
Proceedings of Recent Advances in Natural Language Processing, pages 1076–1084,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_124

1076

The “Jump and Stay” Method to Discover
Proper Verb Centered Constructions in Corpus Lattices

Bálint Sass
Research Institute for Linguistics, Hungarian Academy of Sciences

Budapest, Hungary
sass.balint@nytud.mta.hu

Abstract

The research presented here is based on
the theoretical model of corpus lattices.
We implemented this as an effective data
structure, and developed an algorithm
based on this structure to discover essen-
tial verbal expressions from corpus data.
The idea behind the algorithm is the “jump
and stay” principle, which tells us that our
target expressions will be found at such
places in the lattice where the value of a
suitably defined function (whose domain
is the vertex set of the corpus lattice) sig-
nificantly increases (jumps) and then re-
mains the same (stays). We evaluated our
method on Hungarian data. Evaluation
shows that about 75% of the obtained ex-
pressions are correct, actual errors are rare.
Thus, this paper is 1. a proof of concept
concerning the corpus lattice model, open-
ing the way to investigate this structure
further through our implementation; and
2. a proof of concept of the “jump and
stay” idea and the algorithm itself, open-
ing the way to apply it further, e.g. for
other languages.

1 Introduction

In this paper we present a novel, original verbal
construction discovery method. Our starting point
will be our former paper (Sass, 2018) which de-
scribes a theoretical model considered an appro-
priate basis for extracting so-called proper verb
centered constructions from analysed corpora.

First, let us look at our target. In this terminol-
ogy, verb centered constructions (VCC) are verb +
slot structures, where slots can be unfilled (free)
or filled (by a filler word). In English, subject
(SBJ), direct object (OBJ) and all prepositions can

be considered as slots. For example, ‘take + SBJ
+ OBJ + into:account’ has two free slots (SBJ
and OBJ) and a filled ‘into’ slot where the filler
(marked by a colon) is the word ‘account’. In this
approach, a filler is the head of the phrase realizes
the slot. Length of a VCC (l) is defined as number
of slots and fillers added up, the above example
has a length of 4.

Then, what are proper verb centered construc-
tions (pVCC)? They are complete and clean. That
means they contain all necessary elements, and
does not contain any unnecessary element for ex-
pressing the core meaning of the verbal expression
in question. For example, ‘take + SBJ + OBJ:part
+ in’ is proper, while ‘take + SBJ + OBJ:part’
is not proper (because not complete), and ‘read
+ SBJ + OBJ’ is proper, while ‘read + SBJ +
OBJ:book’ is not proper (because not clean). In
other words, free slots in pVCCs are complements
(subject included) and fillers in pVCCs are id-
iomatic, carrying some special meaning.

It is clear that pVCCs are constructions. They
are form–meaning pairs (Goldberg, 2006; Kay and
Michaelis, 2015), they are units of meaning (Teu-
bert, 2005; Danielsson, 2007). Their meaning is
assigned to the whole form, they cannot be divided
into smaller units if we want to keep the original
meaning.

On the other hand, pVCCs are not necessarily
multiword. They are multiword in most cases as
we have seen in the examples, but there are cases
when the multiword property is not satisfied in
the strict sense that they consists of two or more
whole words. Consider for example ‘read + SBJ
+ OBJ’, it consists of three elements, from which
only one is a word, the other two are just slots. Or
consider a Hungarian example. In this language
slots are specified mostly by bound morphemes,
namely case markers. The Hungarian counterpart
of ‘believe + SBJ + in’ is ‘hisz + NOM + INE’

1077

Mary newspaperJohn book

read

SBJ OBJ

festival

demo

mass

take

in OBJ

part

0

1

2

3

4
l=

Figure 1: This pair of figures illustrate the notion of double cube and the notion of corpus lattice. On the
left, the double cube of ‘John reads a book’ (‘read SBJ:John OBJ:book’) and the double cube of ‘Mary
reads a newspaper’ (‘read SBJ:Mary OBJ:newspaper’) are combined together to create a small corpus
lattice. On the right, three clauses are combined. This figure presents two dimensional structures. The
subject slot is not depicted in the latter case, it would require three dimensional double cubes.

respectively, where ‘NOM’ is for nominative (sub-
ject) case, and ‘INE’ is for inessive case (appear-
ing as a ‘-ban/-ben’ suffix). The English version is
strictly multiword, while the Hungarian is not.

