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Abstract

This paper presents a novel approach for building
adaptive similarity functions based on cardinality us-
ing machine learning. Unlike current approaches
that build feature sets using similarity scores, we
have developed these feature sets with the cardinal-
ities of the commonalities and differences between
pairs of objects being compared. This approach al-
lows the machine-learning algorithm to obtain an
asymmetric similarity function suitable for direc-
tional judgments. Besides using the classic set cardi-
nality, we used soft cardinality to allow flexibility in
the comparison between words. Our approach used
only the information from the surface of the text,
a stop-word remover and a stemmer to address the
cross-lingual textual entailment task 8 at SEMEVAL
2012. We have the third best result among the 29
systems submitted by 10 teams. Additionally, this
paper presents better results compared with the best
official score.

1 Introduction

Adaptive similarity functions are those functions that, be-
yond using the information of two objects being com-
pared, use information from a broader set of objects
(Bilenko and Mooney, 2003). Therefore, the same sim-
ilarity function may return different results for the same
pair of objects, depending on the context of where the
objects are. Adaptability is intended to improve the per-
formance of the similarity function in relation to the task
in question associated with the entire set of objects. For
example, adaptiveness improves relevance of documents
retrieved for a query in an information retrieval task for a
particular document collection.

In text applications there are mainly three methods
to provide adaptiveness to similarity functions: term
weighting, adjustment or learning the parameters of the
similarity function, and machine learning. Term weight-

ing is a common practice that assigns a degree of im-
portance to each occurrence of a term in a text collec-
tion (Salton and Buckley, 1988; Lan et al., 2005). Sec-
ondly, if a similarity function has parameters, these can
be adjusted or learned to adapt to a particular data set.
Depending on the size of the search space defined by
these parameters, they can be adjusted either manually
or using a technique of AI. For instance, Jimenez et
al. manually adjusted a single parameter in the gener-
alized measure of Monge-Elkan (1996) (Jimenez et al.,
2009) and Ristrad and Yanilios (1998) learned the costs
of editing operations between particular characters for
the Levenshtein distance (1966) using HMMs. Thirdly,
the machine-learning approach aims to learn a similar-
ity function based on a vector representation of texts us-
ing a subset of texts for training and a learning func-
tion (Bilenko and Mooney, 2003). The three methods
of adaptability can also be used in a variety of combina-
tions, e.g. term weighting in combination with machine
learning (Debole and Sebastiani, 2003; Lan et al., 2005).
Finally, to achieve adaptability, other approaches use data
sets considerably larger, such as large corpora or the Web,
e.g. distributional similarity (Lee, 1999).

In the machine-learning approach, a vector representa-
tion of texts is used in conjunction with an algorithm of
classification or regression (Alpaydin, 2004). Each vec-
tor of features 〈f1, f2, . . . , fm〉 is associated to each pair
〈Ti, Tj〉 of texts. Thus, Bilenko et al. (2003) proposed a
set of features indexed by the data set vocabulary, simi-
lar to Zanzotto et al., (2009) who used fragments of parse
trees. However, a more common approach is to select as
features the scores of different similarity functions. Using
these features, the machine-learning algorithm discovers
the relative importance of each feature and a combina-
tion mechanism that maximizes the alignment of the final
result with a gold standard for the particular task.

In this paper, we propose a novel approach to extract
feature sets for a machine-learning algorithm using car-
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dinalities rather than scores of similarity functions. For
instance, instead of using as a feature the score obtained
by the Dice’s coefficient (i.e. 2×|Ti∩Tj |/|Ti|+|Tj |), we use
|Ti|, |Tj | and |Ti ∩ Tj | as features. The rationale behind
this idea is that despite the similarity scores being suitable
for learning a combined function of similarity, they hide
the information imbalance between the original pair of
texts. Our hypothesis is that the information coded in this
imbalance could provide the machine-learning algorithm
with better information to generate a combined similar-
ity score. For instance, consider these pairs of texts: 〈
“The beach house is white.”, “The house was completely
empty.” 〉 and 〈 “The house”, “The beach house was com-
pletely empty and isolated” 〉. Both pairs have the same
similarity score using the Dice coefficient, but it is evi-
dent that the latter has an imbalance of information lost in
that single score. This imbalance of information is even
more important if the task requires to identify directional
similarities, such as “T1 is more similar to T2, than T2 is
to T1”.

