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Ivandré Paraboni
University of São Paulo

São Paulo, Brazil
ivandre@usp.br

Abstract

In Natural Language Generation (NLG)
systems, personalization strategies - i.e.,
the use of information about a target au-
thor to generate text that (more) closely re-
sembles human-produced language - have
long been applied to improve results. The
present work addresses one such strategy
- namely, the use of Big Five person-
ality information about the target author
- applied to the case of abstractive text
summarization using neural sequence-to-
sequence models. Initial results suggest
that having access to personality informa-
tion does lead to more accurate (or human-
like) text summaries, and paves the way
for more robust systems of this kind.

1 Introduction

Computational approaches to text summarization
may be divided into two general categories: ab-
stractive and extractive summarization. Extrac-
tive summarization consists of selecting relevant
pieces of text to compose a subset of the original
sentences, whereas the more complex abstractive
summarization involves interpreting the input text
and rewriting its main ideas in a new, shorter ver-
sion. Both strategies may be modelled as a ma-
chine learning problem by making use of unsuper-
vised (Ren et al., 2017), graph-based and neural
methods (Wan and Yang, 2006; Cao et al., 2015),
among others. The present work focuses on the is-
sue of neural abstractive summarization, address-
ing the issue of personalized text generation in sys-
tems of this kind.

Text-generating systems may in principle pro-
duce always the same fixed output from a given in-
put representation. In order to generate more nat-
ural (or ‘human-like’) output, however, systems of

this kind will often implement a range of stylis-
tic variation strategies. Among these, the use of
computational models of human personality has
emerged as a popular alternative, and it is com-
monly associated with the rise of the Big Five
model of human personality (Goldberg, 1990) in
many related fields.

The Big Five model is based on the assump-
tion that differences in personality are reflected
in natural language use, and comprises five fun-
damental dimensions of personality: Extraver-
sion, Agreeableness, Conscientiousness, Neuroti-
cism, and Openness to experience. Given its lin-
guistic motivation, the Big Five personality traits
have been addressed in a wide range of studies
in both natural language understanding and gen-
eration alike. Thus, for instance, the work in
Mairesse and Walker (2007) introduces PERSON-
AGE, a fully-functional NLG system that pro-
duces restaurant recommendations. PERSON-
AGE and many of its subsequent extensions sup-
port multiple stylistic variations that are controlled
by personality information provided as an input.

The use of personality information for text sum-
marization, by contrast, seems to be far less com-
mon, and we are not aware of any existing work
that addresses the issue of personality-dependent
neural text summarization. Based on these ob-
servations, this paper introduces a personality-
dependent text summarization model that makes
use of a corpus of source and summary text pairs
labelled with personality information about their
authors. In doing so, our goal is to use personal-
ity information to generate summaries that more
closely resemble those produced by humans.

The rest of this paper is structured as follows.
Section 2 discusses the issues of sequence-to-
sequence learning and attention mechanism for
text summarization. These are the basis of our
current work described in Section 3. Section 4
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reports two experiments comparing the proposed
models against a number of alternatives, and Sec-
tion 5 presents final remarks and future work.

2 Background

Due to the capacity of neural language generation
models to learn and automatically induce repre-
sentations from text (Rush et al., 2015; Nallapati
et al., 2016; Mikolov et al., 2013), neural abstrac-
tive summarization has attracted a great deal of
attention in the field. Architectures of this kind
may not only produce high-quality summaries, but
may also embed external information easily (See
et al., 2017). Accordingly, these models have
achieved significant results, at least in terms of
intrinsic evaluation measures such as BLEU (Pa-
pineni et al., 2002) or ROUGE (Lin and Hovy,
2003), when comparing to extractive approaches
(Celikyilmaz et al., 2018).

2.1 Sequence-to-sequence Learning
Neural text summarization models are often
grounded on a particular kind of neural network,
the sequence-to sequence architecture (Sutskever
et al., 2014a; Cho et al., 2014). In models of
this kind, input text is modelled as a sequence of
representations carrying any contextual informa-
tion from end to end in the generation process.
More formally, a sequence-to-sequence model is
defined in Goodfellow et al. (2016) as a neural net-
work that directly models the conditional proba-
bility p(y|x) of a source sequence, x1, ..., xn, to a
target sequence, y1, ..., ym1.

