
Proceedings of Recent Advances in Natural Language Processing, pages 360–366,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_042

360

Abstract

This paper describes an automatic text-to-
phonetics conversion system. The system
was constructed to primarily serve as a
research tool. It is implemented in a
general-purpose linguistic software, which
allows it to be incorporated in a
multifaceted linguistic research in
essentially any language. The system
currently relies on two mechanisms to
generate phonetic transcriptions from texts:
(i) importing ready-made phonetic word
forms from external dictionaries, and (ii)
automatic generation of phonetic word
forms based on a set of deterministic
linguistic rules. The current paper describes
the proposed system and its potential
application to linguistic research.

1 Introduction

There are currently many commercial and
academic works dealing with automatic conversion
of text to phonetics (G2P). Existing solutions are
based on some combination of language-specific
phonetic dictionaries, corpus-based statistical
models (e.g., Hidden Markov Models),
deterministic models based on linguistic rules, and
machine learning techniques (see review in Tomer,
2012). Importantly, most available tools are closed-
source, support only a limited number of
languages, and are often available only for
commercial use (e.g., Baytukalov, 2019).

The current paper describes a new, open-source
system that generates phonetic transcriptions from
texts. Its design allows it to apply, in principle, to
any language. At present, the system relies on two
mechanisms to generate the transcriptions: (i)

1 Website: https://chengafni.wordpress.com/cpa/
2 The code is written in Visual Basic for Applications for
MS Excel and is available under the GNU General Public
License. A version of this system for LibreOffice Calc is

importing ready-made phonetic word forms from
external dictionaries, and (ii) automatic generation
of phonetic word forms based on a set of
deterministic linguistic rules. The following
sections describe the transcription mechanisms and
additional relevant tools.

2 Preliminaries

The described system is implemented in the Child
Phonology Analyzer software (CPA; Gafni, 2015)1,
which was built in MS Excel due to its popularity
and user-friendly interface.2 Nevertheless, the
concepts behind the system are general and can be
implemented in various environments. The
following subsections describe the general
organization of the system and guidelines for
working with the data.

2.1 Tables

The system uses a set of tables of definitions and
rules to guide its operation. The tables are stored in
separate spreadsheets in the CPA file and can be
edited according to the properties of the language
in question. Moreover, variants of these tables can
be stored in separate files and imported by the
system when needed. This feature allows users to
maintain sets of definitions and rules for multiple
languages.3

2.2 Organizing the Data

The transcription procedures (“macros”) operate
on a vector of words. Thus, the input text should be
converted into a vector format prior to running the
transcription macros. This can be done using the
“Corpus tokenization” option of CPA’s “Data

planned to appear in the future in order to free it from
dependency on proprietary software.
3 The system is accompanied by an external resource
containing proposed sets of rules for several languages.

A Universal System for Automatic Text-to-Phonetics Conversion

Chen Gafni
Bar-Ilan University

chen.gafni@gmail.com

https://chengafni.wordpress.com/cpa/

361

preparation” macro, which segments the text into
words.

Segmentation is performed on the basis of blank
spaces and additional word-dividing characters,
which can be defined in CPA’s “Word dividers”
table (Figure 1). There are two types of word
dividers, which can be used for separating words
even at the absence of a blank space: punctuation
marks (e.g., comma) are deleted during
segmentation, while final letters are not (final
letters are special letter forms appearing only at
word endings. See some examples from Hebrew in
Figure 1). Once the text is transformed into a vector
format, transcription can be performed. One of
CPA tools (“Reconstruct corpus”) can then be used
to recombine the phonetic word forms according to
the structure of the original text.

3 Phonetic Dictionaries

For languages with irregular spelling or high
proportion of homographs, such as English,
Hebrew, and Arabic, automatic phonetic
transcription requires a source of ready-made
phonetic forms (i.e., a phonetic dictionary) for
irregular and ambiguous words. CPA has a built-in
macro that can import such ready-made forms. The
macro receives as input a vector of written words
to-be-transcribed and a phonetic dictionary – a
table of written word forms and corresponding
phonetic forms. The macro matches phonetic forms
from the dictionary to written words in the vector.
For words that are not found in the phonetic
dictionary, transcription needs to be generated,
either manually or with the automatic linguistic
model (see next section). However, once the
additional phonetic word forms are supplied, CPA

4 The tables of rules are generated manually, in principle.
CPA has a set of editable tables that contain proposed rules
for several languages (see also 2.1).

can add them to the phonetic dictionary for future
use.

