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Abstract
This paper presents the systems that we par-
ticipated with in the Semantic Text Similar-
ity task at SEMEVAL 2012. Based on prior
research in semantic similarity and related-
ness, we combine various methods in a ma-
chine learning framework. The three varia-
tions submitted during the task evaluation pe-
riod ranked number 5, 9 and 14 among the 89
participating systems. Our evaluations show
that corpus-based methods display a more ro-
bust behavior on the training data, yet com-
bining a variety of methods allows a learning
algorithm to achieve a superior decision than
that achievable by any of the individual parts.

1 Introduction

Measures of text similarity have been used for a
long time in applications in natural language pro-
cessing and related areas. One of the earliest ap-
plications of text similarity is perhaps the vector-
space model used in information retrieval, where the
document most relevant to an input query is deter-
mined by ranking documents in a collection in re-
versed order of their similarity to the given query
(Salton and Lesk, 1971). Text similarity has also
been used for relevance feedback and text classifi-
cation (Rocchio, 1971), word sense disambiguation
(Lesk, 1986; Schutze, 1998), and more recently for
extractive summarization (Salton et al., 1997), and
methods for automatic evaluation of machine trans-
lation (Papineni et al., 2002) or text summarization
(Lin and Hovy, 2003). Measures of text similarity
were also found useful for the evaluation of text co-
herence (Lapata and Barzilay, 2005).

Earlier work on this task has primarily focused on
simple lexical matching methods, which produce a
similarity score based on the number of lexical units
that occur in both input segments. Improvements
to this simple method have considered stemming,
stop-word removal, part-of-speech tagging, longest
subsequence matching, as well as various weight-
ing and normalization factors (Salton and Buckley,
1997). While successful to a certain degree, these
lexical similarity methods cannot always identify the
semantic similarity of texts. For instance, there is
an obvious similarity between the text segments I
own a dog and I have an animal, but most of the
current text similarity metrics will fail in identifying
any kind of connection between these texts.

More recently, researchers have started to con-
sider the possibility of combining the large number
of word-to-word semantic similarity measures (e.g.,
(Jiang and Conrath, 1997; Leacock and Chodorow,
1998; Lin, 1998; Resnik, 1995)) within a semantic
similarity method that works for entire texts. The
methods proposed to date in this direction mainly
consist of either bipartite-graph matching strate-
gies that aggregate word-to-word similarity into a
text similarity score (Mihalcea et al., 2006; Islam
and Inkpen, 2009; Hassan and Mihalcea, 2011;
Mohler et al., 2011), or data-driven methods that
perform component-wise additions of semantic vec-
tor representations as obtained with corpus measures
such as Latent Semantic Analysis (Landauer et al.,
1997), Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007), or Salient Semantic Analysis
(Hassan and Mihalcea, 2011).

In this paper, we describe the system with which
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we participated in the SEMEVAL 2012 task on se-
mantic text similarity (Agirre et al., 2012). The sys-
tem builds upon our earlier work on corpus-based
and knowledge-based methods of text semantic sim-
ilarity (Mihalcea et al., 2006; Hassan and Mihal-
cea, 2011; Mohler et al., 2011), and combines all
these previous methods into a meta-system by us-
ing machine learning. The framework provided by
the task organizers also enabled us to perform an in-
depth analysis of the various components used in our
system, and draw conclusions concerning the role
played by the different resources, features, and al-
gorithms in building a state-of-the-art semantic text
similarity system.

