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Abstract

In this paper, we propose a novel model
for Transformer neural machine transla-
tion that incorporates syntactic distances
between two source words into the rel-
ative position representations of a self-
attention mechanism. In particular, the
proposed model encodes pair-wise relative
depths on a source dependency tree, which
are the differences between the depths of
two source words, in the encoder’s self-
attention. Experiments show that our pro-
posed model achieved a 0.5 point gain in
BLEU on the Asian Scientific Paper Ex-
cerpt Corpus Japanese-to-English transla-
tion task.

1 Introduction

Machine translation (MT) has been actively stud-
ied for many decades. In recent years, neural ma-
chine translation (NMT) has become dominant. In
particular, the Transformer model (Vaswani et al.,
2017), which is based solely on attention mech-
anisms, has advanced the state-of-the-art perfor-
mance on various translation tasks and has become
the focus of many MT researchers nowadays. Un-
like recurrent neural network (RNN) based mod-
els (Sutskever et al., 2014; Luong et al., 2015) or
convolutional neural network (CNN) based mod-
els (Gehring et al., 2017), the Transformer model
attends to words in the same sentence, i.e., a
source sentence or a target sentence, through the
self-attention mechanisms in each encoder and de-
coder. In addition, it encodes the positional in-
formation of each word, such as the word order,
as positional encoding (PE) so that recurrent and
convolutional structures are excluded and training
can be parallelized. Since NMT appeared, trans-
lation performance has been improved by using

the syntactic information, such as phrase struc-
tures or dependency structures, of the source-side,
target-side, or both (Ding and Palmer, 2005; Chen
et al., 2017; Eriguchi et al., 2017; Wu et al.,
2018). In semantic role labeling (SRL), though the
task is not MT, Strubell et al. (2018) improved a
Transformer-based model through the learning of
self-attention weighting on the basis of syntactic
information, i.e., dependency structures. Hence,
it is expected that the performance of Transformer
NMT will be improved by incorporating syntax in-
formation.

In this paper, we aim to improve Transformer
NMT by using dependency structures. Some re-
searchers have improved Transformer NMT by
modifying self-attention. Shaw et al. (2018) used
relative position information between two words
encoded in self-attention in addition to the abso-
lute position information of words.

Inspired by Shaw et al. (2018), we propose a
novel Transformer NMT model that incorporates
the relationships between two words on source de-
pendency structures into relative position repre-
sentations in self-attention. In particular, the pro-
posed model adds a vector that encodes relative
positional relationships between words on source
dependency structures to a word embedding vec-
tor. It adds only dependency information to the
word embedding vector; hence, there is no need
to change the whole Transformer’s mechanism
or objective function, and it is easy to adapt the
mechanism to other extended Transformer mod-
els because it is highly extensible. Strubell et al.
(2018)’s method is different from our work in that
their task is SRL, and to learn the attention be-
tween words directly from dependency structures,
they largely changed the Transformer’s model and
objective function.

We evaluate the effectiveness of the proposed
model on the WAT’18 Asian Scientific Paper Ex-
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cerpt Corpus (ASPEC) Japanese-to-English trans-
lation task. The experimental results demonstrate
that our approach achieves a 0.5 point gain in
BLEU over baseline Transformers (Vaswani et al.,
2017; Shaw et al., 2018).

2 Related Work

NMT performance has been improved by using
the syntactic information of source language sen-
tences, target language sentences, or both.

Some researchers have focused on phrase struc-
tures as syntactic information. Aharoni and Gold-
berg (2017) incorporated target-side phrase struc-
tures into NMT, and Eriguchi et al. (2016) and Ma
et al. (2018) incorporated source-side phrase struc-
tures. Our work is different from their research in
that we focus on dependency structures rather than
phrase structures. In addition, while their models
are based on RNN-based NMT models, we aim to
improve a Transformer NMT model.

Other researchers have focused on dependency
structures as syntactic information. Chen et al.
(2017) proposed a hybrid NMT model of RNNs
and CNNs to incorporate syntactic information
into an encoder. Their model first learns source de-
pendency representations to compute dependency
context vectors by using CNNs. The RNN-based
encoder-decoder model learns a translation model,
which is provided with the CNNs’ syntactic infor-
mation. Sennrich and Haddow (2016) proposed
an RNN-based NMT model that combines embed-
ding vectors of linguistic features such as part-
of-speech tags and dependency relation labels on
a source sentence with the embedded representa-
tions of the source words. Eriguchi et al. (2017)
proposed a hybrid model, called NMT+RNNG,
that learns parsing and translation by combining
recurrent neural network grammar into an RNN-
based NMT.

