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Abstract

The paper addresses the task of automatic in-
terpretation of semantic relation in noun com-
pounds. The problem has been attempted
with both Ontology-based and Statistical ap-
proaches, but both approaches having their
own limitations. We present a novel VSM-
based statistical model which represents each
relation with a weighted vector of preposi-
tional and verbal paraphrases. The model
ranks the paraphrases on their relevance and
assigns higher weights to more relevant para-
phrases. The performance of the model is
compared with the Ontology model and the
results are quite encouraging. We finally pro-
pose a Hybrid of the two models which com-
pares on par with the best performing systems
on Nastase and Szpakowicz (2003) dataset.

1 Introduction

There has been an increased interest in discovering
the semantics of Noun Compounds (NCs1). There
are two reasons that make this task quite essential
and interesting in text understanding: (i) their im-
plicit nature, for instance the NC ‘monday meet-
ing’ is the meeting scheduled on monday (Tem-
poral), ‘teacher meeting’ is the meeting organized
for teachers (Participant) and ‘NLP meeting’ is the
meeting to discuss NLP topics (Quality-Topic); and
(ii) their frequent and compounding behavior.
NCs are very frequent in english and comprise of
3.9% and 2.6% of all tokens in the Reuters corpus
and the British National Corpus (BNC) respectively
(Baldwin and Tanaka, 2004). New NCs are very fre-
quently constructed eg. website design, internet us-
age, orange juice etc., and sometimes combine with
other words to form longer compounds, e.g., orange
juice company, orange juice company homepage etc.

1A noun compound (NC) is a sequence of nouns which act
as a single noun (Downing, 1977), eg. sunday morning

The frequency spectrum of NCs follows a Zipfian
distribution (Séaghdha, 2008), where many NC to-
kens belong to a long tail of low-frequency types.
Over half of the two-type compounds in BNC occur
just once (Kim and Baldwin, 2006).

The research focusing on the semantic interpreta-
tion of NCs has followed two directions: (i) Identi-
fying the underlying semantic relation (Girju et al.,
2005; Tratz and Hovy, 2010); and (ii) Paraphrasing
the NC (Nakov, 2008; Butnariu and Veale, 2008;
Butnariu et al., 2010). Consider the text:

“A large student protest was carried out
during monday evening by various engi-
neering colleges to raise funds for research.
This London protest saw tremendous par-
ticipation by students from 14 colleges, see-
ing to which R&D dept. agreed to increase
the college funds to 10,000,000 GBP. ”

The sequences marked in bold in the above ex-
ample are Noun compounds (NCs). In the above
text, some NCs are interpretable via paraphrasing:
protest was carried out during evening, where ‘dur-
ing’ defines the temporality of the protest. On the
other hand, some NCs are not explicit: student
protest meaning that the ‘protest was done by the
students’ (Agent), London protest meaning ‘protest
was held in London’ (Spatial), monday evening
meaning ‘evening of monday’ (Part-Of), engineer-
ing colleges meaning the ‘colleges that specialize in
engineering course’ (Purpose), college funds are the
‘funds allocated for the college’ (Beneficiary). The
goal of this paper is to discover the underlying se-
mantic relation of the NCs via paraphrasing. The
knowledge of semantic relation in the above NCs
can help in answering questions like: Where was the
protest held? Who led the protest? etc. The tasks
has applications in many subfields of NLP, including
Question Answering (Girju et al., 2006), Knowledge
Base acquisition (Hearst, 1998) and others.

The task of semantic relation classification of
NCs has been attempted in two directions: (i) using
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a knowledge-intensive ontology and (ii) extracting
paraphrases from a large corpus. We discuss two
existing WordNet-based ontology models: SemScat
1 (by Moldovan et al. (2004)) and SemScat 2 (by
Beamer et al. (2008)), which uses the WordNet’s
noun Hypernym (IS-A) hierarchy to find semantic
similarity between two Noun-Noun pairs. The main
focus (and contribution) of this paper is towards
developing a Statistical model which uses Preposi-
tional (eg. ‘benefit for consumer’), Verbal (eg. ‘ben-
efit involving consumer’) and Verb+Prep (eg. ‘ben-
efit received by consumer’) paraphrases of the NC
(eg. ‘consumer benefit’) for identifying its relation.

