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Abstract

We build the first full pipeline for seman-
tic role labelling of Russian texts. The
pipeline implements predicate identifica-
tion, argument extraction, argument clas-
sification (labeling), and global scoring via
integer linear programming. We train su-
pervised neural network models for argu-
ment classification using Russian seman-
tically annotated corpus – FrameBank.
However, we note that this resource pro-
vides annotations only to a very limited
set of predicates. We combat the prob-
lem of annotation scarcity by introducing
two models that rely on different sets of
features: one for “known” predicates that
are present in the training set and one for
“unknown” predicates that are not. We
show that the model for “unknown” pred-
icates can alleviate the lack of annota-
tion by using pretrained embeddings. We
perform experiments with various types
of embeddings including the ones gener-
ated by deep pretrained language models:
word2vec, FastText, ELMo, BERT, and
show that embeddings generated by deep
pretrained language models are superior
to classical shallow embeddings for argu-
ment classification of both “known” and
“unknown” predicates.

1 Introduction

Semantic role labeling (SRL) is one of techniques
for shallow semantic parsing of natural language
texts that produces predicate-argument structures
of sentences. Predicates bear the central meaning
of a situation expressed by a text. In most semantic
theories, predicates are verbs, verbal nouns, and
some other verb forms. Arguments are phrases

that fill meaning slots of a situation expressed by
a predicate and define its essential details. They
answer such questions as “who?”, “did what?”,
“to whom?”, “with what?”, “where?”, “when?”,
etc. It is said that arguments play semantic roles
in a situation as roles define meanings of slots.
Role meanings and sizes of role inventories vary
in different semantic theories and annotated cor-
pora. Converting a text into such shallow seman-
tic structures helps to abstract from syntactic and
morphological representations of sentences and is
considered to be an important technique for natu-
ral language understanding. In (Jurafsky and Mar-
tin, 2009), this is demonstrated with the following
example for a predicate break.

• John [AGENT] broke the window [THEME].

• John [AGENT] broke the window [THEME]
with a rock [INSTRUMENT].

• The rock [INSTRUMENT] broke the win-
dow [THEME].

• The window [THEME] broke.

• The window [THEME] was broken by John
[AGENT].

Note, that despite the surface syntactic rep-
resentations of these sentences differ, the core
predicate-argument structure retains and only ad-
justs to available situation details.

Semantic role labeling has been shown to be
beneficial in a number of tasks, where it is im-
portant to compare or query texts by meaning:
machine translation (Shi et al., 2016), question
answering (Shen and Lapata, 2007), information
search (Osipov et al., 2010), information extrac-
tion (Bastianelli et al., 2013), sentiment analysis
(Marasović and Frank, 2018), and others.
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The whole SRL process can be divided in four
steps: predicate identification and identification
of its frame (disambiguation), argument extraction
(for each predicate), argument classification (or
labeling of arguments with semantic roles), and
global scoring that deals with linguistic constrains.
Predicate-argument structures in some notations
can be represented as two-level trees, rooted in
predicates, with single tokens (nouns, adjectives,
pronouns, proper names) as leaves that denote ar-
guments. We adopt this dependency-based nota-
tion and treat the problem of semantic role label-
ing as constructing such trees.

There are two main types of linguistic cor-
pora that are used for training models for SRL:
FrameNet-like (Baker et al., 1998) and PropBank-
like (Kingsbury and Palmer, 2002). The Russian-
language resource that can be used for supervised
training is a FrameBank corpus (Lyashevskaya,
2012; Lyashevskaya and Kashkin, 2015). The un-
derlying semantic model of this resource is close
to the one FrameNet is based on. The biggest
difference from FrameNet besides semantic role
inventory lies in the fact that FrameBank does
not group several verbs into frames but introduces
“frame” structures for each unique verb. The cor-
pus contains partially annotated text samples with
predicates, arguments, and their semantic roles.

