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Abstract

Many types of polysemy are not word specific,
but are instances of general sense alternations
such as ANIMAL-FOOD. Despite their perva-
siveness, regular alternations have been mostly
ignored in empirical computational semantics.
This paper presents (a) a general framework
which grounds sense alternations in corpus
data, generalizes them above individual words,
and allows the prediction of alternations for
new words; and (b) a concrete unsupervised
implementation of the framework, the Cen-
troid Attribute Model. We evaluate this model
against a set of 2,400 ambiguous words and
demonstrate that it outperforms two baselines.

1 Introduction

One of the biggest challenges in computational se-
mantics is the fact that many words are polysemous.
For instance, lamb can refer to an animal (as in The
lamb squeezed through the gap) or to a food item (as
in Sue had lamb for lunch). Polysemy is pervasive
in human language and is a problem in almost all
applications of NLP, ranging from Machine Trans-
lation (as word senses can translate differently) to
Textual Entailment (as most lexical entailments are
sense-specific).

The field has thus devoted a large amount of effort
to the representation and modeling of word senses.
The arguably most prominent effort is Word Sense
Disambiguation, WSD (Navigli, 2009), an in-vitro
task whose goal is to identify which, of a set of pre-
defined senses, is the one used in a given context.

In work on WSD and other tasks related to pol-
ysemy, such as word sense induction, sense alter-
nations are treated as word-specific. As a result, a
model for the meaning of lamb that accounts for the
relation between the animal and food senses cannot
predict that the same relation holds between instances
of chicken or salmon in the same type of contexts.

A large number of studies in linguistics and cog-
nitive science show evidence that there are regulari-
ties in the way words vary in their meaning (Apres-
jan, 1974; Lakoff and Johnson, 1980; Copestake
and Briscoe, 1995; Pustejovsky, 1995; Gentner et
al., 2001; Murphy, 2002), due to general analogical
processes such as regular polysemy, metonymy and
metaphor. Most work in theoretical linguistics has
focused on regular, systematic, or logical polysemy,
which accounts for alternations like ANIMAL-FOOD.
Sense alternations also arise from metaphorical use
of words, as dark in dark glass-dark mood, and also
from metonymy when, for instance, using the name
of a place for a representative (as in Germany signed
the treatise). Disregarding this evidence is empiri-
cally inadequate and leads to the well-known lexical
bottleneck of current word sense models, which have
serious problems in achieving high coverage (Navigli,
2009).

We believe that empirical computational semantics
could profit from a model of polysemy1 which (a) is
applicable across individual words, and thus capable
of capturing general patterns and generalizing to new

1Our work is mostly inspired in research on regular polysemy.
However, given the fuzzy nature of “regularity” in meaning
variation, we extend the focus of our attention to include other
types of analogical sense construction processes.
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words, and (b) is induced in an unsupervised fashion
from corpus data. This is a long-term goal with many
unsolved subproblems.

The current paper presents two contributions to-
wards this goal. First, since we are working on a
relatively unexplored area, we introduce a formal
framework that can encompass different approaches
(Section 2). Second, we implement a concrete instan-
tiation of this framework, the unsupervised Centroid
Attribute Model (Section 3), and evaluate it on a new
task, namely, to detect which of a set of words in-
stantiate a given type of polysemy (Sections 4 and 5).
We finish with some conclusions and future work
(Section 7).

2 Formal framework

In addition to introducing formal definitions for terms
commonly found in the literature, our framework pro-
vides novel terminology to deal with regular poly-
semy in a general fashion (cf. Table 1; capital letters
designate sets and small letters elements of sets).2

For a lemma l like lamb, we want to know
how well a meta alternation (such as ANIMAL-
FOOD) explains a pair of its senses (such as the
animal and food senses of lamb).3 This is for-
malized through the function score, which maps
a meta alternation and two senses onto a score.
As an example, let lambanm denote the ANIMAL

sense of lamb, lambfod the FOOD sense, and
lambhum the PERSON sense. Then, an appropri-
ate model of meta alternations should predict that
score(animal,food, lambanm, lambfod) is greater
than score(animal,food, lambanm, lambhum).

Meta alternations are defined as unordered pairs
of meta senses, or cross-word senses like ANIMAL.
The meta sensesM can be defined a priori or induced
from data. They are equivalence classes of senses to
which they are linked through the function meta. A
sense s instantiates a meta sense m iff meta(s) =
m. Functions inst and sns allow us to define meta
senses and lemma-specific senses in terms of actual
instances, or occurrences of words in context.

