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Abstract

This paper presents a statistical model for
measuring structural similarity between
webpages from bilingual websites. Start-
ing from basic assumptions we derive the
model and propose an algorithm to esti-
mate its parameters in unsupervised man-
ner. Statistical approach appears to bene-
fit the structural similarity measure: in the
task of distinguishing parallel webpages
from bilingual websites our language-
independent model demonstrates an F-
score of 0.94–0.99 which is comparable to
the results of language-dependent methods
involving content similarity measures.

1 Introduction

A parallel corpus is a collection of text with trans-
lations into another language. Such corpora plays
an important role in machine translation and multi-
lingual language retrieval. Unfortunately, they are
not readily available in the necessary quantities:
some of them are subject to subscription or license
fee and thus are not freely available, while others
are domain-specific. However, there is the World
Wide Web, which can be considered as one of the
largest sources of parallel corpora, since there are
many websites which are available in two or more
languages. Many approaches have been therefore
proposed for trying to exploit the Web as a parallel
corpus: STRAND (Resnik and Smith, 2003), PT-
Miner (Chen and Nie, 2000), BITS (Ma and Liber-
man, 1999), WPDE (Zhang et al., 2006), Bitextor
(Esplà-Gomis and Forcada, 2010), ILSP-FC (Pa-
pavassiliou et al., 2013), etc. For most of these
mining systems, there is a typical strategy for min-
ing parallel texts: (1) locate bilingual websites; (2)
identify parallel web pages; (3) extract bitexts. For
the step (2) three main strategies can be found in
the literature – they exploit:

• similarities in URLs;

• structural similarity of HTML files;

• content-similarity of texts.

Measuring structural similarity of HTML files,
which is the “heart of STRAND” architecture
(Resnik and Smith, 2003), involves calculating
some quantitative features of candidate webpages
and then comparing them to manually chosen
threshold values or embedding those features into
machine learning algorithms. Such approaches do
not take into account the intrinsic stochastic na-
ture of the mentioned features, and they require su-
pervised learning of the parameters for each given
website/language. In this paper we develop a more
refined language-independent technique for mea-
suring structural similarity between HTML pages,
which uses the same amount of information as pre-
vious approaches, but is more accurate in distin-
guishing parallelism of webpages and can be ap-
plied in unsupervised manner.

2 Related Work

Measuring structural similarity between HTML
files was first introduced in (Resnik, 1998), where
a linearized HTML structure of candidate pairs
was used to confirm parallelism of texts. Shi
et al. (2006) used a file length ratio, an HTML
tag similarity and a sentence alignment score
to verify translational equivalence of candidate
pages. Zhang et al. (2006) used file length ratio,
HTML structure and content translation to train k-
nearest-neighbors classifier for parallel pairs ver-
ification. Esplà-Gomis and Forcada (2010) used
text-language comparison, file size ratio, total text
length difference for preliminary filtering and then
HTML tag structure and text block length were
used for deeper filtering. In (San Vicente and
Manterola, 2012) the bitext detection module runs
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three major filters: link follower filter, URL pat-
tern search, and a combination of an HTML struc-
ture filter and a content filter. In (Papavassiliou
et al., 2013) structural filtering is based on length
ratios and edit distances between linearized ver-
sions of candidate pairs. Liu et al. (2014) proposed
a link-based approach in conjuction with content-
based similarity and page structural similarity to
distinguish parallel web pages from bi-lingual web
sites.
To explain the essence of our work let us assume

that candidate pairs are linearized as in STRAND
and linearized sequences are aligned using a stan-
dard dynamic programming technique (Hunt and
MacIlroy, 1976). For example, consider two doc-
uments that begin as follows:
<HTML>
<TITLE>The Republic of
Kazakhstan</TITLE>
<BODY>
<H1>The Republic of
Kazakhstan</H1>
The Republic of Kaza-
khstan is a unitary state
with a presidential form of
government.
...

<HTML>
<TITLE>Қазақстан
Республикасы</TITLE>
<BODY>
Қазақстан Республикасы
– президенттік басқару
нысанындағы біртұтас
мемлекет.
...