A notable limitation of this resource is that there
are annotations only for a very limited set of pred-
icates. In this work, we combat the problem of
annotation scarcity by introducing two classifica-
tion models that rely on different sets of features:
one for “known” predicates that are present in the
training set and one for “unknown” predicates that
are not seen in the training data. We show that
the model for “unknown” predicates can deal with
the lack of annotation by using pretrained em-
beddings. We perform experiments with various
types of embeddings including the ones generated
by deep pretrained language models: word2vec
(Mikolov et al., 2013), FastText (Bojanowski et
al., 2017), ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2018), and show that embeddings gen-
erated by deep pretrained language models are su-
perior to classical shallow embeddings for seman-
tic role labeling in both cases of “known” and “un-
known” predicates.

The contribution of this paper is the following:

• We present and evaluate the first full pipeline
for semantic role labeling of Russian texts.

The developed models and the code are pub-
lished online1.

• We show that pretrained embeddings and lan-
guage models can alleviate the problem of
annotation scarcity for predicates.

• We conduct experiments that demonstrate the
superiority of using embeddings generated
by pretrained language models compared to
shallow embeddings like word2vec and Fast-
Text.

The rest of the paper is structured as follows.
Section 2 discusses the related work on seman-
tic role labeling for Russian and other languages.
Section 3 describes the developed pipeline for se-
mantic role labeling of Russian texts. Section 4
presents the results of the experimental evaluation
of the developed pipeline. Section 5 concludes and
outlines the future work.

2 Related Work

The data-driven methods for semantic role label-
ing originate from the work (Gildea and Juraf-
sky, 2002), in which authors propose a statistical
model based on various morpho-syntactic features
and train it on the FrameNet corpus. The release
of the PropBank corpus sparked a notable inter-
est in SRL among researchers. The consecutive
works and numerous shared tasks facilitated cre-
ation of elaborated machine learning models based
on manually engineered lexico-syntactic features
(Xue and Palmer, 2004; Punyakanok et al., 2005;
Pradhan et al., 2005).

More recent works on semantic role label-
ing leverage deep neural networks (Collobert
et al., 2011) shifting from feature-engineering
to architecture-engineering. Several notable ap-
proaches suggest doing semantic role labeling in
an end-to-end fashion relying only on raw low-
level input consisted of characters or tokens and
well-known multilayer recurrent networks (He et
al., 2017; Sahin and Steedman, 2018; Marcheg-
giani et al., 2017). State-of-the-art approaches
leverage multitask learning (Strubell et al., 2018)
and self-attention techniques (Strubell et al., 2018;
Tan et al., 2018). Several recent works also re-
port that although the end-to-end approaches have

1https://github.com/IINemo/isanlp_srl_
framebank/tree/master
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managed to show comparable results, syntactic in-
formation still significantly helps semantic parsing
(He et al., 2018).

It is worth noting a novel approach to creating
annotated resources for semantic role labeling. In
(He et al., 2015; FitzGerald et al., 2018), instead
of annotating a corpora with a scheme grounded in
elaborated linguistic theory, which requires highly
qualified annotators, researchers suggest question-
answer driven approach to construction of anno-
tated resource based on crowd-sourcing. The re-
cently presented QA-SRL Bank 2.0 (FitzGerald et
al., 2018) is a large-scale annotated dataset built by
non-experts. The construction of such a resource
becomes possible due to simplicity of the anno-
tation scheme, which provides an ability to label
predicate-argument relationships using question-
answer pairs.

There is a number of works devoted to au-
tomatic semantic parsing of Russian texts. In
(Sokirko, 2001), a rule-based semantic parser is
presented that converts a sentence into a seman-
tic graph. The work does not provide numeri-
cal evaluation results, and the generated seman-
tic graph is substantially different from predicate-
argument structures produced in SRL. In (Shel-
manov and Smirnov, 2014), authors present a
rule-based semantic parser for Russian that re-
lies on a dictionary of predicates and a set of
morpho-syntactic rules created by human experts.
They use this parser to automatically annotate
representative corpus for supervised training of
a transition-based labeler. In (Kuznetsov, 2015;
Kuznetsov, 2016), an SVM-based labeling model
is trained on FrameBank corpus. Authors rely on
feature-engineering approach and suggest to use
syntactic features and clusters of lexis. They also
implement integer linear programming inference
as a post processing step. These works are based
on the pre-release version of the FrameBank cor-
pus and do not provide code for data preparation,
modeling, and evaluation. They also do not con-
sider argument extraction and the problem with
labeling arguments of “unknown” predicates. In
(Shelmanov and Devyatkin, 2017), authors exper-
iment with training a neural network models on the
FrameBank corpus and suggest using word2vec
embeddings for dealing with scarcity of predicate
annotations. However, they implement only an
argument classification step but not the full SRL
pipeline. It is also worth noting that they per-