We saw that a pVCC should be complete. ‘take
part’ is a MWE, but ‘take + SBJ + OBJ:part + in’
is a pVCC of full value containing all necessary el-
ements. According to Siepmann (2005, page 416)
„collocation and verb complementation are inti-
mately related . . . a two-word combination cannot
possibly be viewed as a fully-fledged collocation.”
Simply put, the free slots are just as important as
the words/fillers. They turn MWEs into real con-
structions.

This concept of completeness is essential and
unique here. We barely see it neither in classi-
cal papers, nor in recent works. Formerly, many
papers dealt with just e.g. verb+noun expressions
(Evert and Krenn, 2001; Fazly and Stevenson,
2006; Iñurrieta et al., 2016), but recently, also,
even the definition of verbal MWEs does not ex-
plicitly include the preposition or case marker con-
stituting a complement that, we are convinced, is
an inherent part of the expression (Ramisch et al.,
2018; Walsh et al., 2018). It is maybe the de-
pendency annotation itself which does not sup-
port the approach presented here as case markers
are usually not taken as separate units (see Simkó
et al., 2017, Fig. 4). Because of the above, we can
evaulate our method in itself only.

pVCCs are a large and key group of verbal ex-
pressions: they bear the different meanings and us-
age patterns linked to verbs. We think that it is a
good idea if a dictionary presents exactly the set
of pVCCs concerning a verb. It is not crucial that

they are formally multiword or not. To cover all
patterns, we should handle MWEs and construc-
tions uniformly, in one framework. The method
presented here shares this attitude.

2 The Initial Model and the Conjecture

Let us summarize the initial model here. The ba-
sic processing unit is the clause, the unit which
contains a verb together with its complements and
adjuncts, and consequently, a pVCC. So as prepro-
cessing, clause boundary detection and some shal-
low parsing is needed on the input corpus to deter-
mine the verb and the top level slots and fillers.

Corpus clauses are represented as so-called
double cubes (Sass, 2018, Fig. 3), which are a kind
of mathematical lattice structures. The verb is at
the bottom, every edge adds a slot or a filler to an
existing slot (chosen from the clause in question).
Vertices are VCCs, they represent nested VCCs
of the clause with slots and fillers present or not
in all variations. The top represents the original
clause: all slots are there and filled as in the origi-
nal clause. One distinguished vertex is the pVCC.

In the next step, the so-called corpus lattice
(CL) is created from double cubes containing the
same verb. Using a kind of lattice combination op-
eration, double cubes are projected onto each other
in a way that where they are identical they will
overlap, where they are different they will split up
(Fig. 1). It is important that, at the end, the evol-
ving large semilattice structure will represent all
clauses of a given verb, and also the distribution of
all free and filled slots occurring beside this verb.

The initial paper contains only vague conjec-
tures about how to actually apply the corpus lattice

1078

Mary newspaperJohn book

SBJ OBJ

read

part

take

in OBJ

festival

demo

mass

4

3

2

1

0

l=

Figure 2: These are the same CLs as in Fig. 1, but here the pVCCs are marked: they are circled. The
pVCC is ‘read + SBJ + OBJ’ and ‘take + SBJ + OBJ:part + in’ in the two figures respectively. f values
are also depicted: f > 1 in the gray areas (f = 2 in the left lattice and f = 3 in the right one), at the
other vertices f = 1.

structure for discovering pVCCs. We thought, the
fact that the corpus lattice contains all information
about the distribution of slots and fillers makes it
a suitable “representation which can be a basis”
for finding pVCCs. We introduced a function (we
call it f now) on vertices of the corpus lattice: it is
essentially the corpus frequency of the VCC rep-
resented by the given vertex. In other words, this
f shows how many corpus clauses are represented
by the given vertex, or how many corpus clauses
this VCC fits to. We formulated the conjecture
that pVCCs should be “at some kind of thicken-
ing points of the corpus lattice”, and added that a
future algorithm would move through the corpus
lattice somehow systematically to find them.

3 The Idea of “Jump and Stay”

The model described above was purely theoreti-
cal. Our current contribution are implementation
of the data structure, elaboration and implementa-
tion of an algorithm for discovering pVCCs using
this data structure, and evaluation of the algorithm
on real data.

