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Abstract

Based on the evidences of prever-
bal conceptual development in infants,
we adopt semantics-first approach for
word-learning. We first cluster several
perceptual categories from a complex
visual interaction. Using a surveillance
traffic video, we a) identify the mov-
ing objects by separating these from
a static background, and b) group the
similar appearances into clusters. The
resulting models are found to be noisy
approximations of traffic object cate-
gories and motion actions. Next, we
consider these models along with par-
allel commentaries that describe the
scene in free, unconstrained language.
A bottom-up model of dynamic atten-
tion is applied to identify objects in
perceptual focus, which are mapped to
words in co-temporaneous utterances.
Using no language-specific knowledge
such as syntax, we show the ability to
learn words for the object classes and
also for the motion actions.

1 Introduction

The problem of word-learning primarily fo-
cuses on mapping the linguistic representa-
tion of a word to its semantics. In most
of the attempts to learn the language to se-
mantics mappings, semantic representations
were often limited to the logical representa-
tions (Zettlemoyer and Collins, 2005; H Al-
shawi, 2011). However, the need of much
richer semantic representations such as percp-
tual schema (Barsalou, 1999), image schema
(Mandler, 1992) is argued for grounding the
meanings of words(Harnad, 1990). A num-
ber of approaches have tried to construct such

term-meaning associations from sensorimotor
data (Steels and Kaplan, 2002; Gorniak and
Roy, 2004; Roy and Pentland, 2002; Oates et
al., 2000). However, these approaches used
scenes with simple objects and constrained lin-
guistic descriptions. Also, learning was guided
by considerable feedback.

In this work, we consider learning objects
and interactions from a complex 3D-scene and
mapping them to words and phrases from free,
unconstrained language with full sentences de-
scribing the scene. The key to handle referen-
tial uncertainty (Siskind, 1996) is the visual
saliency predicted using a bottom-up atten-
tion model. The salient objects are then as-
sociated with the co-occurring utterances in
the narratives to learn the labels for the vi-
sual concepts. Owing to evidences of preverbal
conceptual development (Mandler, 1992), we
adopt semantics-first approach (Yu and Bal-
lard, 2004) where we learn visual semantics
first and then discover appropriate word asso-
ciated with it

For learning objects and interactions, im-
age sequences from a fixed camera, as typi-
cally used in surveillance scenarios, are consid-
ered. The stable patterns of background are
first learned, and used to extract foreground
blobs corresponding to the objects of inter-
est. The object blobs are tracked across the
frames and regions of occlusion are identified.
Unoccluded object appearances are then pro-
jected to a feature space based on the “Pyra-
midal Histogram of visual Words” (PHOW)
approach (Bosch et al., 2007). The resulting
PHOW descriptor for the blobs are then clas-
sified in an unsupervised manner, resulting in
a number of object classes. For every object
tracked, a trajectory is modeled using the po-
sition and velocity of object blobs in successive
frames. These trajectories are then clustered
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to obtain a number of motion classes. The ob-
ject and motion classes obtained are evaluated
based on the user labels (the ground-truth).
We note that the resulting models are similar
to the conceptualizer of (Steels and Kaplan,
2002), but unlike in that work, the model here
is learned and not programmed beforehand.

For the word association task, we first com-
pile a set of narratives by asking nine adults
to describe objects and activities in free un-
constrained language. The transcribed narra-
tives (text) are then aligned with the objects
and activities in visual focus, as identified by
the bottom-up attention model. We are able
to discover the appropriate nouns for four ob-
ject classes with high visual purity viz. bicy-
cle, motorcycle, truck and car. Phrases
like “bAe-N se dAe-N” and “geT kI taraf” are
also discovered for the trajectory left-to-
right and turn. During association, we re-
move units that are very frequent in general
discourse, assuming these to be non-relevant
to this context. However, no linguistic knowl-
edge (pos, syntax or morphology) except the
knowledge of word segementation is assumed.

Our unsupervised approach to word learn-
ing implies two important scalability advan-
tages. Since we use no knowledge of the cam-
era placement or the types of objects in the
scene, the visual analysis is potentially appli-
cable to a wide range of scenes. Also, since we
use no knowledge of the syntax of the target
language, it is possible to use the approach
to other languages as well. Since the terms
learned are grounded in the visual domain, it
can be flexibly related to new input situations.
This is demonstrated in this work via success-
ful queries on novel traffic video.

