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Abstract

We address the task of parsing semanti-
cally indeterminate expressions, for which
several correct structures exist that do not
lead to differences in meaning. We present
a novel non-deterministic structure trans-
fer method that accumulates all structural
information based on cross-lingual word
distance derived from parallel corpora.
Our system’s output is a ranked list of
trees. To evaluate our system, we adopted
common IR metrics. We show that our
system outperforms previous cross-lingual
structure transfer methods significantly. In
addition, we illustrate that tree accumula-
tion can be used to combine partial evi-
dence across languages to form a single
structure, thereby making use of sparse
parallel data in an optimal way.

1 Introduction

Parsing linguistic expressions (e.g., noun phrases
(NPs)) is a fundamental component in many natu-
ral language processing (NLP) tasks like machine
translation (MT) or information retrieval (IR) and
indispensable for understanding the meaning of
complex units. For example, while [natural lan-
guage] processing means the (machine) process-
ing of natural languages, natural [language pro-
cessing] denotes the natural processing of (any)
languages.

As previous work has shown, multilingual data
can help resolving various kinds of structural am-
biguity such as prepositional phrase (PP) attach-
ment (Schwartz et al., 2003; Fossum and Knight,
2008), subject/object distinction (Schwarck et al.,
2010) or coordination ellipsis (Bergsma et al.,
2011). Parallel sentences have been jointly parsed
supported by word alignment features (Smith and
Smith, 2004; Burkett and Klein, 2008). Yarowsky

and Ngai (2001) project part-of-speech (PoS) tags
and basic NP structures across languages. Hwa
et al., (2005) use projected tree structures for
bootstrapping new non-English parsers. Unsu-
pervised multilingual grammar induction has been
performed on parallel corpora (Snyder et al., 2009)
and on non-parallel data (Berg-Kirkpatrick and
Klein, 2010; Iwata et al., 2010).

In addition to previous work focused on disam-
biguation, we show that multilingual data can be
used to point to semantic indeterminacy. Syntac-
tic structures are usually understood deterministi-
cally in that for every structure there exists con-
ditions that can have no other structure. How-
ever, previous work in NLP shows that such a
deterministic take might not always be suitable.
Hindle and Rooth (1993) were the first to discuss
the phenomenon of semantic indeterminacy in
PP attachment, e.g., in the sentence They mined
the roads along the coast, the PP along the coast
may be attached to both the verb or the object
without changing the meaning. On the NP level,
Lauer (1995) observed 12.54% semantically in-
determinate three-noun compounds (3NCs) in his
dataset, e.g., in ’Most advanced aircraft have pre-
cision navigation systems’, both precision naviga-
tion and navigation system can be bracketed lead-
ing to the same meaning. We found more striking
evidence from parallel corpora, where the multi-
ple translations found for a given NP reflect large
differences in structure. While tobacco advertis-
ing ban is translated to German as Werbeverbot
für Tabakerzeugnisse (advertising ban for tobacco
products), the Danish equivalent is forbuddet mod
tobaksreklamer (ban of tobacco advertising). Sim-
ilarly, animal welfare standards is once translated
to Dutch as normen op het gebied van dierenwelz-
ijn (standards in the field of animal welfare) and to
German as Wohlfahrtsstandards für Tiere (welfare
standards for animals).

Despite the fact that previous work discussed
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semantic indeterminacy, to the best of our knowl-
edge, no attempt has been made to include this
phenomenon in syntactic analysis. Vadas (2009)
argues that in most cases the intended structure
is unambiguous1 and therefore chooses not to in-
clude semantic indeterminacy in his NP annota-
tion of the Penn Treebank (Marcus et al., 1993).
We believe that it is important to include semantic
indeterminacy in NLP, e.g., an anaphora resolver
needs to know the structural equivalence for find-
ing all possible nested antecedents, e.g., both ani-
mal welfare and welfare standards.

This work aims at capturing semantic indeter-
minacy within a structural analysis. We exploit
cross-linguality for this task because structural
variation for semantic indeterminacy is visible in
particular across languages. In a monolingual ap-
proach, we expect less variation, due to conven-
tional language use. As a result, parse forests
resulting from monolingual data would therefore
be less rich in variation. We transfer syntactic
structure from cross-lingual surface variation di-
rectly, without inducing grammars or annotating
the source language. We coin the term cross-
lingual structure transfer (CST) for this method.

