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Abstract
The system we propose to learning seman-
tic relations consists of two parallel com-
ponents. For our final submission we used
components based on the similarity mea-
sures defined over WordNet and the patterns
extracted from the Web and WMTS. Other
components using syntactic structures were
explored but not used for the final run.

1 Experimental Set-up
The system we used to classify the semantic rela-
tions consists of two parallel binary classifiers. We
ran this system for each of the seven semantic re-
lations separately. Each classifier predicts for each
instance of the relation whether it holds or not. The
predictions of all the classifiers are aggregated for
each instance by disjunction. That is to say, each in-
stance is predicted to be false by default unless any
of the classifiers gives evidence against this.

To generate the submitted predictions we used
two parallel classifiers: (1) a classifier that com-
bines eleven WordNet-based similarity measures,
see Sec. 2.1, and (2) a classifier that learns lexical
patterns from Google and the Waterloo Multi-Text
System (WMTS)(Turney, 2004) snippets and ap-
plies these on the same corpora, see Sec. 2.2.

Three other classifiers we experimented with, but
that were not used to generate the submitted predic-
tions: (3) a classifier that uses string kernel methods
on the dependency paths of the training sentences,
see Sec. 3.1, (4) a classifier that uses string kernels
on the local context of the subject and object nom-
inals in the training sentences, see Sec. 3.2 and (5)

a classifier that uses hand-made lexical patterns on
Google and WMTS, see Sec. 3.3.

2 Submitted Run

2.1 WordNet-based Similarity Measures
WordNet 3.0 (Fellbaum, 1998) is the most fre-
quently used lexical database of English. As this re-
source consists of lexical and semantic relations, its
use constitutes an appealing option to learning rela-
tions. In particular, we believe that given two men-
tions of the same semantic relation, their arguments
should also be similar. Or, in analogy learning terms,
if R1(X1,Y1) and R2(X2,Y2) are relation mentions of
the same type, then X1 :: Y1 as X2 :: Y2. Our prelim-
inary experiments with WordNet suggested that few
arguments of each relation are connected by imme-
diate hyperonymy or meronymy relations. As a re-
sult, we decided to use similarity measures defined
over WordNet (Pedersen et al., 2004). The Word-
Net::Similarity package (Pedersen et al., 2004) in-
cludes 11 different measures, which mostly use ei-
ther the WordNet glosses (lesk or vector measures)
or the paths between a pair of concepts (lch; wup) to
determine their relatedness.

To be able to use WordNet::Similarity, we
mapped all WordNet sense keys from the training
and test sets to the earlier WordNet version (2.1).
Given a relation R(X ,Y ), we computed the related-
ness scores for each pair of arguments X and Y . The
scores together with the sense keys of arguments
were further used as features for the machine learn-
ing method. As there is no a priori knowledge on
what measures are the most important for each rela-
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tion, all of them were used and no feature selection
step has been taken.

We experimented with a number of machine
learning methods such as k-nearest neighbour al-
gorithm, logistic regression, bayesian networks and
others. For each relation a method performing best
on the training set was selected (using 5-fold cross-
validation).

2.2 Learnt Lexical Patterns
This classifier models the intuition that when a pair
of nominals is used in similar phrases as another pair
they share at least one relation, and when no such
phrases can be found they do not share any relation.
Applied to the semantic relation classification prob-
lem this means that when a pair in the test set can be
found in the same patterns as pairs from the training
set, the classification for the pair will be true.

To find the patterns we followed step 1 to 6 de-
scribed in (Turney, 2006), with the exception that
we used both Google and the WMTS to compute
pattern frequency.

First we extracted the pairs of nominals 〈X ,Y 〉
from the training sentences and created one Google
query and a set of WMTS queries for each pair.
The Google queries were of the form "X * Y"
OR "Y * X". Currently, Google performs mor-
phological normalization on every query, so we
did not make separate queries for various endings
of the nominals. For the WMTS we did make
separate queries for various morphological varia-
tions. We used the following set of suffixes: ‘-
tion(s|al)’, ‘-ly’, ‘-ist’, ‘-ical’, ‘-y’, ‘-ing’, ‘-ed’,
‘-ies’, and ‘-s’. For this we used Peter Turney’s
pairs Perl package. The WMTS queries looked
like [n]>([5].."X"..[i].."Y"..[5]) and
[n]>([5].."Y"..[i].."X"..[5]) for i =
1,2,3 and n = i+12, and for each variation of X and
Y . Then we extracted sentences from the Google
snippets and cut out a context of size 5, so that
we were left with similar text segments as those
returned by the WMTS queries. We merged the
lists of text segments and counted all n-grams that
contained both nominals for n = 1 to 6. We sub-
stituted the nominals by variables in the n-grams
with a count greater than 10 and used these as pat-
terns for the classifier. An example of such a pat-
tern for the Cause-Effect relation is "generation