The aligned linearized sequences would be as fol-
lows:

[START: HTML] [START: HTML]
[START: TITLE] [START: TITLE]
[Chunk: 23] [Chunk: 21]
[END: TITLE] [END: TITLE]
[START: BODY] [START: BODY]
[START: H1]
[Chunk: 23]
[END: H1]
[Chunk: 72] [Chunk: 69]

Let W denote the alignment cost, i.e. the to-
tal number of alignment tokens that are in one lin-
earized file but not the other, M denote the total
number of alignment tokens in one linearized file
andN denote the total number of alignment tokens
in the other linearized file (in the example above,
W = 3, M = 9, N = 6). In all of the above-
mentioned works the behavior ofW/(M +N) (or
of W itself) is a crucial factor in making decision
on parallelism of candidate pairs. However, the
intrinsic stochastic nature of these quantities was
never adressed before. In this paper we develop

a statistical model for W , M and N , whose pa-
rameters can be estimated in unsupervised manner,
and we show how structural filtering benefits from
such model.

3 Statistical Model

3.1 Assumptions

Let random variables (r.v.) W ,M , andN have the
samemeaning as in Section 2. Suppose that we are
observing a pair of webpages for which M = m
and N = n. Then W is equal to the number of
alignment tokens out of total (m + n) tokens that
are missing in either of the linearized sequences,
which means that the r.v. W can be modeled by
the binomial distribution with parameters (m+n)
and q, i.e.

Pr(W = w|M = m, N = n) =

=
(

m + n

w

)
qw(1− q)m+n−w. (1)

It is important to notice here that the parameter
q = Pr(token is removed) should be different for
parallel and non-parallel pairs, sincewe expect sig-
nificantly higher proportion of misalignments in
non-parallel case than in parallel case. Thus, ob-
serving a small value of W/(M + N) is one of
the indicators in favor of parallelism of two pages.
Another indicator is the similarity of M and N ,
which can be formalized in the following way:

N

{
= kM + b + ϵ for a parallel pair,
indep. of M for a non-parallel pair,

(2)
where k, b are constants and the r.v. ϵ repre-
sents an error term of linear regression model, and
is assumed to be independent from M and N .
Our investigation shows that a Gaussian mixture
model (GMM) fits well the distribution of ϵ (See
Appendix A). Therefore we assume that ϵ is dis-
tributed according to the pdf

fϵ(x; λ, µ1,2, σ1,2)

=
1√
2π

(
λ

σ1
e
− (x−µ1)2

2σ2
1 +

1− λ

σ2
e
− (x−µ2)2

2σ2
2

)
.

(3)

The third indicator of parallelism that we are going
to exploit is the similarity between text lengths: if
L1 and L2 denote total lengths of text chunks in a
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candidate pair of webpages, then we assume that

L2

{
= aL1 + c + zσ

√
L1 for a par. pair,

indep. of L1 for a non-par. pair,
(4)

where a, c, σ are constants, z is a standard nor-
mal random variable and the variance of the dif-
ference (L2−aL1− c) is modeled proportional to
the length L1 as in (Gale and Church, 1993). We
notice here, that the assumptions (1) and (2) were
made regardless of the text lengthsL1 andL2: thus
knowing the values of L1 and L2 does not affect
the distribution of W (when M and N are given)
or the joint distribution of (M,N).
Hereinafter we use the following notation:

p̂X(x) denotes an empirical pdf for a r.v. X , calcu-
lated from a set of observations {xi}; the symbol
“∥” is used to denote that “pages under consider-
ation are parallel”; and the symbol “∦” is used to
denote that “pages under consideration are not par-
allel”. When there is no possibility for confusion,
we write Pr(x) for Pr(X = x), and use similar
shorthands throughout.

3.2 Derivation
Let us denote x = (w,m, n, l1, l2). Our ultimate
goal is to be able to calculate Pr(∥ |x) and Pr(∦
|x), and then to compare them in order to select
the most probable case. These probabilities can be
rewritten using Bayes’ rule:

Pr(∥ |x) =
Pr(x| ∥) Pr(∥)

Pr(x)

Pr(∦ |x) =
Pr(x| ∦) Pr(∦)

Pr(x)
(5)

Since the denominators in (5) are same, it is suffi-
cient to compare the numerators. Now, let us de-
rive a model for the distribution of W , M , N , L1

and L2 in case of a parallel pair:

A∥ :=Pr(w, m, n, l1, l2| ∥) =

=Pr(w, m, n|l1, l2, ∥)Pr(l1, l2| ∥) =
=Pr(w|m,n, l1, l2, ∥)Pr(m,n|l1, l2, ∥)×
× Pr(l1, l2| ∥) =

={independence assumptions} =
=Pr(w|m,n, ∥)︸ ︷︷ ︸

B∥

Pr(m,n| ∥)︸ ︷︷ ︸
C∥

Pr(l1, l2| ∥)︸ ︷︷ ︸
D∥

.

