
Proceedings of Recent Advances in Natural Language Processing, pages 320–328,
Hissar, Bulgaria, Sep 7–9 2015.

Automatically Identifying Periodic Social Events from Twitter

Florian Kunneman
Centre for Language Studies

Radboud University
f.kunneman@let.ru.nl

Antal van den Bosch
Centre for Language Studies

Radboud University
a.vandenbosch@let.ru.nl

Abstract
Many events referred to on Twitter are of a
periodic nature, characterized by roughly
constant time intervals in between occur-
rences. Examples are annual music fes-
tivals, weekly television programs, and
the full moon cycle. We propose a sys-
tem that can automatically identify peri-
odic events from Twitter in an unsuper-
vised and open-domain fashion. We first
extract events from the Twitter stream by
associating terms that have a high prob-
ability of denoting an event to the exact
date of the event. We compare a timeline-
based and a calendar-based approach to
detecting periodic patterns from the event
dates that are connected to these terms.
After applying event extraction on over
four years of Dutch tweets and scanning
the resulting events for periodic patterns,
the calendar-based approach yields a pre-
cision of 0.76 on the 500 top-ranked peri-
odic events, while the timeline-based ap-
proach scores 0.63.

1 Introduction

As a popular communication channel for both
sharing news, experiences, and intentions, Twitter
has been found to provide an accurate reflection
of many aspects of the real world (Bollen et al.,
2011; Zhao et al., 2011). For example, the peri-
odicity of daily life can be exposed by visualiz-
ing the frequency of hashtags such as ‘#breakfast’
and ‘#goodmorning’ (Preot̃iuc-Pietro and Cohn,
2013). In addition, real-world events can be auto-
matically detected by signaling a sudden rise and
fall of word occurrences in tweets (Petrović et al.,
2010; McMinn et al., 2013). We propose a sys-
tem that can identify periodic events from Twitter:
provided with a continuous stream of raw tweets,
it returns an overview of periodic social events.

Surprisingly, this topic of periodicity has not yet
been studied in the context of events mentioned
on Twitter, while the identification of periodicity
in recurring events has obvious gains for a sys-
tem that detects events in the Twitter stream. De-
tected periodicity patters can be used to predict fu-
ture events before they are referred to on Twitter.
For instance, if World Food Day is detected on the
16th of October for a number of consecutive years,
it can be expected and put on the calendar for the
next year.

The rich set of references to the real world made
on Twitter make it a suitable platform to mine
for periodic patterns in relation to events of any
type. At the same time, the non-standard language
and large amount of streaming messages make it
a challenging task. We facilitate this task by ap-
plying an event extraction approach that identifies
terms that might represent a social event, and that
relates them to a frequently and explicitly men-
tioned date of the event. After this first event ex-
traction stage, periodicity detection can be applied
to the clean date sequences linked to event terms.

2 Related Work

Finding periodic patterns is a valuable task in
many contexts of sequential data, such as DNA
or protein sequences (Zhang et al., 2007), market
basket data (Mahanta et al., 2008), and complex
signals such as sound (Sethares and Staley, 1999).
Elfeky et al. (2005) distinguish between ‘seg-
ment periodicity’ and ‘symbol periodicity’. The
first refers to the repetition of a specific sequence,
while the second refers to single symbols in a se-
quence that recur at roughly constant time inter-
vals. The latter is what we aim to detect.

Several patterns of periodicity have been ana-
lyzed in social media. Chu et al. (2012a) aim
to distinguish bots from human user accounts on
Twitter, and find that the periodicity of tweet post-
ings is a strong indicator to recognize bots. They

320

estimate periodicity by the entropy rate of post
intervals, where a low entropy points to a non-
random, periodic pattern. Chu et al. (2012b) adopt
this entropy-based periodicity feature to help dis-
tinguish spam campaigns from proper campaigns
on Twitter. Fan et al. (2014) analyze temporal pat-
terns in topics discussed on Weibo, and find that
the topic ‘business’ displays a highly periodic pat-
tern. Yang et al. (2013) aim to classify Twitter
users in predefined categories. They find that the
periodicity pattern of words linked to a category
is a strong indication, as users tend to mention
their topic of interest at similar times of the day
and week. At the word level, Preot̃iuc-Pietro et al.
(2013) apply Gaussian processes to model the pe-
riodicity of hashtag mentions. They use this infor-
mation to predict hashtag frequencies at any hour.