2We re-use inst as a function that returns the set of instances
for a sense: SL → ℘(IL) and assume that senses partition
lemmas’ instances: ∀l : inst(l) =

⋃
s∈sns(l) inst(s).

3Consistent with the theoretical literature, this paper focuses
on two-way polysemy. See Section 7 for further discussion.

L set of lemmas
IL set of (lemma-wise) instances
SL set of (lemma-wise) senses
inst : L→ ℘(IL) mapping lemma→ instances
sns : L→ ℘(SL) mapping lemma→ senses

M set of meta senses
meta: SL →M mapping senses→meta senses
A ⊆M ×M set of meta alternations (MAs)
A set of MA representations

score : A× S2
L → R scoring function for MAs

repA : A→ A MA representation function
comp: A×S2

L → R compatibility function

Table 1: Notation and signatures for our framework.

We decompose the score function into two parts:
a representation function repA that maps a meta al-
ternation into some suitable representation for meta
alternations, A, and a compatibility function comp
that compares the relation between the senses of a
word to the meta alternation’s representation. Thus,
comp ◦ repA = score.

3 The Centroid Attribute Model

The Centroid Attribute Model (CAM) is a simple
instantiation of the framework defined in Section 2,
designed with two primary goals in mind. First, it is
a data-driven model. Second, it does not require any
manual sense disambiguation, a notorious bottleneck.

To achieve the first goal, CAM uses a distribu-
tional approach. It represents the relevant entities as
co-occurrence vectors that can be acquired from a
large corpus (Turney and Pantel, 2010). To achieve
the second goal, CAM represents meta senses using
monosemous words only, that is, words whose senses
all correspond to one meta sense. 4 Examples are
cattle and robin for the meta sense ANIMAL. We
define the vector for a meta sense as the centroid (av-
erage vector) of the monosemous words instantiating
it. In turn, meta alternations are represented by the
centroids of their meta senses’ vectors.

This strategy is not applicable to test lemmas,
which instantiate some meta alternation and are by
definition ambiguous. To deal with these without

410.8% of noun types in the corpus we use are monosemous
and 2.3% are disemous, while, on a token level, 23.3% are
monosemous and 20.2% disemous.
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vecI : IL → Rk instance vector computation
C : Rk×m → Rk centroid computation
vecL : L→ Rk lemma (type) vector computation
repM : M → Rk meta sense representation

Table 3: Additional notation and signatures for CAM

explicit sense disambiguation, CAM represents lem-
mas by their type vectors, i.e., the centroid of their
instances, and compares their vectors (attributes) to
those of the meta alternation – hence the name.

CoreLex: A Semantic Inventory. CAM uses
CoreLex (Buitelaar, 1998) as its meta sense inven-
tory. CoreLex is a lexical resource that was designed
specifically for the study of polysemy. It builds on
WordNet (Fellbaum, 1998), whose sense distinctions
are too fine-grained to describe general sense al-
ternations. CoreLex defines a layer of abstraction
above WordNet consisting of 39 basic types, coarse-
grained ontological classes (Table 2). These classes
are linked to one or more Wordnet anchor nodes,
which define a mapping from WordNet synsets onto
basic types: A synset s maps onto a basic type b if b
has an anchor node that dominates s and there is no
other anchor node on the path from b and s.5

We adopt the WordNet synsets as S, the set of
senses, and the CoreLex basic types as our set of
meta senses M . The meta function (mapping word
senses onto meta senses) is given directly by the an-
chor mapping defined in the previous paragraph. This
means that the set of meta alternations is given by the
set of pairs of basic types. Although basic types do
not perfectly model meta senses, they constitute an
approximation that allows us to model many promi-
nent alternations such as ANIMAL-FOOD.

Vectors for Meta Senses and Alternations. All
representations used by CAM are co-occurrence vec-
tors in Rk (i.e., A := Rk). Table 3 lists new concepts
that CAM introduces to manipulate vector represen-
tations. vecI returns a vector for a lemma instance,
vecL a (type) vector for a lemma, and C the centroid
of a set of vectors.