Our system is inspired by Ziering and Van
der Plas (2015), who exploit cross-lingual sur-
face variation for bracketing 3NCs. There are
various ways of translating English noun com-
pounds. Germanic languages such as Swedish fre-
quently use closed compounds (i.e., single nouns),
whereas Romance languages such as French use
open compounds (i.e., lexemes composed of sev-
eral words). Paraphrased translations (e.g., human
rights abuse aligned to the partially closed Ger-
man Verletzung der Menschenrechte (abuse of hu-
man rights)) can reveal the internal structure of
a compound. While Ziering and Van der Plas
(2015) follow the deterministic take by producing
a single tree output, we gather all structural infor-
mation and produce a ranked list of plausible trees,
where similarly-ranked trees indicate semantic in-
determinacy.

Our contributions are as follows: we develop
a non-deterministic cross-lingual structure trans-
fer method which is suitable for dealing with se-
mantic indeterminacy. We present two models that
differ in granularity. The coarse-grained model

1As example, Vadas (2009) mentions American Presi-
dent George Bush, where the intended structure is [Ameri-
can President] George Bush, because Bush’s nationality is
not relevant but his political function.

restricts to full structures acquired from various
languages. The fine-grained model also includes
substructures, which makes it more robust against
word alignment errors, and points to an intended
structure. Inspired by IR metrics, we treat CST as
a kind of structure retrieval and propose an eval-
uation method that measures quality and quantity
of retrieved structures. In a case study, we present
results on processing 3NCs and 4NCs. Finally, we
illustrate how our methods can be used to com-
bine partial evidence across languages to form a
single structure, where individual languages fail.
This way, we are able to exploit more data from
sparse parallel corpora than previous work.

2 Cross-lingual Structure Transfer

Linguistic expressions, such as kNCs, occurring in
parallel data have been processed in previous work
using cross-lingual aligned word distance:

AWD(ci, cj) = min
x∈AWi,y∈AWj

|pos(x)− pos(y)|
where AWn is the set of aligned content words

of a constituent cn and pos(α) is the position
of a word α in an aligned sentence. Inspired
by Behaghel’s (1909) First Law saying that ele-
ments which belong close together intellectually
will also be placed close together, the AWD of
constituents functions as indicator for the semantic
cohesion. For example, the 3NC human rights vi-
olations being aligned to the Italian le violazioni
gravi e sistematiche dei diritti umani indicates
that human rights (diritti umani) has a stronger co-
hesion than rights violations (violazioni . . . diritti),
which points to a left-branched structure in En-
glish. Ziering and Van der Plas (2015) devel-
oped an AWD-based bracketing system applied
on English kNCs in a parallel corpus. For each
aligned language, they start bottom-up with one
constituent per noun. They compare the AWDs
between all adjacent constituents and iteratively
merge the constituent pair with the smallest AWD
until there is only one constituent left. If there is
a tie among the possible AWDs, the system does
not produce a tree structure. For the final deci-
sion, Ziering and Van der Plas (2015) use the ma-
jority vote across all aligned languages. If this
number is not unique, the system is undecided.
The main limitation of this system is that it pro-
vides a deterministic result both for each individ-
ual language and for the majority vote. As a con-
sequence, the system neither allows several struc-
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tures for a semantically indeterminate target nor
combines partial results from several languages
to a final structure. Subsequently, we will refer
to Ziering and Van der Plas’ (2015) language-
isolated deterministic structure transfer as LIDST.

2.1 Full Tree Accumulation Structure
Transfer

In the full tree accumulation structure transfer
system (FAST), we consider all possible binary
tree structures of an expression. Among those,
there are demoted structures for a given lan-
guage, because they combine constituents that
have a stronger semantic cohesion than their sub-
parts. For example, air [traffic control] is demoted
for the Dutch paraphrase controle van het lucht-
vaartverkeer (control of air traffic), because air
traffic has the strongest cohesion (as being aligned
to a closed compound). For a given English ex-
pression Ψ, FAST is applied to each aligned lan-
guage, as shown in Figure 1.