The automatic identification of periodic patterns
related to events has not been applied in the con-
text of Twitter. The detection of single events,
on the other hand, is a popular strand of research.
Many studies have leveraged the notion of bursti-
ness, the sudden rise and fall of word frequency,
to find events from Twitter. Either by looking at
the rapid growth of tweet clusters (Petrović et al.,
2010; McMinn et al., 2013; Diao et al., 2012) or
words with peaky behavior (Weng and Lee, 2011;
Li et al., 2012). The explicit reference to events in
tweets has also been shown to help find scheduled
events; social events in particular (Ritter et al.,
2012). A possible reason the aforementioned ap-
proaches have not been employed to search for pe-
riodically recurring events, is that it requires a lon-
gitudinal effort to increase the chances of observ-
ing periodic behavior. To this end, we make use
of TwiNL (Tjong Kim Sang and van den Bosch,
2013), a database of IDs of Dutch tweets gathered
from December 2010 onwards.

3 Approach

3.1 Open-domain Event Extraction

Our approach to event extraction is similar to Rit-
ter et al. (2012). The approach relies on ex-
plicit references to a future point in time com-
bined with terms, and favors date–term pairs with
a strong connection. We apply this approach to
Dutch tweets, though most of its components are
language-independent.

3.1.1 Tweet Processing
Each incoming tweet from a stream is initially
scanned for future referring time expressions. We
manually specified a set of rules that focus on a
future date in time as expressed in the Dutch lan-
guage. Examples of the English equivalents of
these rules are displayed in Table 1.1

Category Examples (English)
Date Sept. 13th 2014
Exact in a month
Weekday this Wednesday

Table 1: Examples of the three types of rules for
the extraction of time expressions

The set of rules can be divided in three cate-
gories that each relate to different types of con-
version of the time expression into a date. The
‘Date’ category of rules consists of the different
variations of date mentions, and link directly to a
future date. The ‘Exact’ rules comprise a variety
of phrase combinations that specify an exact num-
ber of days remaining to the event. The ‘Weekday’
rules match a mention of a weekday, preceded by a
future referring phrase like ‘deze’ (‘this’) or ‘vol-
gende week’ (‘next week’).

Tweets found to have a future referring time ex-
pression are subsequently scanned for meaning-
ful words and word n-grams that might denote an
event. We refer to such n-grams as ‘event terms’
henceforth. As off-the-shelf named entity taggers
display a poor performance when applied on the
non-standard language in social media (Ritter et
al., 2011), as alternative we applied the common-
ness metric (Meij et al., 2012) and extracted any
hashtag as event term.

Commonness is formulated as the prior proba-
bility of a concept c (the n-gram) to be used as an
anchor text q in Wikipedia (Meij et al., 2012):

Commonness(c, q) =
|Lq,c|∑
c′ |Lq,c′ | (1)

Where Lq,c denotes the set of all links with an-
chor text q pointing to the Wikipedia page titled c,
and

∑
c′ |Lq,c′ | is the sum of occurrences of q as

an anchor text linking to other concepts.
1Although commonly available time taggers such as Hei-

deltime (Strötgen and Gertz, 2010) could be applied to this
end, Heideltime does not specialize in future time expres-
sions.

321

We downloaded the Dutch Wikipedia dump of
2015/02/052, and parsed it with the Annotated-
WikiExtractor3. Then, we used Colibri Core4 to
calculate the commonness of any concept that has
its own Wikipedia article, and is used as an anchor
text on other Wikipedia pages at least once. These
statistics are used to extract event terms from a
tweet. Tweets that match a future time reference
in the first stage are stripped of this time refer-
ence, and n-grams with n ≤ 5 (covering the length
of most event names) are extracted. Any n-gram
found to have a commonness score above 0.05 is
extracted as an event term. We set the threshold
based on analyzing a sample n-grams with their
score.