Most existing dependency-based NMT mod-
els, including the above-mentioned models, are
improvements over RNN-based NMT models,
which, in terms of structure, differ greatly from
the Transformer model. Because we make the pro-
posed model consider dependency information in
self-attention, which is the Transformer’s charac-
teristic structure, the usage of dependency infor-
mation is different from their models.

Recently, Wu et al. (2018) and Ma et al.
(2019) incorporated syntactic information into
Transformer NMT. Wu et al. (2018) proposed a

dependency-based NMT model that uses depen-
dency trees for both source and target languages.
Their model encodes source sentences with two
extra sequences linearized from source depen-
dency trees and jointly generates both target sen-
tences and their dependency trees. They applied
their model not only to bi-directional RNNs but
also to the Transformer, but did not improve the
Transformer’s architecture. In contrast, we im-
prove the Transformer model so that it incorpo-
rates source dependency information by encod-
ing pair-wise relative depths on a source depen-
dency tree, which are the differences between the
depths of two source words, in the encoder’s self-
attention.

Ma et al. (2019) proposed several strategies
for improving NMT with neural syntax distance
(NSD), which has been used for constituent pars-
ing (Shen et al., 2018), and dependency-based
NSD, which is an extension of the original NSD
for dependency trees. In their work, they pro-
posed a syntactic PE for Transformer NMT in
order to incorporate positions on a dependency
tree for each word via an absolute PE mechanism.
In contrast, our model uses relative dependency-
based distances between two words via a relative
PE mechanism in the encoder’s self-attention.

3 Background

In this section, we first describe the baseline of our
proposed model, the Transformer model. Then,
we describe a Transformer model that employs rel-
ative PE.

3.1 Transformer

Transformer (Vaswani et al., 2017) is an encoder-
decoder model that has a distinct architecture
based on self-attention. Figure 1 shows the ar-
chitecture of the model. Unlike RNN-based NMT
and CNN-based NMT, Transformer does not have
a recurrent or convolutional configuration of net-
works. Instead, it encodes source sentences as in-
termediate representations by using self-attention
and decodes them by using self-attention and
encoder-decoder attention.

The encoder maps an input sequence
(x1, . . . ,xn) to a sequence of vector representa-
tions Z = (z1, . . . , zn). Given Z, the decoder
generates an output sequence (y1, . . . ,yn′). In
both the encoder and decoder, the embedding
layer converts input tokens (source tokens in the
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Figure 1: Architecture of Transformer

encoder and target tokens in the decoder) to vec-
tors of dimension dmodel. Because the information
on proximity between tokens is not considered
in self-attention itself, the information on a
token’s position is embedded by using positional
encoding (PE). Specifically, PE provides a matrix
that represents the absolute position information
of tokens in a sentence, and Transformer adds
PE to the embedding matrix of the input tokens.
Each element of PE is computed by the following
equations, which are sine and cosine functions of
different frequencies.

PE(pos, 2i) = sin(pos/100002i/dmodel),

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel),

where pos is the position of each input token, i
is the dimension of each element, and dmodel is
the embedding dimension of an input token. The
input of the encoder’s or decoder’s first layer is
the embedding matrix added with the positional
encoding.

The encoder’s layer has two sub-layers. The

first sub-layer is a multi-head self-attention mech-
anism, and the second layer is a simple, position-
wise fully connected feed-forward network (FFN).
The decoder’s layer has three sub-layers. The first
sub-layer is a masked multi-head self-attention
mechanism, the second sub-layer is a multi-head
encoder-decoder attention mechanism, and the
third sub-layer is the FFN.

Residual connection (He et al., 2016) is applied
to the sub-layers, followed by layer normaliza-
tion (Ba et al., 2016), i.e., the output of each sub-
layer is LayerNorm(x + Sublayer(x)), where
Sublayer(x) is the output of the original sub-
layer.

The self-attention and the encoder-decoder at-
tention employ a multi-head attention mechanism.
The multi-head attention first computes h dot-
product attentions after linearly mapping three in-
put vectors, q,k,v*1 ∈ R1×dmodel , from dmodel

dimension to dk dimension with parameter matri-
ces, WQ

i ,WK
i ,W V

i ∈ Rdmodel×dk(i = 1, . . . , h),
where dmodel is the dimension of input vectors,
and dk = dmodel/h. In what follows, each dot-
product attention is referred to as a head (Hi (i =
1, . . . , h)).