However, unlike the similarity functions, which are
numerous, there is only one set cardinality. This issue
can be addressed using the soft cardinality proposed by
Jimenez et al. (2010), which uses an auxiliary function of
similarity between elements to make a soft count of the
elements in a set. For instance, the classic cardinality of
the set A = { “Sunday”, “Saturday” } is |A| = 2; and the
soft cardinality of the same set, using a normalized edit-
distance as auxiliary similarity function, is |A|′sim = 1.23
because of the commonalities between both words. Fur-
thermore, soft cardinality allows weighting of elements
giving it additional capacity to adapt.

We used the proposed approach to participate in the
cross-lingual textual-entailment task 8 at SEMEVAL
2012. The task was to recognize bidirectional, forward,
backward or lack of entailment in pairs of texts written
in five languages. We built a system based on the pro-
posed method and the use of surface information of the
text, a stop-word remover and a stemmer. Our system
achieved the third best result in official classification and,
after some debugging, we are reporting better results than
the best official scores.

This paper is structured as follows. Section 2 briefly
describes soft cardinality and other cardinalities for text
applications. Section 3 presents the proposed method.
Experimental validation is presented in Section 4. A brief
discussion is presented in Section 5. Finally, conclusions
are drawn in Section 6.

2 Cardinalities for text
Cardinality is a measure of counting the number of el-
ements in a set. The cardinality of classical set theory
represents the number of non-repeated elements in a set.
However, this cardinality is rigid because it counts in the

same manner very similar or highly differentiated ele-
ments. In text applications, text can be modeled as a
set of words and a desirable cardinality function should
take into account the similarities between words. In this
section, we present some methods to soften the classical
concept of cardinality.

2.1 Lemmatizer Cardinality

The simplest approach is to use a stemmer that collapses
words with common roots in a single lemma. Consider
the sentence: “I loved, I am loving and I will love you”.
The plain word counting of this sentence is 10 words. The
classical cardinality collapses the three occurrences of the
pronoun “I” giving a count of 8. However, a lemmatizer
such as Porter’s stemmer (1980) also collapses the words
“loved”, “loving” and “love” in a single lemma “love” for
a count of 6. Thus, when a text is lemmatized, it induces
a relaxation of the classical cardinality of a text. In ad-
dition, to provide corpus adaptability, a weighted version
of this cardinality can add weights associated with each
word occurrence instead of adding 1 for each word (e.g.
tf-idf).

2.2 LCS cardinality

Longest common subsequence (LCS) length is a measure
of the commonalities between two texts, unlike set in-
tersection, taking into account the order. Therefore, a
cardinality function of a pair of texts A and B could
be |A ∩ B| = len(LCS(A, B)), |A| = len(A) and
|B| = len(B). Functions len(∗) and LCS(∗, ∗) calcu-
late length and LCS respectively, either in character or
word granularity.

2.3 Soft Cardinality

Soft cardinality is a function that uses an auxiliary simi-
larity function to make a soft count of the elements (i.e.
words) in a set (i.e. text) (Jimenez et al., 2010). The aux-
iliary similarity function can be any measure or metric
that returns scores in the interval [0, 1], with 0 being the
lowest degree of similarity and 1 the highest (i.e. identi-
cal words). Clearly, if the auxiliary similarity function is
a rigid comparator that returns 1 for identical words and
0 otherwise, the soft cardinality becomes the classic set
cardinality.