(6)

From (1) and the remark after it, we can say that

B∥ =
(

m + n

w

)
qw
∥ (1− q∥)m+n−w, (7)

where q∥ = Pr(token is removed| ∥). Also, from
the assumption (2) we get

C∥ = Pr(M = m, kM + b + ϵ = n)

= Pr(M = m) · Pr(kM + b + ϵ = n|M = m)
≈ {continuity correction for ϵ}
≈ p̂M (m)Pr(ϵ ∈ n− km− b± .5|M = m)
= {independence of M and ϵ}
= p̂M (m) · Pr(ϵ ∈ n− km− b± .5)

= p̂M (m) ·
n−km−b+.5∫

n−km−b−.5

fϵ(x; λ, µ1,2, σ1,2)dx,

(8)

where fϵ(x;λ, µ1,2, σ1,2) is defined by (3). From
the assumption (4) we obtain

D∥ =Pr
(
L1 = l1, aL1 + c + zσ

√
L1 = l2

)
=Pr(L1 = l1)

× Pr
(
aL1 + c + zσ

√
L1 = l2|L1 = l1

)
≈{continuity correction for z}

≈p̂L1(l1) · Pr
(

z ∈ l2 − al1 − c± .5
σ
√

l1

)

=p̂L1(l1) ·
1√

2πl1σ

l2−al1−c+.5∫
l2−al1−c−.5

e
−x2

2l1σ2 dx.

(9)

Combining (6), (7), (8) and (9) we obtain

A∥ ≈
(

m + n

w

)
qw
∥ (1− q∥)m+n−w

× p̂M (m) ·
n−km−b+.5∫

n−km−b−.5

fϵ(x;λ, µ1,2, σ1,2)dx

× p̂L1(l1) ·
1√

2πl1σ

l2−al1−c+.5∫
l2−al1−c−.5

e
−x2

2l1σ2 dx. (10)

Similarly, let us derive a model for the distribu-
tion of W , M , N , L1 and L2 in case of a non-
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parallel pair:

A∦ :=Pr(w, m, n, l1, l2| ∦)

=Pr(w, m, n|l1, l2, ∦)Pr(l1, l2| ∦) =
=Pr(w|m,n, l1, l2, ∦)Pr(m,n|l1, l2, ∦)×
× Pr(l1, l2| ∦) =

={independence assumptions} =
=Pr(w|m,n ∦)︸ ︷︷ ︸

B∦

Pr(m,n| ∦)︸ ︷︷ ︸
C∦

Pr(l1, l2| ∦)︸ ︷︷ ︸
D∦

.

(11)

As discussed earlier, under non-parallelism we
should assume probability of an alignment token
to be removed q∦ to be different from q∥ and thus:

B∦ =
(

m + n

w

)
qw

∦ (1− q∦)
m+n−w. (12)

Due to independence assumption between M and
N (2) under non-parallelism we have:

C∦ = Pr(M = m| ∦) · Pr(N = n| ∦)

≈ {marginal pdf’s do not depend on ∦}
≈ p̂M (m) · p̂N (n). (13)

And, similarly, from (4) we have

D∦ = Pr(L1 = l1| ∦) · Pr(L2 = l2| ∦)

≈ p̂L1(l1) · p̂L2(l2). (14)

Now, from (11), (12), (13) and (14) we obtain

A∦ ≈
(

m + n

w

)
qw

∦ (1− q∦)
m+n−w

× p̂M (m) · p̂N (n) · p̂L1(l1) · p̂L2(l2). (15)

Our model A∥(w, m, n, l1, l2; q∥, k, b, λ, µ1,2,
σ1,2, a, c, σ) has 11 parameters (q∥, k, b, λ, µ1,2,
σ1,2, a, c, σ), it receives the values of w, m, n,
l1, l2 as input, and outputs the probability to ob-
serve such values under parallelism. The model
A∦(w, m, n, l1, l2; q∦) has one parameter (q∦), it
also receives the values of w, m, n, l1 and l2 as
input, and outputs the probability to observe such
values under non-parallelism. For the sake of sim-
plicity we will denote

θ∥ = (q∥, k, b, λ, µ1,2, σ1,2, a, c, σ),

p∥ = Pr(∥).

