
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 317–327, Atlanta, Georgia, June 13-14, 2013. c©2013 Association for Computational Linguistics

Bootstrapping Semantic Role Labelers from Parallel Data

Mikhail Kozhevnikov Ivan Titov
Saarland University, Postfach 15 11 50

66041 Saarbrücken, Germany
{mkozhevn|titov}@mmci.uni-saarland.de

Abstract

We present an approach which uses the sim-
ilarity in semantic structure of bilingual par-
allel sentences to bootstrap a pair of seman-
tic role labeling (SRL) models. The setting
is similar to co-training, except for the inter-
mediate model required to convert the SRL
structure between the two annotation schemes
used for different languages. Our approach
can facilitate the construction of SRL models
for resource-poor languages, while preserving
the annotation schemes designed for the tar-
get language and making use of the limited re-
sources available for it. We evaluate the model
on four language pairs, English vs German,
Spanish, Czech and Chinese. Consistent im-
provements are observed over the self-training
baseline.

1 Introduction

The success of statistical modeling methods in a va-
riety of natural language processing (NLP) tasks in
the last decade depended crucially on the availability
of annotated resources for their training. And while
sizable resources for most standard tasks are only
available for a few languages, the human effort re-
quired to achieve reasonable performance on such
tasks for other languages may be significantly re-
duced by leveraging existing resources and the sim-
ilarities between languages.

This idea has lead to the development of cross-
lingual annotation projection approaches, which
make use of parallel corpora (Padó and Lapata,
2009), as well as attempts to adapt models directly

to other languages (McDonald et al., 2011). In this
paper we consider correspondences between SRL
structures in translated sentences from a different
perspective. Most cross-lingual annotation projec-
tion approaches transfer the source language anno-
tation scheme to the target language without modifi-
cation, which makes it hard to combine their output
with existing target language resources, as annota-
tion schemes may vary significantly. We instead ad-
dress the problem of information transfer between
two existing annotation schemes (figure 1) for a pair
of languages using an intermediate model of role
correspondence (RCM). An RCM models the prob-
ability of a pair of corresponding arguments being
assigned a certain pair of roles. We then use it to
guide a pair of monolingual models toward compat-
ible predictions on parallel data in order to extend
the coverage and/or accuracy of one or both models.

Romanian is not taught in their schools .

Ve školách se neučí rumunsky .

A1

PAT

AM-LOC

LOC

AM-NEG

Figure 1: Role correspondence in parallel sentences, an
example.

The notion of compatibility here is highly non-
trivial, even for sentences translated as close to the
original as possible. Zhuang and Zong (2010), for
example, observe that in the English-Chinese paral-
lel PropBank (Palmer et al., 2005b) corresponding
arguments often bear different labels, even though
the same inventory of semantic roles is used for both
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languages and the annotation guidelines are similar.
When different annotation schemes are considered,
the problem is further complicated by the difference
in the granularity of semantic roles used and varying
notions of what is an argument and what is not.

Manually annotated training data for such a model
is hard to come by. Instead, we propose an itera-
tive procedure similar to bootstrapping, where the
parameters of the RCM are initially estimated from
a parallel corpus automatically annotated with se-
mantic roles using the monolingual models indepen-
dently, and then the RCM is used to refine these an-
notations via a joint inference procedure, serving to
enforce consistency on the predictions of monolin-
gual models on parallel sentences. The obtained an-
notations on the parallel corpus are expected to be
of higher quality than the independent predictions of
the models, so they can be used to improve the SRL
models’ performance and/or coverage. We evalu-
ate this approach by augmenting the original train-
ing data with the annotations obtained on parallel
data and observing the change in the model’s perfor-
mance. This is especially useful if one of the lan-
guages is relatively poor in resources, in which case
the proposed procedure will help propagate infor-
mation from the stronger model to the weaker one.
Even if the two models are comparable in their pre-
dictive power, we may be able to benefit from the
fact that certain semantic roles are realized less am-
biguously in one language than in another. We will
henceforth refer to these two alternatives as the pro-
jection and symmetric setups.