4 The Linguistic Model

For languages with some degree of regular
mapping between spelling and sound, phonetic
transcription of text can be generated automatically
on the basis of deterministic rules. This section
describes a multi-stage model of automatic
phonetic transcription, guided by linguistic
principles. Underlying this model is the assumption
that, for any regular orthographic system, phonetic
transcription rules can be defined in terms of a
small set of general operations. The general
operations themselves are hard-coded in the
software, but an unlimited number of language-
specific rules can be defined on the basis of these
operations. This flexible method allows the system
to produce automatic phonetic transcription for
every language that has, at least partly, regular
orthography.

The proposed model has four components,
which will be described in the following
subsections. The components operate
independently of one another, but they should be
applied in the order in which they are listed. The
first component alone produces sufficient results
for most purposes. If needed, the additional three
components can be used, together, for fine-tuning.

4.1 Pre-Prosody Transcription

This component takes as input the vector of words
to-be-transcribed, a table of pre-prosody
transcription rules (Table 1), and a table containing
sets of symbols and strings, called “phono-
orthographic groups” (Table 2).4 The pre-prosody
transcription5 applies the transcription rules in
successive order to the list of words. Entities

5 The term ‘pre-prosody’ indicates that the transcription
rules applied by this component disregard the prosodic
properties of the word, including syllable structure and
stress pattern.

Figure 2: Transcribed words

Figure 1: Word dividing symbols

362

defined in the table of phono-orthographic groups
may be called by transcription rules. The output of
the process is a vector of phonetic forms
corresponding to the written words (Figure 2).

The table of pre-prosody transcription rules has
five fields (Table 1): (1) Target: the input to the rule,
i.e., the string to be converted. All rules must have
a value for the target string. The other fields are
optional. (2) Output: the string replacing the target;
if left empty, the target string will be deleted. (3)
Type: the type of operation to be performed by the
rule; if left empty, simple substitution will be
performed (see below for other types of rules). (4)
Preceding environment, and (5) Following
environment: these fields are used for formulating
context-sensitive rules. When either field is not
empty, the transcription rule will apply only to
words in which the target string is preceded by the
‘preceding environment string’ and/or followed by
the ‘following environment string’.

Substitution rules can be used for simple
grapheme-to-phoneme conversions, which can be
either context-free or context-sensitive. For
example, rule 1 in Table 1 is a context-free
substitution of ph by f in words such as phone
(/foʊn/). Rule 2 in Table 1 is an example for
context-sensitive rule – deleting c before k in words
such as back (/bæk/).

Substitution rules may include wildcards to
define more general entities. Three types of
wildcards are defined in the software: a question
mark (?) stands for any single character in the

target, output or environment strings; an asterisk
(*) stands for any number of successive characters;
and, a hash sign (#) represents word boundaries.
Wildcards can be used for defining phonological
and morphological words patterns. For example,
rule 3 in Table 1 captures the pronunciation of ay at
the end of three-letter English words, such as bay
(/beɪ/). The question mark in this rule indicates that
the rule applies to ay sequences preceded by a
single character. The hash signs suggest that the
rule applies only when word boundaries are present
at both edges.

Rules can also be generalized by the inclusion of
phono-orthographic groups, defined in a separate
table. Each entry in the table of phono-orthographic
groups has two fields (Table 2): the name of the
group, and its members. For example, the term
Front_vowel can be used for grouping e, i, and y.

Transcription rules can include phono-
orthographic groups by enclosing the name of the
group between brackets (e.g., [Front_vowel]).
When a group is embedded in a transcription rule,
the algorithm converts the compact rule into a set
of simple rules, each applying to a different
member of the group. For example, rule 4 in Table
1 uses groups to capture the pronunciation of c and
g before front vowels (/s/ in cent /sent/ and /ʤ/ in
gene /ʤiːn/, respectively). This single, compact
rule stands for six simple rules: c→s/_e, c→s/_i,
c→s/_y, g→ʤ/_e, g→ʤ/_i, g→ʤ/_y (where the
formula A→B/_X is read: A becomes B before X).