2 Unsupervised object classification

In recent years, supervised learning for visual
object categories has been able to distinguish
hundreds of classes of objects with high accu-
racies (Bosch et al., 2007; Mutch and Lowe,
2006). The critical step in these approaches is
to project the images onto a set of patterns,
called “words”, so that each image is charac-
terized as a distribution on the words. This
class of approaches, known as “bag of words”
after similar approaches in document analysis,
classify novel images based on their similarity

to the trained models. In this work, we ex-
tend these ideas to unsupervised object clas-
sification. Here the object images (foreground
blobs from surveillance video) have the advan-
tage that these are relatively tightly cropped
around the region of interest. We track salient
patches in each blob to identify the same agent
across contiguous frames - sample views of
some agents are shown in Figure 1. As can
be seen, the results are very noisy owing to
occlusions, shadows, tracking errors, agent ap-
pearance changes etc.

Figure 1: Agents as sequences of isolated fore-
ground blobs. Bottom row (agent 130): the
sequence is initially tracking a car - but after
it exits, it is erroneously mapped to a motor-
cycle.

The tracking step considers substantially
overlapping sequences of blobs. Only where
an agent is isolated is the blob considered
for modeling its appearance. We use the
pyramidal histogram of words (PHOW) ap-
proach (Bosch et al., 2007), based on comput-
ing the SIFT operator (Lowe, 1999) on a very
large number of points (100K) on these blobs.
These are clustered to obtain a code-book of
300 “words”. Next, each foreground blob in
a tracked agent is projected onto these words,
and the agent is modeled as a probability dis-
tribution on the space of words (estimated by
the histogram).

Using a Bhattacharya distance metric, the
histograms are clustered using k-means (re-
sults reported for k = 30). This results in an
oversegmentation of the category space, and
to evaluate the effectiveness of the clusters,
we manually categorize the agents into seven
groundtruth classes: tempo �t), bicycle �b),
motorcycle �m), truck �l), human �h),
car �c), and also a small category noise �n)
with object fragments and lighting effects etc.
The purity of each cluster is defined as the per-
centage of its dominant class. We assign the
dominant ground-truth category in a cluster
as ground-truth of that cluster. The average
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Class: Clusters Purity

� agents

h:52 C1,C2,C4,C10, 51/63 (81�)
C11,C12,C14,C21

m:36 C3,C8,C9,C22, 35/48 (73�)
C23,C24,C26

b:32 C5,C6,C7,C15, 22/25 (88�)
C20,C28

t:21 C0,C16,C17, 15/27 (56�)
C18,C25

l:12 C12,C29 11/13 (83�)

c:16 C19 9/10 (90�)

N:8 C27 2/4 (50�)

Table 1: Clusters from k- means �k = 30).
Clusters are assigned to one of six ground-
truth categories. Purity of a cluster = degree
to which it is dominated by a single object
category. )

purity of the clusters obtained by this process
is 76.5�. By training the model with a N−M

of agents and testing with the remaining M ,
we obtain a cross-validation accuracy of 70.8�
(for M = 5). Table 1 shows the ground-truth
distribution for 30 clusters obtained using k-
means. Figure 2 shows blobs of agents from
some of the clusters formed for k=30.

Some clusters appear to have fine-graded
semantic significance - e.g. the class C16
(“passengers getting off from tempo”) and
C21 (“humans either on some vehicle”)in Fig-
ure 2.While such classes were not marked
in the ground-truth, this finer discrimina-
tion may actually help in detecting activities.
Some other clusters are less meaningful; e.g.
cluster C27 , is mostly noise.

For every agent tracked across the frames,
we define its trajectory based on position and
velocity of object blobs in ten frames at regu-
lar intervals. Positions of an agent are taken
relative to its position in the starting frame
to avoid locational bias. Based on these fea-
tures and euclidean distance measure, trajec-
tories are clustered into seven clusters using k-
means algorithm. For evaluation purpose, we
marked the ground-truth of these trajectories
as one of the five categories: left-to-right
�lr), right-to-left �rl), turn �t), cross
�c) and noise �n) with not so meanigful tra-

Figure 2: k-means �k = 30) clusters Clus-
ters C10, C16, C19, C21, C27. Representa-
tive views from all agents in each class are
shown. The membership of these clusters can
be seen in Table 1. Whereas C10 and C19 are
relatively clean classes, C27 has several noise
agents

Cluster/GT LR RL T C N Purity

C1 (RL) 0 20 0 0 1 20/21

C2 (LR) 15 0 1 0 1 15/17

C3 (LR) 20 0 2 0 1 20/23

C4 (RL) 0 26 8 1 3 26/38

C5 (LR) 21 2 4 8 4 21/39

C6 (LR) 13 8 4 2 7 13/34

C7 (T) 0 3 14 3 0 14/20

Table 2: Ground-Truth distribution: Distri-
bution of ground-truth categories for each of
seven trajectory clusters

jectories. The purity of each cluster is calcu-
lated in the same way as it is calculated for ob-
ject clusters. Table 2 shows the distribution of
ground-truth categories for each of the seven
trajectory clusters discovered. Similarly, many
vehicles crossing the road come from left, move
towards right and then cross the road result-
ing in low purity of C5. The very low purity of
cluster C6 is mostly because of noisy trajecto-
ries of human blobs which move arbitrarily in
the scene. Errors in tracking agents also result
in noisy trajectories and lead to inaccuracies
in the clustering.