For outlining our idea which leads to the algo-
rithm, let us take a look at the already known fig-
ure from another perspective (Fig. 2). The CLs
in the figure are for demonstration purposes: they
are, of course, very small, but suitable for present-
ing the main point (cf. a real CL can be very wide
(≈ how many words are there in the corpus), but
not too tall (2 × how many slots are in the longest
clause)). We mention that f always grows mono-
tonically downwards in a CL.

Looking at Fig. 2, how can vertices representing
pVCCs be characterized? Firstly, as we go top-

down in the CL, f suddenly increases at certain
points. Secondly, of these vertices, we should pre-
fer those which are located higher in the corpus
lattice. As it may be suspected, the first observa-
tion will be the basis of “jump” and second one
will be the basis of “stay”.

The principle of “jump and stay” can be for-
mulated as follows: jump means that we advance
from a vertex to an adjacent one downwards in
the CL if f substantially increases, and stay means
that we advance from a vertex to an adjacent one
upwards in the CL if f remains more or less the
same. (Please note, that stay also means advanc-
ing between vertices, the term itself refers to the
fact that the value of f does not change during this
step.) In other words, where one (or only few) ar-
rows originate from a vertex, it tend to be a place
of stay, similarly, when we have many arrows from
the same vertex, it is usually a place of jump. No-
tice that if we apply the two rules of the principle
starting from any of the vertices in Fig. 2, we end
up at the circled pVCC. This is the point, this is
the main idea of this paper itself.

If we look a bit more closely, in fact, we can
end up at one of the top vertices depending on the
application order of the two rules, at least in case
of the CL on the left. As we will see, top vertices
(fully filled clauses) will be excluded from being a
pVCC.

pVCCs can be considered as some kind of
thickening points indeed, where many edges con-
verge (see the left lattice in Fig. 2), but stating the
principle of “jump and stay” is much more clearer.

In addition, we have an independent argument
in support of our idea. The “jump and stay” idea

1079

f
+ stayjump

this will be the pVCC

OBJ tell

omit

add

OBJ:number

mandatory

accidental

Figure 3: A summing-up of the “jump and stay” principle. A three-vertex piece of the CL of ‘tell’ is
shown together with the f values for each vertex. It is clear, that this verb requires a direct object, but the
direct object itself can be several different words from which ‘number’ is quite rare. In this case, there is
a stay from ‘tell’ to ‘tell + OBJ’, and a jump from ‘tell + OBJ:number’ to ‘tell + OBJ’ so the pVCC is
‘tell + OBJ’ here, and that is correct. At the bottom, the directions to add/omit an element to a VCC are
shown. On the left, it is shown how a part of the graph of the f function basically look like in the case of
mandatory/accidental elements.

is nicely consistent with the fact that constructions
have mandatory and accidental elements, some el-
ements are necessary while some are not, as it is
also reflected in the definition of the pVCC.

When we jump, we try to omit something which
is not mandatory. A typical case of jump, when
there are several different fillers (e.g. the various
foods as direct object of ‘eat’, which are obviously
relatively rarer one by one) in a given slot, and
the lower vertex is the one, where this slot is free.
Advancing to this vertex, we omit this diversity of
fillers, we omit something that does not seem to be
mandatory (cf. the vertex marked with ‘in’ and the
three arrows originating from it pointing to the left
in Fig. 2).

When we stay, we try to add something which
is mandatory. A typical case of stay, when we add
an element (a slot or a filler to an existing slot) to
a vertex/VCC, but we still cover roughly the same
amount of original corpus clauses. This shows,
that the added element is mandatory, namely it oc-
curs in nearly all clauses represented by the origi-
nal VCC. (cf. the vertex marked with ‘in’ and the
arrows above it in the gray area in Fig. 2).

We always advance by jump downwards (and
by stay upwards) in a CL, the other way round –
discarding what is needed and adding what is not
needed – would not make much sense.

Yet another argument supporting our idea. As
we investigate the structure of different CLs, it
turns out that a typical pVCC is an endpoint of

both jumps and stays, or to put it another way
no jump and no stay originate from it (Fig. 2).
Plain (not proper) VCCs, however, does not have
this property. Almost always, they are a starting
point of a jump or a stay (see ‘take + OBJ:part +
in:festival’ or ‘take + OBJ:part’ in Fig. 2 again).

