
Proceedings of Recent Advances in Natural Language Processing, pages 455–462,
Hissar, Bulgaria, 12-14 September 2011.

A Confidence Model for Syntactically-Motivated Entailment Proofs

Asher Stern
Dept. of Computer Science

Bar-Ilan University
Ramat Gan, Israel

astern7@gmail.com

Ido Dagan
Dept. of Computer Science

Bar-Ilan University
Ramat Gan, Israel

dagan@cs.biu.ac.il

Abstract

This paper presents a novel method for
recognizing textual entailment which de-
rives the hypothesis from the text through
a sequence of parse tree transforma-
tions. Unlike related approaches based
on tree-edit-distance, we employ trans-
formations which better capture linguis-
tic structures of entailment. This is
achieved by (a) extending an earlier deter-
ministic knowledge-based algorithm with
syntactically-motivated on-the-fly trans-
formations, and (b) by introducing an al-
gorithm that uniformly learns costs for all
types of transformations. Our evaluations
and analysis support the validity of this ap-
proach.

1 Introduction

Recognizing Textual Entailment (RTE) is the task
of determining whether a given textual statement
(a hypothesis), H, can be inferred by a given text
passage, T (Dagan et al., 2005). In recent years,
the task has attracted considerable interest, with
research evolving around the six RTE challenges,
organized by PASCAL1 and later under the NIST
Text Analysis Conference (TAC)2. While some of
the proposed RTE systems employed quite shal-
low and ad-hoc techniques, a few principled ap-
proaches for modeling entailment inference began
emerging as well.

This paper focuses on an appealing approach
attempted in several previous works, which, like
most RTE systems, utilizes parse-based represen-
tations of the text and hypothesis. Within this
approach the parse-tree of H is explicitly gen-
erated from that of T by applying a sequence
of tree transformation operations. In analogy to

1http://pascallin.ecs.soton.ac.uk/Challenges/RTE/
2http://www.nist.gov/tac/

logic, that sequence can be referred to as a proof,
by which the target proposition, represented as a
parse tree, is generated from the given text propo-
sitions using appropriate proof steps.

In one line of these works (Wang and Man-
ning, 2010; Heilman and Smith, 2010; Mehdad
and Magnini, 2009) the tree-transformation op-
erations followed mostly traditional tree edit dis-
tance operations, such as node insertion, deletion
and substitution, and learned their costs according
to the given RTE training data. As described in
more detail in Section 2, these transformations do
not necessarily capture the syntactic structure of
entailment-preserving transformations.

On the other hand, a rich inventory of
knowledge-based operations was employed by
Bar-Haim et al. (2007a). Their operations enable
transforming complete sub-trees which do capture
the syntactic structure of entailment inferences.
Nevertheless, their work did not include a learn-
ing component for estimating proof costs and their
tree-transformations were based only on available
knowledge resources, without providing on-the-
fly operations that could compensate for some in-
evitably missing knowledge.

In this work we aim to combine the com-
plementing advantages of the above mentioned
works while filling in some missing gaps. We
utilize knowledge-based sub-tree transformations,
following (Bar-Haim et al., 2007a), but augment
them with a set of on the fly transformations that
correspond to syntactically-motivated entailment
inferences, whose reliability can be learned us-
ing syntactic features. We further apply a cost
model for entailment proofs and introduce an it-
erative learning scheme that estimates reliability
weights based on the “best” (lowest-cost) proofs
for the training pairs.

Evaluations show that our current implemen-
tation, including an initial set of knowledge re-
sources and linguistic analysis, achieves compa-

455



rable results to other proof-based systems. We
conclude the paper by pointing at the generality
and flexibility of our framework and suggest sev-
eral research directions which can be naturally in-
tegrated into it.

2 Background

As pointed above, a promising approach in RTE
research is applying a sequence of operations (a
proof) on the given text, T, to reveal whether and
how it entails the hypothesis, H. The advantage
of this approach is that it allows composition of
knowledge, where in many cases information from
one knowledge resource becomes relevant only af-
ter a previous operation was performed.

