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Abstract

We estimate the semantic similarity between
two sentences using regression models with
features: 1) n-gram hit rates (lexical matches)
between sentences, 2) lexical semantic sim-
ilarity between non-matching words, and 3)
sentence length. Lexical semantic similarity is
computed via co-occurrence counts on a cor-
pus harvested from the web using a modified
mutual information metric. State-of-the-art re-
sults are obtained for semantic similarity com-
putation at the word level, however, the fusion
of this information at the sentence level pro-
vides only moderate improvement on Task 6
of SemEval’12. Despite the simple features
used, regression models provide good perfor-
mance, especially for shorter sentences, reach-
ing correlation of 0.62 on the SemEval test set.

1 Introduction

Recently, there has been significant research activ-
ity on the area of semantic similarity estimation
motivated both by abundance of relevant web data
and linguistic resources for this task. Algorithms
for computing semantic textual similarity (STS) are
relevant for a variety of applications, including in-
formation extraction (Szpektor and Dagan, 2008),
question answering (Harabagiu and Hickl, 2006)
and machine translation (Mirkin et al., 2009). Word-
or term-level STS (a special case of sentence level
STS) has also been successfully applied to the prob-
lem of grammar induction (Meng and Siu, 2002)
and affective text categorization (Malandrakis et al.,
2011). In this work, we built on previous research

on word-level semantic similarity estimation to de-
sign and implement a system for sentence-level STS
for Task6 of the SemEval’12 campaign.

Semantic similarity between words can be re-
garded as the graded semantic equivalence at the
lexeme level and is tightly related with the tasks of
word sense discovery and disambiguation (Agirre
and Edmonds, 2007). Metrics of word semantic sim-
ilarity can be divided into: (i) knowledge-based met-
rics (Miller, 1990; Budanitsky and Hirst, 2006) and
(ii) corpus-based metrics (Baroni and Lenci, 2010;
Iosif and Potamianos, 2010).

When more complex structures, such as phrases
and sentences, are considered, it is much harder
to estimate semantic equivalence due to the non-
compositional nature of sentence-level semantics
and the exponential explosion of possible interpre-
tations. STS is closely related to the problems of
paraphrasing, which is bidirectional and based on
semantic equivalence (Madnani and Dorr, 2010) and
textual entailment, which is directional and based
on relations between semantics (Dagan et al., 2006).
Related methods incorporate measurements of sim-
ilarity at various levels: lexical (Malakasiotis and
Androutsopoulos, 2007), syntactic (Malakasiotis,
2009; Zanzotto et al., 2009), and semantic (Rinaldi
et al., 2003; Bos and Markert, 2005). Measures
from machine translation evaluation are often used
to evaluate lexical level approaches (Finch et al.,
2005; Perez and Alfonseca, 2005), including BLEU
(Papineni et al., 2002), a metric based on word n-
gram hit rates.

Motivated by BLEU, we use n-gram hit rates and
word-level semantic similarity scores as features in
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a linear regression model to estimate sentence level
semantic similarity. We also propose sigmoid scal-
ing of similarity scores and sentence-length depen-
dent modeling. The models are evaluated on the Se-
mEval’12 sentence similarity task.

2 Semantic similarity between words

In this section, two different metrics of word simi-
larity are presented. The first is a language-agnostic,
corpus-based metric requiring no knowledge re-
sources, while the second metric relies on WordNet.

Corpus-based metric: Given a corpus, the se-
mantic similarity between two words,wi and wj,
is estimated as their pointwise mutual information
(Church and Hanks, 1990):I(i, j) = log p̂(i,j)

p̂(i)p̂(j) ,
where p̂(i) and p̂(j) are the occurrence probabili-
ties ofwi andwj, respectively, while the probability
of their co-occurrence is denoted byp̂(i, j). These
probabilities are computed according to maximum
likelihood estimation. The assumption of this met-
ric is that co-occurrence implies semantic similarity.