The paper is structured as follows. In the next sec-
tion we present our approach and discuss the issues
of role correspondence modeling, then describe the
implementation and datasets used in evaluation in
section 3, present the evaluation and results in sec-
tion 4 and conclude with the discussion of related
work in section 5.

2 Approach

We consider bootstrapping a pair of SRL models on
a parallel corpus, using the correspondence between
their predictions on parallel sentences to guide the
learning. The models are forced toward compatible
predictions, where the notion of compatibility is de-
fined by a (statistical) role correspondence model.

Let us consider a pair of languages, α and β,
and their corresponding datasets T 0

α and T 0
β , anno-

tated with semantic roles (the upper indices here de-
note the iteration number). We will refer to these
as the initial training sets. We also assume that a
word-aligned parallel corpus is available for the pair
of languages, which we denote P , with the pred-
icates and their respective arguments identified on
both sides.

The procedure is then as follows: we train mono-
lingual models M0

α and M0
β on T 0

α and T 0
β , respec-

tively, apply them to the two sides of the parallel
corpus, resulting in a labeling P 0. We collect the se-
mantic role co-occurrence information and train the
role correspondence model C0 on it, then proceed to
the joint inference step involving M0

α, M0
β and C0,

resulting in a refined labeling P 1 of the parallel cor-
pus. The two sides of the P 1 are then used to aug-
ment the initial training sets, yielding T 1

α and T 1
β ,

and new models M1
β and M1

β are trained on these.
The process can then be repeated using M1

α and M1
β

instead of the initial models.
We report the model’s performance on a held-out

test set, drawn from the same corpus as the corre-
sponding initial training set.

The procedure can be seen as a form of co-
training (Blum and Mitchell, 1998) of a pair of
monolingual SRL models. In our case, however, the
question of the models’ agreement is not as trivial as
in most applications of co-training, requiring a sta-
tistical model of its own (Ci).

In the low-resource (projection) setup our ap-
proach is also similar to self-training with weak su-
pervision coming from the stronger model.

Note that although the approach is iterative, we
have observed no significant improvements from re-
peating the procedure, possibly owing to the noise
introduced by the errors in preprocessing. In the
evaluation we run only one iteration. In the notation
introduced above, the self-training baseline model
(SELF) is trained on P 0

β , the joint model (JOINT) –
on P 1

β and the combined model (COMB) – on T 1
β .

2.1 Modeling Role Correspondence

It is necessary to distinguish between semantic
roles and their interpretation in a particular con-
text. The former can be defined in a variety of
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ways, depending on the formalism used. In case of
FrameNet (Baker et al., 1998), for example, the in-
terpretation of a semantic role (frame element) is ex-
plicitly provided for each separate frame, so a frame
and a frame element label together describe the se-
mantics of an argument. PropBank (Palmer et al.,
2005a) follows a mixed strategy – the labels for a
relatively small set of core roles are numbered and
their interpretations are provided separately for each
predicate (although those of the first two roles, A0
and A1, consistently denote what is known as Proto-
Agent and Proto-Patient), while modifiers (Merlo
and Leybold, 2001) bear labels that are interpreted
consistently across all predicates. Other resources,
such as Prague Dependency Treebank (Hajič et al.,
2006), use a single set of semantic roles (functors),
which are interpretable across different predicates.

From the standpoint of defining the semantic sim-
ilarity of parallel sentences, the important implica-
tion is that we cannot assume that the corresponding
arguments should bear the same label, even if the
annotation schemes used are compatible (Zhuang
and Zong, 2010). Nor can we write down a single
mapping between the roles that will be valid across
different predicates (figure 2), which motivates the
need for a statistical model of semantic role corre-
spondence.