The paper is organized as follows: Section 2 (Re-
lated Works) describes previous works on Ontology
and Statistical models; Section 3 (Data Analysis
and Specification) describes the dataset used for ex-
periments, Section 4 (Ontology-Based Model) and
Section 5 (Corpus-Based Model) discusses, exper-
iments and provide insights on these two models.
Section 6 (Integrated Model) develops a hybrid of
the two models and Section 7 concludes the paper.

2 Related Works

Ontology-based Approach: Nastase et al. (2006)
explores both WordNet and Roget’s Theasaurus for
forming the classification features and find WordNet
ontology to be more suitable for the task. Girju et
al. (2003), Moldovan et al. (2004) and Beamer et
al. (2008) propose Iterative semantic specialization
(ISS), SemScat 1 and SemScat 2 models respectively,
which utilize WordNet’s Hypernym hierarchy and
specialize the synsets from general to specific level.
ISS employs Decision Tree (C4.5) for modelling a
single Part-Whole relation. SemScat 1 and SemScat
2 are designed as multi-class classifiers for mod-
elling a set of 35 relations (Moldovan et al., 2004)
and 7 relations (Girju et al., 2007) respectively.
Statistical Approach: Nakov and Hearst (2006)
suggests that the semantics of noun compounds is
best expressible using multiple paraphrases involv-
ing verbs and prepositions. For example, bronze
statue is a statue that is made of, is composed of,
consists of, contains, is of, is, is handcrafted from,
is dipped in, looks like bronze. Nastase et al. (2006)
makes an assumption that senses of NCs can be de-
rived through collocated words learned from large
corpus and use a sparse vector of collocated words
as features (approx 10,000 features). Their system
performs with low accuracy and is outperformed by
their WordNet model of sparse Hypernym synset
feature vector. Nulty (2007) extracts 28 preposi-

tional paraphrases by forming simple ‘N2 prep N1’
or ‘N2 prep the Y’ templates and querying the web.
He shows that the less frequent prepositions achieve
higher accuracy than the more frequent ones in clas-
sifying the relation. This observation aligns with
ours and we employ a TF/IDF (modified) scheme
to assign higher weights to such paraphrases. Tur-
ney (2006b) introduces a Latent Relational Analy-
sis (or LRA) model. The model extracts all possible
synonyms for the modifier and the head using a the-
saurus and uses a list of 64 joining terms, J such as
‘of’, ‘for’ and ‘to’ to form 128 phrases (i.e. M J H
and H J M). From the set of extracted paraphrases,
top few thousands selected paraphrases are used to
build an incidence matrix, whose dimensionality is
reduced using singular value decomposition (SVD).
Nastase et al. (2006), Turney and Littman (2005),
Turney (2006a), Turney (2006b) and Nulty (2007)
compare their systems on Nastase dataset, where
Turney (2006b) outperforms others achieving a ac-
curacy of 58% and 54.6% macro-averaged f-score2.

3 Data Specification

We work with two datasets: (i) Nastase and Sz-
pakowicz (2003) dataset of noun-modifier pairs (re-
ferred as Nastase dataset in the paper); and (ii)
Butnariu et al. (2013) SemEval-13 Task 4 gold-
paraphrased dataset (referred as SemEval dataset).
Nastase dataset uses a two-level taxonomy of 5
coarse-grained and 30 fined-grained relations and
comprises of 600 Noun-Modifier pairs consisting
of a head noun and a modifier which can either
be noun, adjective or adverb. The data is anno-
tated with semantic relation of the NC and POS tag
and WordNet senses of the modifier & head. This
data has some issues: there are 4 cases of repe-
tition and 3 compounds contain multi-word modi-
fier (eg.- ‘test tube’ baby), which have been pruned
out. In the remaining 593 NCs, there are 326 in-
stances of noun (55%), 260 instances of adjectives
(44%) and 7 instances of adverbs (1%) modifier.
The SemEval dataset consists of 355 Noun-Noun
compounds which are manually paraphrased by ap-
prox. 30 annotators, with a total of 12,471 para-
phrases. Each paraphrase is assigned a frequency,
which is number of annotators who have marked that
paraphrase for the given NC. We have annotated the
NCs with semantic relations and modifier & head
WordNet senses following the guidelines from Nas-
tase and Szpakowicz (2003). The experiments on

2Macroaveraged f-score is the overall mean of f-scores of
individual classes.