3.3 Parameters Estimation

In order to show how expectation maximization
(EM) algorithm (Dempster et al., 1977) can be
used to estimate the parameters of our models let
us assume that the set of candidate pairs consists of
s pairs. Let us introduce the variables (for i = 1, s)

αi =

{
1, if ith pair is parallel
0, otherwise.

Then the likelihood function for our data is given
by

L(q∥,∦, k, b, λ, µ1,2, σ1,2, σ, p∥) =

= C

s∏
i=1

[A∥(xi; θ∥)p∥]
αi×

× [A∦(xi; q∦)(1− p∥)]1−αi , (16)

where C =
∏s

i=1 [Pr(xi)−1] is a constant w.r.t.
parameters θ, q∦, and p∥. According to Lemma
B.1, the likelihood (16) is maximized w.r.t {αi} if

αi =


1, if A∥(xi;θ∥)p∥ >

> A∦(xi; q∦)(1− p∥),
0, otherwise.

(17)

The formula (17) is basically the decision rule for
our task of binary classification of candidate pairs
into parallel or non-parallel ones (assuming that
we know the parameters of A∥ and A∦). Now the
essence of the EM algorithm (Algorithm 1) can be
described as follows.
We first initilize parameters on line 1 using the

following reasoning: q∥ should be less than q∦ due
to the comment after (1); N should be approxi-
mately equal to M for parallel pairs, therefore we
take k = 1 and b = 0 as initial guesses; since
we know almost nothing about the components of
the Gaussian mixture in (3), we set λ = 0.5 and
µ1,2 = 0, however we can expect that one of the
components should be responsible for larger devi-
ations from the mean (i.e. for heavy tails), and thus
we set σ2 > σ1; we choose initial values for a = 1,
c = 0 and σ =

√
6.8 based on the suggestion in

(Gale and Church, 1993), and for p∥ = 2/3 based
on the experiments in (Resnik and Smith, 2003).
After such initial guesses on parameters, we per-

form an E-step on lines 3–10, i.e. the models A∥
and A∦ are applied to the data, and as a result we
obtain two sets of indexes: I keeps the indexes
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Algorithm 1 EM algorithm for A∥ and A∦

Input: set of values {(wi,mi, ni, l1,i, l2,i)}si=1

Output: indexes I ⊂ {1, . . . , s} of parallel pairs,
indexes J ⊂ {1, . . . , s} of non-parallel pairs,
estimates for q∥, q∦, k, b, λ, µ1,2, σ1,2, a, c, σ,
p∥

1: Initialize q∥ ← 0.2, q∦ ← 0.5, k ← 1, b ← 0,
λ← 0.5, µ1 ← 0, µ2 ← 0, σ1 ← 1, σ2 ← 10,
a← 1, c← 0, σ ← √6.8, p∥ = 2/3.

2: while not converged do
3: for i ∈ {1, . . . , s} do
4: if A∥(xi;θ∥)

1−p∥
>

A∦(xi;q∦)

p∥
then

5: αi ← 1
6: else
7: αi ← 0
8: end if
9: end for
10: I ← {i|αi = 1}, J ← {j|αj = 0}
11: q∥ ←

∑
i∈I wi∑

i∈I(mi+ni)

12: q∦ ←
∑

j∈J wj∑
j∈J (mj+nj)

13: (k, b)← argmin
(k,b)

∑
i∈I

ρ(ni − kmi − b)

14: for i ∈ I do
15: ϵi = ni − kmi − b
16: end for
17: (λ, µ1,2, σ1,2)←

← argmax
(λ,µ1,2,σ1,2)

∏
i∈I

fϵ(ϵi; λ, µ1,2, σ1,2)

18: (a, c)← argmin
(a,c)

∑
i∈I

ρ(l2,i − al1,i − c)

19: for i ∈ I do
20: δi = l2,i − al1,i − c
21: end for
22: σ ← argmin

σ

∑
i∈I

ρ(δ2
i − σl1,i)

23: p∥ ← |I|/s
24: end while

of parallel pairs, and J keeps the indexes of non-
parallel pairs. Then the M-step is performed on
lines 11–23, where we update the parameters as
follows: MLE for q∥ and q∦ are given by Lemma
B.2; the method of iteratively reweighted least
squares is used to estimate k and b on line 13 where
ρ is an Huber function (Huber, 2011). The ob-
tained values for (k, b) are then used to calculate
residuals {ϵi}i∈I ; then, the parameters of GMM,
λ, µ1,2, σ1,2, are updated based on MLE (an ad-
ditional EM-procedure is usually needed for this
task); σ is estimated using robust linear regression
(Huber, 2011) as suggested in (Gale and Church,
1993); finally, p∥ is estimated as the proportion of
parallel pairs.
An R-script, which implements the Algorithm

1, is available at https://svn.code.sf.net/
p/apertium/svn/branches/zaan/.