A basic form of sequence-to-sequence model
consists of two main components: (i) an encoder
that computes a representation s for each source
sequence; and (ii) a decoder that generates one tar-
get token at a time, decomposing the conditional
probability as follows:

p(y|x) =
∑m

j=1(yj |y<j , s)

A common strategy for learning sequence rep-
resentations is by making use of Recurrent Neural
Networks (RNN) (Rumelhart et al., 1986). Ac-
cording to Hochreiter and Schmidhuber (1997),
a RNN generalizes the concept of feed-forward
neural network to sequences. Given a tempo-
ral sequence of inputs (x1, ..., xt), the standard

1Sentences are assumed to start with a special ‘start-of-
sentence’ token < bos > and end with an ‘end-of-sequence’
token < eos >.

RNN computes a sequence of outputs (y1, ..., yt)
mapped onto sequences using the following equa-
tion (Sundermeyer et al., 2012):

ht = sigmoid(W hxxt +W hhht−1)
yt = W yhht

A simple strategy for general sequence learn-
ing is to map the input sequence to a fixed-sized
vector using a RNN, and then map the vector to
the target sequence by using a second RNN. This
may in principle be successful, but long term de-
pendencies may make the training of the two net-
works difficult (Bengio et al., 1994; Hochreiter,
1998). As an alternative, Long Short-Term Mem-
ory (LSTM) networks (Hochreiter and Schmid-
huber, 1997), and their simplification known as
Gated Recurrent Unit (GRU) (Cho et al., 2014) are
known to learn problems with long range temporal
dependencies, and may therefore succeed in this
setting.

The goal of a LSTM/GRU network is to es-
timate the conditional probability p(y|x), where
(x1, ..., xt′) is an input sequence and (y1, ..., yt)
is its corresponding output sequence whose length
t′ may differ from t (Cho et al., 2014). The con-
ditional probability is computed by first obtaining
the fixed dimensional representation v of the in-
put sequence (x1, ..., xt′) given by the last hidden
state of the network, and by computing the proba-
bility of (y1, ..., yt) with a standard LSTM/GRU
formulation in which the initial hidden state is
set to the representation v of (x1, ..., xt′). Fi-
nally, each p(yj |s, y1, ..., yj−1) distribution is rep-
resented with a softmax over all the words in the
vocabulary.

GRUs are distinct from LSTMs in that a GRU
architecture contains only a single unit to control
when the current states ‘forgets’ a piece of infor-
mation (Goodfellow et al., 2016). Due to this sim-
plification, GRUs can directly access all hidden
states without bearing the price of a memory state
(Cho et al., 2014).

GRU architectures model sequences as causal
relationships through the input sequence by exam-
ining left-to-right relationships only (Goodfellow
et al., 2016). However, many sequence classifi-
cation problems may require predicting an output
that depends (bidirectionally) on the entire input
sequence, that is, from left to right and also from
right to left. This is the case, for instance, of a
large number of common NLP applications that



207

need to pay regard to contextual dependency when
modelling phrases and sentences.

Bidirectional GRUs (Bi-GRUs) are applied to
a wide range of tasks to scan and learn both left-
to-right and right-to-left dependencies, which can
capture complementary types of information from
its inputs. The left and right hidden represen-
tations produced by GRUs can be linearly com-
bined (θ) to form a final representation (Goodfel-
low et al., 2016): ht = h←t θ h→t .

2.2 Attention Mechanism

Sequence-to-sequence architectures have been
successfully applied to a wide range of tasks, in-
cluding machine translation and natural text gen-
eration (Cho et al., 2014; Sutskever et al., 2014a)
and, accordingly, have been subject to a great deal
of extensions and improvements. Among these,
the use of more context-aware sequence genera-
tion methods (Cho et al., 2014) and the use of at-
tention mechanism to score and select words that
best describe the intended output are discussed be-
low.

In natural language generation, attention mod-
els as introduced in Cho et al. (2014) and
Sutskever et al. (2014a) are intended to generalize
the text generation task so as to handle sequence
pairs with different sizes of inputs and outputs.
This approach, subsequently called sequence-to-
sequence with attention mechanism, applies a
mapping strategy from a variable-length sentence
to another variable-length sentence. This mapping
strategy is a scoring system over the contextual
information from the input sequence (Cho et al.,
2014), making a set of attention weights.