1: Trees⇐ create all binary tree structures
2: for t in Trees do
3: annotate all nodes N in t with AWD
4: if ∃N [N.AWD > mother(N).AWD] then
5: t.invalid⇐ TRUE

6: end if
7: end for
8: return {t ∈ Trees | not t.invalid }

Figure 1: FAST algorithm

We first create all possible binary trees for Ψ
(line 1). The number of possible binary trees in-
creases with the Catalan numbers (Church and
Patil, 1982), e.g., 3NCs have two possible trees
(i.e., left- or right-branched), 4NCs have five pos-
sible trees and kNCs have Ck−1 possible trees,
where Cn is the n-th Catalan number as given in
(1).

Cn =
(2n)!

(n+ 1)! · n!
(1)

All tree nodes Ni in these trees are annotated with
AWD numbers (line 3) according to (2), i.e., leaf
nodes get zero AWD and other nodes are anno-
tated with the AWD between their left and right
children’s constituent.

Ni.AWD =

{
leaf(Ni) 7→ 0
else 7→ AWD(Ni.L, Ni.R)

(2)

In the next step, all annotated trees are validated
(lines 4-6). A tree is valid, if its AWD annotation
is monotonically decreasing when traversing the
tree top down. If there is a node N whose AWD is
larger than the AWD of its mother node, the tree is
marked as invalid. Finally, we return the set of tree
structures which are not marked as invalid (line 8).

twin pipe undersea gas pipeline 3
AWD = 2

twin pipe
AWD = 1

twin
AWD = 0

pipe
AWD = 0

undersea gas pipeline
AWD = 1

undersea
AWD = 0

gas pipeline
AWD = 0

gas
AWD = 0

pipeline
AWD = 0

Figure 2: A valid FAST tree structure

Figure 2 shows an example of a valid AWD-
annotated tree structure of the 5NC twin pipe un-
dersea gas pipeline aligned to the Dutch para-
phrase onderzeese gaspijpleiding met dubbele pijp
(undersea {gas pipeline} with twin pipes).

In the final step, we put all valid trees from all
languages into a tree accumulation (TA) and rank
them by frequency (i.e., trees being valid in most
cases are ranked first). For example, for the se-
mantically indeterminate air traffic control cen-
tres, FAST assigns the same top rank to the seman-
tically equivalent structures as shown in Table 1.

Rank Structure TA
1 [ air traffic ] [ control centres ] 13
1 [ [ air traffic ] control ] centres 13
2 [ air [ traffic control ] ] centres 10

Table 1: FAST top-ranking for air traffic control
centres

In addition to a token-based setting, FAST can
also be applied on expression types. In this case,
we put all valid trees from all aligned languages of
all instances of Ψ into the TA.

2.2 Subtree Accumulation Structure
Transfer

In some cases, an invalid full tree (7ft) still con-
tains an informative valid2 subtree3 (3st) as shown

2We use the same validity conditions as for FAST.
3A subtree st of a full tree ft is a tree consisting of a node

in ft and all of its descendants.
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in Figure 3 for the 4NC church development aid
projects being aligned to the Italian progetti eccle-
siastici di aiuti allo sviluppo (lit.: projects eccle-
siastical of aid to development).

church development aid projects 7ft

AWD = 1

church
AWD = 0

development aid projects 3st

AWD = 3

development aid
AWD = 2

development
AWD = 0

aid
AWD = 0

projects
AWD = 0

Figure 3: Invalid FAST full tree with valid subtree

The Italian translation does not provide any
valid full tree, because the smallest AWD is be-
tween c1, church (ecclesiastici), and c4, projects
(progetti). Thus, the AWD-annotation of the root
node is always 1, which is smaller than any anno-
tations below.

For exploiting as much evidence as pos-
sible from sparse parallel data, the subtree
accumulation structure transfer system (SAST)
takes into account all valid subtrees from both
valid and invalid full trees. After gathering all
valid subtrees among all full trees for an expres-
sion Ψ in all aligned languages l ∈ L , each
subtree gets a subtree score (sts) according to
(3), where freq(st) is the number of aligned lan-
guages, |L|, multiplied by the ∆-th Catalan num-
ber, where ∆ is the difference in the number of
leaf nodes between ft and st.

sts(st) =
freq(st.valid)
freq(st)

(3)

=
freq(st.valid)
|L| · C∆

A full tree gets a full tree score (fts), which is
the product4 of all its subtree scores (4).

fts(ft) =
∏

st∈ft

sts(st) (4)

In the last step, we rank all full trees according
to their fts (i.e., the tree that has the highest fts
is ranked first).