In addition to substitution rules, several types of
special operations can be used by specifying the
name of the operation in the ‘Type’ field in the table
of rules. Three types of operations are defined in
the software: degemination, lengthening, and
metathesis.

Degemination is used for collapsing a sequence
of two identical phones when pronounced as a
single, short sound. For example, rule 5 in Table 1

 Target Output Type Preceding
environment

Following
environment

1 ph f

2 c

k
3 ay eɪ

#? #

4 [cg] [sj] [Front_vowel]
5 [Consonant][Consonant] [Consonant] Degemination
6 ّ◌ Lengthening
7 [V_diac][C_diac] [C_diac][V_diac] Metathesis

Table 1: Pre-prosody transcription rules

Group Members
cg c,g
sj s,ʤ
Front_vowel e,i,y
Consonant b,d,f,g,l,m,n,p,r,s,t,z
C_diac ׁ◌ ּ◌,ׂ◌, ,'
V_diac ִ◌ ְ◌,◌ֻ,ֹ◌,◌ָ,◌ַ,◌ֶ,◌ֵ,

Table 2: Phono-orthographic groups

363

collapses sequences of identical consonants (e.g.,
mm is pronounced as a single m in hammer).

Lengthening realizes the function of diacritical
marks of lengthening/gemination. For example,
rule 6 in Table 1 realizes the function of the Arabic
Shaddah (e.g., the letter م is pronounced /m/ in its
plain form, but as /mm/ when modified by a
Shaddah, i.e., .(ّم

Finally, metathesis switches the order of
elements in sequences of two phono-orthographic
groups (i.e., if the target contains a member of
group 1 followed by a member of group 2, they are
switched in the output). For example, in pointed
Hebrew scripts, diacritics are used for indicating
vowels as well as for modifying the phonetic value
of consonants. A single letter can host both
consonant and vowel diacritics (the C_diac and
V_diac groups in Table 2, respectively). Thus, the
string ָּב, pronounced /ba/, is composed of the letter
 a ,(/representing the consonants /b/ and /v) ב
consonant diacritic ּ◌ (specifying the consonant
/b/), and a vowel diacritic ָ◌ (representing the vowel
/a/). Although the order in which these diacritics
are attached to the letter does not affect the visual
form of the text, it is important for the purpose of
phonetic transcription – consonant diacritics must
be attached before vowel diacritics. For example,
the string ָּב can be formed by combining the three
elements in two ways: ב+◌ּ+◌ָ, or ב+◌ָ+◌ּ. However,
only the first order reflects the phonological
structure of the string. A rule of metathesis can be
defined to switch the order in sequences of vowel
diacritics + consonant diacritic to guarantee correct
ordering (rule 7 in Table 1).

After performing the pre-prosody transcription,
certain modifications might be needed due to
phonological processes related to prosodic
structure. This post-prosody transcription (see 4.4)
requires that the phonetic forms be parsed into
syllables and have stress markers assigned to them.
These components are described below.

4.2 Syllabification

This component takes as input a vector of phonetic
word forms, a list of binary parameters and
parameter weights, and a phonetic table. The output
is a vector of syllabified phonetic word forms
(Figure 3). The basic sites of syllable boundaries
are around local sonority minima (e.g., the
boldfaced consonants in fæməli ‘family’ →
fæ.mə.li).

In order to determine sites of sonority minimum,
the syllabification procedure converts the phonetic
word forms into strings of sonority levels. Sonority
levels are non-negative integers specified for each
phone in the phonetic table of CPA (Figure 4). For
example, if fricatives, nasals, liquids, and vowels
have sonority levels of 1, 2, 3, and 5, respectively,
the sonority-level representation of fæməli will be
152535. In this representation, 2 and 3 are local
sonority minima (Sonority minima at word edges
are ignored).

Figure 4: The phonetic table

Figure 5: Syllabification parameters

Figure 3: Syllabified phonetic word forms

364

The basic sites of syllable boundaries can be
adjusted by a set of binary parameters, which
handle various cases, such as consonant sequences
(e.g., whether /dɪspleɪ/ ‘display’ should be parsed
as dɪs.pleɪ or dɪ.spleɪ). The system currently has 10
built-in parameters, which can be switched on and
off according to the properties of the examined
language (Figure 5). Some of the parameters
require phones to be recognized as vowels or
consonants. This information is also specified in
CPA’s phonetic table (Figure 4). For example, if the
Complex onset > Coda parameter is switched on,
consonant sequences will be parsed as complex
onsets (dɪ.spleɪ). If the parameter is switched off,
consonant sequences will be split between coda
and onset positions (dɪs.pleɪ).