Hi = Attention(q′,k′,v′), (1)

Attention(q′,k′,v′) = softmax(
q′k′T
√
dk

)v′, (2)

q′ = qWQ
i ,k′ = kWK

i ,v′ = vW V
i . (3)

Then, multi-head attention linearly maps concate-
nated heads with a parameter matrix, W o ∈
Rdmodel×dmodel .

MultiHead(q,k,v) = Concat(H1, . . . , Hh)W
O.
(4)

The encoder’s self-attention computes Equation
4 by substituting the intermediate states of the en-
coder, x1, . . . ,xn, for q,k,v. Specifically, each
head computes the following weighted sum.

zi =
n∑

j=1

αijxjW
V , (5)

where z1, . . . , zn are the outputs of the self-
attention. Each coefficient, αij , is computed by
using a softmax function:

αij =
exp (eij)∑n
k=1 exp (eik)

, (6)

*1In this paper, we treat a vector as a row vector according
to the original paper (Vaswani et al., 2017) unless otherwise
noted.
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where eij is computed:

eij =
(xiW

Q)(xjW
K)T√

dz
, (7)

where dz is the dimension of zi.
The decoder’s self-attention computes Equation

4 by substituting the intermediate states of the de-
coder for q,k,v. During inference, however, it
is not possible for the decoder to get the infor-
mation on the words that will be generated later
when predicting a word, i.e., only the intermedi-
ate states of the sub-sequence that has been gener-
ated can be used for self-attention. Hence, masked
self-attention is introduced to the decoder’s self-
attention so as not to calculate the self-attention
between a predicted word and succeeding words.
Masked self-attention is calculated by changing
Equation 7:

eij =

{
(xiW

Q)(xjW
K)T√

dz
(i ≥ j),

−∞ (otherwise).
(8)

The coefficient representing the strength of the re-
lationship between a certain word and the word lo-
cated behind it (i < j) becomes zero, and it can be
controlled so as not to consider the relationship.
Hence, Equation 6 is changed:

αij =

{
exp (eij)∑n

k=1 exp (eik)
(i ≥ j),

0 (otherwise).
(9)

In the encoder-decoder attention, the intermedi-
ate states of the decoder are used for q, and the
outputs of the encoder are used for k,v.

The FFN for input x compute as follows:

FFN(x) = max(0,xW1 + b1)W2 + b2, (10)

where W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel are
parameter matrices, and b1, b2 are biases.

3.2 Transformer with Relative Positional
Encoding

Shaw et al. (2018) proposed an extended trans-
former model that captures the pairwise relation-
ships between input elements in terms of relative
positions in both the encoder and decoder. In their
method, the relationships between the intermedi-
ate representations xi and xj , i.e., relative posi-
tion information between the i-th and j-th words
in an input sentence, are represented by vectors
aV
ij ,a

K
ij ∈ Rdk . The relative position representa-

tions are added to the output of the sub-layer to be

bought

father

My

car

a red

.

Figure 2: Example of Dependency Tree

the input to the next layer. Specifically, the follow-
ing equation is used instead of Equation 5.

zi =

n∑
j=1

αij(xjW
V + aV

ij). (11)

The following equation is also used for the sub-
stitution of Equation 7 in order to consider relative
position relationships between words in calculat-
ing eij :

eij =
xiW

Q(xjW
K + aK

ij )
T

√
dz

. (12)

Shaw et al. (2018) assume that relative posi-
tion information is not useful when the distance is
long. They define the maximum relative position
as a constant k. In addition, the relative position
relationships between two words are captured by
2k + 1 unique labels as follows, considering that
succeeding words are in a positive direction and
preceding words are in a negative direction.

aK
ij = wK

clip(j−i,k), (13)

aV
ij = wV

clip(j−i,k), (14)

clip(x, k) = max(−k,min(k, x)), (15)

where wK = (wK
−k, . . . ,w

K
k ) and wV =

(wV
−k, . . . ,w

V
k ) (wK

k ,wV
k ∈ Rdk ) are relative po-

sition representations to be learned.