2 Related Work

Over the past years, the research community has
focused on computing semantic relatedness using
methods that are either knowledge-based or corpus-
based. Knowledge-based methods derive a measure
of relatedness by utilizing lexical resources and on-
tologies such as WordNet (Miller, 1995) to measure
definitional overlap, term distance within a graph-
ical taxonomy, or term depth in the taxonomy as
a measure of specificity. We explore several of
these measures in depth in Section 3.3.1. On the
other side, corpus-based measures such as Latent
Semantic Analysis (LSA) (Landauer et al., 1997),
Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007), Salient Semantic Analysis
(SSA) (Hassan and Mihalcea, 2011), Pointwise Mu-
tual Information (PMI) (Church and Hanks, 1990),
PMI-IR (Turney, 2001), Second Order PMI (Islam
and Inkpen, 2006), Hyperspace Analogues to Lan-
guage (Burgess et al., 1998) and distributional simi-
larity (Lin, 1998) employ probabilistic approaches
to decode the semantics of words. They consist
of unsupervised methods that utilize the contextual
information and patterns observed in raw text to
build semantic profiles of words. Unlike knowledge-
based methods, which suffer from limited coverage,
corpus-based measures are able to induce a similar-
ity between any given two words, as long as they
appear in the very large corpus used as training.

3 Semantic Textual Similarity System

The system we proposed for the SEMEVAL 2012
Semantic Textual Similarity task builds upon both
knowledge- and corpus-based methods previously
described in (Mihalcea et al., 2006; Hassan and Mi-
halcea, 2011; Mohler et al., 2011). The predictions
of these independent systems, paired with additional
salient features, are leveraged by a meta-system that
employs machine learning. In this section, we will
elaborate further on the resources we use, our fea-
tures, and the components of our machine learning
system. We will start by describing the task setup.

3.1 Task Setup
The training data released by the task organiz-
ers consists of three datasets showcasing two sen-
tences per line and a manually assigned similarity
score ranging from 0 (no relation) to 5 (semanti-
cally equivalent). The datasets1 provided are taken
from the Microsoft Research Paraphrase Corpus
(MSRpar), the Microsoft Research Video Descrip-
tion Corpus (MSRvid), and the WMT2008 devel-
opment dataset (Europarl section)(SMTeuroparl);
they each consist of about 750 sentence pairs with
the class distribution varying with each dataset. The
testing data contains additional sentences from the
same collections as the training data as well as
from two additional unknown sets (OnWN and
SMTnews); they range from 399 to 750 sentence
pairs. The reader may refer to (Agirre et al., 2012)
for additional information regarding this task.

3.2 Resources
Wikipedia2 is a free on-line encyclopedia, represent-
ing the outcome of a continuous collaborative effort
of a large number of volunteer contributors. Virtu-
ally any Internet user can create or edit a Wikipedia
web page, and this “freedom of contribution” has a
positive impact on both the quantity (fast-growing
number of articles) and the quality (potential mis-
takes are quickly corrected within the collaborative
environment) of this on-line resource. The basic en-
try in Wikipedia is an article which describes an en-
tity or an event, and which, in addition to untagged

1http://www.cs.york.ac.uk/semeval-2012/
task6/data/uploads/datasets/train-readme.
txt

2www.wikipedia.org
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content, also consists of hyperlinked text to other
pages within or outside of Wikipedia. These hyper-
links are meant to guide the reader to pages that pro-
vide additional information / clarifications, so that
a better understanding of the primary concept can
be achieved. The structure of Wikipedia in terms of
pages and hyperlinks is exploited directly by seman-
tic similarity methods such as ESA (Gabrilovich and
Markovitch, 2007), or SSA (Hassan and Mihalcea,
2011).

WordNet (Miller, 1995) is a manually crafted lex-
ical resource that maintains semantic relationships
between basic units of meaning, or synsets. A synset
groups together senses of different words that share
a very similar meaning, which act in a particu-
lar context as synonyms. Each synset is accompa-
nied by a gloss or definition, and one or two ex-
amples illustrating usage in the given context. Un-
like a traditional thesaurus, the structure of Word-
Net is able to encode additional relationships be-
side synonymy, such as antonymy, hypernymy, hy-
ponymy, meronymy, entailment, etc., which vari-
ous knowledge-based methods use to derive seman-
tic similarity.

3.3 Features

Our meta-system uses several features, which can
be grouped into knowledge-based, corpus-based,
and bipartite graph matching, as described below.
The abbreviations appearing between parentheses
by each method allow for easy cross-referencing
with the evaluations provided in Table 1.

