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Abstract

Verbs in Romanian sometimes manifest
local irregularities in the form of alternat-
ing letters. We present a sequence tag-
ging based method for learning stem al-
ternations and ending sequences. Super-
vised training is based on a morphologi-
cal dictionary, with a few regular expres-
sion paradigms encoded by hand. Our
best model improves upon previous ma-
chine learning approaches to Romanian
verb conjugation, and can generalize to
unseen paradigms that can be constructed
as variations of the ones in the training set.

1 Introduction

Romanian has a rich inflectional morphology
which, in the verbal domain, manifests through
complex conjugational patterns. In Table 1, we
give an example comparing from left to right: a
regular verb, which exhibits an invariable stem,
another regular verb, which also exhibits an in-
variable stem but receives an additional infix -ez,
a partially irregular verb, which exhibits stem al-
ternation, and a completely irregular verb, which
exhibits stem suppletion. The example also shows
different syncretism patterns between different
conjugated forms. Namely, the 1st and 4th verbs
(a merge and a fi) exhibit 1sg and 3pl syncretism,
the 2nd and 3rd verbs (a dansa and a purta) ex-
hibit 3sg and 3pl syncretism.

Given the richness in ending sequences, stem
alternations, and syncretisms, many attempts have
been made throughout Romanian linguistics to
give conjugational classifications with stronger
predictive power than the traditional, Latin-
inspired one introduced by Tiktin (1905) which
divided verbs into four conjugation classes based
on the theme vowel surfacing as the ending in the
infinitive form (Costanzo, 2011) and attributed to

each of these classes only one general conjuga-
tional ending sequence.

The traditional analysis was followed by struc-
turalist ones: Lombard (1955) arrived at 6 classes
investigating 667 verbs, Felix (1964) proposed
12 classes, Guţu-Romalo (1968) investigated over
400 verbs and proposed 38 ending sequences,
which she reduced to 10 verb classes by em-
ploying specifically designed homonymy argued
against, however, by Avram (1969). When at-
tempting to combine the information gathered
about stress shift, ending sequences, and stem
alternations, Gut,u-Romalo unfortunately ended
up with a very extensive classification mirroring
a near-exhaustive enumeration of the verbs em-
ployed.

More recently, Barbu (2007) distinguished 41
conjugational classes for all tenses and 30 for
the indicative present, covering 7, 295 contempo-
rary Romanian verbs. Her classes did not take
into account stem alternations but only ending
sequences, making her classification similar to
Gut,u-Romalo’s 38 ending sequences. On the op-
posite end, new studies like (Feldstein, 2004) and
(Şulea, 2012) take a unifying approach to Roma-
nian conjugation that is elegant in theory but, like

a merge a dansa a purta a fi
to walk to dance to wear to be
merg-λ dans-ez-λ port-λ sunt-λ
merg-i dans-ez-i port,-i es, t-i
merg-e dans-eaz-ă poart-ă est-e
merg-em dans-ăm purt-ăm sunt-em
merg-et,i dans-at,i purt-at,i sunt-et,i
merg-λ dans-eaz-ă poart-ă sunt-λ

Table 1: Indicative present conjugation of some
Romanian verbs. The first is regular without -ez,
the next is regular with -ez, the next is partially
irregular, and the last is fully irregular. We denote
the null suffix with λ.
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many previous approaches, does not lend itself
very useful to computational applications.

2 Related work

The first to attempt a computational approach to
Romanian morphology was Moisil (1960) who
proposed five regrouped classes of verbs, with nu-
merous subgroups. To model stem alternation, he
introduced the concept of variable letters, which
were letters that changed their value for differ-
ent forms of the same verb. Following Moisil,
Dinu et al. (2011) first implemented a context-free
grammar based on alternation rules, using the idea
of variable letters. Ultimately, an implementation
based on regular expression was used to label the
infinitives from a dataset of Romanian verbs con-
jugated in the indicative present. This was fed into
a classifier that attains 90.64% accuracy rate and
89.89% paradigm F1 score. (Dinu et al., 2012),
but in section 3, we point out significant improve-
ments that can be made to this method.

A dictionary-based morphological generator for
Romanian was developed by Irimia (2009), based
on paradigmatic theory that aims to model roots
and suffixes. Access to the resource is restricted.
In this paper we attempt a more flexible modelling
that covers, in the same way, suffixes and generic
variation within the root.

Goldsmith and O’Brien (2006) use neural net-
works and word-level encodings similar to (Dinu
et al., 2011) for learning inflectional classes, but
only on highly regular, predictable patterns, with
the goal of learning hidden representations, mean-
ingful for psycholinguistic arguments of language
acquisition.