Methods that follow this approach should deal
with three main aspects. First, they have to decide
how to represent T and H. Second, they have to
define the set of proof operations. Third, they have
to define a method to estimate the likelihood that a
generated sequence of operations indeed preserves
entailment.

Raina et al. (2005) used a logical representation,
and accordingly defined the set of operations by
a commonly used theorem proving method (reso-
lution refutation). However, since state-of-the-art
methods that transform a text into logical repre-
sentation are less robust than syntactic parsers, the
logical representation is rarely used.

Syntactic parse trees provide a common rep-
resentation in text understanding systems in gen-
eral, and for RTE in particular. The corresponding
proof operations are thus tree-transformations that
subsequently change the parse tree of T until H’s
parse tree is obtained.

Mostly, the selected tree-transformations fol-
lowed standard (“insert”, “delete”, “substitute”) or
custom tree edit distance operations (Mehdad and
Magnini, 2009; Wang and Manning, 2010; Heil-
man and Smith, 2010) However, those sets of op-
erations are often not linguistically-motivated and
thus do not necessarily reflect the nature of the
RTE problem. In addition, utilizing knowledge
resources (both linguistic knowledge and world
knowledge) is limited in such systems. Consider,
for example, transformation of a parse-tree from a
passive form to an active form. Such transforma-
tion can be done by a sequence of mostly dele-
tion and insertion operations, however, such se-
quence misses to capture the syntactic structure of
the transformation. Similarly, resources that in-

Figure 1: The figure demonstrates the rule X listen to Y →
X hear Y, along with its application to the sentence “I listen

to the music.”

dicate semantic similarity of two sub-trees, e.g.
DIRT (Lin and Pantel, 2001), would be utilized
naturally by substitution of a complete sub-tree by
another, which cannot be performed by the above
tree-edit-distance operations.

In contrast, a set of linguistically-motivated op-
erations was proposed independently by Harmel-
ing (2009) and by Bar-Haim et al. (2007a). While
the set of operations defined by Harmeling (2009)
was limited and included mostly ad-hoc heuristics,
the operations defined by Bar-Haim et al. (2007a)
were designed to capture a broad range of linguis-
tic and world knowledge. Their primary opera-
tions are applications of Entailment Rules, which
substitute complete sub-trees and generate new
parse-trees, based on knowledge resources (see
Figure 1 and Table 1).

However, unlike other methods that followed
the proof-style approach, the method of Bar-Haim
et al. (2007a) does not estimate the likelihood that
a generated proof is valid. Another problem is that
in most cases, there is no sequence of operations
that completely generates H. Rather, starting from
T, the operations generate new trees that become
more similar, but not identical to H3 (Bar-Haim,
2010).

To summarize, two main challenges are in-
volved in transformational proof-style inferences
over syntactic parse trees. The first is defining
a method to estimate the likelihood that a given
proof preserves entailment. The second is to de-
fine operations that are linguistically-motivated
and reflect the RTE problem space. So far, all
proof-style systems addressed either the first or the

3On the RTE datasets, a hybrid framework was intro-
duced by Bar-Haim et al. (2007b), which uses an approximate
match mechanism for final classifications.

456



Rule Type Description Examples

Lexical Rules Substitution of a single node, capturing lexical
entailment. Both lhs and rhs are single nodes.

novel→ book
walk→ go

Lexical Syntactic
Rules

Tree transformations that change the tree’s lexical
items as well as the tree’s structure.

“X file lawsuit against Y”→ “X accuse Y”
“X listen to Y”→ “X hear Y”

Generic Syntactic
Rules

Tree structure transformations. Capture linguistic
phenomena (e.g. passive-active). X V(active) Y→ Y is V(passive) by X

Table 1: Types of Entailment Rules. Note that for simplicity the examples are presented as strings, though the actual

definition and implementation are based on sub-trees, as in Figure 1

second challenge, but not both. As described next,
in this work we propose a principled integrated so-
lution to those two challenges.