To end this section, look over the “jump and
stay” principle in a summary figure (Fig. 3).

Recall the definition of pVCC: stays increase
completeness, and jumps increase cleanness. We
think that those vertices have the most chance to
be a pVCC which can be reached by a stay from
below and by a jump from above at the same time.

4 Implementation of the Data Structure

The corpus lattice is a special kind of graph struc-
ture. What crucially important to use it effectively
is to be able to effectively advance from one ver-
tex to another connected by an edge. For this pur-
pose, we store vertices and edges in hashes (dictio-
naries) in our python implementation. Edges are
stored firstly in one direction, and secondly in the
other direction separately.

Starting from a language resource consisting of
clauses represented in the form of verb + slots +
fillers we build a CL (for each verb separately) as
follows:

1. We go through the corpus and take clauses
one by one.

2. We build the appropriate double cube of the
given clause: starting from the fully filled

1080

clause, we add adjacent edges and vertices
omitting slots/fillers one by one recursively.

3. Our graph data structure for a double cube
and for a CL both will be the following: we
store vertices in a hash, and edges in a hash
of hashes (as we have said, in each direc-
tion separately). The key of the hashes is a
“canonical” JSON string form of the given
VCC, its slots ordered alphabetically by slot
names.

4. Finally, we combine the current double cube
to the corpus lattice being built recording and
updating the appropriate f values.

This way we obtain a quite effective representa-
tion of a CL.

Input data should be in a specific JSON format
which can be generated from either a (shallow) de-
pendency or a (shallow) constituency parse of the
input corpus: the verb, the slots and the fillers need
to be identified. It is similar to “top level syntactic
sequence of the constituent tree” (Shi et al., 2016),
with the difference that the order of constituents is
not taken into account in our approach.

We used Hungarian data (Sass, 2015) for our
experiments. This dataset contains 28 million
clauses in a format which was not complicated to
convert to the needed input format.

5 The Algorithm

In this section we describe how we implemented
the “jump and stay” principle (section 3) using the
data structure presented above (section 4).

At the beginning of work, we separated about
7 percent of the data for development purposes.
That means, during developing the algorithm we
used data only from this part. Developing the al-
gorithm is a kind of learning phase, we draw con-
clusions based on the input data. It is very impor-
tant not to use test data for this.

The algorithm consists of the following steps:

1. We go through each vertices of the CL. (The
order does not matter, but we chose to be-
gin with the bottom, and continue upwards
as pVCCs tend to occur not too far from the
bottom.)

2. Some kind of vertices are omitted early on:
which are too long (has a length more than 8
(l > 8)), which are too rare (has f < 3), and
which have no out-edge (that means which is
at the top of the CL).

3. Firstly, we look for a stay, i.e. try to
add a needed element. If the ratio of
f(actual)/f(above) < 1.7, then we con-
sider this a stay, and advance to the vertex
above. In case of several stays we choose the
one with the smallest ratio.

4. Secondly, when no stay can be found, we
look for a jump, i.e. try to discard an ele-
ment which is not needed. If the ratio of
f(below)/f(actual) > 4, then we consider
this a jump, and advance to the vertex below.
In case of several jumps we choose the one
with the largest ratio.

5. If we get to a new vertex, we repeat steps 3.
and 4.

6. If neither a stay nor a jump can be found, we
stop, and if the current VCC is not at the top
of the CL (that means it has out-edges) then
it is tagged as a pVCC.

Dealing with Hungarian data, at the beginning
we do a modification based on Hungarian verb
conjugation. Some Hungarian verb suffixes im-
ply that the verb is transitive even when the direct
object is not present in the clause. In such cases
we add a free OBJ slot. Besides that, Hungarian
being a pro-drop language we add a free SBJ slot
to every clause without an explicit subject.

A small addition to step 4. In fact, we do not
do a jump in every case. If the jump would omit
the last filler from a VCC, we do not take this
step. That is because specific fillers are usually
important parts of a pVCC, and full-free VCCs
would usually be frequent enough to swallow all
pVCCs (being longer only by one filler) perform-
ing a jump. So we do the jump only if there re-
mains at least one filler in the resulting VCC or
there is no filler in the initial VCC already.