3 Attention Model

We use attention model to find the most
salient part of the scene that humans are likely
attend to. The words used in the description
are more likely to refer to objects that are in
perceptual focus. This resolves the referential
uncertainty.

In general, attention combines bottom-up
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mechanisms (independent of task) with top-
down mechanisms (task dependent). While a
number of models are available for bottom-up
attention, on both still (Itti and Koch, 2001)
and dynamic (Singh et al., 2006) images, top-
down attention is far more difficult to model
owing to complexities in modeling the task.
Also, in our context, commentaries were col-
lected without providing any specific task, so
we use a dynamic bottom-up model.

In our work, we have an advantage over tra-
ditional dynamic attention models since the
objects of attention are already segmented and
available as tracked sequences of segmented
foreground blobs. These are the scene regions
that are competing for attention. Unlike many
computational models that consider saliency
of pixels in the data, we are in a position to
evaluate the saliency of the segmented fore-
ground region directly. Our attention model
is based on the findings that a) Objects with
higher speed are likely to be more salient,
and b) Objects with a larger image size are
more likely to be attended (Itti and Koch,
2001). We ignore some other factors such as
colour and texture, which are more relevant in
still images; for image sequences, motion and
size are more significant. In addition to the
saliency map based on the above factors, we
also need to construct a confidence map, based
on how recently was the object attended. Ob-
jects which have not been attended for some
time tend to decay in their confidence, and
thus become more likely to be attended to. We
combine all these aspects to define saliency of
object blob j as

S� = (1− e�kΔt)(w��� + w2v�)
where �� is the image area (in pixels) and v�

is image speed (in pixels per frame) of the ob-
ject j. Δt is the time elapsed since the object
was last updated. Parameters w�, w2 and k

capturing relative importance of object size,
velocity and confidence are all set to 1.

4 Learning language labels

For the purpose of learning language labels for
concepts learned from video, we use human
narratives describing the same visual scene.
We asked 9 native speakers (college students:
all male) to watch the video once, and give
their commentary on it the next time around.

In the instructions, they were asked to focus
on people, vehicles in the scene and their ac-
tivities. The narratives were broken into seg-
ments at sentences boundaries as well as at
pauses longer than 1.5s, and transcribed with-
out correcting grammar errors. Also, initial
40 seconds and final 20 seconds of data were
discarded since people appeared to be talking
more generally at the beginning of the video,
and events in the end could not be commented
upon. Around 600 sentences with 3398 words
were used in the analysis.

Since the subjects were not constrained
in their descriptions in any way, the lexi-
cal choice and linguistic constructions varied
widely. Thus the same event may be de-
scribed as “gADI dAe.N se bAe.N or gayI”
(car went from right to left), “ek sa.NTro
gayI”(one Santro went) etc. As perspectives
varied tremendously, for the same time inter-
val in the video, different subjects said: “ek
kAr aAyI” (One car came), “vah saD.ak krOs
kar rahA hai” (He is crossing the road) etc.
Even after asking the narrators to focus on the
people, vehicles and their activities during in-
structions, the commentaries collected include
considerable peripheral descriptions like “bIch
meIn koI DivAiDar nahIn hai” (There is no
divider in the middle).

In order to identify the relevant linguistic
units, we align segments of the commentary
with the most salient objects in the video as
identified by the attention model described
above. For computational purposes, we as-
sume linguistic units to be contiguous at word-
level and associate k-grams (for k = 1 to 4)
with co-occuring salient concepts in the video.
We seek to identify the unit having maximal
conditional probability given a concept.

4.1 Object-Label associations

Table 3 reports the top two 1-gram at the word
level for six ground-truth object classes. The
conditional probabilities shown are multiplied
by 100. Dominating associations are discov-
ered for four object categories: bicycle, mo-
torcycle, truck and car ( sAikal, bAik,
Trak and kAr respectively). Units like lefT
(“left”), dAe.N (“right”) indicating the direc-
tions of movement are also appearing among
top2 1-word associations.

