to the hybrid strategy used in ChemSpot,
we follow a purely machine learning based approach
for drug NER in this work. NER can be formulated
as a sequence labeling task where the goal is to find
a sequence of labels y = {y1, . . . , yn} given a se-
quence x = {x1, . . . , xn} of observed input tokens.
Labels commonly follow the IOB format, where B
denotes a token at the beginning of an entity men-
tion, I denotes the continuation of a mention and O
corresponds to tokens that are not part of a mention.
Extracting entity mentions from a tokenized text x
then amounts to finding y∗ = arg maxy p(y |x).

Linear-chain CRFs are well-known discriminative
undirected graphical models that encode the condi-
tional probability p(y |x) of a set of input variables
x and a sequence of output variables y (see Wallach
(2004) or Klinger and Tomanek (2007) for an intro-
duction). In the case of NER, x is a sequence of n
tokens and y a sequence of n corresponding labels.
Linear-chain CRFs of order k factorize p(y |x) into
a product of factors Ψ, globally normalized by an
input-dependent partition function Z(x):

p(y |x) =
1

Z(x)

n∏
i=1

Ψ(yi−k, . . . , yi−1, yi,x, i).

A factor Ψ is commonly defined as the exponen-
tial function of a sum of weighted feature functions
{f1, . . . , fm}:

1

Z(x)

n∏
i=1

exp

 m∑
j=1

θjfj(yi−k, . . . , yi−1, yi,x, i)

 .

The feature function weights {θj} can be learned
from training data and are shared across all positions
i (parameter tying).

The factorization of a CRF can be illustrated by
a factor graph (Kschischang et al., 2001). A factor
graph is a bipartite graph, where one set of nodes
corresponds to random variables and the other to fac-
tors. Each factor is connected to the variables of its
domain, making the factorization of the model ap-
parent. Figure 1 shows a factor graph for a segment
of a linear-chain CRF of order one and two respec-
tively. In a linear-chain CRF of order k, the label of
a token at position i is connected via feature func-
tions of a factor to the input sequence x as well as
the previous k labels. For example, in a first-order
linear-chain CRF, one of the feature functions could
be f[O→B,capital](yi−1, yi,x, i), which evaluates to 1 if
yi−1 = O, yi = B and xi starts with a capital letter
(otherwise it yields 0). Multiplication with the weight
θ[O→B,capital] yields an unnormalized local score that
indicates how favorable a transition from O to B is
provided that the token at position i starts with a capi-
tal letter. Note that the terms feature function and fea-
ture are often used synonymously and the case differ-
entiation for different labels is implicit. In this work
a feature fcapital denotes its corresponding set of first-
order feature functions {f[s→t,capital](yi−1, yi,x, i) |
(s, t) ∈ {(B,B), (B,I), (B,O), (I,B), (I,I), (I,O),
(O,B), (O,O)}}3 (similarly for second-order).

We employ MALLET (McCallum, 2002) as under-
lying CRF implementation and use a second-order
linear-chain CRF with offset conjunctions of order
two. Offset conjunctions of order k adds features
around a window of k to the features at a partic-
ular position, providing more contextual informa-
tion. Akin to Klinger et al. (2008), we perform fine-
grained tokenization, splitting at special characters
and transitions from alphanumeric characters to dig-
its. An exemplary tagging sequence is shown in Ta-
ble 1.

3Transitions from O to I are invalid.
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i 0 1 2 3 4 5 6 7 8 9 10
y O B-DrugN O B-DrugN I-DrugN I-DrugN O B-Group O O O
x Both ibogaine and 18 - MC ameliorate opioid withdrawal signs .

Table 1: Example label sequence for the tokenized sentence MedLine.d110.s4 of the training corpus.

Feature Class Description

FC

fCHEMSPOT part of a prediction by ChemSpot
fIUPAC part of an IUPAC entity
fFORMULA part of a chemical formula
fDICTIONARY part of a dictionary match
fABBREV part of a chemical abbreviation

FJ

fJOCHEM dictionaries in Jochem
fPREFIX frequent chemical prefix
fSUFFIX frequent chemical suffix

FO

fPHARE PHARE ontology
fCHEBDESCS #descendants in ChEBI ontology
fCHEBDEPTH average depth in ChEBI ontology

FG

fKLINGER see Klinger et al. (2008)
fBANNER see Leaman and Gonzalez (2008)
fABNER see Settles (2005)

FF

fUPPERCASESENT. part of an upper-case sentence
fPREVWINDOW text of preceding four tokens
fNEXTWINDOW text of succeeding four tokens

Table 2: Overview of features used for identifying
and classifying mentions of pharmacological sub-
stances.

Note that the sequence-labeling approach in the
described form cannot cope with discontinuous en-
tity mentions. Since only a tiny fraction (≈ 0.3%) of
entities in the training corpus are discontinuous, we
simply neglect these for training and tagging.

3.3 Feature sets

An overview of the features used by our system is
shown in Table 2. Our first two submissions for the
SemEval-2013 Task 9.1 differ only in that they use
different subsets of these features. Run 1 employs a
feature set assembled from common general features
used for biomedical NER (FG ∪ FF ), whereas Run
2 additionally uses features tailored for extracting
mentions of chemicals (FC ∪ FJ ∪ FO).