Aside from concepts with an above-threshold
commonness score, we directly selected any hash-
tag in tweets with future time references as event
terms. Hashtags can be seen as user-designated
keywords, and are often employed as event mark-
ers.

3.1.2 Event Ranking
Not all pairs of dates and event terms that result
from the tweet processing stage represent a sig-
nificant event. Some candidate terms might not
refer to an event, and some terms might denote a
personal rather than a social event. A first step
to identify significant events is to employ a min-
imum threshold of five tweets in which an event
term should co-occur with the same date. Fol-
lowing Ritter et al. (2012), event terms more fre-
quently mentioned with a specific date are seen as
the more significant events. We therefore calcu-
late the fit between any frequent event term and
the date with which it is mentioned, by means of
the G2 log likelihood ratio statistic:

G2 =
∑

z∈{e,¬e},y∈{d,¬d}
Oz,y × ln

(
Oz,y

Ez,y

)
(2)

The fit between any event term e and date d is
calculated by the observed (O) and expected (E)
frequency of the four pairs {e, d},{e,¬d},{¬e, d}
and {¬e,¬d}. The expected frequency is calcu-
lated by multiplying the observed frequencies of z

2http://dumps.wikimedia.org/nlwiki/
nlwiki-20150205-pages-articles.xml.bz2

3https://github.com/jodaiber/
Annotated-WikiExtractor

4http://proycon.github.io/
colibri-core/doc/

(denoting either e or ¬e) and y (denoting either d
or ¬d) and dividing them by the total number of
tweets in the set.

We prioritize events that are tweeted about by
many different users, by multiplying the G2 log
likelihood ratio statistic with the fraction of differ-
ent users that mention the event. The events are
ranked by the resulting G2u score:

G2u =
(

u

t

)
∗G2 (3)

Here, u is the number of unique users that men-
tion the date and entity in the same tweet, while
t is the number of tweets in which the date and
entity are both mentioned.

The calculation of G2u for each pair results in
a ranked list of date–term pairs. To reduce sub-
sequent computational costs, all pairs with a rank
number below 2,500 are discarded.

As an event might be described by multiple
event terms, it is likely that the ranked list of date–
term pairs contains several event terms that de-
scribe the same event. To de-duplicate these, we
cluster event terms based on the content of the
tweets in which they are mentioned. Each set of
tweets in which the same date–term pair occurs is
aggregated into one big document. The documents
are converted into a feature vector with tf ∗ idf
weighting, where the idf value is based on all ag-
gregated documents in the set of 2,500 date–term
pairs. A similarity matrix is generated for each
set of date–term pairs labeled with the same date.
These documents are then clustered by means of
Agglomerative Hierarchical Clustering (Day and
Edelsbrunner, 1984). The advantage of this algo-
rithm is that it does not require a fixed number of
clusters as parameters. Pairs of tweet sets are clus-
tered together if their similarity is above an empir-
ically set threshold of 0.7.

3.1.3 Performance
We tested the approach to event extraction on a
large sample of Dutch tweets posted in August
2014, which we collected from TwiNL (Tjong
Kim Sang and van den Bosch, 2013). We evalu-
ated the top-250 extracted events, and compared
the outcomes with an n-gram baseline, in which
the commonness approach to entity extraction is
replaced by extracting all n-grams. The results are
displayed in Table 2.

The output of the system was rated by a set of
four annotators; the results are presented by the

322

50% 75% 100% Mutual
F-score

Ngram 0.52 - 0.42 0.89
Commonness 0.87 0.80 0.63 0.90

Table 2: Precision@250 of output identified as
event by human annotators

minimal percentage of annotators that agreed on
the event status. A majority of 75% of the anno-
tators agrees that 80% of the output represents an
event. In comparison, only 52% of the top-250
output of the n-gram baseline system was rated as
event by at least one of two annotators. We also
scored the inter-annotator agreement by Mutual F-
score, which provides an insight into the agree-
ment for the positive (event) class. On average,
annotators yield an F-score of 0.9 on classifying
the event class if the decisions of another annota-
tor are seen as the gold standard.