Sequence tagging has been successfully used
for other morphological applications in recent
years. Closest to our application is the applica-
tion of mined morphological paradigms in (Dur-
rett and DeNero, 2013), the morphological unit
segmentation in (Chang and Chang, 2012) and
the Finnish morphological generation for machine
translation in (Clifton and Sarkar, 2010). A long
standing application of such models is the analysis
of unsegmented languages, particularly east Asian
languages such as Thai (Kruengkrai et al., 2006),
Chinese, and Japanese (Nakagawa, 2004).

3 Paradigm overlap and variable letters

In previous work (Dinu et al., 2011; Dinu et al.,
2012), we proposed a labelling system that was

rule 10 rule 12 rule 13
a cânta a des, tepta a des, erta
to sing to rise to empty
ˆ(. *)t$ ˆ(. *)e(. *)t$ ˆ(. *)e(. *)t$
ˆ(. *)t,i$ ˆ(. *)e(. *)t,i$ ˆ(. *)e(. *)t,i$
ˆ(. *)tă$ ˆ(. *)ea(. *)tă$ ˆ(. *)a(. *)tă$
ˆ(. *)tăm$ ˆ(. *)e(. *)tăm$ ˆ(. *)e(. *)tăm$
ˆ(. *)tat,i$ ˆ(. *)e(. *)tat,i$ ˆ(. *)e(. *)tat,i$
ˆ(. *)tă$ ˆ(. *)ea(. *)tă$ ˆ(. *)a(. *)tă$

Table 2: Example of rule overlap in the unstruc-
tured system (Dinu et al., 2012)

learned by a linear SVM with 90.64% leave-one-
out accuracy. However, when taking a closer look
at the labelling rules described, a considerable
amount of overlap can be spotted, in terms of what
alternations the rules model. Namely, we saw that
some rules ended up corresponding to the same
variable letter which, however, varied in a differ-
ent pattern relative to the person and number verb
forms. Table 2 illustrates this situation.

We noticed that we can treat each word-level
paradigm as a set of local variation patterns. These
patterns are equivalent to the variable letters intro-
duced by Moisil (1960). Through this reorganisa-
tion, several problems with the system from (Dinu
et al., 2012) can be alleviated:

• Class sparsity: Certain cooccurrences of
variable letters are very rare in the dataset,
but the individual variable letters may ap-
pear more frequently. The global class cor-
responding to the joint paradigm is difficult
to learn due to lack of data. An example is
that of the verb a putea (to be able to), whose
stem vowel u transforms into o and oa, form-
ing a singleton alternation pattern. However,
the specific alternation o-oa appears in other
patterns (dormi-doarme).

• Class interaction: Word-level classes that
include the same variable letters see each
other’s instances as negative cases and can-
not therefore benefit from what they share.
By learning each variable letter separately, all
occurrences are used as positive cases.

4 Approach

4.1 Available data
Our labelled data is generated from RoMorphoD-
ict, an electronic morphological dictionary for Ro-
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T1 T2 T5 T6 T10 T11 T12 T13

1sg $ u$ ez$ ez$ $ i$ esc$ iesc$
2sg i$ i$ ezi$ ezi$ i$ i$ es, ti$ ies, ti$
3sg ă$ ă$ ează ază$ e$ ie$ es, te$ ies, te$
1pl ăm$ ăm$ ăm$ em$ im$ im$ im$ im$
2pl at,i$ at,i$ at,i$ at,i$ it,i$ it,i$ it,i$ it,i$
3pl ă$ ă$ ează$ ază$ $ ie$ esc$ iesc$

Table 3: A few of the main ending patterns

manian. The resource is divided according to parts
of speech. The subset describing verbs has the fol-
lowing structure for each verb form:

• form

• infinitive

• morphosyntactic description

In (Dinu et al., 2012), we grouped verb forms by
their infinitive. We identified, for each of them, six
distinct forms covering the two numbers and three
persons that are typical of most verbs in Roma-
nian. We wrote sets of six regular expressions that
matched paradigms including alternations in the
root and could therefore unambiguously describe
the conjugation. This is the only place where the
morphosyntactic description is used. The match-
ing rules were used as target classes in a one-vs-all
multiclass SVM classifier whose input was a bag
of all the n-grams within the infinitive, effectively
learning to predict the full conjugation paradigm
of a verb given its infinitive.

