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Abstract

Text reuse is common in many scenarios and
documents are often based, at least in part, on
existing documents. This paper reports an ap-
proach to detecting text reuse which identifies
not only documents which have been reused
verbatim but is also designed to identify cases
of reuse when the original has been rewrit-
ten. The approach identifies reuse by compar-
ing word n-grams in documents and modifies
these (by substituting words with synonyms
and deleting words) to identify when text has
been altered. The approach is applied to a cor-
pus of newspaper stories and found to outper-
form a previously reported method.

1 Introduction

Text reuse is the process of creating new docu-
ment(s) using text from existing document(s). Text
reuse is standard practice in some situations, such as
journalism. Applications of automatic detection of
text reuse include the removal of (near-)duplicates
from search results (Hoad and Zobel, 2003; Seo and
Croft, 2008), identification of text reuse in journal-
ism (Clough et al., 2002) and identification of pla-
giarism (Potthast et al., 2011).

Text reuse is more difficult to detect when the
original text has been altered. We propose an ap-
proach to the identification of text reuse which is
intended to identify reuse in such cases. The ap-
proach is based on comparison of word n-grams, a
popular approach to detecting text reuse. However,
we also account for synonym replacement and word
deletion, two common text editing operations (Bell,

1991). The relative importance of n-grams is ac-
counted for using probabilities obtained from a lan-
guage model. We show that making use of modified
n-grams and their probabilities improves identifica-
tion of text reuse in an existing journalism corpus
and outperforms a previously reported approach.

2 Related Work

Approaches for identifying text reuse based on
word-level comparison (such as the SCAM copy de-
tection system (Shivakumar and Molina, 1995)) tend
to identify topical similarity between a pair of doc-
uments, whereas methods based on sentence-level
comparison (e.g. the COPS copy detection sys-
tem (Brin et al., 1995)) are unable to identify when
text has been reused if only a single word has been
changed in a sentence.

Comparison of word and character n-grams has
proven to be an effective method for detecting text
reuse (Clough et al., 2002; Cedeño et al., 2009; Chiu
et al., 2010). For example, Cedeño et al. (2009)
showed that comparison of word bigrams and tri-
grams are an effective method for detecting reuse in
journalistic text. Clough et al. (2002) also applied
n-gram overlap to identify reuse of journalistic text,
combining it with other approaches such as sentence
alignment and string matching algorithms. Chiu et
al. (2010) compared n-grams to identify duplicate
and reused documents on the web. Analysis of word
n-grams has also proved to be an effective method
for detecting plagiarism, another form of text reuse
(Lane et al., 2006).

However, a limitation of n-gram overlap approach
is that it fails to identify reuse when the original
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text has been altered. To overcome this problem we
propose using modified n-grams, which have been
altered by deleting or substituting words in the n-
gram. The modified n-grams are intended to im-
prove matching with the original document.

3 Determining Text Reuse with N-gram
Overlap

3.1 N-grams Overlap (NG)
Following Clough et al. (2002), the asymmetric con-
tainment measure (eqn 1) was used to quantify the
degree of text within a document (A) that is likely to
have been reused in another document (B).

scoren(A, B) =

∑
ngram∈B

count(ngram,A)∑
ngram∈B

count(ngram,B)
(1)

where count(ngram,A) is the number of times
ngram appears in document A. A score of 1 means
that document B is contained in document A and a
score of 0 that none of the n-grams in B occur in A.

3.2 Modified N-grams
N-gram overlap has been shown to be useful for
measuring text reuse as derived texts typically share
longer n-grams (≥ 3 words). However, the approach
breaks down when an original document has been
altered. To counter this problem we applied vari-
ous techniques for modifying n-grams that allow for
word deletions (Deletions) and word substitutions
(WordNet and Paraphrases), two common text edit-
ing operations.

Deletions (Del) Assume that w1, w2, ...wn is an
n-gram. Then a set of modified n-grams can be cre-
ated by removing one of the w2 ... wn−1. The first
and last words in the n-gram are not removed since
they will also be generated as shorter n-grams. An
n-gram will generate n − 2 deleted n-grams and no
deleted n-grams will be generated for unigrams and
bigrams.

Substitutions Further n-grams can be created by
substituting one of the words in an n-gram with one
of its synonyms from WordNet (WN). For words
with multiple senses we use synonyms from all
senses. Modified n-grams are created by substitut-
ing one of the words in the n-gram with one of its
synonyms from WordNet.