4 Experiments

We selected five different websites to test our
model: official site of the President of the Re-
public of Kazakhstan (http://akorda.kz), of-
ficial site of the Ministry of Foreign Affairs of
the Republic of Kazakhstan (http://mfa.kz),
electronic government of the Repuplic of Kaza-
khstan (http://egov.kz), official site of the
Presidency of the Portuguese Republic (http://
presidencia.pt), and official site of the Prime

Minister of Canada (http://pm.gc.ca). We
downloaded all candidate pairs with the help of
wget tool, and then removed boilerplates, i.e. nav-
igational elements, templates, and advertisements
which are not related to the main content, using
simple Python scripts1. The details on the number
of mined pairs are given in Table 1. We applied Al-

Website Lang’s # of
pairs

Sample
size

akorda.kz kk-en 4135 352
mfa.kz kk-en 180 180
egov.kz kk-en 1641 312
presidencia.pt pt-en 960 275
pm.gc.ca fr-en 1397 302

Table 1: Websites for experiments

gorithm 1 to all five websites (values of w, m, n,
l1, and l2 were obtained using a modified version2
of an open-source implementation of STRAND al-
gorithm3). Then for each website we extracted a
representative sample of candidate pairs and man-
ually checked them (sample sizes were calculated
based on Cochran’s formula (Cochran, 2007) for

1the scripts as well as archives of the mined web-
pages are available at https://svn.code.sf.net/p/
apertium/svn/branches/kaz-eng-corpora

2https://github.com/assulan/STRANDAligner
3https://github.com/jrs026/STRANDAligner

28



all websites except mfa.kz, for which we checked
all pairs due to small amount of them). The met-
rics used to evaluate ourmodel have been precision
(prec), recall (rec), and F-score (F ). The results
of the experiments are given in Table 2.

Website prec rec F

akorda.kz 0.941 0.971 0.956
mfa.kz 0.944 1.000 0.971
egov.kz 0.915 0.969 0.941
presidencia.pt 0.991 0.950 0.970
pm.gc.ca 0.990 1.000 0.995

Table 2: Results of the experiments

5 Discussion and Future Work

The experiments have shown that statistical mod-
eling of misalignments in linearized HTML files
allows us to get better results in the task of measur-
ing structural similarity between webpages from
bilingual websites. The previous approaches for
measuring structural similarity were based on find-
ing threshold values for the number of misalign-
ments (W ) or the misalignments ratio ( W

M+N ), or
using these characterisics as features in machine
learning algorithms. Those approaches either led
to high precision but low recall, or required super-
vised learning of underlying models, or both. Our
approach has good recall and acceptable precision
rates; it is language-independent and the param-
eters of our model are estimated in unsupervised
manner through EM algorithm.
We have noticed that the suggested algorithm

demonstrates higher precision for websites, which
have good quality of translated texts in general
(e.g. presidencia.pt), than for websites, which
have worse quality of translation (e.g. egov.kz);
but it keeps recall at good level in all cases. This
means that the model tries not to throw away
parallel pairs, but it sometimes fails to recognize
non-parallelism for the websites with substantial
amount of medium or low quality of translated
texts.
We now address the typical errors made by the

model as well as possible directions for the future
work. Type II errors (false negatives) are mainly
caused by the pairs which have the same (or al-
most the same) content in two languages but there
is significant difference in HTML-formatting of
two pages (e.g. when <p> and </p> tags are
used in one version to surround paragraphs, while

the other version uses a sequence of <br/><br/>
tags to separate paragraphs). This problem could
be handled by an appropriate pre-processing (nor-
malizing) of the HTML files before applying the
Algorithm 1. Type I errors (false positives) are
primarily caused by the pairs which are consis-
tent in HTML-formatting but have some differ-
ences in content (e.g. when one or few sen-
tences/short paragraphs are missing in one ver-
sion but are present in the other version). This
problem could be tackled by better alignment of
text-chunks and better exploitation of the similar-
ity in text lengths if we want to stay in a language-
independent framework, or by embedding content-
similarity measures, if we decide to switch to
language-dependent techniques. In the latter case
we could also use morphological segmentation as
in (Assylbekov and Nurkas, 2014) for preprocess-
ing texts in morphologically rich languages (like
Kazakh), in order to improve the existing methods
of measuring content-similarity.
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A Goodness-of-fit Tests for ϵ