3 A Cost-based Proof Model

In our framework we adopt the linguistically-
motivated entailment operations proposed by Bar-
Haim et al. (2007a), and extend them with
syntactically-motivated on-the-fly operations to
enable generation of complete proofs (Sec. 3.1).
The extended framework is then integrated with
a learning method similar to the one proposed for
logic representations by (Raina et al., 2005) as fol-
lows. We propose a cost model, which assigns
a cost for each entailment proof (Sec. 3.2), and
introduce a search algorithm that finds the “best
proof” with respect to the cost model (Sec. 3.3).
Finally we describe a method to iteratively learn
the parameters of the cost model (Sec. 3.4).

3.1 Inference Formalism

The model presented here assumes a single-
sentence hypothesis, similar to the RTE chal-
lenges, though it can be easily adjusted to multi-
sentence hypotheses as well.

Given a (T,H) pair, the system first constructs
the dependency parse trees4 of T and H. Each
node in those trees contains information about one
lexical item (i.e. a word or a multi-word expres-
sion), which includes its lemma and its part-of-
speech, and optionally other information, such as
Named Entity type5. Each edge is labelled with a
dependency relation (e.g. subject, object).

Let T be a set of dependency parse trees that
were constructed for T’s sentences, and let h be
the dependency parse tree constructed for H. The
system iteratively extends T with additional trees,
by applying tree generation operations, until there
exists a tree t ∈ T , such that h is embedded in t.

4We used the Minipar parser (Lin, 1998b)
5We used Stanford NE recognizer (Finkel et al., 2005)

We will use the following notations: Let T be a
set of trees, o be a tree generation operation, and t
be a tree. T `o t denotes that t can be generated
from T using the operation o. We will use the `
notation also for the resulting extended set of trees,
that is:

T `o T ∪ {t}

Let O = (o1, o2 . . . om) be a sequence of op-
erations. The notation T |=O T ′ means that T ′
can be generated from T by applying iteratively
the operations in O. Finally, a sequence of opera-
tions is called a proof, P , if T |=P T ′ such that h
is embedded in one of the trees in T ′.

Although a more accurate definition of a proof
would require that h would be identical to one
of the trees in T ′, rather than being embedded in
one of them, our relaxed definition is a common
heuristic simplifying the proof construction pro-
cess.

3.1.1 Entailment rules
The primary operations in Bar-Haim et al. (2007a)
are applications of Entailment Rules. An entail-
ment rule is composed of two sub-trees, named
left hand side (lhs) and right hand side (rhs), in-
tended to capture an entailment relation between
its two sides (See Table 1). For example, a simple
lexical rule is “music→ art”, where both sub-trees
consist of single nodes.

Let r = (lhs, rhs) be a rule and t be a parse-
tree, such that lhs is embedded in t. An appli-
cation of r on t is a generation of a new tree, t′,
which is identical to t, but with the instance of
lhs in t being replaced by rhs. If the underlying
meaning of t entails the meaning of t′, then we
would consider the application of r as valid. It
should be noted that in (Bar-Haim et al., 2007a) all
rule-applications, based on the set of rules given to
the system, were considered valid for any arbitrary
(T,H) pair, an assumption which we relax in our
cost-based model.

A rule’s lhs and rhs may contain variables, i.e.

457



nodes in which the lemma is not specified. When
such a rule is applied, the system first instantiates
the variables with actual lemmas, according to the
original tree, and then replaces the lhs by the in-
stantiated rhs (As exemplified in Figure 1). As de-
scribed in Section 2 and Table 1, such entailment
rules are able to capture a broad range of linguis-
tic and world knowledge. It should be noted that in
our current implementation generic-syntactic rules
were not integrated yet. Incorporating and extend-
ing the set of generic-syntactic rules is currently
under work.

3.1.2 Co-reference Operations
Co-reference Substitution is a tree manipulation
that is performed according to co-reference in-
formation, given by an external co-reference re-
solver6. Given two mentions m1 and m2 of the
same entity, not necessarily in the same parse-tree,
we define the operation of replacing the sub-tree
rooted by m1 by the sub-tree rooted by m2 as Co-
reference Substitution.