637



RELATION Nastase (2003) SemEval (2013)
Causal 85 (14.33%) 95(26.9)
Participant 259 (43.67%) 108 (30.5)
Quality 144 (24.28%) 107 (30.2)
Spatial 54 (9.1%) 32 (9.1)
Temporal 51 (8.6%) 13 (3.3)
Total 593 (100%) 355 (100%)

Table 1: Distribution of Relations in Datasets

the SemEval dataset of gold paraphrases helps us in
harnessing the full potential of the Statistical model
which is not possible with Nastase dataset, as the
quality of extracted paraphrases is nowhere close
to manually annotated paraphrases. On the Nastase
dataset, we compare the performance of our Hybrid
model with other models evaluated on this dataset.

The ontology and corpus models are designed
to handle only Noun-Noun compounds (Beamer et
al., 2008; Turney, 2006b). We extend the ontol-
ogy model to work with adjective and adverb modi-
fiers but such adaptation is not possible for the cor-
pus model. The ontology model uses the Noun Hy-
pernymy hierarchy, which is extended to adjectives
and adverbs by linking them to their correspond-
ing noun synsets, through following WordNet re-
lations: derivationally_related_form, pertainym, at-
tributes_to and similar_to (eg. electric#a#1� elec-
tricity#n#1). The corpus model always yields simi-
lar paraphrases with adjective or adverb modifiers,
making such paraphrases irrelevant for classifica-
tion. Thus, the corpus model works with only 326
Noun-Noun compounds in Nastase dataset.

4 Ontology-Based Approach
We experiment with two WordNet-based models:
SemScat 1 by Moldovan et al. (2004) and SemScat
2 by Beamer et al. (2008). The model works on the
principle that two NCs having similar concepts in
the Hypernym hierarchy encode same relation.

4.1 Model Formulation
Let L be the set of all the hypernym entity types
(or synsets). Let the training set of n instances
T = ((x1r1)....(xnrn)), where x1....xn represent
the NCs annotated with semantic relations r1....rn
respectively, where ri ∈ relation set R. The input
xk is represented in terms of modifier and head fea-
tures < fm

i , f
h
j >, where fm

i , fh
j ∈ L represent

synsets at level i and j in the hypernym hierarchy,
combinedly represented as fij . Therefore, the goal
is to model the prediction function F : (L×L)�R.

The SemScat models strives to learn general-
ized sets of Hypernym synsets, known as Bound-
ary, G. For instance - G1 = {entity} and G2 =

{physical − entity, abstract− entity, thing} are
two boundaries where G2 is hyponym of G1. The
algorithm starts by creating the most general bound-
aryG1 = {entity} and all the training examples are
mapped to this boundary by forming< Modifier−
Head > feature f11 = {entity−entity}. Then, the
model computes the probability of each relation r
for every feature formed in this new boundary. Next,
the model identifies the most ambiguous feature (the
one having the highest entropy) using the weighted
entropy measure (Beamer et al., 2008) and special-
izes its modifier & head synsets by their hyponyms.
The algorithm again computes the statistics on this
new boundary and the process is repeated.
Key Differences- SemScat 1 and SemScat 2: The
main difference between the two models is the man-
ner in which they store their boundary. SemScat1
strives to discover a single optimal boundary G∗,
at which all the features map uniquely to a rela-
tion. But practically, the boundary G∗ is overspe-
cialized and therefore, the model finds a boundary
Gk which generalizes well over the test set by us-
ing a development set. The SemScat 1 terminates
the further specialization of the boundary when the
performance of the model drops on the develop-
ment set (i.e. the model starts to over-specialize).
It also uses a Threshold parameter (T ) to restricts
the over-specialization of the features fij , by treat-
ing it as disambiguated if the most probable rela-
tion corresponding to feature fij has the probability
greater than T . On the other hand, the SemScat 2
model keeps track of all the boundaries ranging from
the most general to most specific boundary (G∗),
G = {G1, ..., G

∗} and terminates the training af-
ter discovering the boundary G∗. Given an unseen
instance (with feature fij), SemScat 1 searches for
this feature in the stored boundary Gk, and if the
feature is matched at this boundary, it assigns the
most probable relation corresponding to the feature
fij , otherwise the instance is considered as missed
and no relation is assigned; while SemScat 2 starts
the search for the feature fij from the most spe-
cific boundary G∗ and moves towards more general
boundaries, and assigns the relation corresponding
to the most specific feature matched.