3.3.1 Knowledge-based Semantic Similarity
Features

Following prior work from our group (Mihalcea
et al., 2006; Mohler and Mihalcea, 2009), we em-
ploy several WordNet-based similarity metrics for
the task of sentence-level similarity. Briefly, for
each open-class word in one of the input texts, we
compute the maximum semantic similarity (using
the WordNet::Similarity package (Pedersen et al.,
2004)) that can be obtained by pairing it with any
open-class word in the other input text. All the
word-to-word similarity scores obtained in this way
are summed and normalized to the length of the two
input texts. We provide below a short description
for each of the similarity metrics employed by this

system3.

The shortest path (Path) similarity is determined
as:

Simpath =
1

length
(1)

where length is the length of the shortest path be-
tween two concepts using node-counting (including
the end nodes).

The Leacock & Chodorow (Leacock and
Chodorow, 1998) (LCH) similarity is determined
as:

Simlch = − log
length

2 ∗D
(2)

where length is the length of the shortest path be-
tween two concepts using node-counting, and D is
the maximum depth of the taxonomy.

The Lesk (Lesk) similarity of two concepts is de-
fined as a function of the overlap between the cor-
responding definitions, as provided by a dictionary.
It is based on an algorithm proposed by Lesk (1986)
as a solution for word sense disambiguation.

The Wu & Palmer (Wu and Palmer, 1994) (WUP )
similarity metric measures the depth of two given
concepts in the WordNet taxonomy, and the depth
of the least common subsumer (LCS), and combines
these figures into a similarity score:

Simwup =
2 ∗ depth(LCS)

depth(concept1) + depth(concept2)
(3)

The measure introduced by Resnik (Resnik, 1995)
(RES) returns the information content (IC) of the
LCS of two concepts:

Simres = IC(LCS) (4)

where IC is defined as:

IC(c) = − log P (c) (5)

and P (c) is the probability of encountering an in-
stance of concept c in a large corpus.

The measure introduced by Lin (Lin, 1998) (Lin)
builds on Resnik’s measure of similarity, and adds
a normalization factor consisting of the information
content of the two input concepts:

Simlin =
2 ∗ IC(LCS)

IC(concept1) + IC(concept2)
(6)

3We point out that the similarity metric proposed by Hirst &
St. Onge was not considered due to the time constraints associ-
ated with the STS task.
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We also consider the Jiang & Conrath (Jiang and
Conrath, 1997) (JCN ) measure of similarity:

Simjnc =
1

IC(concept1) + IC(concept2)− 2 ∗ IC(LCS)
(7)

Each of the measures listed above is used as a fea-
ture by our meta-system.

3.3.2 Corpus-based Semantic Similarity
Features

While most of the corpus-based methods induce
semantic profiles in a word-space, where the seman-
tic profile of a word is expressed in terms of its co-
occurrence with other words, LSA, ESA and SSA
stand out as different, since they rely on a concept-
space representation. In these methods, the semantic
profile of a word is expressed in terms of the im-
plicit (LSA), explicit (ESA), or salient (SSA) con-
cepts. This departure from the sparse word-space to
a denser, richer, and unambiguous concept-space re-
solves one of the fundamental problems in semantic
relatedness, namely the vocabulary mismatch. In the
experiments reported in this paper, all the corpus-
based methods are trained on the English Wikipedia
download from October 2008, with approximately
6 million articles, and more than 9.5 million hyper-
links.

Latent Semantic Analysis (LSA) (Landauer et al.,
1997). In LSA, term-context associations are cap-
tured by means of a dimensionality reduction op-
erated by a singular value decomposition (SVD)
on the term-by-context matrix T, where the ma-
trix is induced from a large corpus. This reduc-
tion entails the abstraction of meaning by collaps-
ing similar contexts and discounting noisy and ir-
relevant ones, hence transforming the real world
term-context space into a word-latent-concept space
which achieves a much deeper and concrete seman-
tic representation of words.

Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007). ESA uses encyclopedic
knowledge in an information retrieval framework to
generate a semantic interpretation of words. Since
encyclopedic knowledge is typically organized into
concepts (or topics), each concept is further de-
scribed using definitions and examples. ESA relies
on the distribution of words inside the encyclopedic
descriptions. It builds semantic representations for

a given word using a word-document association,
where the document represents a Wikipedia article
(concept). ESA is in effect a Vector Space Model
(VSM) built using Wikipedia corpus, where vectors
represents word-articles association.

Salient Semantic Analysis (SSA) (Hassan and Mi-
halcea, 2011). SSA incorporates a similar seman-
tic abstraction and interpretation of words as ESA,
yet it uses salient concepts gathered from encyclo-
pedic knowledge, where a “concept” represents an
unambiguous word or phrase with a concrete mean-
ing, and which affords an encyclopedic definition.
Saliency in this case is determined based on the
word being hyperlinked (either trough manual or au-
tomatic annotations) in context, implying that they
are highly relevant to the given text. SSA is an ex-
ample of Generalized Vector Space Model (GVSM),
where vectors represent word-concepts associations.

In order to determine the similarity of two text
fragments , we employ two variations: the typical
cosine similarity (cos) and a best alignment strat-
egy (align), which we explain in more detail below.
Both variations were paired with the LSA, ESA,
and SSA systems resulting in six similarity scores
that were used as features by our meta-system,
namely LSAcos, LSAalign, ESAcos, ESAalign,
SSAcos, and SSAalign.

Best Alignment Strategy (align). Let Ta and Tb be
two text fragments of size a and b respectively. After
removing all stopwords, we first determine the num-
ber of shared terms (ω) between Ta and Tb. Second,
we calculate the semantic relatedness of all possible
pairings between non-shared terms in Ta and Tb. We
further filter these possible combinations by creating
a list ϕ which holds the strongest semantic pairings
between the fragments’ terms, such that each term
can only belong to one and only one pair.

Sim(Ta, Tb) =
(ω +

∑|ϕ|
i=1 ϕi)× (2ab)

a + b
(8)

where ω is the number of shared terms between the
text fragments and ϕi is the similarity score for the
ith pairing.

3.3.3 Bipartite Graph Matching
In an attempt to move beyond the bag-of-words

paradigm described thus far, we attempt to compute
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a set of dependency graph alignment scores based
on previous work in automatic short-answer grading
(Mohler et al., 2011). This score, computed in two
stages, is used as a feature by our meta-system.

In the first stage, the system is provided with the
dependency graphs for each pair of sentences4. For
each node in one dependency graph, we compute a
similarity score for each node in the other depen-
dency graph based upon a set of lexical, semantic,
and syntactic features applied to both the pair of
nodes and their corresponding subgraphs (i.e. the set
of nodes reachable from a given node by following
directional governor-to-dependant links). The scor-
ing function is trained on a small set of manually
aligned graphs using the averaged perceptron algo-
rithm.

We define a total of 64 features5 to be used to train
a machine learning system to compute subgraph-
subgraph similarity. Of these, 32 are based upon the
bag-of-words semantic similarity of the subgraphs
using the metrics described in Section 3.3.1 as well
as a Wikipedia-trained LSA model. The remaining
32 features are lexico-syntactic features associated
with the parent nodes of the subgraphs and are de-
scribed in more detail in our earlier paper.

We then calculate weights associated with these
features using an averaged version of the percep-
tron algorithm (Freund and Schapire, 1999; Collins,
2002) trained on a set of 32 manually annotated
instructor/student answer pairs selected from the
short-answer grading corpus (MM2011). These
pairs contain 7303 node pairs (656 matches, 6647
non-matches). Once the weights are calculated, a
similarity score for each pair of nodes can be com-
puted by taking the dot product of the feature vector
with the weights.