We leave vecI and C unspecified: we will experi-
ment with these functions in Section 4. CAM does fix

5This is necessary because some classes have non-disjoint
anchor nodes: e.g., ANIMALs are a subset of LIVING BEINGs.

the definitions for vecL and repA. First, vecL defines
a lemma’s vector as the centroid of its instances:

vecL(l) = C{vecI(i) | i ∈ inst(l)} (1)

Before defining repA, we specify a function repM

that computes vector representations for meta senses
m. In CAM, this vector is defined as the centroid
of the vectors for all monosemous lemmas whose
WordNet sense maps onto m:

repM(m) = C{vecL(l) | meta(sns(l)) = {m}} (2)

Now, repA can be defined simply as the centroid of
the meta senses instantiating a:

repA(m1,m2) = C{repM(m1), repM(m2)} (3)

Predicting Meta Alternations. The final compo-
nent of CAM is an instantiation of comp (cf. Table 1),
i.e., the degree to which a sense pair (s1, s2) matches
a meta alternation a. Since CAM does not represent
these senses separately, we define comp as

comp(a, s1, s2) = sim(a, vecL(l))

so that {s1, s2} = sns(l)
(4)

The complete model, score, can now be stated as:

score(m,m′, s, s′) = sim(repA(m,m′), vecL(l))

so that {s, s′} = sns(l) (5)

CAM thus assesses how well a meta alternation
a = (m,m′) explains a lemma l by comparing the
centroid of the meta senses m,m′ to l’s centroid.

Discussion. The central feature of CAM is that
it avoids word sense disambiguation, although it
still relies on a predefined sense inventory (Word-
Net, through CoreLex). Our use of monosemous
words to represent meta senses and meta alternations
goes beyond previous work which uses monosemous
words to disambiguate polysemous words in context
(Izquierdo et al., 2009; Navigli and Velardi, 2005).

Because of its focus on avoiding disambiguation,
CAM simplifies the representation of meta alterna-
tions and polysemous words to single centroid vec-
tors. In the future, we plan to induce word senses
(Schütze, 1998; Pantel and Lin, 2002; Reisinger and
Mooney, 2010), which will allow for more flexible
and realistic models.
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abs ABSTRACTION ent ENTITY loc LOCATION prt PART

act ACT evt EVENT log GEO. LOCATION psy PSYCHOL. FEATURE

agt AGENT fod FOOD mea MEASURE qud DEFINITE QUANTITY

anm ANIMAL frm FORM mic MICROORGANISM qui INDEFINITE QUANTITY

art ARTIFACT grb BIOLOG. GROUP nat NATURAL BODY rel RELATION

atr ATTRIBUTE grp GROUPING phm PHENOMENON spc SPACE

cel CELL grs SOCIAL GROUP pho PHYSICAL OBJECT sta STATE

chm CHEMICAL hum HUMAN plt PLANT sub SUBSTANCE

com COMMUNICATION lfr LIVING BEING pos POSSESSION tme TIME

con CONSEQUENCE lme LINEAR MEASURE pro PROCESS pro PROCESS

Table 2: CoreLex’s basic types with their corresponding WordNet anchors. CAM adopts these as meta senses.

4 Evaluation

We test CAM on the task of identifying which lem-
mas of a given set instantiate a specific meta alterna-
tion. We let the model rank the lemmas through the
score function (cf. Table (1) and Eq. (5)) and evaluate
the ranked list using Average Precision. While an
alternative would be to rank meta alternations for a
given polysemous lemma, the method chosen here
has the benefit of providing data on the performance
of individual meta senses and meta alternations.

4.1 Data

All modeling and data extraction was carried out on
the written part of the British National Corpus (BNC;
Burnage and Dunlop (1992)) parsed with the C&C
tools (Clark and Curran, 2007). 6

For the evaluation, we focus on disemous words,
words which instantiate exactly two meta senses
according to WordNet. For each meta alternation
(m,m′), we evaluate CAM on a set of disemous tar-
gets (lemmas that instantiate (m,m′)) and disemous
distractors (lemmas that do not). We define three
types of distractors: (1) distractors sharing m with
the targets (but not m′), (2) distractors sharing m′

with the targets (but not m), and (3) distractors shar-
ing neither. In this way, we ensure that CAM cannot
obtain good results by merely modeling the similarity
of targets to either m or m′, which would rather be a
coarse-grained word sense modeling task.