I do not have these concerns

Yo no tengo tales preocupaciones

A0

arg1-tem

A1

arg2-atr

Parliament adopted the resolution

El Parlamento aprueba la resolución

A0

arg0-agt

A1

arg1-pat

We would like to know their names

Nos gustaría conocer sus nombres

A0

arg2-ben

A1

arg1-tem

Figure 2: Predicate-specific role mapping. Note that A0
corresponds to art0-agt, art1-tem or art2-ben,
depending on the predicate.

We assume the existence of a one-to-one map-

ping between semantic roles for a given predicate
pair. As the mappings are not completely indepen-
dent – at least some roles have the same interpre-
tation across different predicate pairs, – we choose
to build a single model, which relies on features de-
rived from the pair of predicates in question, rather
than create a separate model for each predicate pair.
The model can then make decisions specific to par-
ticular predicates or predicate pairs, where sufficient
data has been observed or back off to a generic map-
ping where there is not enough data.

For the purpose of this study, we choose to sep-
arately model the probability of a target role, given
the source one and the necessary contextual infor-
mation and vice versa. These two components are
referred to as projection models and realized as a
pair of linear classifiers.

Training such a model in a conventional fash-
ion would require a rather specific kind of dataset,
namely a parallel corpus annotated with semantic
roles, and assuming the availability of such data
would severely limit the applicability of the ap-
proach proposed, as, to our knowledge, it is cur-
rently only available for two language pairs, namely
English-Chinese (Palmer et al., 2005b) and English-
Czech (Hajič et al., 2012). We instead use the auto-
matically produced annotations on a parallel corpus,
effectively enforcing consistency on the role corre-
spondence in the monolingual models’ predictions.

2.2 Joint Inference

The joint inference would have been simplest if the
arguments were classified independently. This as-
sumption is too restrictive, though, since the inter-
dependencies between the arguments can be used
to improve the accuracy of semantic role label-
ing (Roth and Yih, 2005).

2.2.1 Projection Setup
In the projection setup we assume that the model

for one of the languages, which we will henceforth
refer to as source, is much better informed than
the one for the other language, referred to as tar-
get, so we only have to propagate the information
one way. The scoring functions of these two mod-
els will be denoted fs and ft, respectively, and that
of the projection model from source to target – fst.
Source and target sentences are denoted Ss and St,
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and aligned predicates in these sentences – ps and
pt. The task is then to identify the target language
role assignment rt that would maximize the objec-
tive L(rt) = λtft(rt, St, pt) + λstfst(rt, rs, ps, pt),
where rs = argmaxrfs(rs, Ss, ps) is the role as-
signment of the source-side arguments as predicted
by the monolingual model and λ are the weights as-
sociated with the models.

The exact maximization of this objective is com-
putationally expensive, so we resort to an approx-
imation. We chose to use the dual decomposition
method primarily because it fits the structure of the
objective particularly well (in that it is a sum of the
objectives of two independent models) and since it
allows a wide range of monolingual models to be
used in this setup. The only requirement here is that
the monolingual model must be able to incorporate
a bias toward or away from a certain prediction.

To apply this approximation, we decouple the
rt variables into rt and rst and get L1(rt, rst) =
λtft(rt, St, pt) + λstfst(rst, rs, ps, pt) under the
condition that rt = rst. Applying the Lagrangian
relaxation, we replace the hard equality constraint
on rt and rst with a soft one, using slack variables δ,
which results in the following objective:

minδmaxrt,rstL
′
1(rt, rst, δ) =

λtft(rt, St, pt) + λstfst(rst, rs, ps, pt)+ (1)∑
i

∑
r∈Rt

δi,r
(
I(rit = r)− I(rist = r)

)
,

where i indexes aligned argument pairs and I is an
indicator function. This is equivalent to

minδmaxrt,rstL
′
1(rt, rst, δ) =

minδ

(
maxrtgt(rt, St, pt, δ)+ (2)

maxrstgst(rst, rs, ps, pt, δ)
)
,

where

gt(rt, St, pt, δ) =

λtft(rt, St, pt) +
∑
i

∑
r∈Rt

δi,rI(rit = r)

gstp(rst, rs, ps, pt, δ) = (3)

λstfst(rst, rs, ps, pt)−
∑
i

∑
r∈Rt

δi,rI(rist = r)

are the augmented objectives of the two component
models, incorporating bias factors on various possi-
ble predictions.