formed experiments on gold-standard morpholog-
ical features (POS tags and morphological char-
acteristics), which does not reflect the real-world
scenario. In this work, we additionally suggest us-
ing embeddings generated by deep pretrained lan-
guage models, train models on automatically gen-
erated linguistic annotations (morphology / syn-
tactic trees), and provide the full pipeline for se-
mantic role labeling including argument extrac-
tion. It is also worth noting the Frame-parser
project2, however, it is in an early stage and only
implements argument labeling using an SGD clas-
sifier.

3 Pipeline for Semantic Role Labeling

The limitations of the FrameBank corpus do not
allow to use end-to-end / sequence labeling meth-
ods for SRL. Unlike PropBank, its text samples are
annotated only partially, so they are not suitable
for straightforward training of a supervised argu-
ment extractor or a combined pipeline. Therefore,
we split our pipeline into multiple stages, some of
which leverage rule-based methods.

The pipeline for semantic role labeling assumes
that input texts are preprocessed with a tokenizer, a
sentence splitter, a POS-tagger, a lemmatizer, and
a syntax parser that produces a dependency tree
in a Universal Dependencies format (Nivre et al.,
2016). The SRL pipeline consists of the follow-
ing steps: predicate identification, argument ex-
traction, argument classification, and global scor-
ing.

In the predicate identification step, we mark all
verbs and some verb forms according to the given
POS-tags of sentence tokens. We do not con-
sider verbal nouns as predicates since they are not
present in the FrameBank corpus. In the argument
extraction step, for each marked predicate, we try
to detect its arguments within a sentence by ana-
lyzing its syntax dependency tree with a number of
manually constructed rules. The arguments in the
pipeline are not spans as stated in CoNLL Shared
Tasks 2004, 2005, 2012 (Carreras and Màrquez,
2004; Carreras and Màrquez, 2005; Pradhan et al.,
2012), but single tokens (nouns, proper names, or
pronouns) as stated in CoNLL Shared Tasks 2008,
2009 (Surdeanu et al., 2008; Hajič et al., 2009).

For the argument classification step, we train
two neural models that predict roles of arguments

2https://github.com/lizaku/
frame-parsing
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of “known” and “unknown” predicates accord-
ingly. We call a predicate “known” if it appears in
a training set within a labeled example, and “un-
known” if it does not. During the inference we
choose a model by simply checking a presence of
a given predicate in a list of predicates appeared in
the training corpus. The result of model inference
is a set of probabilities for each semantic role in
the inventory (above a certain threshold).

In the global scoring step, we enforce the fi-
nal predicate-argument structure to fulfill the im-
portant linguistic constraint: in a single predicate-
argument structure, each semantic role can be as-
signed only once, and each argument can have
only one role.

The whole pipeline is schematically depicted in
Figure 1.

3.1 Argument Extraction
Base arguments are extracted from a syntax tree
of a sentence by rules that take into account POS-
tags of tokens and direct syntax dependency links
rooted in predicates. Arguments are often also
connected to predicates not directly but through
simple and complex prepositions that consist of
several words. Complex prepositions are de-
tected using the predefined list of triplets <PREP,
NOUN, syntactic link>. Name of a syntactic link
is used to resolve ambiguity between noun phrases
and complex prepositions.

We also take into account tokens that are not
related to the predicate directly but are homoge-
neous to base arguments. The tokens that are
linked to the base arguments with a conjunct rela-
tion (“conj”) are considered as extensions of base
arguments and are labeled with the same semantic
role as the base argument. The list of predicates
is also expanded via adding the syntactic subjects
and agents connected to the extracted arguments
with a nominal subject (“nsubj”) relation, as well
as with “name” and “appos” in case it is a person
name or a title. The nominal modifier (“nmod”)
relation is used for nominal dependents and often
indicates locations. The adverbial clause modifier
(“advcl”) helps to find the sequences of participle
clauses that have a common subject.