To ensure that we have enough data, we evaluate
CAM on all meta alternations with at least ten targets
that occur at least 50 times in the corpus, discarding
nouns that have fewer than 3 characters or contain
non-alphabetical characters. The distractors are cho-

6The C&C tools were able to reliably parse about 40M words.

sen so that they match targets in frequency. This
leaves us with 60 meta alternations, shown in Ta-
ble 5. For each meta alternation, we randomly select
40 lemmas as experimental items (10 targets and 10
distractors of each type) so that a total of 2,400 lem-
mas is used in the evaluation.7 Table 4 shows four
targets and their distractors for the meta alternation
ANIMAL-FOOD.8

4.2 Evaluation Measure and Baselines

To measure success on this task, we use Average
Precision (AP), an evaluation measure from IR that
reaches its maximum value of 1 when all correct
items are ranked at the top (Manning et al., 2008).
It interpolates the precision values of the top-n pre-
diction lists for all positions n in the list that con-
tain a target. Let T = 〈q1, . . . , qm〉 be the list of
targets, and let P = 〈p1, . . . , pn〉 be the list of pre-
dictions as ranked by the model. Let I(xi) = 1 if
pi ∈ T , and zero otherwise. Then AP (P, T ) =

1
m

∑m
i=1 I(xi)

∑i
j=1 I(xi)

i . AP measures the quality
of the ranked list for a single meta alternation. The
overall quality of a model is given by Mean Average
Precision (MAP), the mean of the AP values for all
meta alternations.

We consider two baselines: (1) A random baseline
that ranks all lemmas in random order. This baseline
is the same for all meta alternations, since the distri-
bution is identical. We estimate it by sampling. (2)
A meta alternation-specific frequency baseline which
orders the lemmas by their corpus frequencies. This

7Dataset available at http://www.nlpado.de/

˜sebastian/data.shtml.
8Note that this experimental design avoids any overlap be-

tween the words used to construct sense vectors (one meta sense)
and the words used in the evaluation (two meta senses).
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Targets Distractors with meta sense anm Distractors with meta sense fod Random distractors

carp amphibian (anm-art) mousse (art-fod) appropriation (act-mea)
duckling ape (anm-hum) parsley (fod-plt) scissors (act-art)
eel leopard (anm-sub) pickle (fod-sta) showman (agt-hum)
hare lizard (anm-hum) pork (fod-mea) upholstery (act-art)

Table 4: Sample of experimental items for the meta alternation anm-fod. (Abbreviations are listed in Table 2.)

baseline uses the intuition that frequent words will
tend to exhibit more typical alternations.

4.3 Model Parameters
There are four more parameters to set.

Definition of vector space. We instantiate the vecI

function in three ways. All three are based on
dependency-parsed spaces, following our intuition
that topical similarity as provided by window-based
spaces is insufficient for this task. The functions dif-
fer in the definition of the space’s dimensions, incor-
porating different assumptions about distributional
differences among meta alternations.

The first option, gram, uses grammatical paths
of lengths 1 to 3 as dimensions and thus character-
izes lemmas and meta senses in terms of their gram-
matical context (Schulte im Walde, 2006), with a
total of 2,528 paths. The second option, lex, uses
words as dimensions, treating the dependency parse
as a co-occurrence filter (Padó and Lapata, 2007),
and captures topical distinctions. The third option,
gramlex, uses lexicalized dependency paths like
obj–see to mirror more fine-grained semantic proper-
ties (Grefenstette, 1994). Both lex and gramlex
use the 10,000 most frequent items in the corpus.
Vector elements. We use “raw” corpus co-
occurrence frequencies as well as log-likelihood-
transformed counts (Lowe, 2001) as elements of the
co-occurrence vectors.
Definition of centroid computation. There are
three centroid computations in CAM: to combine
instances into lemma (type) vectors (function vecL

in Eq. (1)); to combine lemma vectors into meta
sense vectors (function repM in Eq. (2)); and to com-
bine meta sense vectors into meta alternation vectors
(function repA in Eq. (3)).

For vecL, the obvious definition of the centroid
function is as a micro-average, that is, a simple av-
erage over all instances. For repM and repA, there

is a design choice: The centroid can be computed
by micro-averaging as well, which assigns a larger
weight to more frequent lemmas (repM) or meta
senses (repA). Alternatively, it can be computed
by macro-averaging, that is, by normalizing the in-
dividual vectors before averaging. This gives equal
weight to the each lemma or meta sense, respectively.
Macro-averaging in repA thus assumes that senses
are equally distributed, which is an oversimplifica-
tion, as word senses are known to present skewed
distributions (McCarthy et al., 2004) and vectors for
words with a predominant sense will be similar to the
dominant meta sense vector. Micro-averaging par-
tially models sense skewedness under the assumption
that word frequency correlates with sense frequency.