Threshold values (exactly 1.7 for stays, and 4
for jumps) are manually tested and set values.
They gave the best results after some experiment-
ing on the development corpus.

Fig. 4 shows some specific examples on how ex-
actly our algorithm works in practice.

The source code of the algorithm and also
for building and handling the CL data structure,
together with some sample data, is available
at https://github.com/sassbalint/
double-cube-jump-and-stay. The algo-
rithm is fast enough. Building a 365000 vertex
CL and investigate it for pVCCs took 63 seconds
in total on our server.

https://github.com/sassbalint/double-cube-jump-and-stay
https://github.com/sassbalint/double-cube-jump-and-stay

1081

#4 f= l=
["FAC", null] 309 1
Processing.
A stay found, we follow.
["FAC", null, "NOM", null] 309 2
A stay found, we follow.
["FAC", "jó", "NOM", null] 307 3
A stay found, we follow.
["ACC", null, "FAC", "jó", "NOM", null] 300 4
No stay (ratio=5.17 > 1.7), we stop.
No appropriate jump (keeping a filler, 1.02 < 4), we stop.
["ACC", null, "FAC", "jó", "NOM", null] 300 4 pVCC

#22699 f= l=
["ACC", "költségvetés", "FAC", "jó", "NOM", null] 4 5
Processing.
No stay (ratio=2.00 > 1.7), we stop.
An appropriate jump (keeping a filler, 4<) found, we follow.
["ACC", null, "FAC", "jó", "NOM", null] 300 4
No stay (ratio=5.17 > 1.7), we stop.
No appropriate jump (keeping a filler, 1.02 < 4), we stop.
["ACC", null, "FAC", "jó", "NOM", null] 300 4 pVCC

Figure 4: Two examples from the output of the algorithm. This demonstrates how the algorithm works:
it starts from a vertex and after some jumps and stays it finds the appropriate pVCC in the end. In the
first example, we start from a one-free-slot VCC, and get to the pVCC through three stays, adding three
mandatory elements (in bold), while the f value decreases from 309 only to 300. In the second example,
we start from a longer VCC where also ACC is filled. Here, only one jump is needed, omitting the
accidental element ‘költségvetés’ (‘budget’) (in bold), to get to the pVCC. (VCCs are in black, additional
info is in gray. VCCs are presented here as JSON lists in the form of: slot, filler, slot, filler. . . , where null
stands for a free slot.) The verb is ‘hagy’ (‘allow’), input data is taken from the development corpus. As
we see, the same pVCC is found in both examples, it is ‘hagy + NOM + ACC + FAC:jó’ which is word
by word ‘allow + SBJ + OBJ + FAC:good’ meaning ‘approve + SBJ + OBJ’. (ACC is for accusative
case, FAC is for factive case.) This figure gives a good example of a typical pVCC which “is an endpoint
of both jumps and stays”, as we said earlier (on page 4).

6 Evaluation and Discussion

The evaluation was carried out in the following
manner. Two moderately frequent verbs was cho-
sen: ‘húz’ (‘draw/pull’) and ‘vet’ (‘cast/throw’).
Their data was taken from the testing part of the
corpus (which was 93 percent of the corpus). Our
“jump and stay” algorithm was run on these two
verbs, and then – according to the f value – the
first 20 pVCCs was investigated whether they are
correct or not. The input data for these verbs were
not only taken from the test corpus, but these verbs
were not even looked at in any way during the de-
velopment phase.

See the results of the evaluation in Table 1.
Third column of the table contains the results of

the algorithm: the Hungarian pVCCs, fourth col-
umn is f value, fifth column is an English transla-
tion word by word (or element by element), sixth
column is an approximate English counterpart.
pVCCs are shown as usual, the verb is taken sep-
arately at the top. Slots in Hungarian are marked
by the three letter abbreviation of the given case
marker: NOM is for nominative (subject) case,
ACC is for accusative (direct object) case, and
there are some others. Their surface form is not
important here, their approximate translation can
be seen in the fifth column. Unfilled NOM slots
are not shown. (In Hungarian there are also post-
positions. Apart from that they are separate words
they play similar role as the case markers. Thus,