Attention-based models (Sutskever et al.,
2014b; Luong et al., 2015) are sequence-to-
sequence networks that employ an encoder to rep-
resent the text utterance and an attention-based de-
coder that generates the response, one token at a
time. More specifically, neural text summarization
can be viewed as a sequence-to-sequence prob-
lem (Sutskever et al., 2014a), where a sequence
of input language tokens x = x1, ..., xm describ-
ing the input text are mapped onto a sequence of
output language tokens y1, ..., yn describing the
target text output. The encoder is a GRU unit
(Cho et al., 2014) that converts x,..., xm into a se-
quence of context-sensitive embeddings b1, ..., bm.
A general-attention decoder generates output to-
kens one at a time. At each time step j, the decoder

generates yj based on the current hidden state sj ,
and then updates the hidden state sj+1 based on sj
and yj . Formally, the attention decoder is defined
by original equation proposed in Cho et al. (2014):

s1 = tanh(W (s)bm)
p(yj = w|x, y1:j−1) α exp(U [sj , cj ])
sj+1 = GRU([φ(out)(yj), cj ], sj)

where i ε {1, ...,m}, j ε {1, ...,m} and the context
vector cj , is the result of general attention (Luong
et al., 2015). The matrices W (s), W (α), U and
the embedding function φ(out) are decoder param-
eters.

3 Current Work

Our basic model is generally inspired from the
architecture in Cho et al. (2014), with an added
personality embedding layer. As in many other
sequence-to-sequence models with attention, our
model takes as an input a sentence, and produces
as an output a set of words that summarizes the
given input. The actual rendering of this output as
structured text is presently not addressed.

The proposed architecture is illustrated in Fig-
ure 1, which is adapted from Cho et al. (2014),
and further discussed below.

In this example, B B B B represent the input
sequence from the target sequence Z X , and C
is the personality embedding representation. The
five main components of the architecture are as
follows.

(A) a bidirectional GRU that maps words to per-
sonality types

(B) a word embedding layer

(C) a personality embedding layer

(D) an attention mechanism

(E) a bidirectional GRU that outputs word encod-
ings

The input bidirectional GRU (A) produces a
word-to-personality compositional representation
of each word. This serves two main purposes:
combining the composite sequences of words and
personality information, and combining attention
weights over sequences in our decoder model.

The word embeddings layer (B) produces a typ-
ical word-level representation of each input word.
In the present work, we make use of both random
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Figure 1: Model architecture

and pre-trained word embeddings. The latter are
Skip-gram 300 word embeddings taken from Hart-
mann et al. (2017).

Word embeddings are complemented with in-
duced personality embeddings (C) for each tar-
get author. The role of this layer is twofold.
First, it is intended to learn the probability
P (Y |X, personality), that is, the personality
representation of each author for each word in the
vocabulary. Second, this layer is also intended
to decide which profile value should be selected
(from the corpus gold standard annotation) in or-
der to generate a summary.

The attention mechanism (D) attempts to learn
a general representation from the most important
parts of the input text at each time step. To this
end, the experiments described in the next section
will consider two score function alternatives: gen-
eral attention and dot product.

Finally, the output bidirectional GRU (E) com-
bines the attention weight representations, and
produces a final encoding for each word. A loss
function describe the overall generation probabil-
ity, and it is intended to optimize the above param-
eters. This function is described as follows.

`1(θ,D(c), D(x, y))

= −
∑

(X,Y ) ε Dc ∪ Dpr

logP (Y |X,< ki, vi >)

= −
∑

(X,Y ) ε Dc

logP fr(Y |X)

The first term of the function is the negative log
likelihood of observing D(c) and the second term
for D(pr). D(pr) consists of pairs where a sum-
mary is related to a profile key and its response
match to the summary, and D(c) has only general
text-summary pairs. < ki, vi > is the personal-
ity representation. The decoder P fr does not have
shared parameters. A simple epoch-based training
strategy using gradient descendent is performed.