Similarity measure. As the vector similarity mea-
sure in Eq. (5), we use the standard cosine similar-
ity (Lee, 1999). It ranges between −1 and 1, with 1
denoting maximum similarity. In the current model
where the vectors do not contain negative counts, the
range is [0; 1].

5 Results

Effect of Parameters The four parameters of Sec-
tion 4.3 (three space types, macro-/micro-averaging
for repM and repA, and log-likelihood transforma-
tion) correspond to 24 instantiations of CAM.

Figure 1 shows the influence of the four parame-
ters. The only significant difference is tied to the use
of lexicalized vector spaces (gramlex / lex are
better than gram). The statistical significance of this
difference was verified by a t-test (p < 0.01). This
indicates that meta alternations can be characterized
better through fine-grained semantic distinctions than
by syntactic ones.

The choice of micro- vs. macro-average does not
have a clear effect, and the large variation observed
in Figure 1 suggests that the best setup is dependent
on the specific meta sense or meta alternation being
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Figure 1: Effect of model parameters on performance. A
data point is the mean AP (MAP) across all meta alterna-
tions for a specific setting.

modeled. Focusing on meta alternations, whether the
two intervening meta senses should be balanced or
not can be expected to depend on the frequencies of
the concepts denoted by each meta sense, which vary
for each case. Indeed, for AGENT-HUMAN, the alter-
nation which most benefits from the micro-averaging
setting, the targets are much more similar to the HU-
MAN meta sense (which is approximately 8 times as
frequent as AGENT) than to the AGENT meta sense.
The latter contains anything that can have an effect on
something, e.g. emulsifier, force, valium. The targets
for AGENT-HUMAN, in contrast, contain words such
as engineer, manipulator, operative, which alternate
between an agentive role played by a person and the
person herself.

While lacking in clear improvement, log-
likelihood transformation tends to reduce variance,
consistent with the effect previously found in selec-
tional preference modeling (Erk et al., 2010).

Overall Performance Although the performance
of the CAM models is still far from perfect, all 24
models obtain MAP scores of 0.35 or above, while
the random baseline is at 0.313, and the overall fre-
quency baseline at 0.291. Thus, all models con-
sistently outperform both baselines. A bootstrap
resampling test (Efron and Tibshirani, 1994) con-

firmed that the difference to the frequency baseline
is significant at p < 0.01 for all 24 models. The
difference to the random baseline is significant at
p < 0.01 for 23 models and at p < 0.05 for the
remaining model. This shows that the models cap-
ture the meta alternations to some extent. The best
model uses macro-averaging for repM and repA in
a log-likelihood transformed gramlex space and
achieves a MAP of 0.399.

Table 5 breaks down the performance of the best
CAM model by meta alternation. It shows an en-
couraging picture: CAM outperforms the frequency
baseline for 49 of the 60 meta alternations and both
baselines for 44 (73.3%) of all alternations. The per-
formance shows a high degree of variance, however,
ranging from 0.22 to 0.71.

Analysis by Meta Alternation Coherence Meta
alternations vary greatly in their difficulty. Since
CAM is an attribute similarity-based approach, we
expect it to perform better on the alternations whose
meta senses are ontologically more similar. We next
test this hypothesis.

Let Dmi = {dij} be the set of distractors for
the targets T = {tj} that share the meta sense mi,
and DR = {d3j} the set of random distractors. We
define the coherence κ of an alternation a of meta
senses m1,m2 as the mean (ø) difference between
the similarity of each target vector to a and the simi-
larity of the corresponding distractors to a, or for-
mally κ(a) = ø sim(repA(m1,m2), vecL(tj)) −
sim(repA(m1,m2), vecL(dij)), for 1 ≤ i ≤ 3 and
1 ≤ j ≤ 10. That is, κ measures how much more
similar, on average, the meta alternation vector is to
the target vectors than to the distractor vectors. For a
meta alternation with a higher κ, the targets should
be easier to distinguish from the distractors.

Figure 2 plots AP by κ for all meta alternations.
As we expect from the definition of κ, AP is strongly
correlated with κ. However, there is a marked Y
shape, i.e., a divergence in behavior between high-
κ and mid-AP alternations (upper right corner) and
mid-κ and high-AP alternations (upper left corner).