3.2 Online Extraction of Events

The approach described above extracts events
from a fixed set of tweets. To apply the event
extraction in a streaming fashion, the procedure
should be repeated for any new batch of tweets.
We chose to work with a window size of one
month. We set the step size to one day, to en-
sure that events are extracted from any monthly
periodic sequence. For each daily event extraction
step, the top-2500 events are selected.

This overlapping sliding window setting leads
to a large amount of duplicate events in the output.
To build a calendar of unique events, a merging
procedure is performed after each event extraction.
The events in the output are each compared with
the existing set of events with the same date. If
over 10% of the tweets in the new event overlap
with an existing event, the events are merged by
adding any new tweets and event terms to the ex-
isting event. New events that do not overlap with
an existing event are added as a new event.

3.3 Periodicity Detection

The event extraction procedure results in a set of
events represented as one or more event terms
linked to a date. Next, periodic events can be
found by scanning for events that are linked to at
least three dates, between which two periods of
time occur that are roughly equal.

We compare two approaches to finding periodic

patterns from the date sequence related to an event
term: a timeline-based approach and a calendar-
based approach. We refer to them as ‘PerTime’
and ‘PerCal’.

3.3.1 PerTime
PerTime leverages the intervals between se-
quences of at least three dates. Any date sequence
that has roughly similar intervals is seen as peri-
odic. The intervals are measured at the level of
days. We estimate the similarity by computing
the relative standard deviation over the intervals,
RSD:

RSD =
s

x̄
∗ 100% (4)

The RSD relates the average x̄ to the standard
deviation s, returning the standard deviation as the
percentage of the average values in a set. The
RSD is a sensible approach to scoring the peri-
odicity of date intervals, as any deviation in big
intervals, such as 365 days, is less penalized than
the deviation in smaller intervals, such as 7 days.
We set the minimum interval length to 6 days, en-
suring weekly events as the minimal periodicity.

3.3.2 PerCal
Rather than looking for regular intervals between
dates, PerCal searches for similarities between the
dates in a sequence. An event term like ‘Christmas
Day’ would be mostly linked to ‘25 December’.
Likewise, an event term might recur with ‘the third
Saturday of May’. The calendar-based approach
scans a date sequence for such repetitions.

The detection of calendar periodicity has
mainly been the focus in studies that aim to find
periodic transactional patterns (Li et al., 2001; Li
et al., 2003; Mahanta et al., 2008). Li et al. (2001)
propose an intuitive calendar scheme to describe
a periodic pattern. The pattern has the form of
〈year,month,day〉. Any of these fields can be filled
with a specific value, while the ‘*’-character is
used to denote ‘every’. For example, the pattern
〈*,2,1〉 represents ‘every year on the 1st of Febru-
ary’, while 〈2011,*,12〉 denotes ‘every twelfth day
of the month in 2011’. We adopt this pattern
scheme, and extend it with the additional fields
week, weekday, and #weekday (the index of a
given weekday within a month). We add the ‘-’
character as a possible value, to account for fields
that are irrelevant to a pattern. As an additional
extension, we allow the model to describe patterns

323

Figure 1: Diagram of included calendar fields and
their relation on three levels.

like ‘every six months’ or ‘every two years’, by
specifying a step size that relates to the field that
is described by ‘every’. For example, 〈*2,1,-,-
,Sunday,2〉 denotes ‘every two years on the second
Sunday of January’, and 〈2011,*,-,1,-,-〉 denotes
‘every first day of the month in 2011’.