The minimization with respect to δ is per-
formed using a subgradient descent algorithm fol-
lowing Sontag et al. (2011). Whenever the method
converges, it converges to the global maximum of
the sum of the objectives. We found that in our case
it reaches a solution within the first 1000 iterations
over 99% of the time.

2.2.2 Symmetric Setup
If the models have comparable accuracy, the

above inference procedure can be extended to per-
form projection both ways. Formulating this as a
dual decomposition problem would require using
three separate components, two for the monolingual
models and one for the RCM, which would have to
make its own predictions for the semantic roles on
both sides without conditioning on the predictions
of the monolingual models. This calls for a different
kind of model than the one we use – a model that
will rely on a (possibly simplified) feature represen-
tation of the source and target arguments to jointly
predict their labels. Instead, we perform the pro-
jection setup inference procedure in both directions
simultaneously, interleaving gradient descent steps
and allowing the projection models to access the up-
dated predictions of the monolingual models. This
results in a block gradient descent algorithm with the
following updates:

rn+1
t = argmaxrtgt(rt, St, pt, δ

n
t )

rn+1
s = argmaxrtgs(rs, Ss, ps, δ

n
s )

rn+1
st = argmaxrstgst(rst, r

n
s , ps, pt, δ

n
t )

rn+1
ts = argmaxrtsgts(rts, r

n
t , pt, ps, δ

n
s ) (4)

∀i∀r∈Rsδ
n+1,i,r
s = δn,i,rs +

γs(n)(I(rn,its = r)− I(rn,is = r))

∀i∀r∈Rtδ
n+1,i,r
t = δn,i,rt +

γt(n)(I(rn,ist = r)− I(rn,it = r)),

where γs(n) = γt(n) = γ0
n+1 is the update rate func-

tion for step n, and gs and gts are defined as in (3),
but with the direction reversed.

This procedure allows us to use the same RCM
implementation as in the projection setup. More-
over, the inference procedure for projection setup is
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a special case of this one with γs(n) set to 0. The
algorithm also demonstrates convergence similar to
that of the projection version, although it lacks the
optimality guarantees.

3 Experimental Setup

We evaluate our approach on four language pairs,
namely English vs German, Spanish, Czech and
Chinese, which we will denote en-de, en-es,
en-cz and en-zh respectively.

3.1 Parallel Data
The parallel data for the first three language pairs
is drawn from Europarl v6 (Koehn, 2005) and
from MultiUN (Eisele and Chen, 2010) for English-
Chinese. We applied Stanford Tokenizer for En-
glish, tokenizer scripts (Koehn, 2005) provided
with the Europarl corpus to German, Spanish and
Czech, and Stanford Chinese Segmenter (Chang et
al., 2008) to Chinese, then performed POS-tagging,
morphology tagging (where applicable) and depen-
dency parsing using MATE-tools (Bohnet, 2010).

Word alignments were acquired using
GIZA++ (Och and Ney, 2003) with its stan-
dard settings. Predicate identification on the parallel
data was done using the supervised classifiers of
the monolingual SRL systems, except for German,
where a simple heuristic had to be used instead,
as only some of the predicates are marked in
the training data, which makes it hard to train a
supervised classifier. Following van der Plas et al.
(2011), we then retain only those sentences where
all identified predicates were aligned.

In the experiments we used 50 thousand predicate
pairs in each case, as increasing the amount further
did not yield noticeable benefits, while increasing
the running time.

3.2 Annotated Data
The CoNLL’09 (Hajič et al., 2009) datasets were
used as a source of annotated data for all languages.
Only verbal predicates were considered and pre-
dicted syntax was used in evaluation.