During the past decade the web has been used for
estimating the required probabilities (Turney, 2001;
Bollegala et al., 2007), by querying web search en-
gines and retrieving the number of hits required
to estimate the frequency of individual words and
their co-occurrence. However, these approaches
have failed to obtain state-of-the-art results (Bolle-
gala et al., 2007), unless “expensive” conjunctive
AND queries are used for harvesting a corpus and
then using this corpus to estimate similarity scores
(Iosif and Potamianos, 2010).

Recently, a scalable approach1 for harvesting a
corpus has been proposed where web snippets are
downloaded using individual queries for each word
(Iosif and Potamianos, 2012b). Semantic similar-
ity can then be estimated using theI(i, j) metric
andwithin-snippet word co-occurrence frequencies.
Under the maximum sense similarity assumption
(Resnik, 1995), it is relatively easy to show that a
(more) lexically-balanced corpus2 (as the one cre-

1The scalability of this approach has been demonstrated in
(Iosif and Potamianos, 2012b) for a 10K vocabulary, here we
extend it to the full 60K WordNet vocabulary.

2According to this assumption the semantic similarity of two
words can be estimated as the minimum pairwise similarity of
their senses. The gist of the argument is that although words
often co-occur with their closest senses, word occurrencescor-

ated above) can significantly reduce the semantic
similarity estimation error of the mutual information
metricI(i, j). This is also experimentally verified in
(Iosif and Potamianos, 2012c).

In addition, one can modify the mutual informa-
tion metric to further reduce estimation error (for
the theoretical foundation behind this see (Iosif and
Potamianos, 2012a)). Specifically, one may intro-
duce exponential weightsα in order to reduce the
contribution ofp(i) andp(j) in the similarity met-
ric. The modified metricIa(i, j), is defined as:

Ia(i, j)=
1

2

[

log
p̂(i, j)

p̂α(i)p̂(j)
+ log

p̂(i, j)

p̂(i)p̂α(j)

]

. (1)

The weightα was estimated on the corpus of (Iosif
and Potamianos, 2012b) in order to maximize word
sense coverage in the semantic neighborhood of
each word. TheIa(i, j) metric using the estimated
value of α = 0.8 was shown to significantly out-
performI(i, j) and to achieve state-of-the-art results
on standard semantic similarity datasets (Rubenstein
and Goodenough, 1965; Miller and Charles, 1998;
Finkelstein et al., 2002). For more details see (Iosif
and Potamianos, 2012a).

WordNet-based metrics: For comparison pur-
poses, we evaluated various similarity metrics on
the task of word similarity computation on three
standard datasets (same as above). The best re-
sults were obtained by the Vector metric (Patward-
han and Pedersen, 2006), which exploits the lexical
information that is included in the WordNet glosses.
This metric was incorporated to our proposed ap-
proach. All metrics were computed using the Word-
Net::Similarity module (Pedersen, 2005).

3 N-gram Regression Models

Inspired by BLEU (Papineni et al., 2002), we pro-
pose a simple regression model that combines evi-
dence from two sources: number of n-gram matches
and degree of similarity between non-matching
words between two sentences. In order to incorpo-
rate a word semantic similarity metric into BLEU,
we apply the following two-pass process: first lexi-
cal hits are identified and counted, and then the se-
mantic similarity between n-grams not matched dur-

respond to all senses, i.e., the denominator ofI(i, j) is overes-
timated causing large underestimation error for similarities be-
tween polysemous words.
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ing the first pass is estimated. All word similar-
ity metrics used are peak-to-peak normalized in the
[0,1] range, so they serve as a “degree-of-match”.
The semantic similarity scores from word pairs are
summed together (just like n-gram hits) to obtain
a BLEU-like semantic similarity score. The main
problem here is one of alignment, since we need
to compare each non-matched n-gram from the hy-
pothesis with an n-gram from the reference. We
use a simple approach: we iterate on the hypoth-
esis n-grams, left-to-right, and compare each with
the most similarnon-matched n-gram in the refer-
ence. This modification to BLEU is only applied
to 1-grams, since semantic similarity scores for bi-
grams (or higher) were not available.