When two parameters are potentially in conflict,
they can be ranked relative to each other by
assigning different integer weights to them. For
example, if the Onset parameter is on, onsetless
syllables will be dispreferred (e.g., ̍ mʌni → ̍ mʌ.ni
‘money’). This can be overridden (e.g., ˈmʌn.i) by
switching on the Coda maximization in stressed
syllables parameter and giving it a higher weight
than the onset parameter (this requires that stress
would be marked on the word before running
syllabification).

4.3 Stress Assignment

When the phonetic transcription requires
modifications due to processes related to stress
(e.g., reduction of unstressed vowels), stress
markers should be added to the phonetic word
forms. The stress assignment component of the
software takes as input a vector of syllabified
words and the desired stress pattern. The output is
a vector of syllabified words with stress markers
inserted at the appropriate positions (e.g., for the
input word ak.ʃən ‘action’ and penultimate stress
pattern, the output will be ˈak.ʃən; Figure 6).

The software has five built-in stress patterns (at
present, only primary stress is handled): Initial,
Peninitial, Ultimate, Penultimate, and
Antepenultimate (Figure 7). For languages with a
non-fixed stress pattern (e.g., English), this
procedure can be used for applying the most

frequent stress pattern. Manual corrections can be
made afterwards. If stress position depends on the
number of syllables, it is possible to run stress
assignment multiple times, starting with the rule for
the longer words. Checking the ‘Keep existing
stress markers’ option will prevent stress rules for
shorter words from applying to longer words, for
which stress has been assigned already.

4.4 Post-Prosody Transcription

This components modifies phonetic word forms
according to phonological rules related to prosodic
structure. It takes as input a vector of phonetic word
forms, a table of post-prosody transcription rules
(Table 3), and a phonetic table. The procedure
applies the transcription rules in successive order to
the list of words.

The table of post-prosody transcription rules has
five fields (Table 3): (1) Trigger: the phonological

 Trigger Tier Position Process Result
1 [+STRID][+STRID] Features Coda Vowel epenthesis ə
2 Unstressed vowel CV

Vowel reduction ə

3 Sonority decrease Sonority Onset Vowel epenthesis ə
Table 3: Post-prosody transcription rules

Figure 7: Stress parameters

Figure 6: Phonetic word forms with stress

365

structure triggering the required modification. A
trigger can be a specific element or a sequence of
elements defined in the phonetic table (e.g.,
[+STRID][+STRID] stands for a sequence of two
stridents such as /s/ and /z/). In addition, there are
several types of special pre-defined triggers: The
Sonority decrease, Sonority increase, and Sonority
plateau triggers handle phone sequences in which
the sonority level decreases, increases, or remains
unchanged, respectively (see Figure 4). The No
vowel trigger handles syllables with no vowels. The
Unstressed vowel trigger handles vowels in
unstressed syllables.

(2) Tier: the phonological tier relevant to the
trigger. Features tier is used with phonological
features triggers (e.g., [+STRID]), while CV tier is
used with No vowel and Unstressed vowel triggers.
Sonority tier is used with all sonority-related
triggers.

(3) Position: for triggers applying to consonants
(sonority and feature triggers), this field indicates
the prosodic position (Onset or Coda) in which the
trigger must be found in order to trigger the
modification.

(4) Process: the type of modification applied to
phonetic word forms in which the trigger is found.
Currently, the software can perform two types of
modifications: Vowel epenthesis inserts a vowel to
correct ill-formed sequences, and Vowel reduction
replaces unstressed vowels with a default neutral
vowel.

(5) Result: this field specifies inserted elements
(epenthetic vowels and neutral vowels).