3.2 Argument Classification
For argument classification, we train two feed-
forward neural-network models: the model for
“known” predicates and the model for “unknown”
predicates. The feature set of the model for

“known” predicates includes embeddings of argu-
ment and predicate lemmas, as well as the follow-
ing sparse lexical and morpho-syntactic features:

• Various types of morphological characteris-
tics of both an argument and a predicate
(case, valency, verb form, etc.)

• Relative position of an argument in a sen-
tence with respect to a predicate.

• Preposition of an argument extracted from a
syntax tree (including a complex preposition
as a single string).

• Name of a syntactic link that connects an ar-
gument token to its parent in the syntax tree.

• Argument and predicate lemmas.

We note that the predicate lemma is one of the
essential features for high-quality semantic role la-
beling, since predicates express a situation in a
sentence and determine its meaning slots. Similar
morpho-syntactic structures with different predi-
cates can express different meanings. Therefore,
the lack of annotation for a predicate in a train-
ing set hits hard classifier confidence and over-
all performance on examples with this “unknown”
predicate. We combat this problem by introducing
a second model that is trained without predicate
lemmas as features, so it should rely on predicate
lemma word embeddings and other features in-
stead. This model performs worse than the model
for “known” predicates on seen predicates but it
is also affected less by an absence of a predicate
in a training corpus. This happens because predi-
cate lemma embeddings capture predicate seman-
tics, and similarity between these embeddings can
help the model to guess meanings of “unknown”
predicates.

In this work, we experiment with various types
of word embeddings obtained from shallow mod-
els word2vec and FastText, as well as from pre-
trained language models ELMo and BERT. Re-
cently, it has been shown that pretrained lan-
guage models provide substantially better gener-
alization to downstream models compared to shal-
low embeddings built by word2vec or FastText al-
gorithms. This happens because language mod-
els can take into account contexts of words, for
which they generate an embedding, and capture
much longer dependencies in texts. ELMo gen-
erates contextual word representations by using a
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Figure 1: Semantic role labeling pipeline

stack of bidirectional LSTM layers that are trained
to predict a following word on the basis of seen
context. The output from each layer can be used as
a set of features to downstream models. BERT is
a masked language model that is trained to predict
masked words in a sequence given all other words
in the sequence. In addition, it is also trained
to simultaneously predict whether two given sen-
tences are consecutive. BERT uses self-attention
encoder (Vaswani et al., 2017) that can be much
faster than LSTM and can capture longer depen-
dencies across sequences.

The feedforward neural network model for
argument classification has three dense layers.
Three inputs, namely embedding of a predicate,
embedding of an argument, and sparse categori-
cal features are separately passed through the first
piecewise layer with ReLU activation. Concate-
nated outputs of the first layer are then propa-
gated through another ReLU layer and the output
layer with softmax activation. Before the activa-
tion function, batch normalization is applied on
each hidden layer. The network is regularized with
dropout. The output of this network is a vector of
probabilities for each semantic role in a given in-
ventory.

3.3 Global Scoring
Semantic labels in a single predicate-argument
structure are not completely independent from
each other. Moreover there is a certain linguis-
tic constraint that requires that there should be no

duplicate argument labels, since a meaning slot of
a situation can be filled by just a single participant
(for the core semantic roles) or a group of homo-
geneous arguments. In the argument classification
step, we use a neural network model to produce
a number of probabilities for a list of semantic
roles and due to the linguistic constraint, we can-
not greedily assign roles with maximum probabil-
ity. In the global scoring step, we effectively pro-
duce the global optimal predicate-argument struc-
ture that fulfills the constraint by leveraging an in-
teger linear programming inference (Punyakanok
et al., 2004). Formally, it can be described in the
following way. Let xij ∈ {0, 1} be a target vari-
able and xij = 1 means an argument j has a se-
mantic role i. Let p(i, j) be a probability of assign-
ing a role i to an argument j estimated by a neural
network. Let n and m be the numbers of roles and
arguments accordingly. The optimization problem
formally:

argmax
xij

m∑
j

n∑
i

xij log p(i, j)

n∑
i

xij = 1, j = 1..m

m∑
j

xij = 1, i = 1..n

xij ∈ {0, 1}, i = 1..n, j = 1..m
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Table 1: The merging scheme for mixed roles
Original (mixed) role Destination role
agent – perceiver perceiver
agent – sbj of mental state sbj of mental state
result / target result
location – patient location
speaker – sbj of psychol.
state

sbj of psychol. state

The optimal solution to this problem is used
as the final assignment of semantic roles to argu-
ments.

4 Experiments

4.1 Dataset and Preprocessing
FrameBank contains annotated text samples with
multiple contextual sentences. Each sentence con-
sists of tokens with their morphological features.
We follow preprocessing procedure from (Shel-
manov and Devyatkin, 2017) to map annotations
to corresponding tokens. We also merged mixed
roles annotations from the original dataset into
their subsequent roles. See the merging scheme
in Table 1.

Unlike (Shelmanov and Devyatkin, 2017), in
this work, we do not rely on gold-standard linguis-
tic annotations at all, since the goal of our work is
to develop the parser that can process raw texts. To
generate linguistic annotations for SRL input, we
perform the following linguistic processing steps:

• Tokenization and sentence splitting are per-
formed by NLTK library3.

• Lemmatization, POS-tagging, and mor-
phological analysis are done by MyStem
(Segalovich, 2003).

• Syntax parsing is performed via UDPipe
parser (Straka and Straková, 2017) with
model trained on SynTagRus (Nivre et al.,
2008).

These steps are implemented using the IsaNLP
library4.

The original corpus after preprocessing con-
tains examples for 803 predicates. However, for
many predicates there are just few examples, and
some semantic roles are also rare. Therefore, we
followed (Shelmanov and Devyatkin, 2017) and
filtered the dataset keeping only predicates that

3https://www.nltk.org/
4https://github.com/IINemo/isanlp

have at least 10 examples. The filtered dataset re-
tains 643 unique predicates (verbs). We also drop
infrequent roles, for which the dataset contains
less then 180 examples. The final corpus version
contains 52,751 examples for 44 unique semantic
roles.

4.2 Embeddings and Pretrained Language
Models

In our experiments, we use the following pub-
licly available pretrained word embeddings and
language models:

• Word2Vec: RusVectores5 (Kutuzov and Kuz-
menko, 2017). Skip-gram model trained on
Russian Wikipedia, dimension: 300.

• FastText: DeepPavlov6 (Burtsev et al., 2018).
Skip-gram model trained on a mixed cor-
pus of Russian Wikipedia and Lenta.ru news
texts, dimension: 300.

• ELMo: DeepPavlov. Pretrained on Rus-
sian Wikipedia corpus, achieves perplexity of
43.692, 2 layers, dimension: 1024.

• BERT multilingual cased: released by the au-
thors (Devlin et al., 2018). Pretrained on 104
languages, 12 encoder blocks, produces vec-
tors with 768 dimensions.

• RuBERT: DeepPavlov. RuBert is an adap-
tation of BERT-multilingual with vocabulary
enriched with Russian byte-pairs (Arkhipov
et al., 2019).

Both ELMo and FastText mitigate out-of-
vocabulary problem, so we do not lose any predi-
cates and arguments, while there are some misses
for word2vec. BERT models are built upon byte-
pair encoding, so we use only the first byte-pair
representation for each token as recommended by
the authors. It is worth noting that although BERT
is a quite large model, it takes only 15 minutes
on a single GTX 1080 Ti to encode all examples,
compared to 1.5 hours for ELMo.

4.3 Neural Network Hyperparameters
We performed hyperparameter tuning using ran-
dom search on the task of argument labeling for
“known” predicates. The following parameters
were selected and used in all further experiments:

5http://rusvectores.org/en/
6https://deeppavlov.ai/
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categorical features layer hidden size – 400, em-
beddings projection layer hidden size – 100, con-
catenated vector layer size – 400, dropout – 0.3.