4 Dependency-Based Relative Positional
Encoding for Transformer

In this section, we explain our proposed method,
which encodes relative positions on source de-
pendency trees in Transformer. We first intro-
duce the inter-word distance on source depen-
dency trees and then explain dependency-based
relative positional encoding, which provides rel-
ative position representations on the trees. The
dependency-based encoding is incorporated into
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My father bought a red car .
My 0 -1 -2 0 0 -1 -1
father 1 0 -1 1 1 0 0
bought 2 1 0 2 2 1 1
a 0 -1 -2 0 0 -1 -1
red 0 -1 -2 0 0 -1 -1
car 1 0 -1 1 1 0 0
. 1 0 -1 1 1 0 0

Table 1: Examples of Dependency-based Inter-
Word Distances

the self-attention mechanism, following the idea
of relative positional encoding (Shaw et al., 2018).

The inter-word distance on dependency trees is
defined as the relative depth between two words
in dependency trees. The relative depth distij be-
tween node ni and node nj corresponding to word
wi and word wj is defined as follows:

distij = depth(nj)− depth(ni), (16)

where depth(n) is the depth of node n in a depen-
dency tree. For example, in Figure 2, the depth of
“bought” (w3) relative to “My” (w1) is calculated
by dist1,3 = 0 − 2 = −2. Table 1 shows a list
of the inter-word distances on the dependency tree
shown in Figure 2.

The relative position between node ni and node
nj in a source dependency tree is represented by
vectors, bVij , b

K
ij ∈ Rdk , and the following equa-

tions are used instead of Equations 11 and 12.

zi =
n∑

j=1

αij(xjW
V + bVij), (17)

eij =
xiW

Q(xjW
K + bKij )

T

√
dz

. (18)

We assume that the influence of a distance de-
creases if the distance is longer than some certain
threshold. We limit the maximum distance to a
constant l. The relative position representations
bVij and bKij between node ni and node nj in a de-
pendency tree are defined with inter-word distance
labels:

bKij = wK
clip(distij ,l)

, (19)

bVij = wV
clip(distij ,l)

. (20)

Using these expressions, the encoder’s self-
attention networks learn the relative position rep-
resentations on a source dependency structure. We
call this model Transformerdep.

We also describe a hybrid model that learns both
relative position representations on dependency
structures and relative position representations for
linear relations in sentences, i.e., the relative posi-
tional encoding explained in Section 3.2. This hy-
brid method is called Transformerdep+rel. The
Transformerdep+rel model uses the sum of aV

ij

and bVij and the sum of aK
ij and bKij as relative po-

sition information between two words. zi and eij
are defined in Transformerdep+rel as follows:

zi =

n∑
j=1

αij(xjW
V + aV

ij + bVij), (21)

eij =
xiW

Q(xjW
K + aK

ij + bKij )
T

√
dz

. (22)

5 Experiments

5.1 Experimental Setup

We experimented on the WAT’18 Asian Scien-
tific Paper Excerpt Corpus (ASPEC) (Nakazawa
et al., 2016) by using the Japanese-to-English lan-
guage pair. We tokenized English sentences by us-
ing Moses (Koehn et al., 2007) and Japanese sen-
tences by using KyTea (Neubig et al., 2011). We
also parsed the dependency of the Japanese sen-
tences by using EDA*2.

For model learning, we used 1,341,417 sentence
pairs of 50 words or less for both the English and
Japanese sentences from the first 1.5 million sen-
tence pairs of the training data (train-1.txt, train-
2.txt). The Japanese dictionary was comprised of
words that appeared 7 times or more in the training
data, and the English dictionary was comprised
of words that appeared 10 times or more in the
training data. The other words were replaced with
⟨UNK⟩ tags representing unknown words. We
used 1,790 sentences (dev.txt) as validation data
and 1,812 sentences (test.txt) as test data.

We compared our models, Transformerdep
and Transformerdep+rel, with two baseline
Transformer NMT models, Transformerabs
(Vaswani et al., 2017), which learns absolute posi-
tion representations, and Transformerrel (Shaw
et al., 2018), which learns relative position repre-
sentations in a sentence.

Hyper-parameters of all Transformer mod-
els were determined, following the settings of
Vaswani et al. (2017). We set the number of stacks

*2http://www.ar.media.kyoto-u.ac.jp/
tool/EDA/

http://www.ar.media.kyoto-u.ac.jp/tool/EDA/
http://www.ar.media.kyoto-u.ac.jp/tool/EDA/
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Model BLEU
Transformerabs 25.91
Transformerrel 26.72
Transformerdep 26.10

Transformerdep+rel 27.22

Table 2: Experimental Results

of the encoder and decoder layers to 6, the num-
ber of heads to 8, and the embedding dimension to
512. We used the Adam optimizer (Kingma and
Ba, 2015) with β1 = 0.9, β2 = 0.98, ϵ = 10−9.
We used the same warm-up and decay strategy for
the learning rate as Vaswani et al. (2017), with
4, 000 warm-up steps.