In the first case, meta alternations perform worse
than expected, and we find that this typically points
to missing senses, that is, problems in the underlying
lexical resource (WordNet, via CoreLex). For in-
stance, the FOOD-PLANT distractor almond is given
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grs-psy 0.709 com-evt 0.501 art-com 0.400 atr-com 0.361 art-frm 0.286
pro-sta 0.678 art-grs 0.498 act-pos 0.396 atr-sta 0.361 act-hum 0.281
fod-plt 0.645 hum-psy 0.486 phm-sta 0.388 act-phm 0.339 art-fod 0.280
psy-sta 0.630 hum-nat 0.456 atr-psy 0.384 anm-art 0.335 grs-hum 0.272
hum-prt 0.602 anm-hum 0.448 fod-hum 0.383 art-atr 0.333 act-art 0.267
grp-psy 0.574 com-psy 0.443 plt-sub 0.383 act-psy 0.333 art-grp 0.258
grs-log 0.573 act-grs 0.441 act-com 0.382 agt-hum 0.319 art-nat 0.248
act-evt 0.539 atr-rel 0.440 grp-grs 0.379 art-evt 0.314 act-atr 0.246
evt-psy 0.526 art-qui 0.433 art-psy 0.373 atr-evt 0.312 art-hum 0.240
act-tme 0.523 act-sta 0.413 art-prt 0.364 art-sta 0.302 art-loc 0.238
art-pho 0.520 art-sub 0.412 evt-sta 0.364 act-grp 0.296 art-pos 0.228
act-pro 0.513 art-log 0.407 anm-fod 0.361 com-hum 0.292 com-sta 0.219

Table 5: Meta alternations and their average precision values for the task. The random baseline performs at 0.313 while
the frequency baseline ranges from 0.255 to 0.369 with a mean of 0.291. Alternations for which the model outperforms
the frequency baseline are in boldface (mean AP: 0.399, standard deviation: 0.119).

grs-psy democracy, faculty, humanism, regime,
pro-sta bondage, dehydration, erosion,urbanization
psy-sta anaemia,delight, pathology, sensibility
hum-prt bum, contractor, peter, subordinate
grp-psy category, collectivism, socialism, underworld

Table 6: Sample targets for meta alternations with high
AP and mid-coherence values.

a PLANT sense by WordNet, but no FOOD sense. In
the case of SOCIAL GROUP-GEOGRAPHICAL LOCA-
TION, distractors laboratory and province are miss-
ing SOCIAL GROUP senses, which they clearly pos-
sess (cf. The whole laboratory celebrated Christmas).
This suggests that our approach can help in Word
Sense Induction and thesaurus construction.

In the second case, meta alternations perform bet-
ter than expected: They have a low κ, but a high
AP. These include grs-psy, pro-sta, psy-sta,
hum-prt and grp-psy. These meta alternations
involve fairly abstract meta senses such as PSYCHO-
LOGICAL FEATURE and STATE.9 Table 6 lists a
sample of targets for the five meta alternations in-
volved. The targets are clearly similar to each other
on the level of their meta senses. However, they can
occur in very different semantic contexts. Thus, here
it is the underlying model (the gramlex space) that
can explain the lower than average coherence. It is
striking that CAM can account for abstract words and
meta alternations between these, given that it uses
first-order co-occurrence information only.

9An exception is hum-prt. It has a low coherence because
many WordNet lemmas with a PART sense are body parts.

0.00 0.05 0.10 0.15 0.20 0.250
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

coherence

A
P

act−art
act−atr

act−com

act−evt

act−grp

act−grs

act−hum

act−phm

act−pos

act−pro

act−psy

act−sta

act−tme

agt−humanm−art
anm−fod

anm−hum

art−atr

art−com

art−evt
art−fodart−frm
art−grp

art−grs

art−humart−loc

art−log

art−nat

art−pho

art−pos

art−prtart−psy

art−qui

art−sta

art−sub

atr−com

atr−evt

atr−psy

atr−rel

atr−sta

com−evt

com−hum

com−psy

com−sta

evt−psy

evt−sta
fod−hum

fod−plt

grp−grs

grp−psy

grs−hum

grs−log

grs−psy

hum−nat

hum−prt

hum−psy

phm−staplt−sub

pro−sta

psy−sta

Figure 2: Average Precision and Coherence (κ) for each
meta alternation. Correlation: r = 0.743 (p < 0.001)

6 Related work

As noted in Section 1, there is little work in empiri-
cal computational semantics on explicitly modeling
sense alternations, although the notions that we have
formalized here affect several tasks across NLP sub-
fields.