The relationship between the included calen-
dar fields is illustrated in Figure 1. The scheme
has three levels of granularity. On the first level
are ‘day’ (1–31), ‘weekday’ (Monday–Sunday)
and ‘#weekday’ (1–5). The ‘day’ field relates
to ‘month’ (1–12) at the second level; any com-
bination between the two values can be made.
‘#weekday’ has a connection to both ‘weekday’
and ‘month’, and represents the index of a week-
day in a month (for example: the third Wednesday
of October). Finally, ‘weekday’ connects directly
to ‘week’ (1–53), which enables relations like ‘ev-
ery Wednesday’ or ‘Monday on week 40’. At the
top level is the ‘year’ field, so as to describe yearly
patterns or patterns during a specific year.

A periodic calendar pattern can be detected
by ascending the hierarchy of calendar fields and
looking for regularities. Like PerTime, weekly pe-
riodicity is the smallest pattern that is searched for.
Starting from the lower-level fields (day, weekday
and the weekday-#weekday combination), the al-
gorithm scans whether any of the values of these
fields occurs three times or more (the minimum
requirement for a periodic pattern). If this require-
ment is met, the dates that contain this value are
selected and passed on to the higher level: month
(if the day or the weekday-#weekday combination
is periodic) or week (if the weekday is periodic).
Because the patterns we look for can describe ei-
ther a sequence on this second level (like ‘every
two months’ or ‘every week’) or a sequence of

years on the third level, we scan both for a se-
quence and a repetition of the month or the week
values on this second level. If a sequence is found,
the pattern is finalized. If a repetition is found, the
algorithm proceeds to find a yearly pattern.

A sequence of weeks, months or years might
have steps of unequal size. In such a case we
describe the pattern with the smallest step size
found. Any date between larger steps is denoted
as a missing date. In the sequence ‘2014/03/04
– 2014/04/04 – 2014/06/04’ there is a monthly
sequence of step size ‘1’, with a missing date
‘2014/05/04’.

Some patterns show stronger periodicity than
others. As mentioned above, a sequence might
contain missing dates, decreasing the evidence for
periodicity. In addition, not all dates linked to an
event term may combine into a pattern. Following
Li et al. (2001), we quantify these two inconsisten-
cies as confidence and support estimates. Confi-
dence is estimated by dividing the dates that could
fill in a pattern (from the first date to the last) by
the number of dates that are actually seen. Sup-
port is the percentage of all dates that are linked
to an event term that satisfy the pattern. To ob-
tain an overall score of the quality of a pattern, we
calculate the average of these two metrics.

PerCal searches for periodic patterns at different
levels. As a result, it may find multiple patterns in
the same date sequence. If two patterns overlap,
the one with the highest overall score is selected.

3.3.3 Clustering of Periodic Terms
To de-duplicate output from both the PerTime and
PerCal approaches, we cluster event terms with a
periodic sequence together. For both approaches,
we aggregate all tweets linked to the periodic pat-
tern of an event term, to form big documents. Any
pair of terms with 90% overlapping dates for Per-
Time and any pair with a similar pattern for PerCal
were tested as clusters. Clustering was applied in
the same fashion as described at the end of Sec-
tion 3.1.2. The threshold for clustering was set to
a cosine similarity above 0.5.

4 Experimental Set-up

4.1 Data

We tested our system on all Dutch tweets that
were collected from the Tweet IDs in TwiNL, from
the start of the database, December 16th 2010,
up to February 16th 2015, amounting to 2.73 bil-

324

lion tweets in total. After processing these tweets,
24,162,633 were found to have a matching time
expression.

4.2 Procedure
We applied the event extraction module on the
span of tweets as specified in Section 3.2, with
a sliding window of a month and a daily sliding
frequency. Events were merged if they were ex-
tracted from (partly) the same tweet IDs. After all
tweets were processed, a calendar was filled with
94,526 events.

Periodicity detection is applied to single event
terms; we kept a log of the dates linked to each
term. We searched for periodic patterns in this
log by starting with events that took place in 2014.
For both PerTime and Percal, whenever a date in
2014 or later was appended to an event term log,
the approach was applied to the updated date se-
quence. If a periodic pattern was already found
for an event term, it was overwritten with the pat-
tern that was extracted from the updated sequence.
We clustered terms with a similar periodic pattern
after all events were processed.