4While the product performs better in our setup, the sum
would be an alternative for cases where no language provides
any valid full tree (i.e., the largest subtree).

In contrast to FAST, SAST produces a more
fine-grained scoring by exploiting more data.
While this approach is more robust to word align-
ment errors, it also points to an intended structure,
e.g., air traffic control centres gets a single top-
ranked structure as shown in Table 2.

Rank Structure fts

1 [ [air traffic] [control centres] ] 1.66
2 [ [ [air traffic] control ] centres] 1.35

Table 2: SAST top-ranking for air traffic control
centres

For our initial example, Figure 4 shows two full
tree structures for church development aid projects
annotated with fts and sts information in SAST
applied on a language ensemble including Ger-
man, French and Italian. While FAST would give
both trees the same rank (not shown), SAST ex-
ploits the higher prominence of the valid subtree
in Figure 3 and thus ranks the tree in Figure 4.1
highest.

In analogy with FAST, SAST can also be ap-
plied type-based. In this case, we sum up all full
tree scores from all instances of Ψ and rank the
structures according to this sum.

3 Experiments

3.1 Dataset
We extracted 3NCs and 4NCs from the initial ver-
sion (basic dataset) of the Europarl5 compound
database6 (Ziering and van der Plas, 2014), com-
piled from the OPUS7 corpus (Tiedemann, 2012).
The database contains 10 European languages
in three language families: Germanic (English,
Danish, Dutch, German and Swedish), Romance
(French, Italian, Portuguese and Spanish) and Hel-
lenic (Greek). The kNCs are extracted using
PoS patterns conforming a sequence of k adjacent
nouns. The dataset contains 24,848 3NC tokens
(16,565 types) and 1468 4NC tokens (1257 types).

3.2 Gold Standard
We use the 3NC test set8 created by Ziering and
Van der Plas (2015), which contains 278 left- or
right-branched and 120 semantically indetermi-
nate 3NC tokens. For keeping the ratio of 3NCs

5statmt.org/europarl
6ims.unistuttgart.de/data/NCDatabase.html
7opus.lingfil.uu.se
8ims.uni-stuttgart.de/data/AWDB.data.tgz

742



church development aid projects
fts = 0.67
sts = 0.67

church
sts = 1.00

development aid projects
sts = 1.00

development aid
sts = 1.00

development
sts = 1.00

aid
sts = 1.00

projects
sts = 1.00

(1)

church development aid projects
fts = 0.44
sts = 0.67

church
sts = 1.00

development aid projects
sts = 0.67

development
sts = 1.00

aid projects
sts = 1.00

aid
sts = 1.00

projects
sts = 1.00

(2)

Figure 4: SAST trees for church development aid projects on first and second position

to 4NCs as reflected in the token numbers of our
dataset, we decided on a random set of 50 4NC
samples to be labeled by two trained independent
annotators. We adopted the annotation guidelines
described in Vadas (2009) and use the follow-
ing labels for annotating 4NCs: 1, ..., 5 (refer-
ring to the five possible 4NC structures), EXTRAC-
TION (for extraction errors, i.e., incomplete NCs
or fragments of incomplete constituents as in cli-
mate change target cannot), UNDECIDED[i; . . . ;
j] (for cases in which the context cannot help to
disambiguate between the distinctive structures i,
. . . , j), FLAT (for expressions showing no inter-
nal structure (e.g., John A. Smith)) and SEMANTIC

INDETERMINACY[i; . . . ; j] (for expressions with
the equivalent structures i; . . . ; j). For address-
ing semantic indeterminacy, we take the union of
single structure labels and semantic indeterminacy
labels from both annotators to a test set compris-
ing 33 4NC tokens and discard 17 tokens, which
have been tagged as extraction error.

Structure Frequency
pattern 13 6 5 2 1

A [B [C D]] * * * *
A [[B C] D] * * * *
[A B] [C D] * * * * *
[A [B C]] D * *
[[A B] C] D * * *

Table 3: Frequency distribution of structures in the
4NC test set

Table 3 shows the frequency distribution of
4NC structures in the test set, where structures are
represented as structure patterns9. Analogously

9Structure patterns are generalized structures such as [A

to the majority class LEFT for 3NCs, the struc-
ture combination having the two left-most nouns
grouped as a constituent is annotated most often.