Most work on regular sense alternations has fo-
cused on regular polysemy. A pioneering study is
Buitelaar (1998), who accounts for regular polysemy
through the CoreLex resource (cf. Section 3). A
similar effort is carried out by Tomuro (2001), but
he represents regular polysemy at the level of senses.
Recently, Utt and Padó (2011) explore the differences
between between idiosyncratic and regular polysemy
patterns building on CoreLex. Lapata (2000) focuses
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on the default meaning arising from word combina-
tions, as opposed to the polysemy of single words as
in this study.

Meta alternations other than regular polysemy,
such as metonymy, play a crucial role in Informa-
tion Extraction. For instance, the meta alternation
SOCIAL GROUP-GEOGRAPHICAL LOCATION cor-
responds to an ambiguity between the LOCATION-
ORGANIZATION Named Entity classes which is
known to be a hard problem in Named Entity Recog-
nition and Classification (Markert and Nissim, 2009).
Metaphorical meta alternations have also received
attention recently (Turney et al., 2011)

On a structural level, the prediction of meta al-
ternations shows a clear correspondence to analogy
prediction as approached in Turney (2006) (carpen-
ter:wood is analogous to mason:stone, but not to
photograph:camera). The framework defined in Sec-
tion 2 conceptualizes our task in a way parallel to that
of analogical reasoning, modeling not “first-order”
semantic similarity, but “second-order” semantic re-
lations. However, the two tasks cannot be approached
with the same methods, as Turney’s model relies on
contexts linking two nouns in corpus sentences (what
does A do to B?). In contrast, we are interested in
relations within words, namely between word senses.
We cannot expect two different senses of the same
noun to co-occur in the same sentence, as this is dis-
couraged for pragmatic reasons (Gale et al., 1992).

A concept analogous to our notion of meta sense
(i.e., senses beyond single words) has been used in
previous work on class-based WSD (Yarowsky, 1992;
Curran, 2005; Izquierdo et al., 2009), and indeed,
the CAM might be used for class-based WSD as
well. However, our emphasis lies rather on modeling
polysemy across words (meta alternations), some-
thing that is absent in WSD, class-based or not. The
only exception, to our knowledge, is Ando (2006),
who pools the labeled examples for all words from a
dataset for learning, implicitly exploiting regularities
in sense alternations.

Meta senses also bear a close resemblance to the
notion of semantic class as used in lexical acqui-
sition (Hindle, 1990; Merlo and Stevenson, 2001;
Schulte im Walde, 2006; Joanis et al., 2008). How-
ever, in most of this research polysemy is ignored.
A few exceptions use soft clustering for multiple as-
signment of verbs to semantic classes (Pereira et al.,

1993; Rooth et al., 1999; Korhonen et al., 2003),
and Boleda et al. (to appear) explicitly model regular
polysemy for adjectives.

7 Conclusions and Future Work

We have argued that modeling regular polysemy and
other analogical processes will help improve current
models of word meaning in empirical computational
semantics. We have presented a formal framework
to represent and operate with regular sense alterna-
tions, as well as a first simple instantiation of the
framework. We have conducted an evaluation of dif-
ferent implementations of this model in the new task
of determining whether words match a given sense
alternation. All models significantly outperform the
baselines when considered as a whole, and the best
implementation outperforms the baselines for 73.3%
of the tested alternations.

We have two next steps in mind. The first is to
become independent of WordNet by unsupervised
induction of (meta) senses and alternations from the
data. This will allow for models that, unlike CAM,
can go beyond “disemous” words. Other improve-
ments on the model and evaluation will be to develop
more informed baselines that capture semantic shifts,
as well as to test alternate weighting schemes for the
co-occurrence vectors (e.g. PMI) and to use larger
corpora than the BNC.

The second step is to go beyond the limited in-vitro
evaluation we have presented here by integrating al-
ternation prediction into larger NLP tasks. Knowl-
edge about alternations can play an important role in
counteracting sparseness in many tasks that involve
semantic compatibility, e.g., testing the applicability
of lexical inference rules (Szpektor et al., 2008).
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