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Abstract

The Semantic Textual Similarity (STS) shared
task (Agirre et al., 2012) computes the degree
of semantic equivalence between two sen-
tences.1 We show that a simple unsupervised
latent semantics based approach, Weighted
Textual Matrix Factorization that only exploits
bag-of-words features, can outperform most
systems for this task. The key to the approach
is to carefully handle missing words that are
not in the sentence, and thus rendering it su-
perior to Latent Semantic Analysis (LSA) and
Latent Dirichlet Allocation (LDA). Our sys-
tem ranks 20 out of 89 systems according to
the official evaluation metric for the task, Pear-
son correlation, and it ranks 10/89 and 19/89
in the other two evaluation metrics employed
by the organizers.

1 Introduction
Identifying the degree of semantic similarity [SS]
between two sentences is helpful for many NLP top-
ics. In Machine Translation (Kauchak and Barzi-
lay, 2006) and Text Summarization (Zhou et al.,
2006), results are automatically evaluated based on
sentence comparison. In Text Coherence Detection
(Lapata and Barzilay, 2005), sentences are linked to-
gether by similar or related words. For Word Sense
Disambiguation, researchers (Banerjee and Peder-
sen, 2003; Guo and Diab, 2012a) construct a sense
similarity measure from the sentence similarity of
the sense definitions.

Almost all SS approaches decompose the task into
word pairwise similarity problems. For example, Is-

1Mona Diab, co-author of this paper, is one of the task orga-
nizers

lam and Inkpen (2008) create a matrix for each sen-
tence pair, where columns are the words in the first
sentence and rows are the words in the second sen-
tence, and each cell stores the distributional similar-
ity of the two words. Then they create an alignment
between words in two sentences, and sentence simi-
larity is calculated based on the sum of the similarity
of aligned word pairs. There are two disadvantages
with word similarity based approaches: 1. lexical
ambiguity as the word pairwise similarity ignores
the semantic interaction between the word and sen-
tence/context. 2. word co-occurrence information
is not as sufficiently exploited as they are in latent
variable models such as Latent Semantic Analysis
(LSA) (Landauer et al., 1998) and Latent Dirichilet
Allocation (LDA) (Blei et al., 2003). On the other
hand, latent variable models can solve the two issues
naturally by modeling the semantics of words and
sentences simultaneously in the low-dimensional la-
tent space.

However, attempts at addressing SS using LSA
perform significantly below word similarity based
models (Mihalcea et al., 2006; O’Shea et al., 2008).
We believe the reason is that the observed words
in a sentence are too few for latent variable mod-
els to learn robust semantics. For example, given
the two sentences of WordNet sense definitions for
bank#n#1 and stock#n#1:

bank#n#1: a financial institution that accepts de-
posits and channels the money into lending activities

stock#n#1: the capital raised by a corporation
through the issue of shares entitling holders to an
ownership interest (equity)

LDA can only find the dominant topic (the
financial topic) based on the observed words with-
out further discernibility. In this case, many sen-
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tences will share the same latent semantics profile,
as long as they are in the same topic/domain.

In our work (Guo and Diab, 2012b), we propose
to model the missing words (words that are not in
the sentence) to address the sparseness issue for the
SS task. Our intuition is since observed words in a
sentence are too few to tell us what the sentence is
about, missing words can be used to tell us what the
sentence is not about. We assume that the semantic
space of both the observed and missing words make
up the complete semantic profile of a sentence. We
implement our idea using a weighted matrix factor-
ization approach (Srebro and Jaakkola, 2003), which
allows us to treat observed words and missing words
differently.

It should be noted that our approach is very gen-
eral (similar to LSA/LDA) in that it can be applied to
any genre of short texts, in a manner different from
existing work that models short texts by using addi-
tional data, e.g., Ramage et al. (2010) model tweets
using their metadata (author, hashtag, etc). Also we
do not extract additional features such as multiwords
expression or syntax from sentences – all we use is
bag-of-words feature.

2 Related Work
Almost all current SS methods work in the high-
dimensional word space, and rely heavily on
word/sense similarity measures. The word/sense
similarity measure is either knowledge based (Li et
al., 2006; Feng et al., 2008; Ho et al., 2010; Tsatsa-
ronis et al., 2010), corpus-based (Islam and Inkpen,
2008) or hybrid (Mihalcea et al., 2006). Almost all
of them are evaluated on a data set introduced in (Li
et al., 2006). The LI06 data set consists of 65 pairs
of noun definitions selected from the Collin Cobuild
Dictionary. A subset of 30 pairs is further selected
by LI06 to render the similarity scores evenly dis-
tributed. Our approach has outperformed most of the
previous methods on LI06 achieving the second best
Pearson’s correlation and the best Spearman corre-
lation (Guo and Diab, 2012b).