Part of the reason for difficulty in learn-
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Concept Word Cond. Prob

bAik 6.70

TEMPO dAe-N 6.46

sAikal 3.17

BICYCLE moTarsAikal 1.59

MOTOR bAik 8.37

CYCLE Tempo 8.29

Trak 19.54

TRUCK lefT 6.13

dAe-N 10.86

HUMAN pe 10.29

kAr 7.50

CAR pe 5.00

Table 3: Association results: top2 1-word as-
sociations for each of object categories

Trajectory 3-gram Prob

purI KalI hai 1.71

C1 saD.ak pUrI KalI 1.71

bae-N se dAe-N 3.16

C2 lAl SirT me-m 2.73

bae-N se dAe-N 4.44

C3 puch rahA hai 3.96

roD krOs kar 4.62

C4 krOs kar rahA 4.47

krOs kar rahA 4.67

C5 roD krOs kar 4.20

kuch log roD 2.20

C6 dae-N kI taraf 2.18

geT kI taraf 3.57

C7 Ai Ai TI 3.57

Table 4: Association results: top2 3-word as-
sociations for each of trajectory clusters

ing labels for other categories can be seen in
Table 1, where we see that the average pu-
rity for car, bicycle and truck is quite
high whereas that for tempo is very poor.
Though the purity of human is moderate. we
find that there are many relevant labels in the
narratives; e.g. a person with bicycle is de-
scribed as sAikalwAlA (bicyclist) or as aAdmI
(man). Also, attentional salience is more often
on the larger, faster-moving vehicles and not
on smaller human blobs. Possibly for these
reasons, label for humans is not learned.

4.2 Trajectory-Label association

Table 4 shows top2 3-grams according to con-

ditional probability measures for seven clus-
ters of trajectories. As can be seen, for clus-
ters C2 and C3 representing Left-to-Right
(LR), bAe-N se dAe-N (“left to right”) appears
as the strongest 3-gram. Similarly, for clusters
C5 and C6 dAe-N kI taraf (“towards right”)
appears third (not reported here). For the
cluster C7 representing turn (T), geT kI taraf
(“towards the gate”) appears as the strongest
label as the agents in the cluster C7 are gener-
ally turning towards the gate of an institute.
For other two clusters, C1 and C4, however,
appropriate labels could not be learnt. Per-
haps, the event of right-to-left may not
have been commented as profoundly as the
events of left-to-right or turn.

4.3 Testing on Novel scenes

In order to test our semantic model, we used
two different videos of the similar scene, and
attempted to recognize the three classes of ob-
jects with high viusal purity.

Figure 3: Test videos. Training video at left.
Samples from two test videos, from novel cam-
era positions, at middle and right.

Figure 4: Test agents from novel videos. Sam-
ple blobs from thirteen test agents. Agents on
bottom row were not correctly labeled.

These videos were shot on different days,
from different vantage points, and varied con-
siderably in the imaging (Figure 3). Our
video query consisted of identifying objects of
a given class. For evaluation, we manually
identified truck (3), bicycle (5), and car
(5) agents. Sample blobs for each agent shown
in Figure 4. The truck query responded with
all three agents of truck. The car agents
did not fare that well, only two out of five
were correctly identified; two being labeled as
tempo (possibly because the class tempo was
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very noisy and had several cars in it), and
one as motorcycle. One of the cars seen in
the novel video is a sedan (leftmost in bottom
row, Figure 4), which was not present in the
training data. Three of the bicycle agents
were correctly identified; other two were hu-
man (man standing besides his bicycle) and
tempo but were misinterpreted as bicycle.

As we scale up and include more videos and
different vantage points for training, more re-
fined models of object classes are expected to
be learned, so that such production or recog-
nition errors would go down.

5 Conclusion � Future Work

In this work we have attempted to learn visual
concepts for some object classes and motion
trajectories, and map these to Hindi words or
phrases, based on a) an unsupervised model
that discovers object categories from a fixed-
camera video; b) a model of synthetic blob-
based attention that identifies the most salient
agent among many moving objects; and c) an
association between the concepts learnt from
the video and the k-grams in the user com-
mentaries. The model has been demonstrated
in a video querying task.

Our unsupervised object clustering is able
to distinguish among several object categories
and also some motion trajectories even from a
very short video of around 4.5 minutes. With
greater exposure, the models may be refined
further. Further, there were only 600 sen-
tences of narrative with which to work. To
put it in context, a typical child is exposed to
a much larger corpus of co-occurrent text and
visual context every hour. As NLP searches for
richer models of semantics, such multimodal
data mining will become more widely used. To
help bootstrap this process, both the multi-
modal corpora and and textual database has
been made available.

Given the unsupervised nature and partic-
ularly the minimal dependence on linguistic
knowledge, we are currently expanding this
approach to learn several languages. A
larger goal is to integrate models of motion-
trajectories with the knowledge of nominals,
and begin to attempt to build the kind of
defeasible knowledge structures.
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