Thus, our list of features are the hit rates obtained
by BLEU (for 1-, 2-, 3-, 4-grams) and the total se-
mantic similarity (SS) score for 1-grams3. These
features are then combined using a multiple linear
regression model:

D̂L = a0 +
4

∑

n=1

an Bn + a5 M1, (2)

where D̂L is the estimated similarity,Bn is the
BLEU hit rate forn-grams,M1 is the total semantic
similarity score (SS) for non-matching 1-grams and
an are the trainable parameters of the model.

Motivated by evidence of cognitive scaling of
semantic similarity scores (Iosif and Potamianos,
2010), we propose the use of a sigmoid function to
scaleDL sentence similarities. We have also ob-
served in the SemEval data that the way humans rate
sentence similarity is very much dependent on sen-
tence length4. To capture the effect of length and
cognitive scaling we propose next two modifications
to the linear regression model. The sigmoid fusion
scheme is described by the following equation:

D̂S = a6D̂L + a7D̂L

[

1 + exp

(

a8 − l

a9

)]

−1

, (3)

where we assume that sentence lengthl (average

3Note that the features are computed twice on each sentence
in a forward and backward fashion (where the word order is
reversed), and then averaged between the two runs.

4We speculate that shorter sentences are mostly compared at
the lexical level using the short-term memory language buffers,
while longer sentences tend to be compared at a higher cogni-
tive level, where the non-compositional nature of sentencese-
mantics dominate.

length for each sentence pair, in words) acts as a
scaling factor for the linearly estimated similarity.

The hierarchical fusion scheme is actually a col-
lection of (overlapping) linear regression models,
each matching a range of sentence lengths. For ex-
ample, the first modelDL1 is trained with sentences
with length up tol1, i.e., l ≤ l1, the second model
DL2 up to lengthl2 etc. During testing, sentences
with length l ∈ [1, l1] are decoded withDL1, sen-
tences with lengthl ∈ (l1, l2] with modelDL2 etc.
Each of these partial models is a linear fusion model
as shown in (2). In this work, we use four models
with l1 = 10, l2 = 20, l3 = 30, l4 =∞.

4 Experimental Procedure and Results

Initially all sentences are pre-processed by the
CoreNLP (Finkel et al., 2005; Toutanova et al.,
2003) suite of tools, a process that includes named
entity recognition, normalization, part of speech tag-
ging, lemmatization and stemming. The exact type
of pre-processing used depends on the metric used.
For the plain lexical BLEU, we use lemmatization,
stemming (of lemmas) and remove all non-content
words, keeping only nouns, adjectives, verbs and ad-
verbs. For computing semantic similarity scores, we
don’t use stemming and keep only noun words, since
we only have similarities between non-noun words.
For the computation of semantic similarity we have
created a dictionary containing all the single-word
nouns included in WordNet (approx.60K) and then
downloaded snippets of the500 top-ranked docu-
ments for each word by formulating single-word
queries and submitting them to the Yahoo! search
engine.

Next, results are reported in terms of correlation
between the automatically computed scores and the
ground truth, for each of the corpora in Task 6 of
SemEval’12 (paraphrase, video, europarl, WordNet,
news). Overall correlation (“Ovrl”) computed on the
join of the dataset, as well as, average (“Mean”) cor-
relation across all task is also reported. Training is
performed on a subset of the first three corpora and
testing on all five corpora.
Baseline BLEU: The first set of results in Ta-
ble 1, shows the correlation performance of the
plain BLEU hit rates (per training data set and over-
all/average). The best performing hit rate is the one
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calculated using unigrams.

Table 1: Correlation performance of BLEU hit rates.
par vid euro Mean Ovrl

BLEU 1-grams 0.62 0.67 0.49 0.59 0.57
BLEU 2-grams 0.40 0.39 0.37 0.39 0.34
BLEU 3-grams 0.32 0.36 0.30 0.33 0.33
BLEU 4-grams 0.26 0.25 0.24 0.25 0.28

Semantic Similarity BLEU (Purple): The perfor-
mance of the modified version of BLEU that in-
corporates various word-level similarity metrics is
shown in Table 2. Here the BLEU hits (exact
matches) are summed together with the normalized
similarity scores (approximate matches) to obtain a
singleB1+M1 (Purple) score5. As we can see, there
are definite benefits to using the modified version,
particularly with regards to mean correlation. Over-
all the best performers, when taking into account
both mean and overall correlation, are the WordNet-
based andIa metrics, with theIa metric winning by
a slight margin, earning a place in the final models.