3 Learning Latent Semantics of Sentences
3.1 Intuition

Given only a few observed words in a sentence, there
are many hypotheses of latent vectors that are highly
related to the observed words. Therefore, missing

Figure 1: Matrix Factorization

words can be used to prune the hypotheses that are
also highly related to the missing words.

Consider the hypotheses of latent vectors in Ta-
ble 1 for the sentence of the WordNet definition
of bank#n#1. Assume there are 3 dimensions in
our latent model: financial, sport, institution. We
use Rv

o to denote the sum of relatedness between
latent vector v and all observed words; similarly,
Rv

m is the sum of relatedness between the vector
v and all missing words. Hypothesis v1 is given
by topic models, where only the financial sen-
tence is found, and it has the maximum relatedness
to observed words in bank#n#1 sentence Rv1

o =20.
v2 is the ideal latent vector, since it also detects
that bank#n#1 is related to institution. It has a
slightly smaller Rv2

o =18, but more importantly, re-
latedness to missing words Rv2

m =300 is substantially
smaller than Rv1

m =600.
However, we cannot simply choose a hypothesis

with the maximum Ro −Rm value, since v3, which
is clearly not related to bank#n#1 but with a min-
imum Rm=100, will be our final answer. The so-
lution is straightforward: give a smaller weight to
missing words, e.g., so that the algorithm tries to
select a hypothesis with maximum value of Ro −
0.01 × Rm. To implement this idea, we model the
missing words in the weighted matrix factorization
framework [WMF] (Srebro and Jaakkola, 2003).

3.2 Modeling Missing Words by Weighted
Matrix Factorization

Given a corpus we represent the corpus as an
M × N matrix X . The row entries of the matrix
are the unique N words in the corpus, and the M
columns are the sentence ids of all the sentences.
The yielded N ×M co-occurrence matrix X com-
prises the TF-IDF values in each Xij cell, namely
that TF-IDF value of word wi in sentence sj .

In WMF, the original matrix X is factorized into
two matrices such thatX ≈ P>Q, where P is aK×
M matrix, and Q is a K × N matrix (Figure 1). In
this scenario, the latent semantics of each wordwi or
sentence sj is represented as a K-dimension vector

587



financial sport institution Ro Rm Ro −Rm Ro − 0.01Rm

v1 1 0 0 20 600 -580 14
v2 0.6 0 0.1 18 300 -282 15
v3 0.2 0.3 0.2 5 100 -95 4

Table 1: Three possible hypotheses of latent vectors for definition of bank#n#1

P·,i or Q·,j . Note that the inner product of P·,i and
Q·,j is used to approximate the semantic relatedness
of word wi and sentence sj : Xij ≈ P·,i ·Q·,j , as the
shaded parts in Figure 1.

In WMF each cell is associated with a weight, so
missing words cells (Xij=0) can have a much less
contribution than observed words. Assume wm is
the weight for missing words cells. The latent vec-
tors of words P and sentences Q are estimated by
minimizing the objective function:

∑
i

∑
j

Wij (P·,i ·Q·,j −Xij)
2 + λ||P ||22 + λ||Q||22

where Wi,j =

{
1, if Xij 6= 0
wm, if Xij = 0

(1)

Equation 1 explicitly requires the latent vector of
sentence Q·,j to be not related to missing words
(P·,i · Q·,j should be close to 0 for missing words
Xij = 0). Also weight wm for missing words is
very small to make sure latent vectors such as v3 in
Table 1 will not be chosen. In experiments we set
wm = 0.01. We refer to our approach as Weighted
Textual Matrix Factorization (WTMF).

After we run WTMF on the sentence corpus, the
similarity of the two sentences sj and sk can be com-
puted by the inner product of Q·,j and Q·,k.

3.3 Inference

The latent vectors in P and Q are first randomly
initialized, then can be computed iteratively by the
following equations (derivation is omitted due to
limited space, but can be found in (Srebro and
Jaakkola, 2003)):

P·,i =
(
QW̃ (i)Q> + λI

)−1

QW̃ (i)X>i,·

Q·,j =
(
PW̃ (j)P> + λI

)−1

PW̃ (i)X·,j

(2)

where W̃ (i) = diag(W·,i) is an M × M diagonal
matrix containing ith row of weight matrixW . Sim-
ilarly, W̃ (j) = diag(W·,j) is an N × N diagonal
matrix containing jth column of W .

Since most of the cells have the same value of 0,
the inference can be further optimized to save com-
putation, which has been described in (Steck, 2010).

4 Data Preprocessing

The data sets for WTMF comprises two dictionar-
ies WordNet (Fellbaum, 1998), Wiktionary,2 and
the Brown corpus. We did not link the senses be-
tween WordNet and Wiktionary, therefore the defini-
tion sentences are simply treated as individual docu-
ments. We crawl Wiktionary and remove the entries
that are not tagged as noun, verb, adjective, or ad-
verb, resulting in 220,000 entries. For both WordNet
and Wiktionary, target words are added to the defini-
tion (e.g. the word bank is added into the definition
sentence of bank#n#1). Also usage examples are
appended to definition sentences (hence sentences
become short texts). For the Brown corpus, each
sentence is treated as a document in order to create
more co-occurrence. The importance of words in a
sentence is estimated by the TF-IDF schema.