Similarly to the WordNet approach, n-grams can
be created by substituting one of the words with an
equivalent term from a paraphrase lexicon, which
we refer to as Paraphrases (Para). A paraphrase
lexicon was generated automatically (Burch, 2008)
and ten lexical equivalents (the default setting) pro-
duced for each word. Modified n-grams were cre-
ated by substituting one of the words in the n-gram
with one of the lexical equivalents.

3.3 Comparing Modified N-grams
The modified n-grams are applied in the text reuse
score by generating modified n-grams for the docu-
ment that is suspected to contain reused text. These
n-grams are then compared with the original docu-
ment to determine the overlap. However, the tech-
niques in Section 3.2 generate a large number of
modified n-grams which means that the number
of n-grams that overlap with document A can be
greater than the total number of n-grams in B, lead-
ing to similarity scores greater than 1. To avoid this
the n-gram overlap counts are constrained in a simi-
lar way that they are clipped in BLEU and ROUGE
(Papineni et al., 2002; Lin, 2004).

For each n-gram in B, a set of modified n-grams,
mod(ngram), is created.1 The count for an in-
dividual n-gram in B, exp count(ngram,B), can
be computed as the number of times any n-gram in
mod(ngram) occurs in A, see equation 2.∑

ngram′ ∈mod(ngram)

count(ngram′, A) (2)

However, the contribution of this count to the text
reuse score has to be bounded to ensure that the com-
bined count of the modified n-grams appearing in
A does not exceed the number of times the origi-
nal n-gram occurs in B. Consequently the text reuse
score, scoren(A, B), is computed using equation 3.∑

ngram
∈B

min(exp count(ngram, A), count(ngram, B))

∑
ngram∈B

count(ngram, B)

(3)

3.4 Weighting N-grams
Probabilities of each n-gram, obtained using a lan-
guage model, are used to increase the importance of

1This is the set of n-grams that could have been created by
modifing an n-gram in B and includes the original n-gram itself.
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rare n-grams and decrease the contribution of com-
mon ones. N-gram probabilities are computed us-
ing the SRILM language modelling toolkit (Stolcke,
2002). The score for each n-gram is computed as
its Information Content (Cover and Thomas, 1991),
ie. −log(P ). When the language model (LM) is
applied the scores associated with each n-gram are
used instead of counts in equations 2 and 3.

4 Experiments

4.1 METER Corpus

The METER corpus (Gaizauskas et al., 2001) con-
tains 771 Press Association (PA) articles, some of
which were used as source(s) for 945 news stories
published by nine British newspapers.

These 945 documents are classified as Wholly De-
rived (WD), Partially Derived (PD) and Non De-
rived (ND). WD means that the newspaper article
is likely derived entirely from the PA source text;
PD reflects the situation where some of the newspa-
per article is derived from the PA source text; news
stories likely to be written independently of the PA
source fall into the category of ND. In our experi-
ments, the 768 stories from court and law reporting
were used (WD=285, PD=300, ND=183) to allow
comparison with Clough et al. (2002). To provide a
collection to investigate binary classification we ag-
gregated the WD and PD cases to form a Derived set.
Each document was pre-processed by converting to
lower case and removing all punctuation marks.

4.2 Determining Reuse

The text reuse task aims to distinguish between lev-
els of text reuse, i.e. WD, PD and ND. Two versions
of a classification task were used: binary classifica-
tion distinguishes between Derived (i.e. WD ∪ PD)
and ND documents, and ternary classification distin-
guishes all three levels of reuse.

A Naive Bayes classifier (Weka version 3.6.1) and
10-fold cross validation were used for the experi-
ments. Containment similarity scores between all
PA source texts and news articles on the same story
were computed for word uni-grams, bi-grams, tri-
grams, four-grams and five-grams. These five simi-
larity scores were used as features. Performance was
measured using precision, recall and F1 measures
with the macro-average reported across all classes.

The language model (Section 3.4) was trained us-
ing 806,791 news articles from the Reuters Corpus
(Rose et al., 2002). A high proportion of the news
stories selected were related to the topics of enter-
tainment and legal reports to reflect the subjects of
the new articles in the METER corpus.