Table 2: Correlation performance of 1-gram BLEU
scores with semantic similarity metrics (nouns-only).

par vid euro Mean Ovrl
BLEU 0.54 0.60 0.39 0.51 0.58
SS-BLEU WordNet 0.56 0.64 0.41 0.54 0.58
SS-BLEUI(i, j) 0.56 0.63 0.39 0.53 0.59
SS-BLEUIa(i, j) 0.57 0.64 0.40 0.54 0.58

Regression models (DeepPurple): Next, the per-
formance of the various regression models (fusion
schemes) is investigated. Each regression model is
evaluated by performing 10-fold cross-validation on
the SemEval training set. Correlation performance
is shown in Table 3 both with and without seman-
tic similarity. The baseline in this case is the Pur-
ple metric (corresponding to no fusion). Clearly
the use of regression models significantly improves
performance compared to the 1-gram BLEU and
Purple baselines for almost all datasets, and espe-
cially for the combined dataset (overall). Among
the fusion schemes, the hierarchical models perform
the best. Following fusion, the performance gain
from incorporating semantic similarity (SS) is much
smaller. Finally, in Table 4, correlation performance
of our submissions on the official SemEval test set is

5It should be stressed that the plain BLEU unigram scores
shown in this table are not comparable to those in Table 1, since
here scores are calculated over only the nouns of each sentence.

Table 3: Correlation performance of regression model
with (SS) and without semantic similarities on the train-
ing set (using 10-fold cross-validation).

par vid euro Mean Ovrl

None (SS-BLEUIa) 0.57 0.64 0.40 0.54 0.58

Linear (D̂L, a5=0) 0.62 0.72 0.47 0.60 0.66
Sigmoid (D̂S, a5=0) 0.64 0.73 0.42 0.60 0.73
Hierarchical 0.64 0.74 0.48 0.62 0.73

SS-Linear (̂DL) 0.64 0.73 0.47 0.61 0.66
SS-Sigmoid (̂DS) 0.65 0.74 0.42 0.60 0.74
SS-Hierarchical 0.65 0.74 0.48 0.62 0.73

shown. The overall correlation performance of the
Hierarchical model ranks somewhere in the middle
(43rd out of 89 systems), while the mean correla-
tion (weighted by number of samples per set) is no-
tably better: 23rd out of 89. Comparing the individ-
ual dataset results, our systems underperform for the
two datasets that originate from the machine transla-
tion (MT) literature (and contain longer sentences),
while we achieve good results for the rest (19th for
paraphrase, 37th for video and 29th for WN).

Table 4: Correlation performance on test set.
par vid euro WN news Mean Ovrl

None 0.50 0.71 0.44 0.49 0.24 0.51 0.49
Sigm. 0.60 0.76 0.26 0.60 0.34 0.56 0.55
Hier. 0.60 0.77 0.43 0.65 0.37 0.60 0.62

5 Conclusions

We have shown that: 1) a regression model that
combines counts of exact and approximate n-gram
matches provides good performance for sentence
similarity computation (especially for short and
medium length sentences), 2) the non-linear scal-
ing of hit-rates with respect to sentence length im-
proves performance, 3) incorporating word semantic
similarity scores (soft-match) into the model can im-
prove performance, and 4) web snippet corpus cre-
ation and the modified mutual information metric
is a language agnostic approach that can (at least)
match semantic similarity performance of the best
resource-based metrics for this task. Future work,
should involve the extension of this approach to
model larger lexical chunks, the incorporation of
compositional models of meaning, and in general
the phrase-level modeling of semantic similarity, in
order to compete with MT-based systems trained on
massive external parallel corpora.
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