3.1.3 On The Fly operations
As described in Section 2, the original scheme of
Bar-Haim et al. (2007a) recognized a (T,H) pair as
entailing if and only if H could be generated by a
sequence of co-reference substitutions and appli-
cations of rules from the given set of knowledge
resources. Inevitably that scheme suffers very lim-
ited recall7.

Utilizing our learning scheme as described be-
low, we are able to overcome that difficulty,
by adding an additional set of on the fly tree-
transformations. Though those operations are not
justified by a pre-given knowledge base, an es-
timation of their correctness likelihood can be
learned, based on syntactic features. For example,
moving a complete sub-tree is defined as an atomic
operation, in contrast to the regular tree-edit-
distance operations, in which such transformation
requires a sequence of “insert” and “delete” oper-
ations.

An initial set of on-the-fly operations which is
implemented in our system is specified in Table
2. The validity of applying such operations is esti-
mated by the cost-model, described next, using the

6We used BART co-reference resolver (Versley et al.,
2008)

7As mentioned earlier, to increase recall in practical RTE
datasets, a hybrid framework was introduced by Bar-Haim et
al. (2007b), which uses an approximate match mechanism for
final classifications.

Operation-Name Operation-Description

Insert Node Insert a new node in an arbitrary posi-
tion in a parse tree.

Move sub tree

Disconnect a sub tree rooted by n
from its parent p(n) and connect it
as a child of another node in the tree,
p′(n).

Change Relation Change the relation (the edge label)
between a node n and its parent p(n).

Flip Part-Of-
Speech Change a node’s part-of-speech.

Cut Multi-Word
Remove some of the words from a
multi-word expression, as identified
by the parser

Single-Word to
Multi-Word

Replace a word by a multi word ex-
pression containing it, e.g. “Bond”→
“James Bond”.

Table 2: on-the-fly operations in our system.

features listed in Table 3. Those operations rep-
resent simple transformations required to handle
differences between two dependency-parse-trees,
and are applied when parts of the hypothesis tree
are missing in a given tree in T .

This set of operations can be extended in the fu-
ture by using additional linguistic resources, e.g.
by identifying the semantic role of the inserted
and moved nodes, or by adding on-the-fly substi-
tutions, scored by distributional similarity.

3.2 Cost Model
Given a proof P , we want to estimate its cor-
rectness likelihood. Under the assumption that
some or all of the operations in P might be in-
correct - for example due to inaccuracies of the
knowledge bases, wrong co-reference resolution
or incorrect on-the-fly operations - we define a
cost model to quantify the proof’s likelihood to
be correct. Following the cost model applied by
Raina et al. (2005) to logic proofs, we use an
additive linear model in which each operation is
characterized by a set of features and the oper-
ation’s total cost is a weighted linear combina-
tion of those features. Formally, let o ∈ P , let
F (o) = (F

(o)
1 , F

(o)
2 , . . . F

(o)
D )T be a feature vec-

tor characterizing o, and let w be a correspond-
ing weight vector. The total cost of o (denoted by
Cw(o)) is defined as:

Cw(o) ,
D∑

i=1

wi · F (o)
i = wT · F (o) (1)

The cost of a sequence of operations (and in par-
ticular of a proof) is naturally defined as the sum
of costs of all operations. Thus, given a proof

458



P = (o1, o2, . . . om), its total cost, denoted by
Cw(P ), is:

Cw(P ) ,
m∑

j=1

Cw(oj) (2)

Let F (P ) =
∑m

j=1 F (oj). Combining (1) and
(2), we get:

Cw(P ) ,
D∑

i=1

wi · F (P )
i = wT · F (P ) (3)

The last equation provides a way to represent a
complete proof by a single feature-vector, which
is simply the sum of all operations’ vectors. We
will use this feature representation in the learning
and classification phases.