3.3 Structure Retrieval
Our system’s output is a ranked list of tree struc-
tures. Inspired by IR models, we treat CST as a
kind of structure retrieval and measure how well
a ranking fits to the set of gold trees. There-
fore, we adapt the R-Precision score (Buckley and
Voorhees, 2000) as given in (5):

R-Prec(kNC) =
|top-R(sys trees) ∩ gold trees|

|top-R(sys trees)| (5)

where R is the number of gold trees and top-
R(sys trees) refers to the R highest-ranked sys-
tem trees. For trees having the same rank, we
choose a random order. If there are less than
R system trees, the ranking is randomly comple-
mented. Observing that this random process lead
to unstable numbers, we apply it 1000 times and
take the average of the resulting scores. The mean
R-Precision takes the macro average of the R-
Precision scores as given in (6)

MRP =
∑

Ψ∈Ω R-Prec(Ψ)
|Ω| (6)

where Ω is the set of all expressions. In addi-
tion, we measure precision at k (P@k) and recall
at k (R@k) as given in (7) and (8). We present the
macro average for P@k as MP@k and for R@k
as MR@k. Macro F1 at k is the harmonic mean
of MP@k and MR@k. Since semantically in-
determinate kNCs have about two gold trees, we
evaluate the systems for 1 ≤ k ≤ 2.

B] [C D] for [air traffic] [control centres].
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System MRP MP@1 MR@1 MF1@1 MP@2 MR@2 MF1@2
FAST 70.0% 72.7% 47.5% 57.5% 60.6% 74.2% 66.7%
SAST 69.5% 69.7% 44.4 % 54.2% 63.6% 78.8% 70.4%
LIDST 54.5%‡ 69.7% 44.4% 54.2% 47.0% ‡ 59.1% ‡ 52.4%‡
LINDST 62.9%‡ 69.7% 44.4% 54.2% 54.5% † 66.7% † 60.0 %†
UPPER 86.0% 96.7% 67.2% 79.3% 70.0% 87.8% 77.9%
FREQ 60.1% 63.6% 38.4% 47.9% 56.1% 65.2% 60.3%
CHANCE 32.0% 39.4% 23.7% 29.6% 33.3 % 42.4 % 37.3%

Table 4: Results on CST of 4NCs; ‡ means significantly outperformed by FAST and SAST; † means
significantly outperformed by FAST or SAST

P@k =
|top-k(sys trees) ∩ gold trees|

|top-k(sys trees)| (7)

R@k =
|top-k(sys trees) ∩ gold trees|

|gold trees| (8)

3.4 Models in Comparison
We compare FAST and SAST against LIDST.
While this system uses the majority vote as de-
terministic output, we add a further system by
ranking all trees by vote frequency and evalu-
ate this ranking as the language-isolated non-
deterministic structure transfer, LINDST. As
baselines, we use the random baseline, CHANCE,
that creates an arbitrary tree ranking, and the fre-
quency baseline, FREQ, that creates a tree rank-
ing according to the structure pattern frequencies
in the test set (i.e., the tree with the most frequent
structure pattern is ranked first), e.g., [A B] [C D]
is most often annotated as shown in Table 3. To
calculate an upper bound, one of the authors pro-
vided an additional annotation of the 4NC test set,
UPPER. Since Ziering and Van der Plas (2015)
showed that CST on kNCs works best in a type-
based setting, we evaluate all models on types.

3.5 Results and Discussion
Table 5 shows the results of the mean R-Precision
(MRP) on the test set of 3NCs and 4NCs. All
CST systems outperform the baselines. Moreover,
FAST and SAST outperform LIDST and LINDST,
but differences are small.

Because the annotations suggest that 4NCs con-
tain more semantically indeterminate structures,
we expect to find larger differences between de-
terministic and non-deterministic CST when eval-
uating on 4NCs separately.

System MRP
FAST 93.7%
SAST 94.0%
LIDST 92.6%
LINDST 92.0%
FREQ 84.6%
CHANCE 62.5%

Table 5: MRP results on CST of 3NC/4NCs

Table 4 shows the results on CST of 4NCs. For
the mean R-Precision, FAST and SAST signifi-
cantly10 outperform LIDST and LINDST. Preci-
sion and Recall at 1 are similar for all CST meth-
ods, i.e., the top position of the systems’ rankings
hardly differ. For Precision and Recall at 2, FAST
and SAST significantly outperform deterministic
CST. Furthermore, SAST outperforms the non-
deterministic LINDST significantly in MRP and
Precision/Recall at 2. Beside the benefit of a non-
deterministic approach for dealing with seman-
tic indeterminacy, the global perspective of FAST
and SAST makes the process more robust to word
alignment errors: while the monolingually de-
terministic approaches merge adjacent constituent
pairs on each tree level in isolation, FAST and
SAST validate trees according to AWD annota-
tions across all levels of the tree. This way, un-
wanted trees are demoted.