4.2 Experiments
We perform two progressive experiments with on-
tology model. The experimental setup, results and
insights gained are presented for each experiment
separately. This section discusses the results of ex-
periments on ONLY Nastase dataset. The results on
SemEval dataset are presented in Section 6.
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Experiment I: Comparison of SemScat 1 and
SemScat 2: In this experiment, we compare the per-
formance of the two models on the Nastase dataset.
We perform k-fold cross-validation to evaluate the
performance of the model over the complete dataset.
The value of k is varied as: k = 5, 7, 10, 15, 30, 50,
N − 1 (Leave-one-out 3). The data is divided into
training, development and testing set for SemScat
1, while into training and testing set for SemScat2.
The development set used in SemScat 1 comprises
of 20% data from the training set. The Threshold
factor (T ) is varied from 0.6 to 0.9 in steps of 0.05.
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Figure 1: Performance comparison of SemScat 1 and
SemScat 2 on Nastase dataset at varying k folds

SemScat 2 outperforms SemScat 1 on each fold
achieving the optimal performance at k = N − 1
with the 53.46% accuracy (baseline 43.67%) and
48.13% f-score. SemScat 1 performs just above the
baseline with accuracy and f-score of 45.02% and
33.70% respectively at k = 50 and T = 0.7, classi-
fying most of the instances with the majority relation
Participant. We find that the boundary G∗ is quite
specific (ranging from level 6-8 on Nastase dataset)
while the boundary generally selected by SemScat 1
ranges from level 3-4 in the experiments. This re-
veals that SemScat 1 fails in achieving the goal of
finding its optimal boundary that is the closest ap-
proximation of the boundary G∗ and thus, misses
out knowledge that would be useful for classifica-
tion. The huge performance gap between the model
using single boundary and the model storing mul-
tiple boundaries motivates us to investigate the au-
thenticity of each boundary in attesting the relation.
Experiment II: Performance of Different Bound-
ary Levels in SemScat 2: This experiment eval-
uates and compares the performance of multiple
boundaries stored by the SemScat 2 model. The
model is trained on optimal parameters k = N − 1
and the accuracy of each level is computed.

3In Leave-one-out, one instance is tested at a time while rest
N − 1 instances are used for training

Level Total Correct Accuracy
2 17 5 29.41
3 162 65 40.12
4 198 107 54.04
5 152 104 68.42
6 36 17 47.22
7 23 18 78.26

Table 2: Performance of SemScat 2 at different levels

The results presented in Table 2 show that the con-
fidence of the model in assigning the relation im-
proves significantly with each level (except for level
6). The model performs with accuracy of only 29%
at boundary level 2 which shoots up to 78% at level
7. Most of the test instances are mapped at level
4 and 5, achieving accuracy of 54% and 68% re-
spectively. This indicates that the NCs are classified
accurately when matched with more specific knowl-
edge. We capitalize of this useful insight in the Hy-
brid model. Further, we observe that the ontology
model faces difficulty in disambiguating between
certain set of relations, eg. Student Protest (Agent)
and Student Discount (Beneficiary) are represented
with very similar concepts in the Hypernym hierar-
chy and therefore, the model fails to classify the NCs
correctly. On the other hand, the corpus model eas-
ily classifies these NCs, since ‘protest (led_by, orga-
nized_by) students’ clearly points to Agent relation
whereas ‘discount (for, given_to) students’ suggest
that modifier is the Beneficiary of the action. This
complementing behavior of two models establishes
the ground for integrating them.

5 Statistical Approach

The statistical model captures the meaning
of the NC using Prepositional, Verbal and
Verb+Prepositional paraphrases and uses them
to identify the underlying semantic relation. For in-
stance, student protest (Participant) is paraphrased
as ‘protest (by, of, led_by, involving, started_by)
students’, London protest (Spatial) as ‘protest
(in, at, of, held_at) London’ and evening protest
(Temporal) as ‘protest (during, of, held_during
) evening’. In the above examples, the preposi-
tion ‘by’ clearly points to Participant relation,
‘in’ and ‘at’ to Spatial relation and ‘during’ to
Temporal relation. Similarly, verbal paraphrases
‘involving’ and ‘started_by’ indicate Participant
while paraphrases ‘held_at’ and ‘held_during’ in-
dicate Spatial and Temporal relations respectively.
Prepositions are polysemous in nature and the same
preposition can indicate different semantic relation,
as also observed by (Srikumar and Roth, 2013),
for eg. the preposition ‘from’ occurs in: ‘death
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from cancer’ (Causal-Cause), ‘excerpt from the
book’ (Participant-Source), ‘protest from evening’
(Temporal) etc. But the degree of polysemity varies
with prepositions, for eg. the preposition ‘of’ in
the above 3 NCs maps to 3 different relations
but the prepositions ‘by’, ‘at’ and ‘during’ occur
specifically with Participant, Spatial and Temporal
relations respectively. Prepositions that map to
a single or fewer relations are more relevant for
the task than the ones which frequently occur
with different relations and thus, are weighted
higher. Furthermore, we observe that the verb+prep
paraphrases are quite significant, as such verbs are
mostly accompanied with relevant prepositions, for
eg. the paraphrase ‘Protest held during evening’ is
plausible but ‘Protest held of evening’ is not. There-
fore, the preposition & verb in such paraphrases are
given more relevance using a Strength parameter.