The soft cardinality of a set A = {a1, a2, . . . , a|A|}
can be calculated by the following expression: |A|′sim '∑|A|

i wai

(∑|A|
j sim(ai, aj)

p
)−1

. Where sim(∗, ∗) is
the auxiliary similarity function for approximate word
comparison, wai

are weights associated with each word
ai, and p is a tuning parameter that controls the degree
of smoothness of the cardinality, i.e. if 0 ← p all ele-
ments in a set are considered identical and if p→∞ soft
cardinality becomes classic cardinality.
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2.4 Dot-product VSM “Cardinality”

Resemblance coefficients are cardinality-based simi-
larity functions. For instance, the Dice coefficient
is the ratio between the cardinality of the intersec-
tion divided by the arithmetic mean of individual
cardinalities:2×|A∩B|/|A|+|B|. The cosine coefficient is
similar but instead of using the arithmetic mean it uses
the geometric mean: |A∩B|/

√
|A|×
√
|B|. Furthermore, the

cosine similarity is a well known metric used in the vec-
tor space model (VSM) proposed by Salton et al. (1975)
cosine(A, B) =

∑
wai
×wbi√∑

w2
ai
×
√∑

w2
bi

. Clearly, this expres-

sion can be compared with the cosine coefficient inter-
preting the dot-product operation in the cosine similar-
ity as a cardinality. Thus, the obtained cardinalities are:
|A ∩ B|vsm =

∑
wp

ai
× wp

bi
, |A|vsm =

∑
w2p

ai
and

|B|vsm =
∑

w2p
bi

. The exponent p controls the effect
of weighting providing no effect if 0← p or emphasising
the weights if p > 0. In a similar application, Gonza-
lez and Caicedo (2011) used p = 0.5 and normalization
justified by the quantum information retrieval theory.

3 Learning Similarity Functions from
Cardinalities

Different similarity measures use different knowledge,
identify different types of commonalities, and compare
objects with different granularity. In many of the auto-
matic text-processing applications, the qualities of sev-
eral similarity functions may be required to achieve the
final task. The combination of similarity scores with a
machine-learning algorithm to obtain a unified effect for
a particular task is a common practice (Bilenko et al.,
2003; Malakasiotis and Androutsopoulos, 2007; Malaka-
siotis, 2009). For each pair of texts for comparison, there
is provided a vector representation based on multiple sim-
ilarity scores as a set of features. In addition, a class at-
tribute is associated with each vector which contains the
objective of the task or the gold standard to be learned by
the machine-learning algorithm.

However, the similarity scores conceal important in-
formation when the task requires dealing with directional
problems, i.e. whenever the order of comparing each pair
of texts is related with the class attribute. For instance,
textual entailment is a directional task since it is neces-
sary to recognize whether the first text entails the second
text or vice versa. This problem can be addressed us-
ing asymmetric similarity functions and including scores
for sim(A, B) and sim(B, A) in the resulting vector for
each pair 〈A, B〉. Nevertheless, the similarity measures
that are more commonly used are symmetric, e.g. edit-
distance (Levenshtein, 1966), LCS (Hirschberg, 1977),
cosine similarity, and many of the current semantic re-
latedness measures (Pedersen et al., 2004). Although,

there are asymmetric measures such as the Monge-Elkan
measure (1996) and the measure proposed by Corley and
Mihalcea (Corley and Mihalcea, 2005), they are outnum-
bered by the symmetric measures. Clearly, this situation
restricts the use of the machine learning as a method of
combination for directional problems.

Alternatively, we propose the construction of a vector
for each pair of texts using cardinalities instead of sim-
ilarity scores. Moreover, using cardinalities rather than
similarity scores allows the machine-learning algorithm
to discover patterns to cope with directional tasks.

Basically, we propose to use a set with six features for
each cardinality function: |A|, |B|, |A ∩ B|, |A ∪ B|,
|A−B| and |B −A|.