1082

eval Hungarian pVCC f word by word English counterpart

húz 9505 draw/pull
1. 3 ACC 8304 OBJ pull sg
2. 3 ACC:idő 420 OBJ:time temporize
3. 3 ACC:haszon + ELA 412 OBJ:profit + from profit from sg
4. 3 ACC + SUB:maga 239 OBJ + onto:oneself put sg on
5. 3 ACC + után:maga 209 OBJ + after:oneself pull sg behind oneself
6. 3 ACC + ALL:maga 207 OBJ + to:oneself pull/draw sy to oneself
7. ≈ ACC + SUB:fej 199 OBJ + onto:head put sg on one’s head
8. 3 felé 169 towards be drawn/attracted towards sg
9. 3 ACC:rövid 166 OBJ:short get the worst of it

10. 3 ACC:vonal 152 OBJ:line draw a line
11. 3 ACC:láb 139 OBJ:foot drag one’s feet
12. 3 ACC:ujj + INS 118 OBJ:finger + with pick a quarrel with sy
13. p ACC + NOM:aki 108 OBJ + SBJ:who who pulls sg
14. p ACC + TEM:az 107 OBJ + at:that pull sg at that time
15. 3 ACC + INS:maga 92 OBJ + with:oneself drag sy/sg with oneself
16. 3 ACC + felé 85 OBJ + towards pull sg towards sg
17. × ACC + közé 82 OBJ + between draw sg (a line) between sg
18. 3 ACC:szék 80 OBJ:chair draw one’s chair up
19. 3 ACC:határ 77 OBJ:border set limits
20. 3 ACC:idő + INS 77 OBJ:time + with temporize on sg

vet 14759 cast/throw
21. 3 ACC 13649 OBJ cast/throw sg
22. ≈ ACC + SUB 5437 OBJ + onto cast/throw sg on sg
23. 3 ACC:vég + DAT 2632 OBJ:end + for put an end to sg
24. 3 ACC + SUB:szem 1085 OBJ + onto:eye reproach sy for sg
25. ≈ ACC:maga 964 OBJ:oneself throw oneself
26. 3 ACC:pillantás + SUB 839 OBJ:glance + onto glance at sy/sg
27. 3 ACC + SUB:papír 673 OBJ + onto:paper note down sg
28. 3 ACC:fény + SUB 402 OBJ:light + onto reflect (well/badly) on sy/sg
29. 3 ACC:szám + INS 371 OBJ:number + with take sg into account
30. 3 ACC:gát + DAT 362 OBJ:obstacle + for put a stop to sg
31. ≈ ACC:maga + SUB 345 OBJ:oneself + onto throw oneself into sg
32. 3 ACC:maga + ILL 339 OBJ:oneself + into throw oneself into sg
33. p ACC:az + SUB:szem 302 OBJ:that + onto:eye reproach sy for that
34. 3 SUB:maga 297 onto:oneself have only oneself to blame
35. 3 ACC:szem + SUB 285 OBJ:eye + onto take a fancy to sy/sg
36. 3 ACC:kereszt 261 OBJ:cross cross oneself
37. 3 ACC:árnyék + SUB 258 OBJ:shadow + onto cast/throw a shadow over sy/sg
38. 3 ACC + ILL:lat 240 OBJ + into:lat use sg (one’s power)
39. p ACC + SUB:én 225 OBJ + onto:me cast/throw sg onto me
40. p ACC + NOM:aki 201 OBJ + SBJ:who who casts/throws sg

Table 1: Evaluation of the “jump and stay” method on ‘húz’ (‘draw/pull’) and ‘vet’ (‘cast/throw’). Cor-
rect pVCCs are marked with 3. Further explanation is in the main text.

1083

they have their own slots in some pVCCs, we can
find ‘után’ (‘after’), ‘felé’ (‘towards’) or ‘közé’
(‘between’) in the table.)

Nevertheless, the most important column is the
second one which contains the evaluation of the
given pVCC in column three. There are four pos-
sible values here: 3 means correct, ≈ means
roughly correct, p means contains a pronoun as
a filler, and × means not correct (i.e. not complete
or not clean).

On the one hand, we see that 70-80 percent of
the pVCCs are completely correct, which can be
considered a high value in itself. On the other
hand, only one single real error is found among
40 constructions which is only 2.5 percent. This
one is #17, it is not complete, the direct object slot
would be filled by ‘vonal’ (‘line’). The p code
indicates a rather trivial problem, which seems to
be easily eliminated. Pronouns are very common
so they can appear as fillers, but they very rarely
bear idiomatic meaning. So the solution could be
simply to delete them in a preprocessing step and
leave a free slot instead. Note that ‘oneself ’ and
‘each other’ are certainly exceptions here.

