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Abstract
We describe a WordNet-based system for
the extraction of semantic relations be-
tween pairs of nominals appearing in
English texts. The system adopts a
lightweight approach, based on training
a Bayesian Network classifier using large
sets of binary features. Our features con-
sider: i) the context surrounding the an-
notated nominals, and ii) different types
of knowledge extracted from WordNet, in-
cluding direct and explicit relations be-
tween the annotated nominals, and more
general and implicit evidence (e.g. seman-
tic boundary collocations). The system
achieved a Macro-averaged F1 of 68.02%
on the “Multi-Way Classification of Se-
mantic Relations Between Pairs of Nom-
inals” task (Task #8) at SemEval-2010.

1 Introduction

The “Multi-Way Classification of Semantic Re-
lations Between Pairs of Nominals” task at
SemEval-2010 (Hendrickx et al., 2010) consists
in: i) selecting from an inventory of nine possi-
ble relations the one that most likely holds be-
tween two annotated nominals appearing in the in-
put sentence, and ii) specifying the order of the
nominals as the arguments of the relation. In con-
trast with the semantic relations classification task
(Task #4) at SemEval-2007 (Girju et al., 2007),
which treated each semantic relation separately as
a single two-class (positive vs. negative) classifi-
cation task, this year’s edition of the challenge pre-
sented participating systems with a more difficult
and realistic multi-way setup, where the relation
Other can also be assigned if none of the nine re-
lations is suitable for a given sentence. Examples

of the possible markable relations are reported in
Table 11.

The objective of our experiments with the pro-
posed task is to develop a Relation Extraction sys-
tem based on shallow linguistic processing, taking
the most from available thesauri and ontologies.
As a first step in this direction, our submitted runs
have been obtained by processing the input sen-
tences only to lemmatize their terms, and by using
WordNet as the sole source of knowledge.

Similar to other approaches (Moldovan and
Badulescu, 2009; Beamer et al., 2009), our sys-
tem makes use of semantic boundaries extracted
from the WordNet IS-A backbone. Such bound-
aries (i.e. divisions in the WordNet hierarchy
that best generalize over the training examples)
are used to define pairs of high-level synsets with
high correlation with specific relations. For in-
stance, <microorganism#1, happening#1> and
<writing#1, consequence#1> are extracted from
the training data as valid high-level collocations
respectively for the relations Cause-Effect and
Message-Topic. Besides exploiting the Word-
Net IS-A hierarchy, the system also uses the
holo-/meronymy relations, and information de-
rived from the WordNet glosses to capture specific
relations such as Member-Collection and Product-
Producer. In addition, the context surrounding
the annotated nominals is represented as a bag-of-
words/synonyms to enhance the relation extraction
process. Several experiments have been carried
out encoding all the information as large sets of
binary features (up to ∼6200) to train a Bayesian
Network classifier available in the Weka2 toolkit.
To capture both the relations and the order of

1In the first example the order of the nominals is
(<e2>,<e1>), while in the others is (<e1>,<e2>)

2http://www.cs.waikato.ac.nz/ml/weka/
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1 Cause-Effect(e2,e1) A person infected with a particular <e1>flu</e1> <e2>virus</e2> strain develops an
antibody against that virus.

2 Instrument-Agency(e1,e2) The <e1>river</e1> once powered a <e2>grist mill</e2>.
3 Product-Producer(e1,e2) The <e1>honey</e1> <e2>bee</e2> is the third insect genome published by scientists,

after a lab workhorse, the fruit fly, and a health menace, the mosquito.
4 Content-Container(e1,e2) I emptied the <e1>wine</e1> <e2>bottle</e2> into my glass and toasted my friends.
5 Entity-Origin(e1,e2) <e1>This book</e1>is from the 17th <e2>century</e2>.
6 Entity-Destination(e1,e2) <e1>Suspects</e1> were handed over to the <e2>police station</e2>.
7 Component-Whole(e1,e2) <e1>Headlights</e1> are considered as the eyes of the <e2>vehicle</e2>.
8 Member-

Collection(e1,e2)
Mary looked back and whispered: ‘I know every <e1>tree</e1> in this
<e2>forest</e2>, every scent’.

9 Message-Topic(e1,e2) Here we offer a selection of our favourite <e1>books</e1> on military
<e2>history</e2>.

Table 1: SemEval-2010 Task #8 semantic relations.

their arguments, training sentences having oppo-
site argument directions for the same relation have
been handled separately, and assigned to different
classes (thus obtaining 18 classes for the nine tar-
get relations, plus one for the Other relation).