The statistical model represents each NC as a pair
of vector of prepositional and verbal paraphrases.
With the relation of the NC known (i.e. supervised
learning), we transform the NC vectors into Rela-
tion Vectors, which represent the complete semantic
class with a single pair of prepositional and verbal
vector. The Vector Space Model (VSM) with Nearest
Neighbour classifier employed by the model com-
putes the cosine similarity of the test vector with
each Relation vector and assigns it the relation with
the highest similarity. The next sections describe the
two most important modules of this model: Para-
phrase Extraction and Vector Formation module.

5.1 Paraphrase Extraction Module
The goal of this system is to take an NC as in-
put and provide the set of prepositional, verbal and
verb+prep paraphrases for it. It consists of three
submodules: former dealing with extraction while
latter two perform cleaning of paraphrases.
Module 1: Paraphrase Extraction: We have relied
mainly on the Google N-gram Corpus for extract-
ing the paraphrases. Google has publicly released
their web data as n-grams, also known as Web-1T
corpus (Brants and Franz, 2006). The corpus con-
tains 2-, 3-, 4- and 5-grams sequences and returns
n-gram matches that occur more than 40 times. The
templates for extraction with few (correct and incor-
rect) selected paraphrases for NC Copper Coin are
presented in Table 3 and 4 respectively. Among in-
correct paraphrases, the first two are syntactically il-
legitimate while the last two are syntactically sound
but semantically illegitimate. ‘coins are copper’ is
part of ‘one cent coins are copper or not’ while
‘coins in copper’ is part of ‘coins in copper bowl’.

coin [s|p] <*>copper [s|p] coin of copper
coin [s|p] <*><*>copper [s|p] coins made from copper
coin [s|p] <*><*><*>copper [s|p] coin is made of copper

Table 3: Extraction Templates with Examples

Correct Paraphrase Incorrect Paraphrase
coin of copper 63
coins made from copper 108
coins made of copper 49
coin is made of copper 146

coin : copper 91
coin jewelry copper 51
coins are copper 91
coins in copper 55

Table 4: Paraphrases Extracted from Google N-Gram

Module 2: Syntactic Cleaning: To handle the
syntactically ill-formed paraphrases, we prepare a
set of plausible syntactic templates. The paraphrases
for 60 NCs (with total of 5716 paraphrases) are
manually marked as incorrect or correct (0 or 1 re-
spectively) by two annotators, with high agreement
of annotation, since the complexity of the task is
EASY. The correct paraphrases are POS tagged us-
ing the CMU ark-tweet POS-tagger (more efficient
in tagging 3- & 4-grams than the Stanford POS-
tagger) and POS templates are extracted. The data
is divided equally into training and testing sets of
30 NCs each. Table 5 shows that the syntactic
templates, although learnt from considerably small
training data, are exhaustive and achieve good cov-
erage of 91.4% on the test set, but low precision
of 56.7% as many semantically illegitimate para-
phrases are matched by these templates.

Recall Precision F-Score
[Without Constraints] 91.4 56.68 69.97
[With Constraints] 91.4 72.9 81.11

Table 5: Comparison of Syntactic Templates before and
after applying Semantic Constraints

Module 3: Semantic Cleaning: The syntactic
templates are unable to filter out semantically ille-
gitimate paraphrases. Such paraphrases are cleaned
by looking at their context, extracted from extended
paraphrases: coins in copper < ∗ >< ∗ >.

