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Abstract

This paper presents the on-going develop-
ment of a model of incremental semantics
driven natural language generation (NLG)
for incremental dialogue systems. The ap-
proach is novel in its tight integration of
incremental goal-driven semantics and syn-
tactic construction, utilizing Type Theory
with Records (TTR) record types for goal
concepts as its input and the grammar for-
malism Dynamic Syntax (DS) for a word-
by-word tactical generation procedure. The
characterization of generation in terms of
semantic input and word output graphs al-
lows an integration into the incremental dia-
logue system Jindigo and facilitates the gen-
eration of human-like self-repairs in a se-
mantically and syntactically motivated way.

1 Introduction

Recently, the arrival of incremental frameworks
such as that described by Schlangen and Skantze
(2011) has reignited the challenges for dialogue
systems. Their implementation has recently
shown success in micro-domains (Skantze and
Schlangen, 2009) and has included some incre-
mental natural language generation (NLG) capa-
bilities which have been shown to be favored by
users over non-incremental counterparts (Skantze
and Hjalmarsson, 2010). However, this new brand
of system has not taken account of incremental se-
mantic processing on a word-by-word level in gen-
eration, which is the nature of the model for NLG
described here.

The consequences of taking a fine-grained in-
cremental semantics approach for NLG include
the possibility of closer integration with parsing,
and the incorporation ofself-repair in a natural

and context-sensitive way. Integrating self-repair
into generation in the way described here should
be beneficial for incremental dialogue systems
with fragmentary and changing inputs to genera-
tion, and could also give some insights for model-
ing speech production.

1.1 Related Work

Traditionally, incremental generation has been
motivated by developing autonomous processing
models of human speech production. In partic-
ular, Kempen and Hoenkamp (1987) and Lev-
elt (1989)’s functional decomposition of distinct
conceptualization, formulation and articulation
phases provided a psycholinguistic model which
continues to have an influence on NLG. Motivated
by modeling memory limitation, the principle of
incrementality was generally taken that the syn-
tactic formulator was able to begin its processing
without complete input from the conceptualizer- in
grammatical terms, tree formation could be both
lexically and conceptually guided- see e.g. De
Smedt (1990).

Guhe (2007) modeled an incremental concep-
tualizer which generated pre-verbal messages in
a piece-meal fashion. While formulation was not
the focus, the benefit of incremental semantic con-
struction was clear: the conceptualizer’s incre-
mental modification of pre-verbal messages could
influence downstream tactical generation deci-
sions, particularly with ‘correction’ increments
causing self-repairs.

Albeit less psychologically motivated, Skantze
and Hjalmarsson (2010) provide a similar ap-
proach to Guhe in implementing incremental
speech generation in a dialogue system. Genera-
tion input is defined as canned-textspeech plans
sent from the dialogue manager divided up into
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word-lengthspeech units. Incremental generation
is invoked to allow speech plans to change dy-
namically during interaction with a user: a sim-
ple string-based comparison of the incoming plan
with the current one being vocalized allows both
covert and overt self-repairs to be generated de-
pending on the number of units in the plan realized
at the point of difference detection.

This paper describes a new model for incremen-
tal generation that incorporates word-by-word se-
mantic construction and self-repairing capability,
going beyond string-based plan corrections and
strict delineation of conceptualization and surface
realization. The model is also portable into incre-
mental dialogue systems.

2 Background

2.1 Dynamic Syntax (DS)

Dynamic Syntax (DS, Kempson et al., 2001) is
an action-based and semantically oriented incre-
mental grammar that defines grammaticality as
parsability. The DS lexicon consists oflexical ac-
tions keyed to words, and also a set of globally
applicablecomputational actions, both of which
constitute packages of monotonic update opera-
tions on semantic trees and take the form of IF-
THEN action-like structures such as (1).

(1)

john:
IF ?Ty(e)
THEN put(Ty(e))

put(fo(john′))
ELSE abort

(2) Ty(t), ♦
arrive(john)

Ty(e),
john

Ty(e → t),
λx.arrive(x)

In DS parsing, if the pointer object (♦) currently
satisfies the precondition of an action, (e.g. is at a
node of type?Ty(e)), then simple monotonic tree
update operations of the tree logic LOFT (Black-
burn and Meyer-Viol, 1994) are licensed. The
trees represent terms in the typed lambda calculus,
with mother-daughter node relations correspond-
ing to semantic predicate-argument structure with
no independent layer of syntax- see (2). Parsing
begins with an axiom tree with a single node of
requirement type?Ty(t), and intersperses testing
and application of lexical actions triggered by in-
put words and execution of permissible (Kleene*
iterated) sequences of computational actions.