All data is tokenized, pos-tagged3, and lemma-
tized4. To reduce word sparsity issue, we take
an additional preprocessing step: for each lemma-
tized word, we find all its possible lemmas, and
choose the most frequent lemma according to Word-
Net::QueryData. For example, the word thinkings is
first lemmatized as thinking, then we discover think-
ing has possible lemmas thinking and think, finally
we choose think as targeted lemma. The STS data is
also preprocessed using the same pipeline.

5 Experiments

5.1 Setting

STS data: The sentence pair data in the STS
task is collected from five sources: 1. MSR Para-
phrase corpus (Dolan et al., 2004), 2. MSR video
data (Chen and Dolan, 2011), 3. SMT europarl data,

2http://en.wiktionary.org/wiki/Wiktionary:Main Page
3http://nlp.stanford.edu/software/tagger.shtml
4http://wn-similarity.sourceforge.net, WordNet::QueryData

588



models MSRpar MSRvid SMT-eur ON-WN SMT-news
LDA 0.274 0.7682 0.452 0.619 0.366

WTMF 0.411(67/89) 0.835(11/89) 0.513(10/89) 0.727(1/89) 0.438(28/89)

Table 2: Performance of LDA and WTMF on each individual test set of Task 6 STS data

ALL ALLnrm Mean
0.695(20/89) 0.830(10/89) 0.608(19/89)

Table 3: Performance of WTMF on all test sets

4. OntoNotes-WordNet data (Hovy et al., 2006), 5.
SMT news data.
Evaluation Metrics: Since the systems are re-
quired to assigned a similarity score to each sentence
pair, Pearson’s correlation is used to measure the
performance of systems on each of the 5 data sets.
However, measuring the overall performance on the
concatenation of 5 data sets is rarely discussed in
previous work. Accordingly the organizers of STS
task provide three evaluation metrics: 1. ALL: Pear-
son correlation with the gold standard for the com-
bined 5 data sets. 2. ALLnrm: Pearson correlation
after the system outputs for each data set are fitted
to the gold standard using least squares. 3. Mean:
Weighted mean across the 5 data sets, where the
weight depends on the number of pairs in the dataset.
WTMF Model: Our model is built on Word-
Net+Wiktionary+Brown+training data of STS. Each
sentence of STS test data is transformed into a latent
vector using Equation 2. Then sentence pair similar-
ity is computed by the cosine similarity of the two
latent vectors. We employ the parameters used in
(Guo and Diab, 2012b) (λ = 20, wm = 0.01).

5.2 Results
Table 3 summarizes the overall performance of

WTMF on the concatenation of 5 data sets followed
by the corresponding rank among all participating
systems.5 There are 88 submitted results in total and
1 baseline which is simply the cosine similarity of
surface word vectors.

Table 2 compares the individual performance of
LDA (trained on the same corpus) and WTMF on
each data set. WTMF outperforms LDA by a large
margin. This is because LDA only uses 10 observed
words to infer a 100 dimension vector, while WTMF
takes advantage of much more missing words to

5http://www.cs.york.ac.uk/semeval-2012/
task6/index.php?id=results-update

learn more robust latent semantic vectors.
WTMF model achieves great overall perfor-

mance, with ranks 20, 10, 19 out of 89 reported re-
sults in three evaluation metrics respectively. It is
worth noting that WTMF is unsupervised in that it
does not use the training data similarity values, also
the only feature WTMF uses is bag-of-words fea-
tures without other information such as syntax, sen-
timent, etc. indicating that these additional features
could lead to even more improvement.

Observing the individual performance on each of
the 5 data set, we find WTMF ranks relatively high
in the four data sets: MSRvid (11/89), SMT-eur
(11/89), ON-WN (1/89), SMT-news (28/89). How-
ever, WTMF is outperformed by most of the systems
on MSRpar data set (67/89). We analyze the data set
and find that different from the other four data sets,
MSRpar is related to a lot of other NLP topics such
as textual entailment or sentiment coherence. There-
fore, our feature set (bag of words) is too shallow for
this data set indicating that using syntax and more
semantically oriented features could be helpful.

6 Conclusions
We introduce a new latent variable model WTMF
that is competitive with high dimensional ap-
proaches to the STS task. In WTMF model, we ex-
plicitly model missing words to alleviate the sparsity
problem in modeling short texts. For future work,
we would like to combine our methods with existing
word similarity based approaches and add more nu-
anced features incorporating syntax and semantics
in the latent model.
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