4 Evaluation

We envisaged two experiments on neural text sum-
marization based on the model described in the
previous section. The first experiment aims to
assess whether a general or a dot product atten-
tion mechanism is more suitable to the task. The
second experiment focuses on our main research
question, that is, on whether the use of personality
information does improve summarization results.

As in many (or most) sequence-to-sequence ap-
proaches to text generation, our work focuses on
the selection of text segments to compose an ab-
stract summary, but it does not address the actual
rendering of the final output text, which would
normally require additional post-processing. Each
of the two experiments is discussed in turn in the
following sections, but first we describe the dataset
taken as their basis.

4.1 Data
We make use of the text and caption portions of
the b5 corpus in Ramos et al. (2018), called b5-text
and b5-caption. The corpus conveys 1510 multi-
and single-sentence image description pairs, all of
which labelled with Big Five personality informa-
tion about their authors. Table 1 summarizes the
corpus descriptive statistics.

The corpus was elicited from a crowd sourcing
task in which participants were requested to pro-
vide both long and short descriptions for 10 stim-
ulus images taken from GAPED, a database of im-
ages classified by valence and normative signif-
icance designed to elicit various reactions (Dan-
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Table 1: Corpus descriptive statistics.
Data Words Average Types Average
text 84463 559.4 37210 246.4
caption 4896 32.4 4121 27.3

Figure 2: Stimulus image from GAPED (Dan-
Glauser and Scherer, 2011).

Glauser and Scherer, 2011). From a set of 10 se-
lected images with valence degrees in the 3 to 54
range, participants were first instructed to describe
everything that they could see in the scene (e.g.,
as if helping a visually-impaired person to un-
derstand the picture) and, subsequently, were re-
quested to summarize it in a single sentence (sim-
ilar to a picture caption.)

An example of stimulus image is illustrated in
Figure 2. We notice however that in the present
work we only consider the text elicited from these
images, and not the images themselves.

Based on scenes as in Figure 2, the following
is a possible long description (translated from the
Portuguese original text) of the kind found in the
corpus.

‘A black baby, about one year old. He’s
in a cradle. He is dressed in a dirty blue
blouse, on a pink sheet, without a pil-
low. A blue blanket is next to the baby.
It seems that he has not taken a shower
for a while.’

A single-sentence summary for the same scene
(and which would have been written by the same
participant in the data collection task) may be rep-
resented as the following example.

‘A sad-looking baby.’

In the experiments described in the next sec-
tions, texts were pre-processed by removing punc-
tuation and numerical symbols. In addition to that,

Table 2: Data split
Split Samples
Train 1358
Validation 152
Total 1510

the first data split performed for the purpose of
cross-validation is shown in Table 2.

4.2 Experiment 1: Basic Neural
Summarization with Attention
Mechanism

In Encoder-Decoder Recurrent Neural Networks,
the global attention mechanism may be seen as
a model-inferred context vector computed as a
weighted average of all inputs by making use of a
score function. The choice of score function may
have a great impact on the overall performance of
the model, and for that reason in what follows we
examine two alternatives: using the dot product
over the context vectors of the source, and using
the learned representation over the context states.

To this end, our first experiment evaluates our
basic summarization model (cf. the previous sec-
tion) in two versions, namely, using general and
dot product attention mechanisms. Both of these
models, hereby called sDot and sGen, will make
use of encoder/decoder randomized word embed-
ding of size 300, and two encoder/decoder hidden
units of size 600.

Both models were trained using Adam opti-
mization with mini batches of size 128. The ini-
tial learning rate was set to 0.0001 with a gra-
dient clipping based on the norm of the values.
We also applied different learning rates for the de-
coder module, set to five times the learning rate of
the encoder. In order to reduce over-fitting, a 0.5
drop-out regularization was applied to both em-
bedding layers.

Model optimization was performed by using
gradient descendent with masked loss, and by
applying early stopping when the BLEU scores
over the evaluation dataset did not increase for 20
epochs. Except for the embedding layer, all other
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Table 3: 10-fold cross validation BLEU scores for
text summarization using dot product (sDot) and
general (sGen) attention. the best result is high-
lighted.

Model BLEU
sGen 13.88
sDot 13.63

parameters were initialized by sampling from a
uniform distribution U(−sqrt(3/n), sqrt(3/n)),
where n is the parameter dimension.