In the second stage, the node similarity scores cal-
culated in the previous step are used to find an op-
timal alignment for the pair of dependency graphs.
We begin with a bipartite graph where each node
in one graph is represented by a node on the left
side of the bipartite graph and each node in the other

4We here use the output of the Stanford Dependency Parser
in collapse/propagate mode with some modifications as de-
scribed in our earlier work.

5With the exception of the four features based upon the Hirst
& St.Onge similarity metric, these are equivalent to the features
used in previous work.

graph is represented by a node on the right side. The
weight associated with each edge is the score com-
puted for each node-node pair in the previous stage.
The bipartite graph is then augmented by adding
dummy nodes to both sides which are allowed to
match any node with a score of zero. An optimal
alignment between the two graphs is then computed
efficiently using the Hungarian algorithm. Note that
this results in an optimal matching, not a mapping,
so that an individual node is associated with at most
one node in the other answer. After finding the opti-
mal match, we produce four alignment-based scores
by optionally normalizing by the number of nodes
and/or weighting the node-alignments according to
the idf scores of the words.6 This results in four
alignment scores listed as graphnone, graphnorm,
graphidf , graphidfnorm.

3.3.4 Baselines

As a baseline, we also utilize several lexical bag-
of-words approaches where each sentence is repre-
sented by a vector of tokens and the similarity of the
two sentences can be computed by finding the co-
sine of the angle between their representative vectors
using term frequency (tf ) or term frequency mul-
tiplied by inverse document frequency (tf.idf )6, or
by using simple overlap between the vectors’ dimen-
sions (overlap).

3.4 Machine Learning

3.4.1 Algorithms

All the systems described above are used to gen-
erate a score for each training and test sample (see
Section 3.1). These scores are then aggregated per
sample, and used in a supervised learning frame-
work. We decided to use a regression model, instead
of classification, since the requirements for the task
specify that we should provide a score in the range of
0 to 5. We could have used classification paired with
bucketed ranges, yet classification does not take into
consideration the underlying ordinality of the scores
(i.e. a score of 4.5 is closer to either 4 or 5, but
farther away from 0), which is a noticeable handi-
cap in this scenario. We tried both linear and sup-

6The document frequency scores were taken from the British
National Corpus (BNC).
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port vector regression7 by performing 10 fold cross-
validation on the train data, yet the latter algorithm
consistently performs better, no matter what kernel
was chosen. Thus we decided to use support vec-
tor regression (Smola and Schoelkopf, 1998) with a
Pearson VII function-based kernel.

Due to its different learning methodology, and
since it is suited for predicting continuous classes,
our second system uses the M5P decision tree al-
gorithm (Quinlan, 1992; Wang and Witten, 1997),
which outperforms support vector regression on the
10 fold cross-validation performed on the SMTeu-
roparl train set, while providing competitive results
on the other train sets (within .01 Pearson correla-
tion).

3.4.2 Setup
We submitted three system variations, namely

IndividualRegression, IndividualDecTree,
and CombinedRegression. The first word de-
scribes the training data; for individual, for the
known test sets we trained on the corresponding
train sets, while for the unknown test sets we trained
on all the train sets combined; for combined,
for each test set we trained on all the train sets
combined. The second word refers to the learning
methodology, where Regression stands for support
vector regression, and DecTree stands for M5P
decision tree.

4 Results and Discussion

We include in Table 1 the Pearson correlations ob-
tained by comparing the predictions of each fea-
ture to the gold standard for the three train datasets.
We notice that the corpus based metrics display a
consistent performance across the three train sets,
when compared to the other methods, including
knowledge-based. Furthermore, the best alignment
strategy (align) for corpus based models outper-
forms similarity scores based on traditional cosine
similarity. It is interesting to note that simple base-
lines such as tf , tf.idf and overlap offer signifi-
cant correlations with all the train sets without ac-
cess to additional knowledge inferred by knowledge
or corpus-based methods. In the case of the bipar-

7Implementations provided through the Weka framework
(Hall et al., 2009).