4.3 Evaluation
We ranked the periodic event patterns returned by
the two approaches by their respective metrics to
score periodicity: RSD for PerTime and the aver-
age value of support and coverage for PerCal. One
of the authors manually assessed the top-500 pat-
terns from both rankings, deciding for each out-
put whether it represents a regularly recurring se-
quence of events, rather than events or event terms
that share a coincidental temporal regularity. The
terms, dates, and tweets linked to each output, and
if needed the Google search engine, were con-
sulted to guide this decision.

In order to acquire a sense of agreement for the
annotations, a second author annotated the top-
200 events of the two systems. The mutual F-score
of positive annotations was 0.92 for the PerTime
output and 0.93 for the PerCal output.

5 Results

PerTime assigned a periodicity score to 5,301
events out of the total of 94,526 events. PerCal
found 7,018 periodic patterns 5. The precision and

5A dataset with the tweet ID’s that relate to all 94,526
events, as well as the periodic event patterns that were
found by both systems, will be made publicly avail-
able from http://cls.ru.nl/˜fkunneman/data_

recall of their top-500 output are presented in Ta-
ble 3. 315 correct periodic events were confirmed
from the output of PerTime, and 379 from the out-
put of PerCal, resulting in precision-at-500 scores
of 0.63 and 0.76, respectively. We approximated a
recall score by comparing the periodic event terms
that were found by both approaches (637 in total),
and calculating which percentage of these was re-
turned by either of them. The recall scores are
lower than the precision scores, due to an overlap
of only 116 events (18%) between PerTime and
PerCal.

Precision Recall
PerTime 0.63 0.52

PerCal 0.76 0.69

Table 3: Periodicity detection quality after
manual evaluation of the top-500 deteced periodic
events by the two approaches.

Precision-at-curves of the top-500 rankings are
given in Figure 2. For PerTime, the RSD at rank
500 is 10.2 days. A perfect RSD score of 0.0 was
maintained up to rank 81. The ranks of events
with equal scores were randomly shuffled. The
curve shows a progressing decay towards the end.
The temporally increasing precision at rank 200 is
due to the detection of a number of periodic events
that are characterized by changing intervals, such
as Easter and Pentecost, and share the same non-
perfect RSD score.

For PerCal, the pattern score at rank 500 is 0.65.
In contrast to PerTime, precision is decreasing at a
slower rate with lower-ranked events.

Figure 2: Precision-at-curves for PerTime and
PerCal

periodicity.zip

325

Event term(S) Dates Timeline pattern Calendar pattern
Periodic events #trendrede 2011/09/13,2012/09/11, 364 -364 - 364 〈*,9,-,-,Tuesday,2〉
found by both 2013/09/10, 2014/09/09
approaches #valentinesday 2013/02/14, 2014/02/14, 365 - 365 〈*,2,-,14,-,-〉

2015/02/14
Periodic events romantische muziek 2011/08/14, 2012/08/12, 364 - 378 - 364 -
only found by 2013/08/25, 2014/08/24
timeline paaszondag 2011/04/24, 2012/04/08, 350 - 357 - -
approach 2013/03/31, 2014/04/20, 385 - 350

2015/04/05
Periodic events #7hloop 2011/11/20, 2012/11/18, 364 - 728 〈*,11,-,-,Sunday,3〉
only found by 2014/11/16
calendar fortarock 2011/07/02, 2012/06/02, 336 - 160 - 204 - 〈*,-,22,-,Saturday,-〉
approach 2012/11/09, 2013/06/01, 364 - 371

2014/05/31, 2015-06-06

Table 4: Examples of periodic events in the top 500 output of the timeline and calendar approach

6 Analysis

Examples of detected periodic events are given in
Table 4. To give an idea of the strength of both
approaches, a distinction is made between events
that are only found by one of them, or by both.
An example of a periodic event found by both
approaches is ‘#valentinesday’. Events like this,
linked to a fixed date, are characterized by equal
yearly intervals (only allowing for a minor devia-
tion of 366 instead of 365 days in leap years).