Successful parses are sequences of applications
of actions that lead to a tree which is complete (i.e.
has no type requirements?Ty(..) on any node, and
has typeTy(t) at its root node as in (2)) with a
compiled formula. Incompletepartial structures
are also maintained in the parse state as words are
scanned in the input.

2.2 DS Generation as Parsing

As Purver and Kempson (2004) demonstrate, a
tactical model of DS generation can be neatly de-
fined in terms of the DS parsing process and a
subsumption checkagainst agoal tree. Goal trees
are complete and fully specified DS trees such as
(2), and generation consists of attempting to parse
each word in the lexicon given the trees under
construction, followed by a check to remove trees
which do not subsume the goal tree from the parse
state. Due to the stage-by-stage iteration through
the lexicon, the DS generation process effectively
combines lexical selection and linearization into
a single action. Also, while no formal model of
self-repair has hitherto been proposed in DS, self-
monitoring is inherently part of the generation pro-
cess, as each word generated is parsed.

2.3 Jindigo and the DyLan Interpreter

Jindigo (Skantze and Hjalmarsson, 2010) is a
Java-implemented dialogue system following the
abstract framework described by Schlangen and
Skantze (2011). Its system is a network of mod-
ules, each consisting of aleft buffer for input in-
crements, aprocessorand aright buffer for the
output increments. It is theadding, commitment
andrevokingof incremental units(IUs) in a mod-
ule’s right buffer and the effect of doing so on an-
other module’s left buffer that determines system
behaviour, and the IUs can havegroundedInre-
lations between one another if it is desirable that
they should be in some way inter-dependent. The
buffers are defined graphically, with vertices and
edges representing IUs, allowing for multiple hy-
potheses in speech recognition and, as mentioned,
revision of canned-text speech plans in generation
(Skantze and Hjalmarsson, 2010).

There is an implementation of a DS parser in
Jindigo in theDyLan interpreter module (Purver
et al., 2011), where a parse state is characterized as
a Directed Acyclic Graph (DAG), following Sato
(2011), with DSactions for edges andtrees for
nodes. The characterization allows an exploita-
tion of Jindigo’s graph-based buffers, particularly
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the interface with word graphs sent from a voice
recognition (ASR) module:DyLan incrementally
attempts to parse word hypothesis edges as they
become available, and parse paths in the DAG are
groundedInthe corresponding word edges of the
ASR graph- see figure 1.

W0
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i n v i s i b l e

i n v i s i b l e

*adjunct

i n v i s i b l e

intro

i n v i s i b l e

i n v i s i b l e

i n v i s i b l e
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‘john’

Figure 1: DS parsing process as a DAG,
groundedIncorresponding word graph hypothesis
edge ‘john’ spanning vertices W0 and W1

The application of a computational or lexical
action can be seen as a labeled left-right transi-
tion edge between the trees under construction,
which are represented by circular white nodes in
the graph. Parts of the parse DAG aregroundedIn
the edge labelled with the word whose parse pro-
cess they represent.

The other addition to DS inDyLan is the in-
corporation of Type Theory with Records (TTR)
(Cooper, 2005), which can seen in (3). TTRrecord
typesdecorate the nodes of the tree as opposed
to simple atomic formulae, with eachfield in the
record type containing a variable name, a value
(after the =), which can be null forunmanifest
fields, and a type (after the colon) which represents
the node type of the DS tree at which its potential
formula value is situated- basic typese andt are
used here for clarity.

(3)
“John arrived”
7−→

♦, T y(t),

[

x =john : e
p =arrive(x) : t

]

Ty(e),
[ x =john : e ]

Ty(e → t),
λr : [ x1 : e ]

[

x=r.x1 : e
p=arrive(x) : t

]

The TTR adaptation is made to provide repre-
sentations that can interface with domain concep-
tual structures in the rest of the dialogue system.
DyLan automatically compiles a record type at
the root node of a complete tree and checks this
against system domain concepts.