System MSRpar MSRvid SMTeuroparl
Path 0.49 0.62 0.50
LCH 0.48 0.49 0.45
Lesk 0.48 0.59 0.50
WUP 0.46 0.38 0.42
RES 0.47 0.55 0.48
Lin 0.49 0.54 0.48
JCN 0.49 0.63 0.51
LSAalign 0.44 0.57 0.61
LSAcos 0.37 0.74 0.56
ESAalign 0.52 0.70 0.62
ESAcos 0.30 0.71 0.53
SSAalign 0.46 0.61 0.65
SSAcos 0.22 0.63 0.39
graphnone 0.42 0.50 0.21
graphnorm 0.48 0.43 0.59
graphidf 0.16 0.67 0.16
graphidfnorm 0.08 0.60 0.19
tf.idf 0.45 0.63 0.41
tf 0.45 0.69 0.51
overlap 0.44 0.69 0.27

Table 1: Correlation of individual features for the training
sets with the gold standards

tite graph matching, the graphnorm variation pro-
vides the strongest correlation results across all the
datasets.

We include the evaluation results provided by the
task organizers in Table 2. They indicate that our in-
tuition in using a support vector regression strategy
was correct. While the IndividualRegression was
our strongest system on the training data, the same
ranking applies to the test data (including the addi-
tional two surprise datasets) as well, earning it the
fifth place among the 89 participating systems, with
a Pearson correlation of 0.7846.

Regarding the decision tree based learning
(IndividualDecTree), despite its more robust be-
havior on the train sets, it achieved slightly lower
outcome on the test data, at 0.7677 correlation. We
believe this happened because decision trees have a
tendency to overfit training data, as they generate a
rigid structure which is unforgiving to minor devia-
tions in the test data. Nonetheless, this second vari-
ation still ranks in the top 10% of the submitted sys-
tems.

As an alternative approach to handle unknown test
data (e.g. different distributions, genres), we opted
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Run ALL Rank Mean RankMean MSRpar MSRvid SMTeuroparl OnWN SMTnews
IndividualRegression 0.7846 5 0.6162 13 0.5353 0.8750 0.4203 0.6715 0.4033
IndividualDecTree 0.7677 9 0.5947 25 0.5693 0.8688 0.4203 0.6491 0.2256
CombinedRegression 0.7418 14 0.6159 14 0.5032 0.8695 0.4797 0.6715 0.4033

Table 2: Evaluation results and ranking published by the task organizers

to also include the CombinedRegression strategy
as our third variation. This seems to have been fruit-
ful for MSRvid, SMTeuroparl, and the two sur-
prise datasets (ONWn and SMTnews). In the
case of SMTeuroparl, this expanded training set
achieves a better performance than learning from
the corresponding training set alone, gaining an im-
provement of 0.0776 correlation points. Unfortu-
nately, the variation has some losses, particularly for
the MSRpar dataset (0.0321), yet it is able to con-
sistently model and handle a wider variety of text
types.

5 Conclusion

This paper describes the three system variations our
team participated with in the Semantic Text Similar-
ity task in SEMEVAL 2012. Our focus has been to
produce a synergistic approach, striving to achieve a
superior result than attainable by each system indi-
vidually. We have considered a variety of methods
for inferring semantic similarity, including knowl-
edge and corpus-based methods. These were lever-
aged in a machine-learning framework, where our
preferred learning algorithm is support vector re-
gression, due to its ability to deal with continuous
classes and to dampen the effect of noisy features,
while augmenting more robust ones. While it is al-
ways preferable to use similar test and train sets,
when information regarding the test dataset is un-
available, we show that a robust performance can
be achieved by combining all train data from dif-
ferent sources into a single set and allowing a ma-
chine learner to make predictions. Overall, it was
interesting to note that corpus-based methods main-
tain strong results on all train datasets in compari-
son to knowledge-based methods. Our three systems
ranked number 5, 9 and 14 among the 89 systems
participating in the task.
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