Constraint: If the modifier of a given NC is
part of a NP chunk having another noun as
head, then it is not a legitimate paraphrase.

eg: (NP (NNS coins)) (PP (IN in) (NP (NN copper)
(NN bowl)))

which means ‘coins kept in bowl made of cop-
per’. Applying this constraint shows significant im-
provement in precision, with f-score reaching ~81%.
There are still few paraphrases which are not filtered
out by this module. For eg. ‘party after class gets
over’ for NC ‘class party’. The verb+prep para-
phrases (eg. ‘make_of: 242’) are splitted into verb
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(eg. ‘make: 242’) and preposition (eg. ‘of: 242’)
and contribute to respective vectors with Strength
parameter Sp and Sv, as discussed in Experiment II.

5.2 Model Formulation
Let the training set of n instances T =
((x1r1)...(xnrn)), where x1...xn are the NCs and
r1...rn ∈ R are their corresponding relations. Each
instance xi is represented by two vectors: a prepo-
sitional and a verbal vector. The prepositional
vector consists of m = 30 prepositions, P =<
p1, ..., pm > and the verbal vector consisting of top-
k frequent verbs represented as, V =< v1, ..., vk >.
The input xi is mapped to the prepositional vec-
tor, xp

i =< pi
1, ..., p

i
m > and verb vector xv

i =<
vi
1, ..., v

i
k >, where pi

j represents the weight of the
feature j in prepositional vector. The NC vectors are
transformed into Relation vectors, where each rela-
tion ri ∈ R is represented by a single pair of prepo-
sitional and verbal vectors,Rp

i =< pi
1, ..., p

i
m > and

Rv
i =< vi

1, ..., v
i
k > respectively. The VSM com-

putes the cosine similarity between the two vectors,
where higher value of cosine similarity means that
two vectors are more similar to each other.

cos(θ) =
∑n

i=1 ~r1i. ~r2i√∑n
i=1( ~r1i)2.

∑n
j=1( ~r2j)2

=
~r1.~r2
‖ ~r1.~r2 ‖

(1)
where ~r1 is the training vector and ~r2 is the test vec-
tor. We modify the VSM algorithm in case of com-
puting similarity with Relation vectors, in order to
allow them to handle the distribution of relations.
Therefore, the Relation vectors are not converted to
unit vector and thus, the VSM computes ~r1 cos(θ).

5.3 Vector Formation
In this module, we discuss the transformation of NC
vector to Relation vector and describe the (modified)
TF/IDF scheme used for weighting the vectors.
Forming Relation vector: A relation vector is a sin-
gle pair of prepositional and verbal vector that cap-
tures the behavior of the entire relation and also in-
corporates the distribution of each relation in train-
ing data. The Relation vector (of relation r) is
formed by the vector addition of all NC vectors in
the training set that belong to relation r:

〈 Rr 〉 =
∑
x∈T

〈xr〉 (2)

where T is the training set and xr are the NCs in T
with relation r.
Weighting Scheme: By weighting the vectors, we
want to assign higher weights to more relevant para-

phrase features. For our model, the paraphrases that
map to a single or fewer relations are more relevant
than the ones mapping to many relations. We use the
TF/IDF weighting function but modify it with nec-
essary variations. First, our TF function takes usual
logarithmically scaled frequency but is normalized
to ensure the equality in document length, since the
frequency of paraphrases extracted for different NCs
vary significantly. For calculating the IDF, we take
into account the relative weights of each paraphrases
(or features) rather than their occurrence (0 or 1)
with the NC. This modification is essential, since the
Vocabulary size |V | = Number of prepositions (or
verbs) in our model is relatively very small, and do-
ing this ensures that the noisy extracted paraphrases
(with low frequencies) do not harm the model.

TF x
i =

log(fi)x∑
i log(f

x
i )

; IDFj =
1∑

x∈T (TF x
j )

(3)
5.4 Integration of Prep and Verb models
The employ two strategies to integrate the models
using prepositional and the verb vector:
(i) Concatenation Model concatenates the features
of preposition and verb vectors to form a single
Prep+Verb vector of m + k features. The relevance
of verb and preposition vector features are weighted
with a contribution factor f .

〈 V erb+Prep 〉 = 〈 Prep 〉 ⊕ f ∗ 〈 V erb 〉 (4)

where ⊕ denotes concatenation of two vectors.
(ii) Best Selection Model employs Best-Selection
strategy by selecting the more confident of two mod-
els for classification in a given situation. This model
separately evaluates for preposition and verb model
the performance (i.e. f − score) of classifying each
relation. Given a unseen instance, the two mod-
els predict the relation of NC independently but the
model which assigns the relation with higher f-score
is ultimately selected for classification.