We consider subsets of the training data in order
to emulate the scenario with a resource-poor lan-
guage. Due to the different sources the datasets
were derived from, sentences contain different pro-
portions of annotated predicates depending on the

language. The German corpus, for example, con-
tains about 6 times fewer argument labels per sen-
tence than the English one. We will therefore in-
dicate the sizes of the datasets used in the number
of argument labels they contain, referred to as in-
stances, rather than the number of predicates or sen-
tences. The corpus for English, for example, con-
tains 6.2 such instances per sentence on average.

We use the 20 thousand instances of the available
data as the training corpus for each language and
split the rest equally between the development and
the test set. The secondary (“out-of-domain”) test
sets are preserved as they are.

In dependency-based SRL, only heads of syntac-
tic constituents are marked with semantic roles. The
heads of corresponding arguments may or may not
align, however, even if the arguments are lexically
very similar, because their syntactic structure may
differ. In general, one would have to identify the
whole phrase for each argument and take into ac-
count the links between constituents, rather than sin-
gle words (Padó and Lapata, 2005). As reconstruct-
ing the constituents from the dependency tree is non-
trivial (Hwang et al., 2010), we are using a heuristic
to address the most common version of this problem,
i.e. a preposition or an auxiliary verb being an argu-
ment head. In such a case we also take into account
any alignment links involving the head’s immediate
descendants.

3.3 Implementation

Our system is based on that of Björkelund et al.
(2009). It is a pipeline system comprised of a set of
binary or multiclass linear classifiers. Both here and
in the projection model, the classifiers are trained
using Liblinear (Fan et al., 2008).

We employed a uniqueness constraint on role la-
bels (Chang et al., 2007), preventing some of them
from being assigned to more than one argument in
the same predicate, which appears to be more reli-
able in a low-resource setting we consider than the
reranker the original system employed. The con-
straint is enforced in the monolingual model infer-
ence using a beam-search approximation with the
beam size of 10. The label uniqueness information
was derived from the training sets.
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3.4 The Projection Model

Each projection model is realized by a single lin-
ear classifier applied to each argument pair indepen-
dently. It relies on features derived from the source
semantic role and source and target predicates, and
predicts the semantic role for the argument in the
target sentence.

The features include the source semantic role and
its conjunctions with (lowercased) forms and lem-
mata of the source and target predicates. For ex-
ample, assuming the source semantic role is A3 and
the source and target predicates are went and ging
(past tense of “gehen”, German), the features would
be as shown in figure 3.

FORMPAIR=A3-went-ging
LEMMAPAIR=A3-go-gehen
FORMSRC=A3-went
FORMTGT=A3-ging
LEMMASRC=A3-go
LEMMATGT=A3-gehen
LABEL=A3

Figure 3: Projection model features example.

3.5 Parameters

In case of projection there are two parameters, λst
and λt, – the weights of the component models in the
objective. Only their relative values matter (except
in the choice of γ0), so we set λt to 1 and only tune
the weight of the role correspondence model.

In the symmetric setup, the objective takes
the form L(rt, rs) = λtft(rt, St, pt) +
λstfst(rt, rs, ps, pt) + λsfs(rs, Ss, ps) +
λtsfts(rs, rt, pt, ps). Since we assume that the
two monolingual models here have comparable
performance, we do not tune their relative weights,
setting both λs and λt to 1.

We also use the same weight for both projection
models, λst = λts, and this value plays an important
role – it basically indicates how strongly we insist
on the role correspondence models’ correctness. If
this weight is set to 0, the RCM will accept the ini-
tial predictions the monolingual models make, and if
it is set to a sufficiently large value, the predictions
of the monolingual models will be biased until they
match the mapping suggested by the RCM. The op-
timal weight will therefore depend on the language

pair, the sizes of the initial training sets and the RCM
used. We use the value of 0.7 in all projection ex-
periments and 0.5 in the symmetric setup, however,
as excessive tuning may be undesirable in the low-
resource setting.