As an example, Table 6 shows the different
rankings for the semantically indeterminate ex-
pression harmful business tax regimes, which has
the two gold structures harmful [business [tax
regimes]] and harmful [[business tax] regimes].
While FAST ranks both correct structures on first
position (rows 1-2) and the false structure [harm-
ful business] [tax regimes] on the second position,

10Approximate randomization test (Yeh, 2000), p < 5%
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the deterministic LIDST has decided for the false
structure and the non-deterministic LINDST has at
least one correct tree among the top 2 structures.

Structure Pattern FAST LIDST LINDST
A [B [C D]] 1 – 2
A [[B C] D] 1 – –
[A B] [C D] 2 1 1

Table 6: Ranking for harmful business tax regimes

4 Tree Accumulation for Deterministic
Structure Transfer

Beside the non-deterministic structure transfer
motivated by semantic indeterminacy, accumula-
tive CST also represents a way for combining par-
tial structure evidence from several languages into
a deterministic output, where each individual lan-
guage cannot provide a single structure.

For example, the determinate 4NC energy ef-
ficiency action plan has only one gold struc-
ture: [energy efficiency] [action plan]. A
Spanish translation is plan de acción de efi-
ciencia energética (plan of action of efficiency
energyADJ ). Since AWD(energy efficiency, ac-
tion) equals AWD(action, plan), Spanish provides
two possible structures: [[energy efficiency] ac-
tion] plan and [energy efficiency] [action plan]. A
German translation is Aktionsplan zur Effizienz
von Energie (action plan {for the} efficiency of
energy). According to German, AWD(energy, effi-
ciency) equals AWD(efficiency, action plan). This
leads to the two structures energy [efficiency [ac-
tion plan]] and [energy efficiency] [action plan].
Since no language provides a single structure,
LIDST cannot produce a deterministic output. In
contrast, using tree accumulation we can combine
the fact that the Spanish translation groups energy
and efficiency closest together with the fact that
the German equivalent puts action and plan into
a closed compound. This results in the top-ranked
structure: [energy efficiency] [action plan].

In an alternative scenario, the determinate 4NC
air transport industry representatives having the
gold structure [[air transport] industry] represen-
tatives is translated to Dutch as vertegenwoordi-
gers van de luchtvervoersector (representatives of
the air transport sector) and to Italian as rappre-
sentanti del settore del trasporto aereo (represen-
tatives of the sector of the transport airADJ ). Since
the closed Dutch compound luchtvervoersector

(air transport sector) hides the internal structure
and the Italian paraphrase leads to AWD(air trans-
port, industry) being equal to AWD(industry, rep-
resentatives), both individual languages cannot be
used for producing a single structure. However,
the Dutch translation provides the information that
representatives has to be separated from the rest
and the Italian translation provides evidence for
air transport having the strongest semantic co-
hesion. Accumulating all valid trees from Dutch
and Italian, we get the single top-ranked structure:
[[air transport] industry] representatives.

5 Conclusion

We have addressed semantic indeterminacy in
NPs, a phenomenon often discussed, but usually
discarded in previous work. We presented two
models of cross-lingual structure transfer that out-
put a ranked list of possible tree structures accu-
mulated from parallel data. Having observed that
structural variation for semantic indeterminacy is
encountered in particular across languages, we ap-
plied our cross-lingual tree ranking for capturing
semantically equivalent structures. To be able to
evaluate our systems, we use common IR metrics.
In an experiment on 3NCs and 4NCs, we showed
that our methods outperform previous work sig-
nificantly. Finally, we showed how tree accumu-
lation can be used for combining partial structure
evidence from various languages to form a deter-
ministic structure output.

In future work, we will further investigate the
nature of semantic indeterminacy and try to model
this phenomenon using distributional semantics.
Along with this paper, we publish11 our 4NC test
set, which can be used as training and test data for
supervised learners.
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