5.5 Experiments
We perform three progressive experiments on the
Statistical model on the SemEval dataset:

Experiment I: Comparing models on differ-
ent parameters: In this experiment, we introduce
6 models on three varying parameters and compare
their performance: NC vector (-R) vs Relation
vector (+R), Weighted vector (+W) vs Unweighted
vector (-W), Prior Probability (+P) vs Unit vector
(-P). The experiments are conducted separately on
prepositional and verbal vectors. The data is divided

641



into training and testing set with k-fold cross-
validation, k varying as, k = 5, 7, 10, 15, 30, 50 and
N − 1.

Model F A Model F A
1: [-R -W -P] 35.23 36.21 4: [+R +W -P] 35.77 38.54
2: [-R +W -P] 36.33 38.18 5: [+R -W +P] 37.97 39.34
3: [+R -W -P] 24.41 35.9 6: [+R +W +P] 38.82 40.72

Table 6: Performance of Models on Prepositional vector

The description of the models with their per-
formance on prepositional vector is presented in
Table 6. The Model 6 [+R +W +P] (i.e. Model
using weighted prior probability Relation vectors)
outperforms other models on both preposition and
verb vectors. This model achieves an accuracy of
40.72% (baseline 30.55%) and f-score of 38.82%
with prepositional vector and (Acc, F) of (34.93%,
35.78%) with verb vector at k = N − 1. Therefore,
Model 6 is selected for the next two experiments.

Experiment II: Investigating the relevance
of Verb+Prep paraphrases: This experiment
investigates the relevance of verb+prep paraphrases
(e.g. ‘held during’) over preposition and verb
paraphrases. We have discussed that these para-
phrases are splitted into preposition (i.e. ‘during’)
and verb (‘hold’) and contribute to the frequencies
of corresponding features in preposition and verb
vector, with respective weighting factors Sp and Sv,
referred as the Strength parameters. Thus, a higher
value of Sp and Sv means greater contribution of
verb+preposition paraphrases in the classification
model. The Strength parameters in Experiment I
were fixed to Sp = 1 and Sv = 1 but are varied in
this experiment from values 1 to 15.
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Figure 2: Performance of Preposition and Verb models
on varying the Strength parameters Sp and Sv

The effects of Strength parameter on the prepo-
sition and the verb models on SemEval dataset are
shown in Figure 2. The performance of preposi-
tional model improves drastically (Acc, F) from

(40.72%, 38.82%) to (44.36%, 40.39%) between
values 1 to 9 (~4% improvement in accuracy and
~2.5% in f-score) and then drops down. The verb
vector achieves best results at Sv = 2. This proves
two things: First, verb+prep paraphrases have cru-
cial contribution in the model and thus, finding such
paraphrases in corpus is important, and secondly,
the high value of Sp = 9 reveals that prepositions in
verb+prep paraphrases are in fact quite relevant.

Experiment III: Integrating the Preposition
and Verb models: In this experiment, we compare
the Concatenation model and Best-Selection model
for integrating the Prepositional and Verbal models.
The experiment is performed on optimal parameters
learnt from previous experiments, i.e. Model 6
with Sp = 9 and Sv = 2 at k = N − 1. The
Concatenation model concatenates the preposition
and the verb feature vectors to form a single vector,
with Contribution factor f varying from 0 to 2 in
steps of 0.2. The Best-Selection model evaluates
the performance of each relation on both the models
and given a unseen instance, selects the model
which classifies the relation with higher f − score.

The concatenation of prepositional and verbal fea-
tures in the Concatenation model degrades the per-
formance at every contribution factor f , achieving
the best accuracy of only 36.72% with 35.16% f-
score when both vectors are equally weighted at
f = 1, shown in Figure 3. This shows that the
significance of preposition features is diluted by the
less significant verb features. On the other hand, the
performance with Best-Selection model shoots up,
which achieves accuracy of 46% with drastic im-
provement of ∼ 7 in f-score, reaching 47.19%.

5.6 Observations
The Best-Selection model integrating the preposi-
tional model and verbal model is selected as the best
Statistical model, with optimal parameters Sp = 9
and Sv = 2 at fold k = N − 1. It uses Weighted
Relation vector incorporating Prior probability [+R
+W +P] for both preposition and verb feature vec-
tors. This model achieves 46.04% accuracy (base-
line 30.5%) and 47.19% f-score on SemEval dataset
and hugely outperforms the ontology model, which
performs just above the baseline achieving accuracy
of only 34.53% and f-score of 36.56%.