3.6 Domains
One important factor in the understanding of the
evaluation figures presented is the fact that sources
of annotated and parallel data belong to different do-
mains. The former usually contains some sort of
newswire text – Wall Street Journal in case of En-
glish, Xinhua newswire, Hong Kong news and Sino-
rama news magazine for Chinese, etc. Parallel data,
on the other hand, comes from the proceedings of
European Parliament and United Nations, which are
quite different. For example, the sentences in the
latter domain often start with someone being ad-
dressed, either by name or by title, which can hardly
be expected to occur as often in a newspaper or a
magazine article.

As is well-known, the performance of many sta-
tistical tools drops significantly outside the domain
they were trained on (Pradhan et al., 2008), and the
preprocessing and SRL models used here are no ex-
ception, which results in relatively low quality of
the initial predictions on the parallel text. The low
argument identification performance, in particular,
is presumably due to inaccurate dependency parses,
on which it heavily relies. Several approached have
been proposed to improve the accuracy of depen-
dency parsers and other tools on out-of-domain data,
but this is beyond the scope of this paper. In some
cases (though seldom), sources of parallel data be-
longing to the same domain as the annotated training
data can be obtained.

Another concern is that the performance of a
model trained on automatically labeled parallel data
as measured on a test set we use may not reflect the
quality of these annotations. To assess the resulting
model’s coverage, it would be interesting to evaluate
it on data outside the original domain, so we con-
sider the out-of-domain (OOD) test sets as provided
for the CoNLL Shared Task 2009 where available.

Perhaps the most interesting one of these is the
German OOD test set, which is drawn from Europarl
(as is the parallel data we use). It was originally
annotated with syntactic dependency trees and se-
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mantic structure in the SALSA format (Burchardt
et al., 2006) for Padó and Lapata (2005), and then
converted into a PropBank-like form for the CoNLL
Shared Task 2009 (Hajič et al., 2009). The OOD
test set for English is drawn from the Brown cor-
pus (Francis and Kucera, 1967) and the one for
Czech – from a Czech translation of Wall Street
Journal articles (Hajič et al., 2012).

4 Evaluation

The first question we are interested in is how the
joint inference affects the quality of the automati-
cally obtained annotations on the parallel data. To
answer this, we will run the monolingual models in-
dependently and jointly, then train models on the
output of these two procedures and compare their
performance on a test set. Note that we do not add
the initial training data at this point, so the initial
model scores are provided for reference, rather than
as a baseline.

4.1 Projection Setup
A small initial training set of 600 instances was used
here for the target language here and the full training
set (20000 instances) for the source one. λst was set
to 0.7 in all experiments in this section.

INIT SELF JOINT ∆SELF

en-cz* 61.11 60.68 63.01 2.33
en-cz 62.45 62.15 63.11 0.96
en-de* 66.81 63.96 67.64 3.69
en-de 70.40 68.34 70.13 1.79
en-es 64.20 64.51 66.01 1.50
en-zh 75.80 73.52 74.87 1.35
cz-en* 66.82 63.95 64.97 1.02
cz-en 74.92 71.60 71.90 0.29
de-en* 66.82 63.58 63.21 -0.37
de-en 74.93 71.31 70.72 -0.59
es-en* 66.82 63.95 64.18 0.23
es-en 74.93 71.47 72.09 0.62
zh-en* 66.82 64.51 63.67 -0.83
zh-en 74.93 72.26 71.24 -1.01

Table 1: Projection setup results: self-training baseline,
refined model and the difference in their performance.
Asterisk indicates out-of-domain test set, statistically sig-
nificant improvements are highlighted in bold.

In table 1, we present the accuracy of the model
trained on the output of the joint inference (JOINT)

against that of the self-training baseline (SELF). The
∆SELF column contains the difference between the
two. Note that the SELF model is trained on the
parallel data automatically annotated using mono-
lingual SRL models (not mixed with the initial train-
ing set), since we are interested in the effect of joint
inference on the quality of the annotation obtained.
Where the improvement is positive and statistically
significant with p < 0.005 according to the permuta-
tion test (Good, 2000), they are highlighted in bold.