As a follow-up, we propose a finer-grained la-
belling based on the literature on Romanian con-
jugation discussed in Section 1. We divided the
word-level patterns from in (Dinu et al., 2012) into
character-level ones: 16 ending patterns and 17 al-
ternating letters. We used the same regular expres-
sions to identify the verbs that exhibit each combi-
nation of patterns and generate labelled instances.

4.2 Sequence tagging

In order to account for multiple interacting vari-
able letters within each verb, we pose verb conju-
gation as a sequence tagging problem. Each letter
in the infinitive is tagged with the particular alter-
nation pattern the verb exhibits for that infinitive
letter, or with 0 if the verb exhibits no alternation
in that letter during conjugation. Thus, the verb a
tresălta (to quiver) is labelled as follows:

t r e s ă l t a
0 0 0 0 a1 0 t0 T1

Here, T1 encodes the ending pattern received by
the class of verbs to which a tresălta belongs, as
presented in Table 3 along with a few other ending
patterns.

4.3 Models and software

The probabilistic model we applied to the verb
conjugation problem is a linear-chain conditional
random field (CRF). Such models have been often
used in NLP because of the linear nature of text:
part-of-speech tagging and chunking are impor-
tant examples of problems that can be successfully
solved by sequential prediction models. In the cur-
rent case, the prediction occurs at the character
level, offering a significant computational advan-
tage. The length of a word in letters is usually
less than the length of a sentence in words, and the
space of possible feature values is also consider-
ably restricted.

Our feature mapping consists of character n-
grams to each side of the current letter, up to a
fixed window size n, as well as the current letter.
The current letter does not form n-grams with the
letters around it. For example, the instance of the
letter u in triumfa, with n = 2, would be encoded
as:
c[-2]=r c[-1]=i c[-2-1]=ri

c[0]=u c[1]=m c[2]=f c[12]=mf
The feature names could just as well be ar-

bitrary, as long as they stay consistent over in-
stances.

The usual way of training CRFs is the max-
imum likelihood (ML) method (Lafferty et al.,
2001). Implementations typically maximize the
regularized conditional log likelihood of the data.

Recently, online discriminative methods have
been shown to be effective for non-probabilistic
training of CRF parameters.

217



Cross-validation accuracy Test accuracy
method ps pt n Θ N word char char′ word char char′

SVM — 0.886 — — 0.896 — —
ML 1 1 4 α = 0.1 — 0.924 0.987 0.913 0.914 0.985 0.900
AP 0 1 4 — 10 0.923 0.987 0.917 0.912 0.985 0.900
PA 1 0 4 C = 1 10 0.925 0.987 0.917 0.912 0.984 0.900

AROW 1 1 4 r = 100 100 0.916 0.986 0.912 0.908 0.984 0.895

Table 4: Results obtained by the best hyperparameter set for each training method. ‘word’ and ‘char’ are
word-level and character-level scores, respectively. The ‘char′’ column is the character-level accuracy
excluding the ‘0’ class.

The structured averaged perceptron (Collins,
2002) is a simple, fast and effective iterative al-
gorithm. It comes from the even simpler struc-
tured perceptron learning algorithm, where at each
iteration, a data point (xi, yi) is chosen and the
model prediction ŷi is computed. If the prediction
is wrong, the model parameters are updated in the
direction of the current feature vector.

The averaged perceptron approach takes, in-
stead of the final value of the parameter vector θ,
its average θ̄ over all the iterations.

The passive aggressive (PA) algorithm (Cram-
mer et al., 2006) is similar to the averaged percep-
tron: instead of updating when classification is in-
correct, it updates when the margin of the misclas-
sification is more than 1, i.e. when the multiclass
structured hinge loss `t is positive. The update is
aggressive in the sense that it forces the new pa-
rameter vector to correctly classify the input point
with margin of at least 1. Finally, averaging is ap-
plied in the same fashion.

The AROW algorithm (Mejer and Crammer,
2010) maintains normal distributions over the pa-
rameters of the model and updates their parame-
ters in a way that generalizes PA.

We used CRFsuite v0.12 (Okazaki, 2007) for
implementation of the learning methods listed
above. CRFsuite can expand the feature expan-
sion implemented by us at character-level to a
vector that optionally includes all possible states
(ps), all possible transitions (pt), or both. These
flags, along with the window length n that we
have searched for in {2, 3, 4, 5, 6}, control the fea-
ture expansion f(x, y). Apart from this, each al-
gorithm has its own hyperparameters. For ML,
we used limited-memory BFGS training with `2
regularization controlled by α. For AP, we var-
ied the number of iterations N . For PA, we var-
ied N and the aggressiveness parameter C. For

AROW, we varied N and the trade-off parame-
ter r. We searched for α,C, r (denoted generally
as Θ) over {0.01, 0.1, 1, 10, 100} and for N over
{1, 5, 10, 25, 100}. The notations given in paran-
theses in this paragraph correspond to columns of
Table 4.