Looking through the table, we can make some
interesting observations. We see several correct
pVCCs, they are complete and also clean. Con-
sidering the last column we see that different
pVCCs are often translated using completely dif-
ferent verbs. Optionality appears in the form of
two (or more) versions of the same construction.
#2 and #20 shows essentially the same construc-
tion, without and then with a specific complement.
This shows that this expression is used both ways,
and the ratio of f values (77/420 = 18%) tells
us something about which one is how frequent.
Constructions #28, #29, and #30 show the impor-
tance of our concept of completeness (see secton
1) which takes both collocation and complemen-
tation into account. A certain filler often brings in
a certain complement, and a new complement is
often a sign of a new pVCC.

7 Conclusion and Future Work

Taking the theoretical model of double cubes and
corpus lattices we created a new method for dis-
covering useful verbal expressions in corpora. Our
idea is called “jump and stay” (see section 3) be-
cause, in simple terms, wandering through the cor-
pus lattice the value of a certain function jumps
up and then stays the same at certain locations,

and these are the locations which points to our tar-
get expressions, the so-called proper verb centered
constructions. These constructions are proper in
the sense that they contain exactly the necessary
elements. Consisting of a verb plus slots and
fillers, they can be simple or even quite complex;
they are not necessarily MWEs, but they are con-
structions indeed. The evaluation revealed that at
least 70-80 percent of the obtained expressions are
pVCCs. We worked with Hungarian data, but it
would be more or less straightforward to experi-
ment with other languages.

An encouraging feature of the algorithm that it
provides complete expressions most of the time
(see section 6), incomplete VCCs rarely turn up
as pVCCs. However, it has limitations as well.
We mentioned the problem with pronouns, another
one that there is definitely place to work out some
more sophisticated process for setting the thresh-
old values for jumps and stays, but take a look at a
more general observation now. In simple cases, if
a stay is found (that means an additional element
is needed), we add it to the VCC in question do-
ing the step in the corpus lattice defined by this
stay (cf. first listing in Fig. 4). But what if we
have two (or more) potential additional elements
which are not significant separately, but together
(their f values added up) they would define a reg-
ular stay? In other words, what to do when two (or
more) elements seem to be mutually exclusively
mandatory at one point? This question can result
in some incomplete pVCCs now, and solving this
is a promising development direction.

Our conclusion is that the original idea works.
The present implementation can be considered as
a proof of concept with respect to the corpus lat-
tice model. Clearly, properties of the corpus lat-
tice refer to where pVCCs are located, the intro-
duced lattice structure turned out to be suitable to
find them. On the other hand, the “jump and stay”
principle also proved to be promising. The basic
algorithm presented here can be improved in sev-
eral aspects, and also the properties, the natural
structure of corpus lattices (of given verbs or verb
classes) can be further investigated, explored and
taken advantage of in the future.

Acknowledgement. This research was supported
by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences (case number:
BO/00064/17/1; duration: 2017-2020).

1084

References
Pernilla Danielsson. 2007. What constitutes a unit of

analysis in language? Linguistik online 31(2).

Stefan Evert and Brigitte Krenn. 2001. Methods for
the qualitative evaluation of lexical association mea-
sures. In Proceedings of the 39th Meeting of the As-
sociation for Computational Linguistics. Toulouse,
France, pages 188–195.

Afsaneh Fazly and Suzanne Stevenson. 2006. Auto-
matically constructing a lexicon of verb phrase id-
iomatic combinations. In Proceedings of the 11th
Conference of the EACL. Trento, Italy, pages 337–
344.

Adele E. Goldberg. 2006. Constructions at Work. Ox-
ford University Press.

Uxoa Iñurrieta, Arantza Diaz de Ilarraza, Gorka
Labaka, Kepa Sarasola, Itziar Aduriz, and John
Carroll. 2016. Using linguistic data for English
and Spanish verb-noun combination identification.
In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers. The COLING 2016 Orga-
nizing Committee, Osaka, Japan, pages 857–867.
https://www.aclweb.org/anthology/C16-1082.