5 Results and Analysis

Tables 1 and 2 show the results of the binary
and ternary classification experiments respectively.
“NG” refers to the comparison of n-grams in each
document (Section 3.1), while “Del”, “WN” and
“Para” refer to the modified n-grams created us-
ing deletions, WordNet and paraphrases respectively
(Section 3.2). The prefix “LM” (e.g. “LM-NG”) in-
dicates that the n-grams are weighted using the lan-
guage model probability scores (Section 3.4).

For the binary classification task (Table 1) it can
be observed that including modified n-grams im-
proves performance. This improvement is observed
when each of the three types of modified n-grams
is applied individually, with a greater increase being
observed for the n-grams created using the WordNet
and paraphrase approaches. Further improvement is
observed when different types of modified n-grams
are combined with the best performance obtained
when all three types are used. All improvements
over the baseline approach (NG) are statistically
significant (Wilcoxon signed-rank test, p < 0.05).
These results demonstrate that the various types of
modified n-grams all contribute to identifying when
text is being reused since they capture different types
of rewrite operations.

In addition, performance consistently improves
when n-grams are weighted using language model
scores. The improvement is significant for all types
of n-grams. This demonstrates that the information
provided by the language model is useful in deter-
mining the relative importance of n-grams.

Several of the results are higher than those re-
ported by Clough et al. (2002) (F1=0.763), despite
the fact their approach supplements n-gram overlap
with additional techniques such as sentence align-
ment and string search algorithms.

Results of the ternary classification task are
shown in Table 2. Results show a similar pattern
to those observed for the binary classification task
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Approach P R F1

NG 0.836 0.706 0.732
LM-NG 0.846 0.722 0.746

Del 0.851 0.745 0.767
LM-Del 0.858 0.765 0.785

WN 0.876 0.801 0.817
LM-WN 0.879 0.810 0.825

Para 0.884 0.821 0.834
LM-Para 0.888 0.831 0.843
Del+WN 0.889 0.835 0.847

LM-Del+WN 0.884 0.848 0.855
Del+Para 0.892 0.841 0.853

LM-Del+Para 0.896 0.849 0.860
WN+Para 0.894 0.848 0.858

LM-WN+Para 0.896 0.865 0.871
Del+WN+Para 0.897 0.856 0.865

LM-Del+WN+Para 0.903 0.876 0.882
(Clough et al., 2002) — — 0.763

Table 1: Results for binary classification

and the best result is also obtained when all three
types of modified n-grams are included and n-grams
are weighted with probability scores. Once again
weighting n-grams with language model scores im-
proves results for all types of n-gram and this im-
provement is significant. Results for several types of
n-gram are also better than those reported by Clough
et al. (2002) (F1=0.664).

Results for all approaches are lower for the
ternary classification. This is because the binary
classification task involves distinguishing between
two classes of documents which are relatively dis-
tinct (derived and non-derived) while the ternary
task divides the derived class into two (WD and PD)
which are more difficult to separate (see Table 3
showing confusion matrix for the approach which
gave best results for ternary classification).

6 Conclusion

This paper describes an approach to the analysis of
text reuse which is based on comparison of n-grams.
This approach is augmented by modifying the n-
grams in various ways and weighting them with
probabilities derived from a language model. Evalu-
ation is carried out on a standard data set containing
examples of reused journalistic texts. Making use of

Approach P R F1

NG 0.596 0.557 0.551
LM-NG 0.615 0.579 0.574

Del 0.612 0.584 0.579
LM-Del 0.633 0.611 0.606

WN 0.644 0.636 0.631
LM-WN 0.649 0.640 0.635

Para 0.662 0.653 0.647
LM-Para 0.669 0.659 0.654
Del+WN 0.655 0.649 0.643

LM-Del+WN 0.668 0.656 0.650
Del+Para 0.665 0.658 0.652

LM-Del+Para 0.661 0.662 0.655
WN+Para 0.668 0.661 0.655

LM-WN+Para 0.680 0.675 0.668
Del+WN+Para 0.669 0.666 0.660

LM-Del+WN+Para 0.688 0.689 0.683
(Clough et al., 2002) — — 0.664

Table 2: Results for ternary classification

Classified as WD PD ND
WD 139 94 14
PD 57 206 54
ND 1 13 191

Table 3: Confusion matrix when “LM-Del+WN+Para”
approach used for ternary classification

modified n-grams with appropriate weights is found
to improve performance when detecting text reuse
and the approach described here outperforms an ex-
isting approach. In future we plan to experiment
with other methods for modifying n-grams and also
to apply this approach to other types of text reuse.
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