For each (T,H) pair there might be many proofs.
However, for positive pairs, we assume there ex-
ists a “correct” proof, i.e. a proof that is composed
of only valid operations (though many other in-
correct proofs exist as well), while for negative
pairs non of the proofs is correct. An optimal
weight vector, w∗, would assign low costs to cor-
rect proofs while incorrect proofs will be assigned
high costs. Therefore, distinguishing between pos-
itive pairs and negative pairs should be done by
examining their lowest-cost proofs.

In the next sub-sections we describe how to
search for lowest-cost proofs (“best proofs”) and
how to learn the optimal weight vector.

3.2.1 Modelling Operations by Features
As a convention, all features are assigned zero-or-
negative values, interpreted as penalty. For each
value vi assigned to a feature Fi, vi = 0 means that
no penalty is implied by that feature, while |vi| �
0 implies a high penalty by that feature. Follow-
ing that convention, all weights should be assigned
zero-or-positive values, since adding an operation
cannot improve the confidence of a proof. This
implies that an operation’s total cost Cw(o), and a
proof’s total cost Cw(P ) are zero-or-negative. The
higher the absolute cost value, the lower the like-
lihood of the proof’s correctness.

Features were defined for each knowledge re-
source, for co-reference substitution and for on-
the-fly operations, as summarized in Table 3. For
knowledge resources, features were defined as fol-
lows. Many knowledge resources provide nu-
merical scores, indicating rules’ reliability, which
we use for the corresponding feature value. The

knowledge resources that provide such scores
and were used in the current system are DIRT
(Lin and Pantel, 2001), Wikipedia rules (Shnarch
et al., 2009), Lin similarity (Lin, 1998a), and
Directional-Similarity8 (Kotlerman et al., 2010).
For knowledge resources that do not provide a nu-
merical information about rule reliability, the cor-
responding feature-value is set to (−1). In the cur-
rent system, WordNet9 (Fellbaum, 1998; Miller,
1995), an in-house Geographical data-base, and
VerbOcean10 (Chklovski and Pantel, 2004) were
included.

Some on-the-fly operations incorporate numer-
ical information that reflects how likely it is that
the meaning of the text is changed by applying
them. As an example, for the insert-node oper-
ation we use the “Maximum Likelihood Estima-
tion” (MLE) of the occurrence probability of the
inserted word in a large news corpus11. The un-
derlying assumption here is that it is more likely
that inserting frequent words would still preserve
entailment than inserting rare words.

3.3 Searching for the best proof

Searching for the best proof is done iteratively.
Starting from T as the original text’s trees, and
a given weight vector, the system adds all the trees
that can be generated by applying any generation-
operation on T . Since that scheme makes T grow
exponentially, we use a simple beam search prun-
ing approach as follows.

A constant beam size K is predetermined. In
each iteration T is pruned such that its number of
trees will be no more than K. Since every tree
in T was generated by a sequence of operations,
we define the cost of a tree as the cost of the se-
quence that was used to generate that tree. We use
that cost, in addition to estimations about the dif-
ference between a given tree to the hypothesis tree,
in order to decide which tree should be pruned out,
such that after each iteration |T | ≤ K. Finally, the
lowest cost generated tree which embeds h is re-
turned.

8A rule-base of lexical entailment rules automatically ex-
tracted by means of directional distributional similarity.

9We used the following WordNet relations: hypernymy,
holonymy, verb-entailment and synonymy

10Only the relation “stronger” was used.
11We used Reuters Corpus, Volume 1+2 (RCV1-2). Avail-

able at http://trec.nist.gov/data/reuters/reuters.html

459



# Feature Value

1 Wikipedia
log(m), where m is the estimated accuracy of the method used
to learn the given Wikipedia rule, as described in (Shnarch et al.,
2009). 0 ≤ m ≤ 1.

2 Lin Similarity log(sim), where sim is the similarity score given for that rule ac-
cording to (Lin, 1998a). 0 ≤ sim ≤ 1.

3 Directional-Similarity log(sim), where sim is the similarity score given for that rule ac-
cording to (Kotlerman et al., 2010). 0 ≤ sim ≤ 1.