Let r.v.’s W , M , and N be defined as in Sec-
tion 2, and let w, m, and n denote values of these
r.v.’s. We downloaded candidate pairs from the
official website of the President of the Republic
of Kazakhstan located at http://akorda.kz and
then from each webpage we removed the boiler-
plate, i.e. navigational elements, templates, and
advertisements which are not related to the main
content4. For each candidate pair we obtained val-
ues of w, m, and n using a modified version5 of
an open-source implementation of STRAND algo-
rithm6. The following heuristic rule was used to
keep seemingly parallel pairs:

{pages are parallel} ≈
{

W

M + N
∈ (0, 0.2]

}
∩

∩ {M ∈ [19, 200]} ∩ {N ∈ [19, 200]}. (18)

A threshold value of 0.2 for W/(M + N) is rec-
ommended by the authors of STRAND. Bound-
aries for M and N are selected based on 1st and

4the scripts as well as the candidate pairs are avail-
able at https://svn.code.sf.net/p/apertium/svn/
branches/kaz-eng-corpora/akorda/

5https://github.com/assulan/STRANDAligner
6https://github.com/jrs026/STRANDAligner
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Figure 1: Scatter-plot of {(mi, ni)} for seemingly
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99th percentiles and they are used to remove out-
liers. Application of the rule (18) resulted in 1271
seemingly parallel pairs. We stress here that the
rule (18) is not used in our paper as the decision
rule regarding parallelism of pages. Instead, it al-
lows us to quickly identify pages which seem to
be parallel and to look at the behavior of their M
and N values. Figure 1 provides a scatter-plot of
{(mi, ni)}1271

i=1 for the filtered set of pages and it
shows that the rule (18) supports our assumption
on the linear relationship between M and N for
parallel pages (2).

Next, we fit a linear regression model N =
kM + b + ϵ to the data (mi, ni), and look at the
residuals ϵi = ni − kmi − b (Figure 2). Outliers
among {ϵi} are dropped based on 1st and 99th per-
centiles, which resulted in 1245 observations (in-
stead of 1271).

Further on we show that ϵ can be modeled us-
ing a Gaussian mixture model. A two-component

mixture of Gaussian distributions has a pdf

fGMM (x; λ, µ1, σ1, µ2, σ2) =

=
1√
2π

(
λ

σ1
e
− (x−µ1)2

σ2
1 +

1− λ

σ2
e
− (x−µ2)2

σ2
2

)
(19)

We first findMLE λe, µe
1, σ

e
1, µ

e
2, σ

e
2 for the param-

eters in (19) using EM-algorithm (Dempster et al.,
1977), and then test a hypothesis

H0 : fϵ(x) =fGMM (x;µe
1, σ

e
1, µ

e
2, σ

e
2)

H1 : fϵ(x) ̸=fGMM (x;µe
1, σ

e
1, µ

e
2, σ

e
2),

using the chi-square goodness-of-fit test. The de-
tails are provided in the Table 3, from where we
decide not to reject H0, i.e. there is no evidence
that the residuals are not distributed according to
(19). In other words, a Gaussian mixture model
does a good job in modelling {ϵi}.

Interval Obs. Freq. Exp. Freq.
(−∞,−19] 5 5.26
(−19,−16] 10 6.92
(−16,−14] 9 8.03
(−14,−12] 8 12.38

...
...

...
(12, 14] 16 12.97
(14, 16] 8 8.62
(16, 19] 10 7.55

(19,+∞) 7 5.88
χ2 = 19.023, df = 19, p-value = 0.4554

Table 3: Fitting a Gaussian mixture model to {ϵi}

B Auxiliary Lemmas

Lemma B.1. Let f(α1, . . . , αn) =∏n
i=1 pαi

i q1−αi
i , where αi ∈ {0, 1} and

pi, qi ∈ [0, 1], i = 1, n. Then f reaches its
maximum at

αi =

{
1, if pi > qi

0, otherwise
(20)

Proof. The proof is left as an excercise.

Lemma B.2. Let X1, X2, . . . , Xm be indepen-
dent binomial random variables with parameters
(n1, q), (n2, q), …, (nm, q) correspondingly. Then
the maximum likelihood estimator for q is

q̂ =
∑m

i=1 Xi∑m
i=1 ni

(21)

Proof. The proof is left as an excercise.
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