4.4 Experimental Setup

We evaluated the argument extraction step using
only the predicate-argument structures labeled in
FrameBank and did not take into consideration
any other structures in the corpus found by our
parser.

For evaluation of argument labeling step, we
conducted two experiments using various token
representations and dataset splitting schemes.

In the first setup, we evaluate argument classi-
fication step on full set of features and test vari-
ous word representations. Lexical, morphological,
and syntax features are encoded in one-hot man-
ner. Macro and micro F1 scores are calculated on a
5-fold cross-validation. Evaluation results are pre-
sented in Table 2.

In the second setup, we evaluate the perfor-
mance of the argument classification models for
“unknown” predicates. Thus, we divided the
dataset in two parts by leaving 80% of predicates
with their examples for training and 20% of pred-
icates for testing. The sets of predicates in train-
ing and testing parts do not intersect. The division
of predicates was performed at random. For this
setup, there was no cross-validation. Instead, we
averaged results of 5 models trained with differ-
ent random seeds. In this experimental setup, we
compare models for “unknown” predicates that do
not take into account predicate lemma with vari-
ous types of token embeddings.

To ensure the importance of introducing ad-
ditional model for “unknown” predicates in our
semantic role labeling pipeline and importance
of predicate lemma feature, we also evaluate the
model for “known” predicates on the test set with
“unknown” predicates. The goal of this experi-
ments is to show that the model for “known” pred-
icates overfits on predicate-lemma features and
performs worse than models trained specifically
for “unknown” predicates, since it is “blind” to
its most important feature. We report the results
of the model for “known” predicates in this setup
only with the embeddings that achieve the best
score in the previous experiment. The test results
are presented in Table 3.

4.5 Results and Discussion

In the argument extraction step, we achieve
74.48% precision, 85.12% recall, and 79.44% F1-
score. We note that many false positives are due
to the absence of non-core arguments in our eval-
uation set. These phrases that bear temporal, loca-
tive, and some other types of information are cor-
rectly identified by our parser but are considered as
mistakes in the evaluation setup resulting in lower
precision than it actually is. However, we see that
it is the only adequate way to assess extraction
quality with partially labeled data.

The results for the argument labeling step pre-
sented in Table 2 show that ELMo and BERT out-
perform all other approaches, including results in
(Shelmanov and Devyatkin, 2017), although, un-
like them, we do not rely on gold-standard mor-
phological features. In Table 4, we also report the
performance per semantic role of the model that
uses ELMo word representations.

In many works, BERT outperforms ELMo by a
significant margin. However, in our work, there is
just an insignificant gap between ELMo and Ru-
BERT. This is probably due to BPE tokenization
scheme of BERT, since we take encoded represen-
tation only for the first subword unit of each token,
with no fine-tuning, leaving a lot of information
about words unused.

In the second experimental setup, the gap be-
tween RuBERT and ELMo is increased. In this
case, the model based on RuBERT shows worse
performance than all other approaches. However,
there is a certain improvement ∆1.5% of micro F1
score between ELMo and word2Vec-based mod-
els. It shows that representations generated by
deep pretrained language models can restore se-
mantics of unseen predicates better than shallow
models by additionally leveraging the context.

The results of the model for “known” predicates
even with the best word representations ELMo are
expectedly low. The performance drop compared
to the model for “unknown” predicates with the
same embeddings is substantial: 10% micro-F1
and more than 8% macro-F1. It is worse than
any of other models except RuBERT. This proves
that predicate lemma is very important as a fea-
ture and SRL pipeline should have two models to
process “known” and “unknown” predicates to al-
leviate the domain shift.
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Model Micro F1 Macro F1
Plain Features Only 76.96 ± 0.67 73.63 ± 0.61
Word2Vec UPOS 79.87 ± 0.34 76.70 ± 0.77
FastText 80.60 ± 0.51 77.39 ± 0.36
ELMo 83.42 ± 0.60 79.91 ± 0.40
BERT-Multiling 79.04 ± 0.63 75.68 ± 0.72
RuBERT 83.12 ± 0.60 80.12 ± 0.62

Table 2: Performance of models in the experimen-
tal setup with “known” predicates