4 DIRT log(sim), where sim is the similarity score given for that rule ac-
cording to (Lin and Pantel, 2001). Note that 0 ≤ sim ≤ 1.

5 WordNet −1
6 VerbOcean −1
7 Geographical Database −1

8 Insert Verb

log(f), where f is the MLE of the occurrence probability for the
inserted lemma in the Reuters news corpus.

9 Insert non-verb content word
10 Insert non-content word
11 insert Named Entity
12,
13,
14,
15

Insert verb / content word / non-content word /
Named Entity - that exist in other parts of the
text

log(f), where f is the MLE of the occurrence probability for the
inserted lemma in the Reuters news corpus.

16 Change relation of a node to its parent, from
“subject” to “object” or vice versa −1

17 Move Sub Tree rooted by n from p(n) to p′(n),
s.t. the path from n to p′(n) contains a verb −l, where l is the length of the path between n and p′(n) in the

original tree.18 All other “move Sub Tree” operations

19 Single-word to Multi-word
log(minf∈F (f)) where F is the set of MLE of the occurrence
probabilities corresponding to the added words. The probabilities
were calculated using the Reuters News corpus.

20 Cut Multi-word −1
21 Flip part-of-speech −1

22 Co-reference −1

Table 3: Features and their values for each (knowledge and on-the-fly) operation. Note that all values are negative.

3.4 Iterative Weight Estimation

We would like to classify a proof P , represented
by a feature vector F , as “correct” if its cost is
low.

Formally, let (w, b) be a weight vector and a
threshold. P is classified as correct if and only
if

w · F + b ≥ 0 (4)

and as incorrect otherwise. The goal of parameter
estimation is thus finding optimal (w∗, b∗).

If our training set was a set of binary-labelled
vectors (Fi, li), i ∈ {1 . . . n}, we could apply di-
rectly a linear training algorithm to find (w∗, b∗).
However, our training set is a set of labelled text
pairs, for which the proofs that determine the cor-
responding feature vectors should be constructed
by the system. Yet, as explained at the end of
Section 3.2, only the lowest-cost proofs should
be considered to distinguish between positive and
negative pairs, while finding those proofs through
the search algorithm of Section 3.3 requires know-
ing the optimal weight vector.

We therefore use an iterative learning scheme to

Algorithm 1 Parameters Estimation
Require: Training set: (T1,H1,l1) . . . (Tn,Hn,ln)
1: (w0, b0) ← a reasonable guess of weights vector and

threshold
2: i← 0
3: repeat
4: Find P1 . . . Pn by the method described in 3.3, using

(wi, bi)
5: Construct the corresponding feature vectors

F (P1) . . . F (Pn).
6: use (F (P1), l1) . . . (F (Pn), ln) as a training set

to a linear classifier, resulting new parameters
(wi+1, bi+1).

7: i← i + 1
8: until convergence

overcome this circularity problem, as follows (see
Algorithm 1). We start with an initial weight vec-
tor and threshold, (w0, b0), set manually by a rea-
sonable guess. Using the algorithm in Section 3.3
we find a lowest-cost proof for each pair, resulting
in n labelled feature vectors, (F1, l1) . . . (Fn, ln),
where li is the binary entailment annotation. Next,
we use a standard linear learning algorithm to
learn new parameters, (w1, b1). We iteratively im-
prove the weights vectors and the proofs until con-

460



System RTE-1 RTE-2 RTE-3 RTE-5
Learning and abductive reasoning (Raina et al., 2005) 57.0 %
Probabilistic Calculus of Tree Transformations (Harmeling, 2009) 56.39 % 57.88 %
Probabilistic Tree Edit model (Wang and Manning, 2010) 63.0 % 61.10 %
Deterministic Entailment Proofs (Bar-Haim et al., 2007b) 61.12 % 63.80 %

Our System Accuracy (Recall % / Precision %) 57.13%
(81.0/54.8)

61.63%
(76.2/59.0)

67.13%
(87.2/63.3)

63.50%
(75.7/60.9)

Median of all submissions in challenge 55.20 % 58.13 % 61.75 % 61.00 %
Best System in challenge 58.6 % 75.3 % 80.0 % 73.5 %

Table 4: Accuracy of proof-based systems on RTE datasets, followed by median results and best results of all systems

participated in those challenges.

vergence. Since there is no theoretical bound on
the convergence rate, we limit the number of iter-
ations by a predefined constant. In practice, how-
ever, only few iterations are required for conver-
gence.