4 Experimental Setup

4.1 Cross-lingual Textual Entailment (CLTE) Task

This task consist of recognizing in a pair of topically re-
lated text fragments T1 and T2 in different languages, one
of the following possible entailment relations: i) bidi-
rectional T1 ⇒ T2 ∧ T1 ⇐ T2, i.e. semantic equiv-
alence; ii) forward T1 ⇒ T2 ∧ T1 : T2; iii) back-
ward T1 ; T2 ∧ T1 ⇐ T2; and iv) no entailment
T1 ; T2 ∧ T1 : T2. Besides, both T1 and T2 are as-
sumed to be true statements; hence contradictory pairs
are not allowed.

Data sets consist of a collection of 1,000 text pairs
(500 for training and 500 for testing) each one labeled
with one of the possible entailment types. Four balanced
data sets were provided using the following language
pairs: German-English (deu-eng), French-English (fra-
eng), Italian-English (ita-eng) and Spanish-English (spa-
eng). The evaluation measure for experiments was accu-
racy, i.e. the ratio of correctly predicted pairs by the total
number of predictions. For a comprehensive description
of the task see (Negri et al., 2012).

4.2 Experiments

Given that each pair of texts 〈T1, T2〉 are in different lan-
guages, a pair of translations 〈T t

1 , T t
2〉 were provided us-

ing Google Translate service. Thus, each one of the text
pairs 〈T1, T

t
2〉 and 〈T t

1 , T2〉 were in the same language.
Then, all produced pairs were pre-processed by remov-
ing stop-words in their respective languages. Finally, all
texts were lemmatized using Porter’s stemmer (1980) for
English and Snowball stemmers for other languages us-
ing an implementation provided by the NLTK (Loper and
Bird, 2002).

Then, different set of features were generated using
similarity scores or cardinalities. While each symmet-
ric similarity function generates 2 features i)sim(T1, T

t
2)

and ii)sim(T t
1 , T2), asymmetric functions generate two

additional features iii)sim(T t
2 , T1) and iv)sim(T2, T

t
1).
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On the other hand, each cardinality function generates
12 features: i) |T1|, ii) |T t

2 |, iii) |T1 ∩ T t
2 |, iv) |T1 ∪ T t

2 |,
v) |T1 − T t

2 |, vi) |T t
2 − T1|, vii) |T t

1 |, viii) |T2|, ix)
|T t

1 ∩ T2|, x) |T t
1 ∪ T2|, xi) |T t

1 − T2|, and xii) |T2 − T t
1 |.

Various combinations of cardinalities, symmetric and
asymmetric functions were used to generate the follow-
ing feature sets:

Sym.simScores: scores of the following symmetric
similarity functions: Jaccard, Dice, and cosine coef-
ficients using classical cardinality and soft cardinality
(edit-distance as auxiliar sim. function). In addition, co-
sine similarity, softTFIDF (Cohen et al., 2003) and edit-
distance (total 18 features).

Asym.LCS.sim: scores of the following asymmetric
similarity functions: sim(T1, T2) = lcs(T1,T2)/len(T1)

and sim(T1, T2) = lcs(T1,T2)/len(T2) at character level (4
features).

Classic.card: cardinalities using classical set cardinal-
ity (12 features).

Dot.card.w: dot-product cardinality using idf weights
as described in Section 2.4, using p = 1 (12 features).

LCS.card: LCS cardinality at word-level using idf
weights as described in Section 2.1 (12 features).

SimScores: combined features sets from
Sym.SimScores, Asym.LCS.sim and the general-
ized Monge-Elkan measure (Jimenez et al., 2009) using
p = 1, 2, 3 (30 features).