3 Incremental Semantics Driven NLG

3.1 Goal Concepts and Incremental TTR
Construction

To achieve thorough-going incrementality in terms
of semantic content, the model proposed here
modifies the DS generation procedure described
in (Purver and Kempson, 2004) in two princi-
pal ways. Firstly, a TTR record type is com-
piled after each word candidate is parsed, giving
maximal TTR representations forpartial treesin
addition to complete ones. Implementationally,
this is achieved by a simple two-stage algorithm
of firstly decorating nodes lacking formulae with
record types containing the appropriate types- e.g.
[p =U(x): t] for a Ty(e → t) node,[p =U(x,y): t]

for a Ty(e → (e → t)) node etc.1 Secondly,
the functional application from the record types
of the functor nodes to the record types of their
sister argument nodes is carried out, compiling a
β-reduced record type at their mother node. The
ordering of the applications is achieved through an
iterative search for functor nodes with uncompiled
mother nodes, halting upon compilation of a for-
mula at the root node.

The second principal modification is the re-
placement of a goal tree with agoal conceptrep-
resented by a TTR record type. Consequently, tree
subsumption checking is replaced by asemantic
pruning stage, whereby parse paths that do not
compile a validsupertypeof the goal TTR record
type are abandoned. The supertype check involves
a recursive mapping of the fields of the candidate
record type under inspection to the goal subtype,
with testing for type consistency, arity of predi-
cates, and position of arguments2.

An example of a successful generation path is
shown in figure 2, where the incremental genera-
tion of “john arrives” succeeds as successful lexi-
cal action applications are interspersed with appli-
cable computational action sequences (e.g. transi-
tions 0 7→ 1 and 2 7→ 3 ), at each stage passing
the supertype relation check against the goal, until
arriving at a tree thattype matchesin 4 .

1Technically, these functor node record types should be
functions from record type to record type, as can be seen on
theTy(e → t) node in figure 3, for simplicity they are not
fully represented in the discussion from here on but as simple
record types with metavariable arguments.

2The fields with the underspecified valueU are mapped
successfully if they pass this type-checking stage, as they
have underspecified semantics.

81



0

[ p =U : t ]
♦, ?Ty(t)

7→

1

?Ty(t),

[

x =U : e
p =U(x) : t

]

?Ty(e),♦
[ x =U : e ]

?Ty(e → t)
[

x =U : e
p =U(x) : t

]

‘John’
7→

2

?Ty(t),♦

[

x=john : e
p=U(x) : t

]

Ty(e),
[ x=john : e ]

?Ty(e → t),
[

x=U : e
p=U(x) : t

]

7→

3

?Ty(t),

[

x=john : e
p =U(x) : t

]

Ty(e),
[ x=john : e ]

?Ty(e → t),♦
[

x=U : e
p=U(x) : t

]

‘arrives’
7→

4
(TYPE MATCH)

♦, T y(t),

[

x=john : e
p=arrive(x) : t

]

Ty(e),
[ x=john : e ]

Ty(e → t),
[

x=U : e
p=arrive(x) : t

]

Goal =
[

x=john : e
p=arrive(x) : t

]

Figure 2: Successful generation path in DS-TTR

3.2 Implementation In Jindigo

The proposed DS-TTR generator has been im-
plemented in Jindigo as a prototype module, not
only facilitating tight integration with the DS pars-
ing moduleDyLan, but also allowing dynami-
cally changing inputs to generation and revisions
of word selection.

In our module, incremental units (IUs) in the
left buffer are defined as goal concept TTR record
types (as in the Goal in figure 2), encoded in a
simple XML attribute-value structure and posted
by the dialogue manager. Our module’s other in-
put IUs are DSparse state edgesfrom theDyLan
parsing module which are used to update the mod-
ule’s current parse state during generation. Out-
put IUs in the right buffer areword edgesin a
word graph made available to the speech synthe-
sizer module, andparse state edgesavailable to
DyLan’s left buffer3. Word edges in the word
graph aregroundedIntheir corresponding parse
state edge IUs, the same way as shown for pars-
ing in figure 1.

Schematically, the procedure for word-by-word
generation is as follows: At a state vertexSn in
the parse state edge graph, given latest committed
parse state edgeSEn−1 (or null edge ifSn is ini-
tial), current goal conceptG and latest word graph
vertexWn:

3While not being fully addressed here, it is worth not-
ing that our generation module andDyLan both maintain the
same parse state edge graph in their output buffers, effecting
an interleaving of the two modules.