The event ‘romantische muziek’ (referring to
the ‘Day of Romantic Music’) is not found by
PerCal, which is due to an inconsistent pattern
of dates. PerTime can typically deal with such
small inconsistencies. The event described by
‘paaszondag’ (‘Easter Sunday’) follows the lu-
nisolar calendar, while the calendar approach fol-
lows a Gregorian calendar scheme6. Again, Per-
Time only penalizes the inconsistencies in day in-
tervals, without discarding the event altogether.

While PerTime can deal with inconsistencies
in the intervals between dates, PerCal displays a
higher tolerance towards missing dates. An exam-
ple is ‘#7hloop’ (a running event in The Nether-
lands), which was not found by the event extrac-
tion module in 2013. The resulting interval of 728
days (two years) at this point results in a poor peri-
odicity score for PerTime. PerCal, having detected
the overall pattern, gives a smaller penalty for the
missing entry in 2013. The support for these days
is 1.0, while the confidence is 0.75, leading to an
overall score of 0.88. Similarly, noisy date se-
quences in which only part of the dates form a pe-
riodic pattern can only be dealt with by PerCal.

6To find events like Easter, the framework of PerCal could
be extended by including a lunisolar scheme or other existing
schemes.

PerTime assigns a low overall periodicity score to
the date sequence associated with ‘Fortarock’ (a
music festival in The Netherlands), due the irreg-
ular intervals.

7 Conclusion

We have presented a framework that extracts a cal-
endar of events from the Twitter stream and detects
periodic event sequences in this calendar. Apply-
ing the procedure to over 4 years of Dutch tweets,
a timeline-based and calendar-based approach to
periodicity detection yield a precision-at-500 of
0.63 and 0.76, respectively.

As far as we know this is the first work that deals
with the task of periodic event detection on Twitter
data, which serves to extract long-range patterns
from Twitter, detect periodic events among those
patterns, and predict events before they are men-
tioned on Twitter. Although we obtained encour-
aging results, there is room for improvement. To
clarify whether the event extraction approach that
we applied is most suitable as a first step before pe-
riodicity detection, other approaches to event de-
tection or extraction, such as burstiness, may be
applied as well during this stage for comparison.

The calendar-based approach may be extended
in a knowledge-driven way with schemes that de-
scribe the lunisolar calendar, the lunar calendar, as
well as other historical and religious calendars, so
as to enable the detection of periodic patterns that
relate to Easter, the Ramadan, and Hindu festivals
for example.

Acknowledgements

This research was funded by the Dutch national
program COMMIT. We thank Erik Tjong Kim
Sang for the development and support of the

326

http://twiqs.nl service.

References
Johan Bollen, Huina Mao, and Alberto Pepe. 2011.

Modeling public mood and emotion: Twitter senti-
ment and socio-economic phenomena. In ICWSM.

Zi Chu, Steven Gianvecchio, Haining Wang, and Sushil
Jajodia. 2012a. Detecting automation of twitter ac-
counts: Are you a human, bot, or cyborg? IEEE
Transactions on Dependable and Secure Comput-
ing, 9(6):811–824.

Zi Chu, Indra Widjaja, and Haining Wang. 2012b. De-
tecting social spam campaigns on twitter. In Applied
Cryptography and Network Security, pages 455–
472. Springer.

William H. E. Day and Herbert Edelsbrunner. 1984.
Efficient algorithms for agglomerative hierarchi-
cal clustering methods. Journal of classification,
1(1):7–24.

Qiming Diao, Jing Jiang, Feida Zhu, and Ee-Peng
Lim. 2012. Finding bursty topics from microblogs.
In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long
Papers-Volume 1, pages 536–544. Association for
Computational Linguistics.

Mohamed G. Elfeky, Walid G. Aref, and Achmed K.
Elmagarmid. 2005. Periodicity detection in time
series databases. Knowledge and Data Engineering,
IEEE Transactions on, 17(7):875–887.