Dot.card.w.0.5: same as Dot.card.w using p = 0.5.
Classic.card.w: classical cardinality using idf weights

(12 features).
Soft.card.w: soft cardinality using idf weights as de-

scribed in Section 2.3 using p = 1, 2, 3, 4, 5 (60 features).
The machine-learning classification algorithm for all

feature sets was SVM (Cortes and Vapnik, 1995) with the
complexity parameter C = 1.5 and a linear polynomial
kernel. All experiments were conducted using WEKA
(Hall et al., 2009).

4.3 Results
In Semeval 2012 exercise, participants were given a par-
ticular subdivision into training and test subsets for each
data set. For official results, participants received only the
gold-standard labels for the subset of training, and accu-
racies of each system in the test subset was measured by
the organizers. In Table 1, the results for that particular
division are shown. At the bottom of that table, the of-
ficial results for the first three systems are shown. Our
system, “3rd.Softcard” was configured using soft cardi-
nality with edit-distance as auxiliary similarity function
and p = 2. Erroneously, at the time of the submission,
all texts in the 5 languages were lemmatized using an En-
glish stemmer and stop-words in all languages were ag-
gregated into a single set before the withdrawal. In spite
of these bugs, our system was the third best score.

FEATURES SPA ITA FRA DEU avg.

Sym.simScores 0.404 0.410 0.410 0.410 0.409
Asym.LCS.sim 0.490 0.492 0.482 0.474 0.485
Classic.card 0.560 0.534 0.570 0.542 0.552
Dot.card.w 0.562 0.568 0.550 0.548 0.557
LCS.card 0.606 0.566 0.568 0.558 0.575
SimScores 0.600 0.562 0.568 0.572 0.576
Dot.card.w.0.5 0.584 0.574 0.586 0.572 0.579
Classic.card.w 0.584 0.576 0.588 0.590 0.585
Soft.card.w 0.598 0.602 0.624 0.604 0.607

SEMEVAL 2012 OFFICIAL RESULTS
1st.HDU.run2 0.632 0.562 0.570 0.552 0.579
2nd.HDU.run1 0.630 0.554 0.564 0.558 0.577
3rd.Softcard 0.552 0.566 0.570 0.550 0.560

Table 1: Accuracy results for Semeval2012 task 8

Soft.card.w 60.174(1.917)% imprv. Sign.
Sym.simScore 39.802(1.783)% 51.2% <0.001
Asym.LCS.sim 48.669(1.820)% 23.6% <0.001
Classic.card 55.278(2.422)% 8.9% 0.010
Dot.card.w 54.906(2.024)% 9.6% 0.004
LCS.card 55.131(2.471) % 9.1% 0.015
SimScores 56.889(2.412) % 5.8% 0.124
Dot.card.w.0.5 57.114(2.141)% 5.4% 0.059
Classic.card.w 56.708(2.008)% 6.1% 0.017

Table 2: Average accuracy comparison vs. Soft.card.w in 100
runs

To compare our approach of using feature sets based
on soft cardinality versus other approaches, we gener-
ated 100 random training-test subdivisions (50%-50%) of
each data set. The average results were compared and
tested statistically with the paired T-tested corrected test.
Results, deviations, the percentage of improvement, and
its significance in comparison with the Soft.card.w sys-
tem are shown in Table2.

5 Discusion

Results in Table 2 show that our hypothesis that fea-
ture sets obtained from cardinalities should outperform
features sets obtained from similarity scores was de-
mostrated when compared versus similarity functions al-
ternatively symmetrical or asymetrical. However, when
our approach is compared with a feature set obtained by
combining symmetric and asymmetric functions, we ob-
tained an improvement of 5.8% but only with a signif-
icance of 0.124. Regarding soft cardinality compared
to alternative cardinalities, soft cardinality outperformed
others in all cases with significance <0.059.
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6 Conclusions
We have proposed a new method to compose feature sets
using cardinalities rather than similarity scores. Our ap-
proach proved to be effective for directional text compar-
ison tasks such as textual entailment. Furthermore, the
soft cardinality function proved to be the best for obtain-
ing such sets of features.
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