We performed 10-fold cross-validation over our
corpus data, and we compared the output sum-
maries produced by both models using BLEU2.
Results are presented in Table 3.

From these results, we notice that the attention
mechanism based on the general function in sGen
outperforms the use of dot function in sDot. Al-
though the difference is small, the use of a gen-
eralized network to learn how to align the con-
textual information is superior to simply concate-
nating contextual information obtained from the
global weights. Based on these results, the gen-
eral attention strategy will be our choice for the
next experiment.

4.3 Experiment 2: Personality-dependent
Summarization

Our second and main experiment assesses the use
of personality information in text summarization.
To this end, two models are considered: the full
personality-aware model presented in Section 3,
hereby called sPers, and a simplified baseline ver-
sion of the same architecture without access to per-
sonality information, hereby called sBase. In do-
ing so, our goal is to show that summaries pro-
duced by sPers resemble the human-made texts (as
seen in the corpus) more closely than those pro-
duced by sBase.

Both sPers and sBase make use of pre-trained
skip-gram 300 word embeddings for the Brazil-
ian Portuguese language taken from Hartmann
et al. (2017). Both models also make use of
encoder/decoder randomized word embedding of
size 300, and two encoder/decoder hidden units of
size 600 with general attention.

2We are aware that, although popular in machine transla-
tion and text generation, BLEU may not be the ideal metrics
for the present task (Liu et al., 2011; Song et al., 2013), and
that it may not co-relate well with, e.g., human judgments
(Reiter and Belz, 2009).

Table 4: 10-fold cross validation BLEU scores
for text summarization with (sPers) and without
(sBase) personality information. The best result is
highlighted.

Model BLEU
sBase 14.21
sPers 14.58

All optimization, training and other basic proce-
dures are the same as in the previous experiment.
Results are presented in Table 3.

We notice that personality-dependent summa-
rization as provided by sPers outperforms standard
summarization (i.e., with no access to personal-
ity information) as provided by sBase. Although
the difference is once again small (which may be
explained by the limited size of our dataset), this
outcome offers support to our main research hy-
pothesis by illustrating that the use of author per-
sonality information may improve summarization
accuracy.

4.4 Selected Examples

As a means to illustrate the kinds of output that
may be produced by our models, Table 5 presents
a number of examples taken from the original cor-
pus summaries, and the corresponding summaries
obtained from the same input by making use of the
sBase baseline and by the personality-dependent
sPers models. For ease of illustration, the exam-
ples are informally grouped into three error cate-
gories (small, moderate and large) according to the
distance between the corpus summaries and their
sPers counterparts, and are presented in both orig-
inal (Portuguese) and translated (English) forms.

5 Final Remarks

This paper addressed the use of Big Five person-
ality information about the target author to gener-
ate personalized summaries in neural sequence-to-
sequence text summarization. The model - con-
sisting of two bidirectional GRUs, word embed-
dings and attention mechanism - was evaluated in
two versions, namely, with and without an addi-
tional personality embedding layer. Initial results
suggest that having access to personality informa-
tion does lead to more accurate (or human-like)
text summaries.

The use of personality information is of course
only one among many possible personalization
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Table 5: Selected examples taken from the corpus, baseline (sBase) and personality-dependent (sPers)
summarization models, grouped by distance (small, moderate or large) between sPers and the expected
(corpus) summary in original Portuguese (Pt) and translated English (En).

Error Model Summary (Pt) Summary (En)
corpus homem na cerca man by fence

small sBase homem idoso elderly man
sPers homem na cerca man by fence
corpus pessoas pedindo ajuda people asking for help

moderate sBase pessoas esperando people waiting
sPers pessoas aguardam atendimento people waiting for help
corpus menino com um balde de terra boy with a bucket full of soil

large sBase crianca com balde child with bucket
sPers crianca com balde de terra child with bucket full of soil

strategies for text summarization. In particular,
we notice that the increasing availability of text
corpora labelled with author demographics in gen-
eral (e.g., gender, age, education information etc.)
may in principle support a broad range of speaker-
dependent summarization models. Thus, as fu-
ture work we intend to extend the current approach
along these lines, and provide additional summa-
rization strategies that may represent more signifi-
cant gains over the standard, fixed-output summa-
rization approach.
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