Rui Fan, Jichang Zhao, Xu Feng, and Ke Xu. 2014.
Topic dynamics in weibo: Happy entertainment
dominates but angry finance is more periodic. In
2014 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining
(ASONAM), pages 230–233. IEEE.

Yingjiu Li, X. Sean Wang, and Sushil Jajodia. 2001.
Discovering temporal patterns in multiple granular-
ities. In Temporal, Spatial, and Spatio-Temporal
Data Mining, pages 5–19. Springer.

Yingjiu Li, Peng Ning, X. Sean Wang, and Sushil Ja-
jodia. 2003. Discovering calendar-based temporal
association rules. Data & Knowledge Engineering,
44(2):193–218.

Chenliang Li, Aixin Sun, and Anwitaman Datta.
2012. Twevent: segment-based event detection from
tweets. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge
management, pages 155–164. ACM.

Anjana K. Mahanta, Fokrul A. Mazarbhuiya, and
Hemanta K. Baruah. 2008. Finding calendar-
based periodic patterns. Pattern Recognition Let-
ters, 29(9):1274–1284.

Andrew J. McMinn, Yashar Moshfeghi, and Joe-
mon M. Jose. 2013. Building a large-scale corpus
for evaluating event detection on twitter. In Pro-
ceedings of the 22nd ACM international conference
on Conference on information & knowledge man-
agement, pages 409–418. ACM.

Edgar Meij, Wouter Weerkamp, and Maarten de Ri-
jke. 2012. Adding semantics to microblog posts.
In Proceedings of the fifth ACM international con-
ference on Web search and data mining, pages 563–
572. ACM.

Saša Petrović, Miles Osborne, and Victor Lavrenko.
2010. Streaming first story detection with applica-
tion to twitter. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 181–189. Association for Computa-
tional Linguistics.

Daniel Preot̃iuc-Pietro and Trevor Cohn. 2013. A tem-
poral model of text periodicities using gaussian pro-
cesses. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 977–988.

Alan Ritter, Sam Clark, and Oren Etzioni. 2011.
Named entity recognition in tweets: an experimental
study. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
1524–1534. Association for Computational Linguis-
tics.

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.
2012. Open domain event extraction from twitter.
In Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, KDD ’12, pages 1104–1112, New York, NY,
USA. ACM.

William A. Sethares and Thomas W. Staley. 1999. Pe-
riodicity transforms. IEEE Transactions on Signal
Processing, 47(11):2953–2964.

Jannik Strötgen and Michael Gertz. 2010. Heideltime:
High quality rule-based extraction and normaliza-
tion of temporal expressions. In Proceedings of the
5th International Workshop on Semantic Evaluation,
pages 321–324. Association for Computational Lin-
guistics.

Erik Tjong Kim Sang and Antal van den Bosch. 2013.
Dealing with big data: The case of twitter. Com-
putational Linguistics in the Netherlands Journal,
3:121–134, 12/2013.

Jianshu Weng and Bu-Sung Lee. 2011. Event detec-
tion in twitter. In Proceedings of the AAAI con-
ference on weblogs and social media (ICWSM-11),
pages 401–408.

Tao Yang, Dongwon Lee, and Su Yan. 2013. Steeler
nation, 12th man, and boo birds: classifying twitter
user interests using time series. In 2013 IEEE/ACM
International Conference on Advances in Social

327

Networks Analysis and Mining (ASONAM), pages
684–691. IEEE.

Minghua Zhang, Ben Kao, David W. Cheung, and
Kevin Y. Yip. 2007. Mining periodic patterns with
gap requirement from sequences. ACM Transac-
tions on Knowledge Discovery from Data (TKDD),
1(2):7.

Siqi Zhao, Lin Zhong, Jehan Wickramasuriya, and
Venu Vasudevan. 2011. Human as Real-Time sen-
sors of social and physical events: A case study
of Twitter and sports games. Technical Report
TR0620-2011, Houston, TX: Rice University and
Motorola Labs.

328