1. Syntactic Parse: For each path-final tree in
SEn−1, attempt to apply all lexical actions
Σlk keyed by wordsΣwk in the lexicon4. Ap-
ply all possible sequences of computational
actions to the new trees. For each success-
ful parsei add a hypothesis parse state edge
SEi

n to the parse state graph andadd corre-
sponding word edgeWEi

n to the word graph,
making itgroundedInSEi

n.
2. Semantic Prune: For each edgeSEi

n cal-
culate maximal TTR representationT i

n, and
revoke SEi

n from output buffer ifT i
n is not

a valid supertype ofG.
3. Repair IF all edges ΣSEn are revoked,

repair5: return to vertexSn−1 and re-
peat step (1) forcommittededgeSEn−2 that
SEn−1 is groundedInELSE Continue.

4. Update output buffer: commit all remain-
ing edgesΣSEn. For each word edge can-
didateWEi

n in the output buffer word graph,
commit if groundedIncommitted parse state
edgeSEi

n.
5. Halt: If for some i, T i

n and G are type
matched.

4 Self-Repairing Capability

Due to Jindigo’s constantly updating system
threads, a goal concept may be revised shortly

4Work towards addressing the computational cost of test-
ing each lexical action in the lexicon is currently being
worked on.

5Optional commitment of interregnum filler such as
“uhh”, dependent on generation time taken.
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Figure 3: Incremental DS-TTR generation of a repair at time point T2 and extension at T3. Type-matched
paths are double-circled nodes and uncommitted nodes and edges are dotted

after, or even during, the generation process, so
trouble in generation may be encountered. Our
repair function explained above operates if
there is an empty state, or no possible DAG ex-
tension, after the semantic pruning stage of gener-
ation (resulting in no candidate succeeding word
edge) by restarting the generation procedure from
the last committed parse state edge. It continues
backtracking by one vertex at a time in an attempt
to extend the DS DAG until successful.

Our protocol is consistent with Shriberg and
Stolcke (1998)’s empirical observation that the
probability of retracing N words back in an utter-
ance is more likely than retracing from N+1 words
back, making the repair as local as possible. Utter-
ances such as “I want to go, uhh, leave from Paris”
are processed on a semantic level, as the repair is
integrated with the semantics of the part of the ut-
terance before the repair point to maximize re-use
of existing semantic structure.

A subset of self-repairs,extensions, where the
repair effects an “after-thought”, usually in a tran-
sition place in a dialogue turn, are dealt with
straight-forwardly in our system. The DS parser
treats these as monotonic growth of the matrix tree
through LINK adjunction (Kempson et al., 2001),
resulting in subtype extension of the root TTR
record type. Thus, a change in goal concept dur-
ing generation will not always put demands on the
system to backtrack, such as in the case of gener-
ating the fragment after the pause in “I go to Paris
. . . from London”. It is only a semantics/syntax
mismatch, where the revised goal TTR record type
does not correspond to a permissible extension of
a DS tree in the DAG, where overt repair will oc-
cur (for a comparison see figure 3).

In contrast to Skantze and Hjalmarsson (2010)’s
string-basedspeech plancomparison approach,
there is no need to regenerate a fully-formed string
from a revised goal concept and compare it with

83



the string generated thus far to characterize self-
repair. Instead, repair here is driven by attempt-
ing to extend existing parse paths to construct the
new target record type, backtracking through the
parse state in an attempt to find suitable departure
points for restarting generation,retaining the se-
mantic representation already built up during the
DS-TTR generation process.

5 Conclusion and Future Work

A prototype NLG module has been described that
utilizes incremental semantic construction of TTR
record types constrained by incremental Dynamic
Syntax tree extension and TTR supertype rela-
tion checking to generate on a word-by-word ba-
sis. Although yet to undergo thorough evaluation,
the system is capable of generating test-set self-
repairs given manually induced goal TTR record
type changes in the input buffer. The coming eval-
uation will not only involve a computational anal-
ysis, but an interactional one, involving human
judges and experimental measures along the lines
proposed by Schlangen (2009).

In terms of future development, the conceptual
and phonological levels of the model could be ex-
panded upon to get even finer granularity and con-
sequently allow more natural system responses. A
possible immediate extension could be the incor-
poration of a TTR subtyping process in the con-
struction of goal concepts during generation by the
dialogue manager, so as to incorporate incremen-
tality into the conceptualization process (Guhe,
2007) as well as in surface realization.
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