The following sections overview our experi-
ments, describing the features used by the sys-
tem (Section 2), and the submitted runs with the
achieved results (Section 3). A concluding discus-
sion on the results is provided in Section 4.

2 Features used

The system uses two types of boolean features:
WordNet features, and context features.

2.1 WordNet features
WordNet features consider different types of
knowledge extracted from WordNet 3.0.

Semantic boundary collocations. Collocations
of high-level synsets featuring a high correlation
with specific relations are acquired from the train-
ing set using a bottom-up approach. Starting from
the nominals annotated in the training sentences
(<e1> and <e2>), the WordNet IS-A backbone is
climbed to collect all their ancestors. Then, all the
ancestors’ collocations occurring at least n times
for at most m relations are retained, and treated
as boolean features (set to 1 for a given sentence
if its annotated nominals appear among their hy-
ponyms). The n and m parameters are optimized
on the training set.

Holo-/meronymy relations. These boolean fea-
tures are set to 1 every time a pair of annotated
nominals in a sentence is directly connected by
holo-/meronyny relations. They are particularly
appropriate to capture the Component-Whole and
Member-Collection relations, as in the 8th exam-
ple in Table 1 (where tree#1 is an holonym of

forest#1). Due to time constraints, we did not
explore the possibility to generalize these fea-
tures considering transitive closures of the nomi-
nals’ hypo-/hypernyms. This possibility could al-
low to handle sentences like “A <e1>herd</e1>
is a large group of <e2>animals</e2>.” Here,
though herd#1 and animal#1 are not directly con-
nected by the meronymy relation, all the herd#1
meronyms have animal#1 as a common ancestor.

Glosses. Given a pair of annotated nominals
<e1>,<e2>, these features are set to 1 every time
either <e1> appears in the gloss of <e2>, or
vice-versa. They are intended to support the dis-
covery of relations in the case of consecutive nom-
inals (e.g. honey#1 and bee#1 in the 3rd example
in Table 1), where contextual information does not
provide sufficient clues to make a choice. In our
experiments we extracted features from both tok-
enized and lemmatized words (both nominals, and
gloss words). Also in this case, due to time con-
straints we did not explore the possibility to gener-
alize the feature considering the nominals’ hypo-
/hypernyms. This possibility could allow to handle
sentences like examples 1 and 4 in Table 1. For
instance in example 4, the gloss of “bottle” con-
tains two hypernyms of wine#1, namely drink#3
and liquid#1, that could successfully trigger the
Content-Container relation.

Synonyms. While the previous features operate
with the annotated nominals, WordNet synonyms
are used to generalize the other terms in the sen-
tence, allowing to extract different types of con-
textual features (see the next Section).

2.2 Context features

Besides the annotated nominals, also specific
words (and word combinations) appearing in the
surrounding context often contribute to trigger the
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target relations. Distributional evidence is cap-
tured by considering word contexts before, be-
tween, and after the annotated nominals. To this
aim, we experimented with windows of different
size, containing words that occur in the training
set a variable number of times. Both the parame-
ters (i.e. the size of the windows, and the number
of occurrences) are optimized on training data. In
our experiments we extracted contextual features
from lemmatized sentences.

3 Submitted runs and results

Our participation to the SemEval-2010 Task
#8 consisted in four runs, with the best one
(FBK NK-RES1) achieving a Macro-averaged F1
of 68.02% on the test data. For this submis-
sion, the overall training and test running times are
about 12’30” and 1’30” respectively, on an Intel
Core2 Quad 2.66GHz with 4GB RAM.

FBK NK-RES1. This run has been obtained
adopting a conservative approach, trying to min-
imize the risk of overfitting the training data. The
features used can be summarized as follows:

• Semantic boundary collocations: all the col-
locations of <e1> and <e2> ancestors oc-
curring at least 10 times in the training set (m
param.), for at most 3 relations (n param.);

• Holo-/meronymy relations between the anno-
tated nominals;

• Glosses: handled at the level of tokens;

• Context features: left, between, and right
context windows of size 3-ALL-3 words re-
spectively. Number of occurrences: 25 (left),
10 (between), 25 (right).

On the training set, the Bayesian Network classi-
fier (trained with 2239 features, and evaluated with
10-fold cross-validation) achieves an Accuracy of
65.62% (5249 correctly classified instances out of
8000), and a Macro F1 of 78.15%.

FBK NK-RES2. Similar to the first run, but:

• Semantic boundary collocations: m=9, n=3;

• Glosses: handled at the level of lemmas;

• Context features: left, between, and right
context windows of size 4-ALL-1 words re-
spectively (occurrences: 25-10-25).