of Y by X". After this we followed step 3 to
6 of (Turney, 2006), which left us with a matrix
for each of the seven semantic relations, where each
row represented a pair of nominals and each column
represented the frequency of a pattern, and where
each pair was classified as either true or false. The
straightforward way to find pattern frequencies for
the pairs in the test set would be to fill in these pat-
terns with the pairs of nominals from the test set.
This was not feasible given the time limitation on
the task. So instead, for each pair of nominals in
the test set we gathered the top-1000 snippets and
computed pattern frequencies by counting how of-
ten the nominals occur in every pattern on this set
text segments. We constructed a matrix from these
frequencies in the same way as for the training set,
but without classifications for the pairs. We experi-
mented with various machine learning algorithms to
predict the classes of the pairs. We chose to use k-
nearest neighbors, because it was the only algorithm
that gave more subtle predictions than true for every
pair or false for every pair. For each semantic rela-
tion we used the value of k that produced the highest
F1 score on 5-fold cross validation on the training
data.

3 Additional Runs

3.1 String Kernels on Dependency Paths
It has been a long tradition to use syntactic structures
for relation extraction task. Some of the methods
as in (Katrenko and Adriaans, 2004) have used in-
formation extracted from the dependency trees. We
followed similar approach by considering the paths
between each pair of arguments X and Y . Ideally, if
each syntactic structure is a tree, there is only one
path from one node to the other. After we have ex-
tracted paths, we used them as input for the string
kernel methods (Hal Daumé III, 2004). The advan-
tage of using string kernels is that they can handle
sequences of different lengths and already proved to
be efficient for a number of tasks.

All sentences in the training data were parsed
using MINIPAR (Lin, 1998). From each depen-
dency tree we extracted a dependency path (if any)
between the arguments by collecting all lemmas
(nodes) and syntactic functions (edges). The se-
quences we obtained were fed into string kernel.
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To assess the results, we carried out 5-fold cross-
validation. Even by optimizing the parameters of
the kernel (such as the length of subsequences) for
each relation, the highest accuracy we obtained was
equal 61,54% (on Origin-Entity relation) and the
lowest was accuracy for the Instrument-Agency re-
lation (50,48%).

3.2 String Kernels on Local Context
Alternatively to syntactic information, we also ex-
tracted the snippets of the fixed length from each
sentence. For each relation mention of R(X ,Y ), all
tokens between the relation arguments X and Y were
collected along with at most three tokens to the left
and to the right. Unfortunately, the results we ob-
tained on the training set were comparable to those
obtained by string kernels on dependency paths and
less accurate than the results provided by WordNet
similarity measures or patterns extracted from the
Web and WMTS. As a consequence, string kernel
methods were not used for the final submission.

3.3 Manually-created Lexical Patterns
The results of the method described in Sec. 2.2 are
quite far below what we expected given earlier re-
sults in the literature (Turney, 2006; van Hage, Ka-
trenko, and Schreiber, 2005; van Hage, Kolb, and
Schreiber, 2006; Berland and Charniak, 2006; Et-
zioni et al., 2004). We think this is caused by
the fact that many pairs in the training set are non-
stereotypical examples. So often the most com-
monly described relation of such a pair is not the re-
lation we try to classify with the pair. For example,
common associations with the pair 〈body,parents〉
are that it is the parents’ body, or that the parents
are member of some organizing body, while it is a
positive example for the Product-Producer relation.
We wanted to see if this could be the case by testing
whether more intuitive patterns give better results on
the test set. The patterns we manually created for
each relation are shown in Table 1. If a pair gives
any results for these patterns on Google or WMTS,
we classify the pair as true, otherwise we classify
it as false. The results are shown in Table 2. We
did not use these results for the submitted run, be-
cause only automatic runs were permitted. The man-
ual patterns did not yield many useful results at all.
Apparently intuitive patterns do not capture what is

required to classify the relations in the test set. The
patterns we used for the Part-Whole (6) relation had
an average Precision of .50, which is much lower
than the average Precision found in (van Hage, Kolb,
and Schreiber, 2006), which was around 0.88. We
conclude that both the sets of training and test ex-
amples capture different semantics of the relations
than the intuitive ones, which causes common sense
background knowledge, such as Google to produce
bad results.