Model Micro F1 Macro F1
ELMo (for known pred.) 45.51 ± 0.50 29.31 ± 0.82
Word2Vec UPOS 53.97 ± 0.21 37.29 ± 0.74
ELMo 55.50 ± 0.51 37.64 ± 0.41
FastText 49.37 ± 0.43 37.26 ± 0.29
BERT-Multiling 31.81 ± 0.51 21.04 ± 0.13
RuBERT 43.68 ± 0.50 30.84 ± 0.55

Table 3: Performance of models in the experimen-
tal setup with “unknown” predicates

5 Conclusion and Future Work

We presented and evaluated the first full pipeline
for semantic role labeling of Russian texts.
The experiments with various types of embed-
dings showed that the pretrained language mod-
els ELMo and BERT substantially outperform the
embeddings obtained with shallow algorithms like
word2vec and FastText. We also showed that pro-
viding supplementary SRL model for “unknown”
predicates can alleviate the problem with annota-
tion scarcity. We note, that in the case of pre-
dicting arguments for “uknown” predicates, the
deep pretrained language model ELMo also out-
performed other types of embeddings. We publish
the code of the pipeline that can be used to parse
raw Russian texts7, we also publish the code for
model training and experimental evaluation.

In the future work, we are going to apply semi-
supervised and unsupervised algorithms to expand
the training data and improve the model perfor-
mance on out-of-domain data.
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Class Precision Recall F-score
agent (11.7%) 76.1 83.3 79.5
patient (10.2%) 85.1 88.7 86.9
theme (6.9%) 84.6 71.6 77.6
sbj of psychol. state (6.2%) 86.7 83.9 85.2
goer (5.7%) 82.9 89.2 85.9
cause (4.7%) 86.2 88.6 87.4
speaker (4.5%) 73.5 78.3 75.8
location (4.1%) 87.4 82.5 84.9
content of action (3.6%) 89.1 83.8 86.3
content of thought (3.4%) 74.6 79.7 77.0
content of speech (3.4%) 75.9 69.5 72.6
final destination (3.4%) 70.3 52.0 59.8
result (2.8%) 63.5 54.0 58.4
patient of motion (2.6%) 88.8 80.4 84.4
stimulus (2.4%) 85.1 72.2 78.1
cognizer (2.3%) 85.1 76.9 80.8
addressee (1.8%) 75.7 79.1 77.4
perceiver (1.7%) 90.5 79.0 84.3
counteragent (1.6%) 56.8 65.6 60.9
effector (1.4%) 77.0 81.0 78.9
subject of social attitude (1.1%) 82.2 79.5 80.8
initial point (1.1%) 76.0 80.4 78.1
topic of speech (1.0%) 58.3 81.5 68.0
manner (1.0%) 84.0 69.3 76.0
recipient (1.0%) 82.3 68.0 74.5
goal (0.9%) 80.0 67.7 73.3
field (0.7%) 90.7 91.8 91.3
attribute (0.7%) 83.5 81.5 82.5
source of sound (0.7%) 73.7 69.5 71.6
behaver (0.6%) 84.8 84.4 84.6
situation in focus (0.6%) 88.2 88.3 88.2
counteragent of social attitude (0.6%) 75.0 58.2 65.5
sbj of physiol. reaction (0.6%) 76.0 85.4 80.4
topic of thought (0.6%) 95.9 88.7 92.2
potential patient (0.5%) 89.3 90.9 90.1
status (0.5%) 89.0 78.4 83.3
patient of social attitude (0.5%) 86.1 76.2 80.8
standard (0.5%) 80.2 85.3 82.7
term (0.5%) 87.5 85.7 86.6
attribute of action (0.5%) 92.5 71.2 80.4
causer (0.4%) 72.6 65.2 68.7
initial possessor (0.4%) 83.7 73.5 78.3
potential threat (0.4%) 73.6 82.7 77.9
path (0.3%) 90.3 80.0 84.9

Table 4: The performance of the model based on
ELMo embeddings in the experimental setup with
“known” predicates by semantic roles. The fre-
quencies of roles in the training corpus are pre-
sented in parentheses
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