We can see that the refined model (JOINT) outper-
forms the self-training baseline in most cases by a
moderate, but statistically significant margin, which
indicates that the joint inference does improve the
quality of annotations on the parallel corpus.

The slightly higher improvement on the German
OOD test set supports our hypothesis that the proce-
dure enhances the performance of the model on par-
allel data, as the data for this test set is also drawn
from the Europarl corpus. The improvement over
the initial model (∆INIT) in this case is statistically
significant with p < 0.05. Higher p-value may be
attributed to the smaller test set size.

Figure 4 shows how the performance of the JOINT

model changes with the size of the initial training
set. The improvements are smaller for en-cz, en-
de and en-zh, but they are also statistically signifi-
cant for initial training sets of up to 2000 instances.
Projection to English from other languages performs
worse.

Figure 4: Projection setup, English-Spanish, model per-
formance as a function of the size of the initial training
set.
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4.2 Combining

In practice, automatically obtained annotations are
usually combined with the existing labeled data. For
this purpose, the initial training set is replicated so
as to constitute 0.3 (an empirically chosen value that
appears to work well in most experiments) of the
size of the automatically labeled dataset. We com-
pare the performance of the model trained on the re-
sulting dataset (COMB) with that of the JOINT model
and the initial models. The results are presented in
table 2. We omit projection from other languages to
English, since the JOINT model there fails to outper-
form the initial model and we do not expect to ben-
efit from adding the automatically annotated data to
the initial training set in this case.

INIT JOINT COMB ∆JOINT ∆INIT

en-cz* 61.11 63.01 62.98 -0.03 1.87
en-cz 62.45 63.11 63.30 0.19 0.85
en-de* 66.81 67.64 67.64 0.00 0.84
en-de 70.39 70.19 70.53 0.34 0.15
en-es 64.20 66.01 66.01 0.00 1.81
en-zh 75.80 74.87 75.03 0.16 -0.77

Table 2: The effect of adding automatically obtained an-
notation to the initial training set. Asterisk indicates out-
of-domain test set, statistically significant improvements
are highlighted in bold.

4.3 Symmetric Setup

In the symmetric setup evaluation, we use a slightly
larger initial training set of 1400 instances for both
source and target language. The projection model
weight is set to 0.5. Table 3 shows the accuracy of
the JOINT model and the SELF baseline.

Note that here, unlike section 4.1, the joint in-
ference is run once and then a model is trained for
each language and evaluated on the corresponding
test set(s).

The results support our intuition that joint infer-
ence helps improve the quality of the resulting an-
notations, at least in some cases.

4.4 Oracle RCM

It would be useful to know to what extent the per-
formance of the role correspondence model affects
the quality of the output (and thus the performance
of the resulting model). The RCM we use is rather

INIT SELF JOINT ∆SELF

en-cz* 67.07 66.15 68.18 2.02
en-cz 67.56 66.42 66.72 0.30
en-de* 67.64 66.72 68.57 1.84
en-de 75.13 71.97 73.57 1.60
en-es 68.14 67.80 69.04 1.24
en-zh 76.28 72.96 75.22 2.26
cz-en* 69.37 66.45 66.22 -0.23
cz-en 77.32 74.72 75.02 0.31
de-en* 69.37 66.45 66.68 0.23
de-en 77.32 73.56 73.72 0.17
es-en* 69.37 66.64 66.40 -0.23
es-en 77.32 74.05 74.89 0.84
zh-en* 69.37 66.08 65.53 -0.56
zh-en 77.32 74.48 74.25 -0.24

Table 3: Comparing JOINT model against the self-
training baseline in symmetric setup. Asterisk indicates
out-of-domain test set, statistically significant improve-
ments are highlighted in bold.

simplistic, and we believe it can be substantially im-
proved for any given language pair by incorporat-
ing prior knowledge and/or using external sources
of information. In order to estimate the potential
impact of such improvements, we simulate a better
informed projection model, giving it access to the
predictions of more accurate monolingual models on
the parallel data – those trained on the full training
set, rather than the initial training set used in this par-
ticular experiment. We refer to the resulting RCM as
oracle and assess the difference it makes, compared
to a regular one (table 4).