For more appropriate comparison, we repro-
duced the word-level SVM results from our pre-
vious work (Dinu et al., 2011) but with a held-out
test set of a quarter of the labelled data. The best
parameters chosen for the linear SVM by 3-fold
cross validation on the training set are n = 8, C =
0.15, tf-idf normalization, squared hinge loss and
`2 regularization. The labelling used was the same
as in the previous work, with the very small classes
discarded, making the problem slightly simpler for
the SVM.

5 Results

5.1 Automatic evaluation
We optimized the system hyperparameters using
grid search over the parameter spaces described
above. The collection of 7, 295 infinitive forms
was split into a training set of size 4, 699, a held-
out test set of size 2, 2571, and 339 instances that
are still left unlabelled by the identified paradigms.

The validation scores are computed using ten-
fold cross-validation over the training set, and the
best hyperparameters, in terms of word-level ac-
curacy, for each learning method, are presented in
Table 4.

5.2 Manual evaluation
While the previous method verifies that a se-
quence model benefits from the extra informa-

1The split is ad hoc: the first occurrence of any label gets
put into the test set, and subsequent occurrences are put into
the test set with probability 1/3. By making sure that all
labels are represented in the test set we avoid underestimating
the test error.
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tion and more accurately reconstructs the conjuga-
tion classes for which Dinu et al. (2011) proposed
regular expressions, we anticipate that because of
higher granularity, a sequence model can give use-
ful results on verbs whose conjugation does not
match the predefined patterns. Out of the total of
339 verbs that did not fit into the variable letter and
termination patterns that we enumerated, we man-
ually checked the tags given by PA to the first 105
verbs against their actual conjugations (as given in
RoMorphoDict). Out of these, 30 had at least one
non-null tag correct, demonstrating our method’s
ability to generalize. The overall tag predictions
fell into these categories:

1. completely wrong: neither ending nor alter-
nations (if any) were correctly tagged

2. correct ending, wrong alternations

3. correct alternations, wrong ending.

In terms of wrong endings, the most common
mistakes were those when T1, which represents
the tag for the regular conjugational pattern of
verbs ending in -a, was confused with T5, the tag
corresponding to the standard conjugational pat-
tern of the special class of verbs ending in -a which
also receive the infix -ez. It is likely that the fea-
tures correlated with these tags are similar, and the
tagger thus finds it difficult to choose between the
two. We see the same confusion between T2 and
T6, which are both variations of T1 and T5, respec-
tively. And, for the case of verbs with infinitives
ending in -i, the second largest traditional conju-
gational class after the first and one which has the
-esc infix subclass, we see the same type of confu-
sion between T10, T12, T11, and T13. The reason is
the same: new verbs, when entering the language,
are assigned to either the -ez subclass (correspond-
ing to ending tags T5, T6) or to the -esc subclass
(T12, T13) so these classes are the largest in our
dataset and, since etymological information is not
available, the system cannot tell the difference be-
tween these classes.

In terms of alternations, there were 3 verbs
which received a correct alternation tag: two
which received t0 and one which received d0.
Both alternations refer to the shift in the 2nd per-
son singular of the letter t, respectively d, into t,,
respectively z, due to palatalization.

6 Conclusions and future work

We have found that sequential modelling with
variable letters is effective for verb conjugation in
Romanian. Our system, evaluated on a held-out
test set, attains better scores than the leave-one-out
results from (Dinu et al., 2011), and furthermore
offers greater potential for extensibility to other
tenses and modes, through reuse of character-level
variations.

After comparing multiple discriminative train-
ing methods for CRFs, we have not observed sig-
nificant variation between their results in terms of
accuracy. This is not unexpected, given the small
size of the dataset. However, online algorithms
lead to much sparser weight vectors: the PA model
is almost 40 times smaller than the ML one, and
the others are even smaller. Sparse solutions are
desired for better interpretability, faster tagging
and less overfitting.

A multi-target CRF implementation would per-
mit even more granularity in terms of letter vari-
ation, and therefore would be able to learn shared
patterns within the same paradigm (i.e. how the
variable letter’s behaviour in the first person singu-
lar influences its behaviour in the first person plu-
ral) as well as across tenses and modes. Such mod-
els are not readily available in structured learning
libraries at the moment since inference in them
is costly. For this task, because of the way word
lengths are distributed, we expect the problem to
be tractable.
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