4 Evaluation

We ran experiments on the first, second, third and
fifth RTE datasets12 (Dagan et al., 2005; Bar-Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009) and compared our system to other
proof-style systems. Each dataset consists of 600
to 800 (T,H) pairs, half of them are positive, and
the other half are negative. For the underlying lin-
ear classifier, required by Algorithm 1, we used
linear-SVM13. The value of K, described in Sec-
tion 3.3, was set to 135, according to tuning done
on the training set. The results for our system, pre-
sented in Table 4, show comparable performance
to other systems on most datasets, with notably
higher performance in RTE-3.

Operation avg. in
posi-
tives

avg. in
negatives

ratio

Insert Named Entity -0.006 -0.016 2.67
Insert content word -0.038 -0.094 2.44
DIRT -0.013 -0.023 1.73
“subject”↔ “object” -0.025 -0.040 1.60
Flip part-of-speech -0.098 -0.101 1.03
Lin similarity -0.084 -0.072 0.86
WordNet -0.064 -0.052 0.81

Table 5: The average value of certain features in posi-

tive pairs and negative pairs, taken from an experiment on the

RTE-2 test set.

As indicated by the results, our system indeed
assigns, on average, higher costs to negative pairs
than to positive ones. Further insight into this be-
havior is obtained by Table 5. The table presents

12The RTE-4 dataset had no training dataset
13We used SVM-Light, available at

http://svmlight.joachims.org/

a sample of features’ average values. The up-
per rows of the table present features whose aver-
age absolute value in negative pairs is significantly
higher than in positive pairs, while the features in
the lower rows have similar average values in pos-
itive and negative pairs.

The former features indicate that there are some
operations that tend to be part of the “best” proof
for negative pairs more frequently than for posi-
tive pairs. A reasonable explanation for this phe-
nomenon is that the system learned that some op-
erations are less reliable than other operations, and
tried to avoid them whenever possible. However,
these operations could not be avoided in negative
pairs, resulting in higher feature values.

5 Conclusions and Future Work

Two main concepts underlie this paper. The
first is automatic estimation of the quality of
proofs required to recognize textual-entailment.
The second concept is a complete framework
of linguistically-motivated proof operations for
recognising textual-entailment. The main contri-
bution of this paper is showing how those two con-
cepts can be integrated, to leverage the advantages
of both.

The linguistically-motivated framework pre-
sented here is based on the framework proposed
by (Bar-Haim et al., 2007a), with a significant
extension of on-the-fly operations required for
making it robust and complete. Many additional
linguistically-motivated entailment operations can
be naturally integrated into this framework. For
example, lexical, syntactic and semantic attributes
like verb-tense and polarity (negation) can be eas-
ily handled, much like part-of-speech and named-
entity (Bar-Haim et al., 2007a). Another exam-
ple is temporal inference (e.g. “this afternoon →
today”) which can be integrated easily by proper
substitutions based on an appropriate knowledge

461



resource (similar to the one proposed by Wang
and Zhang (2008)). Yet another example is ad-
dressing more types of co-reference based opera-
tions (Mirkin et al., 2010). Finally, as noted ear-
lier, the current set of on-the-fly operations may be
extended, which will likely improve the system’s
performance.

Acknowledgements

This work was partially supported by the Israel
Science Foundation grant 1112/08 and by the
PASCAL-2 Network of Excellence of the Euro-
pean Community FP7-ICT-2007-1-216886.

References
Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,

Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising
textual entailment challenge. In Proceedings of the
Second PASCAL Challenges Workshop on Recognis-
ing Textual Entailment.