The maximum distances of the relative po-
sition for linear relations in the sentences and
dependency-based relations were set as k = 2,
l = 2 for Transformerrel, Transformerdep,
and Transformerdep+rel

*3. The batch size was
256, the number of epochs was 30, and the model
with the best accuracy for the validation data was
applied to the test data. In our experiments, target
sentences were generated by a greedy algorithm.

5.2 Results

The evaluation results are shown in Table
2. We used BLEU to evaluate the transla-
tion performance. As shown in the table,
Transformerdep improved by 0.19 BLEU
points against Transformerabs. This means
that the dependency-based positional encod-
ing was effective for the Transformer model.
Although the effectiveness of our dependency-
based positional encoding (Transformerdep)
was not as great as the relative positional en-
coding (Transformerrel), the hybrid model
(Transformerdep+rel) achieved the best result
among these models. Transformerdep+rel

improved by 1.31 BLEU points against
Transformerabs and by 0.50 BLEU points
against Transformerrel. From these results, on
the Japanese-to-English translation task, the per-
formance of Transformer NMT can be improved
by incorporating source dependency structures
into relative position representations.

bVij bKij BLEU
✓ ✓ 16.71
× ✓ 16.60
✓ × 15.62
× × 8.69

Table 3: Experimental Results for Ablating Rela-
tive Position Representations bVij , b

K
ij

5.3 Discussion
Shaw et al. (2018) verified the effectiveness of
both aV

ij and aK
ij , representing relative positional

relationships. They showed that the translation ac-
curacy was comparative when aV

ij was removed
from their model, but the translation accuracy de-
creased when aK

ij was removed. This means that
aK
ij was an effective representation, but aV

ij was
less effective. In this section, to confirm the ef-
fectiveness of the dependency-based representa-
tions, we conducted ablation experiments on bVij
and bKij . We evaluated the Japanese-English trans-
lation performance for Transformerdep. The
absolute positional encoding was removed from
all models, following the settings of Shaw et al.
(2018)’s verification. Specifically, we evaluated
(i) the Transformerdep model that used only bVij ,
where Equation 18 was changed to Equation 7,
(ii) the Transformerdep model that used only
bKij , where Equation 17 was changed to Equation
5, and (iii) the Transformerdep model that used
neither bVij and bKij , i.e., Transformerabs without
the absolute positional encoding.

The settings for the ablation experiment were
as follows. In model training, we used the first
100,000 sentence pairs of 50 words or less for both
English and Japanese sentences, which were ex-
tracted from the training data (train-1.txt). Both
the Japanese dictionary and the English dictionary
were comprised of words that appeared 2 times or
more in the training data, and the other words were
treated as unknown words with UNK tags. The
batch size was 100, and the number of epochs was
50. Other settings were the same as the main ex-
periments in Section 5.1.

The results are shown in Table 3. Ta-
ble 3 shows that Transformerdep using only
bVij was 1.09 points lower than the baseline
Transformerdep, which used both bVij and

*3We chose k = 2 because Shaw et al. (2018) showed that
BLEU scores for k ≥ 2 are nearly unchanged. l was tuned
on development data.
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bKij , while Transformerdep using only bKij
was 0.11 points slightly lower than the base-
line Transformerdep. Table 3 also shows that
the Transformerdep that used neither bVij and
bKij was 8.02 points lower than the baseline
Transformerdep, which was significantly worse.

These results were consistent with the exper-
imental results in Shaw et al. (2018). The
dependency-based relative position representa-
tions, bKij and bVij , were shown to be effective, but
bKij was more effective than bVij .

6 Conclusion

In this paper, we proposed a novel Transformer
NMT model that incorporates syntactic distances
between two source words into the relative po-
sitional encoding of an encoder’s self-attention
mechanism. We demonstrated that our proposed
model improved the translation accuracy, in terms
of BLUE score, on the ASPEC Japanese-to-
English translation task.

For future work, we would like to improve our
model by introducing relative positional encoding
to target dependency structures, i.e., dependency-
based relative positional encoding for decoders.
For example, we would like to integrate our en-
coding into the dependency-based decoder in (Wu
et al., 2018).
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