The following examples demonstrate the
application of post-prosody rules. Rule 1 in Table 3
inserts an epenthetic ə to break sequences of two
stridents in coda position (e.g., makss → maksəs
‘Max's’, where makss is the output of the pre-
prosody transcription, which converted M to m and
x to ks, and deleted the apostrophe in Max's). Rule
2 in Table 3 replaces vowels in unstressed syllables
by ə (e.g., ˈe.le.fant → ˈe.lə.fənt ‘elephant’, where
ˈe.le.fant is the result of pre-prosody transcription,
syllabification and assignment of antepenultimate
stress to elephant).

5 Discussion

This paper describes a system of text-to-phonetics
conversion. The system is incorporated in a
general-purpose linguistic software that includes
tools for building dictionaries, as well as corpus
analysis functions. Thus, the described system can

help studying the phonological properties of text
corpora and it is also useful for creating resources
for under-resourced languages. For example, it was
used for creating a phonological dictionary for
Hebrew (Gafni, 2019). In addition, the linguistic
model of the software, by itself, can be used as a
research and educational tool. The pre-prosody
transcription tool, in particular, can be used for
exploring and demonstrating the effect of rule-
ordering – a common practice in theoretical
phonology. In fact, the studied language need not
have a writing system at all; the input corpus can
be a list of hypothesized phonological underlying
representations, and the transcription rules can be
phonological rules transforming the underlying
representations to surface representations.

In addition, the linguistic model can be used for
calculating indices of linguistic complexity by
assessing the proportion of words that have regular
spelling in a given language and the number of
deterministic rules needed to capture the patterns of
orthographic regularity in a language. Such
measures of complexity can be valuable for literacy
education (e.g., Smythe et al., 2008).

It should be noted that the described system is
still under development. At its current state, the
transcription system can perform perfectly on
completely regular orthographies with a fixed
stress pattern. Several planned improvements will
allow the system to handle more complex cases.
For example, the stress assignment component
should handle secondary stress and stress rules that
are sensitive to syllable weight. In addition, the
post-prosody transcription should include more
options, such as referring to pretonic syllables,
which are relevant sites for certain phonological
processes like vowel reduction in Russian
(Asherov et al., 2016).

Furthermore, the generalizability of the system
can greatly improve by adding machine learning
procedures, such as sequence-to-sequence models
with greedy decoding (Chae et al., 2018). This will
allow the system to generate rules automatically
based on examples. It will also be able to handle
cases of homography (e.g., whether wind should be
transcribed /wɪnd/ (noun) or /waɪnd/ (verb)) by
analyzing token frequency and contextual effects
(syntax and semantics). Such improvements will
make the transcription system more powerful and
reliable.

366

References
Daniel Asherov, Alon Fishman, and Evan-Gary Cohen.

2016. Vowel Reduction in Israeli Heritage Russian.
Heritage Language Journal, 2:113–133.

Timur Baytukalov. 2019. EasyPronunciation.com: All-
in-one solution to learn pronunciation online.

Moon Jung Chae, Kyubyong Park, Linhyun Bang,
Soobin Suh, Longhyuk Park, Namju Kimt, and
Longhun Park. 2018. Convolutional sequence to
sequence model with non-sequential greedy
decoding for grapheme to phoneme conversion. In
Proceedings of the 2018 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP 2018), pages 2486–2490.

Chen Gafni. 2015. Child Phonology Analyzer:
processing and analyzing transcribed speech. In The
Scottish Consortium for ICPhS 2015, editor,
Proceedings of the 18th International Congress of
Phonetic Sciences., page 1–5, paper number 531,
Glasgow, UK: the University of Glasgow.

Chen Gafni. 2019. General Lexicons of Hebrew:
Resources for Linguistic and Psycholinguistic
Research (version 1.0).

Ian Smythe, John Everatt, Nasser Al-Menaye, Xianyou
He, Simone Capellini, Eva Gyarmathy, and Linda S.
Siegel. 2008. Predictors of word-level literacy
amongst Grade 3 children in five diverse languages.
Dyslexia, 14(3):170–187.

Eran Tomer. 2012. Automatic Hebrew Text
Vocalization. Ph.D. thesis, Ben-Gurion University
of the Negev.

	1 Introduction
	2 Preliminaries
	2.1 Tables
	2.2 Organizing the Data

	3 Phonetic Dictionaries
	4 The Linguistic Model
	4.1 Pre-Prosody Transcription
	4.2 Syllabification
	4.3 Stress Assignment
	4.4 Post-Prosody Transcription

	5 Discussion
	References