Roy Bar-Haim, Ido Dagan, Iddo Greental, and Eyal
Shnarch. 2007a. Semantic inference at the lexical-
syntactic level. In Proceedings of AAAI.

Roy Bar-Haim, Ido Dagan, Iddo Greental, Idan Szpek-
tor, and Moshe Friedman. 2007b. Semantic infer-
ence at the lexical-syntactic level for textual entail-
ment recognition. In Proceedings of ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing.

Roy Bar-Haim. 2010. Semantic Inference at the
Lexical-Syntactic Level. Ph.D. thesis, Bar-Ilan Uni-
veristy.

Luisa Bentivogli, Bernardo Magnini, Ido Dagan, H.T.
Dang, and D. Giampiccolo. 2009. The fifth pas-
cal recognizing textual entailment challenge. In pro-
ceeding of TAC.

Timothy Chklovski and Patrick Pantel. 2004. Verbo-
cean: Mining the web for fine-grained semantic verb
relations. In Proceedings of EMNLP.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Joaquin Quiñonero Candela, Ido Da-
gan, Bernardo Magnini, and Florence d’Alché Buc,
editors, MLCW, volume 3944 of Lecture Notes in
Computer Science, pages 177–190. Springer.

Christiane Fellbaum, editor. 1998. WordNet An Elec-
tronic Lexical Database. The MIT Press, Cam-
bridge, MA ; London, May.

Jenny Rose Finkel, Trond Grenager, and Christo-
pher D. Manning. 2005. Incorporating non-local
information into information extraction systems by
Gibbs Sampling. In Proceedings of ACL.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third pascal recogniz-
ing textual entailment challenge. In RTE ’07 Pro-
ceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing.

Stefan Harmeling. 2009. Inferring textual entailment
with a probabilistically sound calculus. Natural
Language Engineering, 15(4):459–477.

Michael Heilman and Noah A. Smith. 2010. Tree edit
models for recognizing textual entailments, para-
phrases and answers to questions. In HLT-NAACL.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-geffet. 2010. Directional distributional
similarity for lexical inference. Natural Language
Engineering, 16:359–389.

Dekang Lin and Patrick Pantel. 2001. DIRT - discov-
ery of inference rules from text. In Proceedings of
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining.

Dekang Lin. 1998a. Automatic retrieval and clustering
of similar words. In Proceedings of COLING-ACL.

Dekang Lin. 1998b. Dependency-based evaluation of
minipar. In Proceedings of the Workshop on Eval-
uation of Parsing Systems at LREC 1998, Granada,
Spain.

Yashar Mehdad and Bernardo Magnini. 2009. Op-
timizing textual entailment recognition using parti-
cle swarm optimization. In Proceedings of the 2009
Workshop on Applied Textual Inference.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Shachar Mirkin, Ido Dagan, and Sebastian Pado. 2010.
Assessing the role of discourse references in entail-
ment inference. In Proceedings of ACL.

Rajat Raina, Andrew Y. Ng, and Christopher D. Man-
ning. 2005. Robust textual inference via learning
and abductive reasoning. In Proceedings of AAAI.

Eyal Shnarch, Libby Barak, and Ido Dagan. 2009. Ex-
tracting lexical reference rules from Wikipedia. In
ACL-IJCNLP.

Yannick Versley, Simone Paolo Ponzetto, Massimo
Poesio, Vladimir Eidelman, Alan Jern, Jason Smith,
Xiaofeng Yang, and Ro Moschitti. 2008. BART: A
modular toolkit for coreference resolution. In Pro-
ceedings of ACL, Demo Session.

Mengqiu Wang and Christopher D. Manning. 2010.
Probabilistic tree-edit models with structured latent
variables for textual entailment and question answer-
ing. In Proceedings of COLING.

Rui Wang and Yajing Zhang. 2008. Recognizing tex-
tual entailment with temporal expressions in natural
language texts. In Proceedings of the IWSCA.

462