Run 1000 2000 4000 8000
FBK NK-RES1 55.71 64.06 67.80 68.02
FBK NK-RES2 54.27 63.68 67.08 67.48
FBK NK-RES3 54.25 62.73 66.11 66.90
FBK NK-RES4 44.11 58.85 63.06 65.84

Table 2: Test results (Macro-averaged F1) using
different amounts of training sentences.

Based on the observation of system’s behaviour on
the training data, the objectives of this run were to:
i) add more collocations as features, ii) increase
the importance of terms appearing in the left con-
text, iii) reduce the importance of terms appearing
in the right context, and iv) increase the possibil-
ity of matching the nominals with gloss terms by
considering their respective lemmas. On the train-
ing set, the classifier (trained with 2998 features)
achieves 66.92% Accuracy (5353 correctly classi-
fied instances), and a Macro F1 of 79.56%.

FBK NK-RES3. Similar to the second run, but
considering the synonyms of the most frequent
sense of the words between <e1> and <e2>.

The goal of this run was to generalize the con-
text between nominals, by considering word lem-
mas. On the training set, the classifier (trained
with 2998 features) achieves an Accuracy of
64.94% (5195 correctly classified instances), and
a Macro F1 of 77.38%.

FBK NK-RES4. Similar to the second run, but
considering semantic boundary collocations oc-
curring at least 7 times in the training set (m
param.), for at most 3 relations (n param.).

The goal of this run was to further increase the
number of collocations used as features. On the
training set, the classifier (trained with 6233 fea-
tures) achieves achieves 68.12% Accuracy (5449
correct classifications), and 82.24% Macro F1.

As regards the results on the test set, Table 2 re-
ports the scores achieved by each run using differ-
ent portions of the training set (1000, 2000, 4000,
8000 examples), while Figure 1 shows the learn-
ing curves for each relation of our best run.

4 Discussion and conclusion

As can be seen from Table 2, the results contra-
dict our expectations about the effectiveness of our
less conservative configurations and, in particular,
about the utility of using larger amounts of se-
mantic boundary collocations. The performance
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Figure 1: Learning curves on the test set
(FBK NK-RES1).

decrease from Run2 to Run43 clearly indicates an
overfitting problem. Though suitable to model the
training data, the additional collocations were not
encountered in the test set. This caused a bias to-
wards the Other relation, which reduced the over-
all performance of the system.

Regarding our best run, Figure 1 shows dif-
ferent system’s behaviours with the different tar-
get relations. For some of them (e.g. Entity-
Destination, Cause-Effect) better results are mo-
tivated by the fact that they are often triggered
by frequent unambiguous word patterns (e.g.
“<e1>has been moved to a <e2>”, “<e1>
causes <e2>”). Such relations are effectively
handled by the context features which, in contrast,
are inadequate for those expressed with high lex-
ical variability. This is particularly evident with
the Other relation, for which the acquired context
features poorly discriminate positive from nega-
tive examples even on the training set.

For some relations additional evidence is suc-
cessfully brought by the WordNet features. For
instance, the good results for Member-Collection
demonstrate the usefulness of the holo-/meronymy
features.

As regards semantic boundary collocations, to
check their effectiveness we performed a post-hoc
analysis of those used in our best run. Such anal-
ysis was done in two ways: i) by counting the
number of collocations acquired on the training
set for each relation Ri, and ii) by calculating the
ambiguity of each Ri’s collocation on the train-

3The only difference between Run2 and Run4 is the addi-
tion of around 4000 semantic boundary collocations, which
lead to an overall 2.4% F1 performance decrease. The de-
crease mainly comes in terms of Recall (from 65.91% in
Run2 to 63.35% in Run4).

ing set (i.e. the average number of other relations
activated by the collocation). The analysis re-
vealed that the top performing relations (Member-
Collection, Entity-Destination, Cause-Effect, and
Content-Container) are those for which we ac-
quired lots of unambiguous collocations. These
findings also explain the poor performance on the
Instrument-Agency and the Other relation. For
Instrument-Agency we extracted the lowest num-
ber of collocations, which were also the most am-
biguous ones. For the Other relation the high am-
biguity of the collocations extracted is not com-
pensated by their huge number (around 50% of the
total collocations acquired).

In conclusion, considering i) the level of pro-
cessing required (only lemmatization), ii) the fact
that WordNet is used as the sole source of knowl-
edge, and iii) the many possible solutions left
unexplored due to time constraints, our results
demonstrate the validity of our approach, de-
spite its simplicity. Future research will focus
on a better use of semantic boundary colloca-
tions, on more refined ways to extract knowledge
from WordNet, and on integrating other knowl-
edge sources (e.g. SUMO, YAGO, Cyc).
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