3.3.1 Run 1: general features FG and FF

We employ a union of common, rather domain-
independent features published by Klinger et al.
(2008), Settles (2005) and Leaman and Gonzalez

(2008). Note that these feature sets have been suc-
cessfully applied to a wide range of different biomed-
ical NER tasks, e.g., identifying mentions of DNA
sequences, genes, diseases, mutations, IUPAC terms,
cell lines and cell types. They encompass morpho-
logical, syntactic and orthographic features, such as
the text of the token itself, token character n-grams
of length 2 and 3, prefixes and suffixes of length 2, 3,
and 4, characters left and right to a token and part-of-
speech tags. Furthermore, they contain various regu-
lar expressions that capture, for instance, whether a
token starts with a capital letter or contains digits.

In addition, we employ features based on NER
examples in FACTORIE (McCallum et al., 2009).
Specifically, we use the text of the four preceding
and succeeding tokens and whether a token is part of
a sentence that contains only upper-case characters.
The latter is commonly the case for headlines, which
likely contain an entity mention.

3.3.2 Run 2: domain-specific features

In addition to the features of Run 1, we use pre-
dictions of our improved version of ChemSpot, as
well as features derived from Jochem, PHARE and
ChEBI.

ChemSpot-based features FC: When a token is
part of a mention extracted by one of ChemSpot’s
components (i.e. IUPAC entity, chemical formula,
dictionary match or chemical abbreviation), we use
the name of the respective component as feature. In
addition, we determine whether a token is part of an
entity predicted by ChemSpot after match-expansion,
boundary-correction and resolution of overlapping
entities. Using the output of ChemSpot as features
for our system could be framed as stacking (see
Wolpert (1992)).

Jochem-based features FJ : For every dictionary
contained in Jochem, we check whether a token is
part of an entity in that dictionary and use the name of
the dictionary as feature. Furthermore, we compile
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a list of frequent chemical suffixes and prefixes of
length three from Jochem.

Ontology-based features FO: It is often hard to
determine whether a mention refers to a specific
chemical entity or rather an abstract term denoting
a group of chemicals. To distinguish between these
two cases, we calculate the average depth and the
number of descendants of a term in the ChEBI on-
tology and use the binned count as feature. The idea
behind these features is that the specificity of an en-
tity correlates positively with its depth in the ontol-
ogy (e.g. leaf nodes are likely specific chemicals)
and negatively with the number of descendants (i.e.
having few descendants indicates a specific entity).

Further ontology-based features are derived from
PHARE, which consists of 200 curated relations. If
possible, we map a token to a term in that ontology
and use its label as feature.

3.4 Experiments

We perform document-level 10-fold cross-validation
(CV) on the training corpus to measure the impact
of domain-specific features. To ensure comparability
between Run 1 and Run 2, we use the same splits for
evaluation. Furthermore, we train models on the com-
plete training corpus and evaluate on the test corpus
of DDI Task 9.1 for each run respectively. In addi-
tion, we train a third model based on the best feature
set determined with CV and use the entity mentions
of the Task 9.2 test corpus, which also contains anno-
tations of drug-drug interactions, as additional train-
ing data (Run 3). Following the SemEval-2013 Task
9.1 metrics, we evaluate exact matching performance
(correct entity boundaries) and strict matching per-
formance (correct boundaries and correct type).

4 Results

Table 3 shows micro-average CV results for identi-
fying and classifying mentions of pharmacological
substances in the training corpus. The performance
varies drastically between different entity classes re-
gardless of the feature set, e.g., Run 1 achieves an F1

of 91.0% for Drug, but only 15.9% F1 for DrugN.
Run 2 outperforms Run 1 for entities of class

Drug (+1.2 pp F1) and DrugN (+4.9 pp F1), but
yields a lower performance for Brand (−0.9 pp
F1) and no change for Group entities. Overall, the

Run 1 Run 2

P R F1 P R F1 ∆F1

Drug 92.1 89.9 91.0 92.0 92.3 92.2 +1.2
DrugN 54.7 9.3 15.9 62.4 12.5 20.8 +4.9
Group 87.2 82.5 84.8 87.3 82.3 84.8 0.0
Brand 87.8 70.8 78.4 87.1 69.8 77.5 −0.9

Exact 93.9 86.9 90.3 94.5 89.0 91.7 +1.4
Strict 90.3 83.6 86.8 90.3 85.1 87.6 +0.8

Table 3: Document-level 10-fold cross-validation
micro-average results on the training corpus.

micro-average F1 measure increases by 0.8 pp for
strict matching and 1.4 pp F1 for exact matching.

The performance on the test corpus (see Table 4)
is drastically lower compared to CV results (e.g. 17.6
pp F1 for strict evaluation of Run 1). Except for enti-
ties of class Group, using domain-specific features
leads to a superior performance for identifying and
classifying mentions of pharmacological substances.
Run 2 outperforms Run 1 by 1.6 pp F1 for strict eval-
uation and 5.9 pp F1 for exact evaluation. Using en-
tity mentions of the Task 9.2 test corpus as additional
training data (Run 3) further boosts the performance
by 0.7 pp F1 for strict evaluation.