rel. patterns
1. X causes Y, X caused by Y, X * cause Y
2. X used Y, X uses Y, X * with a Y
3. X made by Y, X produced by Y, Y makes X,

Y produces X
4. Y comes from X, X * source of Y, Y * from * X
5. Y * to * X, Y * for * X, used Y for * X
6. X in Y, Y contains X, X from Y
7. Y contains X, X in Y, X containing Y, X into Y

Table 1: Hand-written patterns.

relation N Prec. Recall F1 Acc.
1. Cause-Effect 6 1 0.15 0.25 0.56
2. Instr.-Agency 2 1 0.05 0.10 0.54
3. Prod.-Prod. 4 0.75 0.05 0.09 0.35
4. Origin-Ent. 6 0.33 0.05 0.09 0.35
5. Theme-Tool 2 0 0 0 0.56
6. Part-Whole 16 0.50 0.31 0.38 0.64
7. Cont.-Cont. 11 0.54 0.16 0.24 0.50

Table 2: Results for hand-written lexical patterns on
Google and WMTS.

4 Results
4.1 WordNet-based Similarity Measures
Table 3 shows the results of the WordNet-based sim-
ilarity measure method. In the ‘methods’ column,
the abbreviation LR stands for logistic regression,
K-NN stands for k-nearest neighbour, and DT stands
for decision trees.

relation method Prec. Recall F1 Acc.
1. Cause-Effect LR 0.48 0.51 0.49 0.45
2. Instr.-Agency DT 0.65 0.63 0.64 0.62
3. Prod.-Prod. DT 0.67 0.50 0.57 0.46
4. Origin-Ent. LR 0.50 0.47 0.49 0.49
5. Theme-Tool LR 0.54 0.52 0.53 0.62
6. Part-Whole DT 0.54 0.73 0.62 0.67
7. Cont.-Cont. 2-NN 0.66 0.55 0.60 0.62

Table 3: Results for similarity-measure methods.
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4.2 Learnt Lexical Patterns
Table 4 shows the results of the learnt lexical pat-
terns method. For all relations we used the k-nearest
neighbour method.

relation method Prec. Recall F1 Acc.
1. Cause-Effect 3-NN 0.53 0.76 0.63 0.54
2. Instr.-Agency 2-NN 0.47 0.89 0.62 0.46
3. Prod.-Prod. 2-NN 0 0 0 0.33
4. Origin-Ent. 2-NN 0.47 0.22 0.30 0.54
5. Theme-Tool 3-NN 0.39 0.93 0.55 0.38
6. Part-Whole 2-NN 0.36 1 0.53 0.36
7. Cont.-Cont. 2-NN 0.51 0.97 0.67 0.51

Table 4: Results for learnt lexical patterns on Google
and WMTS.

5 Discussion
Our methods had the most difficulty with classify-
ing relation 1, 3 and 4. We wanted to see if hu-
man assessors perform less consistent for those re-
lations. If so, then those relations would simply be
harder to classify. Otherwise, our system performed
worse for those relations. We manually assessed ten
sample sentences from the test set, five of which
were positive examples and five were false exam-
ples. The result of a comparison with the test set is
shown in Table 5. The numbers listed there repre-
sent the fraction of examples on which we agreed
with the judges of the test set. There was quite a

inter-judge agreement
relation judge 1 judge 2
1. Cause-Effect 0.93 0.93
2. Instrument-Agency 0.77 0.77
3. Product-Producer 0.87 0.80
4. Origin-Entity 0.80 0.77
5. Theme-Tool 0.80 0.77
6. Part-Whole 0.97 1.00
7. Content-Container 0.77 0.77

Table 5: Inter-judge agreement.

large variation in the inter-judge agreement, but for
relation 1 and 3 the consensus was high. We con-
clude that the reason for our low performance on
those relations are not caused by the difficulty of
the sentences, but due to other reasons. Our intu-
ition is that the sentences, especially those of rela-
tion 1 and 3, are easily decidable by humans, but
that they are non-stereotypical examples of the re-
lation, and thus hard to learn. The following ex-
ample sentence breaks common-sense domain and

range restrictions: Product-Producer #142 “And, of
course, everyone wants to prove the truth of their be-
liefs through experience, but the <e1>belief</e1>
begets the <e2>experience</e2>.” The common-
sense domain and range restriction of the Product-
Producer relation are respectively something like
‘Entity’ and ‘Agent’. However, ‘belief’ is generally
not considered to be an entity, and ‘experience’ not
an agent. The definition of Product-Producer rela-
tion used for the Challenge is more flexible and al-
lows therefore many examples which are difficult to
find by such common-sense resources as Google or
WordNet.
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