5 Related Work

There is a number of approaches to semi-supervised
semantic role labeling, and most suggest that some
external supervision is required for such approaches
to work (He and Gildea, 2006), such as measures of
syntactic and semantic similarity (Fürstenau and La-
pata, 2009) or external confidence measures (Gold-
wasser et al., 2011). The alternative we propose is
primarily motivated by the research on annotation
projection (Padó and Lapata, 2009; van der Plas
et al., 2011; Annesi and Basili, 2010; Naseem et
al., 2012) and direct transfer (Durrett et al., 2012;
Søgaard, 2011; Lopez et al., 2008; McDonald et al.,
2011). The key difference of the present approach
compared to annotation projection is that we assume
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INIT SELF JOINT ∆SELF ∆INIT

en-cz* 61.11 60.68 72.49 11.81 11.38
en-cz 62.45 62.15 70.19 8.04 7.74
en-de* 66.81 63.96 76.78 12.82 9.97
en-de 70.39 68.34 79.22 10.88 8.84
en-es 64.20 64.51 75.43 10.92 11.23
en-zh 75.80 73.52 76.75 3.22 0.94
cz-en* 66.82 63.95 70.75 6.80 3.93
cz-en 74.93 71.60 79.70 8.10 4.76
de-en* 66.82 63.58 69.46 5.88 2.64
de-en 74.93 71.31 77.34 6.03 2.41
es-en* 66.82 63.95 69.92 5.97 3.10
es-en 74.93 71.47 79.55 8.08 4.62
zh-en* 66.82 64.51 67.19 2.68 0.37
zh-en 74.93 72.26 76.51 4.26 1.58

Table 4: Oracle RCM performance, projection setup: ini-
tial model, self-training baseline, refined model and its
improvement over the other two. Asterisk indicates out-
of-domain test set, statistically significant improvements
are highlighted in bold.

the availability of some amount of training data for
the target language, possibly using a different inven-
tory of semantic roles.

As mentioned previously, from the training point
of view this approach can be seen as similar to co-
training (Blum and Mitchell, 1998), other applica-
tions of which to NLP are too numerous to list here.

Most closely related is the joint inference in
Zhuang and Zong (2010), the main difference being
that it relies on a manually annotated parallel corpus,
aligned on the argument level, and evaluates only the
inference procedure and only on in-domain data.

Other related approaches include Kim et al.
(2010), where a cross-lingual transfer of relations
is performed (which basically represent parts of
the predicate-argument structure considered by SRL
methods), and Frermann and Bond (2012), where
semantic structure matching is used to rank HPSG
parses for parallel sentences.

Unsupervised semantic role labeling meth-
ods (Lang and Lapata, 2010; Lang and Lapata,
2011; Titov and Klementiev, 2012a; Lorenzo and
Cerisara, 2012) present an alternative to the cross-
lingual information propagation approaches such as
ours, and at least one the methods in this area also
makes use of parallel data (Titov and Klementiev,
2012b).

Conclusions

We have presented an approach to information trans-
fer between SRL systems for different language
pairs using parallel data. The task proves challeng-
ing due to non-trivial mapping between the role la-
bels used in different SRL annotation schemes and
the nature of parallel data – the difference in do-
mains and the limited accuracy of the preprocess-
ing tools. We observe consistent improvements over
self-training baseline from using joint inference and
the experiments suggest that improving the role cor-
respondence model, for example using language-
specific prior knowledge or external data sources,
may dramatically increase the performance of the re-
sulting system.
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