5 Discussion

Our results show a clear performance advantage
when using domain-specific features tailored for
identifying mentions of chemicals. CV results and
results on the test corpus show an increase in preci-
sion and recall for exact matching and an increase
in recall for strict matching. The considerably higher
recall for exact matching can be attributed to a higher
coverage of chemical entities by features that exploit
domain-knowledge.

It is striking that the performance for DrugN enti-
ties is extremely low compared to the other classes.
We believe that this might be due to two reasons.
First, entities of this class are underrepresented in
the training corpus (≈ 3%). Since machine learning
based methods tend to favor the majority class, it is
likely that many DrugN entities were classified as
mentions of one of the much larger classes Drug (≈
64%) or Group (≈ 23%). This can be confirmed by
the large differences between strict and exact match-
ing results shown in Table 3 and Table 4.
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Run 1 Run 2 Run 3

# P R F1 P R F1 ∆F1 P R F1 ∆F1

Drug 351 74.2 79.5 76.8 72.9 85.2 78.6 +1.8 73.6 85.2 79.0 +0.4
DrugN 121 25.0 4.1 7.1 35.7 8.3 13.4 +6.3 31.4 9.1 14.1 +0.7
Group 155 77.3 74.8 76.1 78.1 73.5 75.7 −0.4 79.2 76.1 77.6 +1.9
Brand 59 76.2 81.4 78.7 77.8 83.1 80.3 +1.6 81.0 86.4 83.6 +3.3

Exact 686 82.1 72.9 77.2 85.6 80.8 83.1 +5.9 85.5 81.3 83.3 +0.2
Strict 686 73.6 65.3 69.2 73.0 68.8 70.8 +1.6 73.4 69.8 71.5 +0.7

DrugBank (Strict) 304 86.9 85.2 86.0 87.3 86.2 86.8 +0.8 88.1 87.5 87.8 +1.0
MEDLINE (Strict) 382 60.8 49.5 54.5 60.5 55.0 57.6 +3.1 60.7 55.8 58.1 +0.5

Table 4: Results on the test corpus. ∆F1 denotes the F1 pp difference to the preceding Run and # the number
of annotated mentions

Second, DrugN denotes substances that have an ef-
fect on humans, but are not approved for medical use
– a property that is rarely stated along with the entity
mention and can thus often only be determined with
domain-knowledge.

We think it is also important to point to the large
difference between results obtained by 10-fold CV
on the training corpus and test results (e.g. up to 17.6
pp F1 for Run 1). One reason might be the large frac-
tion (≈ 83%) of entity mentions that appear more
than once in the training corpus compared to pre-
sumably many unseen entities in the test corpus. For
10-fold CV this means that an entity in the evaluation
fold has already been seen with a high probability in
one of the nine training folds, yielding results that
overestimate the generalization performance. More-
over, our results indicate that identifying and clas-
sifying pharmacological substances is much harder
for MEDLINE documents than for DrugBank docu-
ments with a difference of up to 31.5 pp F1 (cf. the
last two rows of Table 4). Hence, another apparent
reason for the performance differences is the sub-
stantial skew in the ratio of DrugBank to MEDLINE
documents in the training corpus (roughly 4:1) com-
pared to the test corpus (roughly 1:1). Since both sets
of documents stem from different resources, this can
be referred to as domain-adaptation problem.

In additional experiments we found that the
general-purpose chemical NER tool ChemSpot
achieves an F1 of 65.5% for exact matching on the
test corpus. This is 17.8 pp F1 below our best results
obtained with a machine learning based system (cf.

Run 3) that is able to exploit properties of the task-
specific annotations of the corpora.

6 Conclusion

We described our contribution to the SemEval-2013
Task 9.1: Recognition and classification of pharma-
cological substances. We found that a system based
on rather general features commonly used for a wide
range of biomedical NER tasks yields competetive
results. Implementing this system needed no domain-
adaptation and its performance could be sufficient for
applications building upon drug NER. Nevertheless,
adding domain-specific features boosts the perfor-
mance considerably. Further improvements can be
achieved by using entity annotations of the Task 9.2
test corpus as additional training data.

We identified two limitations of our approach.
First, we found that entities of the minority class
(DrugN) are very hard to classify correctly. Second,
differences between DrugBank and MEDLINE docu-
ments probably cause a domain-adaptation problem.
For future work, one could investigate whether the
latter can be addressed by domain-adaptation tech-
niques (e.g. Satpal and Sarawagi (2007)). To cope
with DrugN entities, one could implement features
derived from those resources that were used by the
annotators for deciding whether a substance is ap-
proved for use in humans, e.g., Drugs@FDA4 and
the WHO ATC5 classification system.

4http://www.accessdata.fda.gov/scripts/cder/
drugsatfda/ (accessed 2013-04-29)

5http://www.whocc.no/atc_ddd_index/ (accessed
2013-04-29)
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