The corpus model performs below the expecta-
tions on Nastase dataset, with performance subpar
to the ontology model, achieving accuracy of 52.3%
(~2% less than ontology model) with low f-score
of 35.1%. The main reason for this is the insuffi-
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Figure 3: Comparison of All Models on SemEval Data

cient and poor quality of paraphrases obtained from
the corpus, mainly verb and verb+preposition para-
phrases, which are nowhere close to the human an-
notated paraphrases. We have selected only those
NCs for the experiments for which atleast 3 para-
phrases are found. Thus, experiment is performed
with 241 NCs (out of 326 Noun-Noun pairs) for
which this criteria is satisfied. An interesting prop-
erty of the Relation vector is that it maps the lexical
terms (i.e. prepositions and verbs) to semantic re-
lations, and ranks them in decreasing order of their
co-occurence with the relation. Table 7 presents the
five top weighted prepositions for each relation.

Relation Examples Top-5 Prepositions
Causal advertisement agency, cancer death for, with, against, from, on
Quality trade statistics, wafer buscuit like, about, as, of, on
Spatial garden party, village school towards, near, at, in, around
Temporal spring weather, summer meeting during, after, in, at, from
Participant army coup, class party by, from, of, in, for

Table 7: Top-5 Relevant prepositions for each relation

6 Hybrid Model
The goal of the Hybrid model is to integrate knowl-
edge of two very different models: one using the
knowledge from a ontology while other deriving it
from a corpus. The model employs a Best-Selection
strategy which does nothing more than selecting the
more suitable model for classification for any given
test instance. Therefore, for the model to be effi-
cient, it must satisfy two conditions:
a) The constituent models must be complimenting.
b) The model must have a selection criteria that
works efficient in different circumstances. We find
the two models to be complementing as the statisti-
cal model identifies some relations more accurately
than ontology model and vice-versa, as discussed in
Section 4.2. Further, we find that the performance of
ontology model improves with each level of special-
ization (in Table 2). This insight is useful in imple-
menting the selection criteria. The model computes
a Preference Score, P for each model and selects the
model with higher score for classifying the unseen

instance. For ontology model, the f-score of each
relation, ri at each boundary level Gk is evaluated.
Similarly, the f-score of each relation, ri is evaluated
for corpus model. Now, given a unseen instance, the
following decision is taken:

POnt(r1)X > PCor(r2), then R∗ = r1;
else R∗ = r2

(5)

where POnt(r1)Gk is the f-score of relation r1 at
boundary level Gk and R∗ is the assigned relation.

The Hybrid model on the data of 241 NCs (on
which corpus model is evaluated) performs quite
well and outperforms the ontology and corpus mod-
els by 4.5% and 6.5% respectively, as shown in
Table 8. These results are slightly better than the
state-of-the-art system tested on this dataset (Tur-
ney, 2006b) but are below when compared on com-
plete dataset of 593 NCs (out of which 352 NCs
use only ontology model). The overall performance
on Nastase dataset of 593 NCs achieves 55.31% ac-
curacy with 49.47% f-score. On SemEval dataset,
the performance of statistical model drops by ~2%
when integrated with ontology model, which per-
forms poorly on this dataset, as shown in Figure 3.

Relation Ontology
(593 NC)

Corpus
(241 NC)

Hybrid
(241 NC)

Hybrid
(593 NC)

Quality 45 39.18 49.59 49.59
Temporal 78.26 55.81 75 75
Spatial 29.41 14.81 35.71 35.71
Participant 64.6 65.72 67.78 67.78
Causal 29.09 0 34.78 34.78
Macro-Avg F 49.27 35.11 52.57 52.57
Accuracy 54.35 52.28 58.92 55.31

Table 8: Comparison of Models on Nastase Dataset

7 Conclusion

This paper presents a Statistical VSM-based model
which represents each relation with a vector of
prepositional and verbal paraphrases. The statisti-
cal model needs to solve two problems: (i) Identify-
ing which paraphrases are relevant in disambiguat-
ing the relations, which is challenging (Nastase et
al., 2006; Nulty, 2007); and (ii) Finding those para-
phrases in corpus for given NC is hard (Surtani et al.,
2013). We work extensively to improve on the first
part of the problem, but we fail in finding good set of
paraphrases from the corpus. The statistical model
has shown huge potential over the ontology model
(which also requires WordNet senses of modifier &
head, a challenging task (WSD)). The future task is
to achieve a better Paraphrase Extraction system.
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