Paul Kay and Laura A. Michaelis. 2015. How
constructions mean. In Proceedings of the 11th
Workshop on Multiword Expressions. Association
for Computational Linguistics, Denver, Colorado,
page 44. https://doi.org/10.3115/v1/W15-0907.

Carlos Ramisch, Silvio Ricardo Cordeiro, Agata
Savary, Veronika Vincze, Verginica Barbu Mi-
titelu, Archna Bhatia, Maja Buljan, Marie Can-
dito, Polona Gantar, Voula Giouli, Tunga Güngör,
Abdelati Hawwari, Uxoa Iñurrieta, Jolanta Ko-
valevskaitė, Simon Krek, Timm Lichte, Chaya
Liebeskind, Johanna Monti, Carla Parra Escartín,
Behrang QasemiZadeh, Renata Ramisch, Nathan
Schneider, Ivelina Stoyanova, Ashwini Vaidya, and
Abigail Walsh. 2018. Edition 1.1 of the PARSEME
shared task on automatic identification of verbal
multiword expressions. In Proceedings of the
Joint Workshop on Linguistic Annotation, Multi-
word Expressions and Constructions (LAW-MWE-
CxG-2018). Association for Computational Linguis-
tics, Santa Fe, New Mexico, USA, pages 222–240.
https://www.aclweb.org/anthology/W18-4925.

Bálint Sass. 2015. 28 millió szintaktikailag elemzett
mondat és 500000 igei szerkezet [28 million syn-
tactically annotated sentences and 500000 verbal ex-
pressions]. In XI. Magyar Számítógépes Nyelvészeti
Konferencia (MSZNY2015). Szeged: JATEPress,
pages 303–308.

Bálint Sass. 2018. A lattice based algebraic model
for verb centered constructions. In Petr Sojka, Aleš
Horák, Ivan Kopeček, and Karel Pala, editors, Text,
Speech and Dialogue, Springer, Berlin Heidelberg

New York, pages 231–238. Lecture Notes in Com-
puter Science, Vol. 11107.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural MT learn source syntax? In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
1526–1534. https://doi.org/10.18653/v1/D16-1159.

Dirk Siepmann. 2005. Collocation, colligation and en-
coding dictionaries. Part I: Lexicological aspects.
International Journal of Lexicography 18(4):409–
444.

Katalin Ilona Simkó, Viktória Kovács, and Veronika
Vincze. 2017. USzeged: Identifying verbal mul-
tiword expressions with POS tagging and parsing
techniques. In Proceedings of the 13th Workshop
on Multiword Expressions (MWE 2017). Associa-
tion for Computational Linguistics, Valencia, Spain,
pages 48–53. https://doi.org/10.18653/v1/W17-
1705.

Wolfgang Teubert. 2005. My version of corpus lin-
guistics. International Journal of Corpus Linguis-
tics 10(1):1–13.

Abigail Walsh, Claire Bonial, Kristina Geeraert,
John P. McCrae, Nathan Schneider, and Clarissa
Somers. 2018. Constructing an annotated corpus
of verbal MWEs for English. In Proceedings of
the Joint Workshop on Linguistic Annotation, Mul-
tiword Expressions and Constructions (LAW-MWE-
CxG-2018). Association for Computational Linguis-
tics, Santa Fe, New Mexico, USA, pages 193–200.
https://www.aclweb.org/anthology/W18-4921.

https://www.aclweb.org/anthology/C16-1082
https://www.aclweb.org/anthology/C16-1082
https://www.aclweb.org/anthology/C16-1082
https://doi.org/10.3115/v1/W15-0907
https://doi.org/10.3115/v1/W15-0907
https://doi.org/10.3115/v1/W15-0907
https://www.aclweb.org/anthology/W18-4925
https://www.aclweb.org/anthology/W18-4925
https://www.aclweb.org/anthology/W18-4925
https://www.aclweb.org/anthology/W18-4925
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/W17-1705
https://doi.org/10.18653/v1/W17-1705
https://doi.org/10.18653/v1/W17-1705
https://doi.org/10.18653/v1/W17-1705
https://doi.org/10.18653/v1/W17-1705
https://www.aclweb.org/anthology/W18-4921
https://www.aclweb.org/anthology/W18-4921
https://www.aclweb.org/anthology/W18-4921

